
Intel® Trace Collector for Intel® oneAPI

User and Reference Guide

2

Introduction
Intel® Trace Collector is a tool for tracing MPI applications. It intercepts all MPI calls and generates
tracefiles that can be analyzed with Intel® Trace Analyzer for understanding the application behavior.
Intel® Trace Collector can also trace non-MPI applications, like socket communication in distributed
applications or serial programs. The tool was formerly known as Vampirtrace* (VT), which is why the
VT abbreviation is present in the names of some of components and variables.

Before you start using any of the Intel Trace Collector functionality, make sure to set the necessary
environment variables using the setvars script available in the installation directory (the default
installation directory is /opt/intel/oneapi).
Linux: Source the setvars script.
Windows: Run the setvars.bat file.
This will set the required environment variables for compilers, Intel® MPI Library and Intel® Trace
Analyzer and Collector, and you will be ready to trace your applications.

This guide documents Intel® Trace Collector 2020. Documentation for older versions of Intel® Trace
Analyzer and Collector are available for download only. For a list of available documentation downloads
by product version, see Download Documentation for Intel Parallel Studio XE.

Intel® Trace Collector contains the libraries and utilities listed below. Some of them are available only
on Linux* OS.

Product Components
Libraries

Component Description

libVTnull Dummy implementation of API (Tracing User Defined Events).

libVT Library for regular MPI tracing (Tracing Conventional MPI Applications).

libVTfs Library for fail-safe MPI tracing (Tracing Failing MPI Applications).

libVTim Library for tracing MPI load imbalance (Tracing MPI Load Imbalance).

libVTmc Correctness checking library (Correctness Checking).

libVTcs Library for tracing distributed non-MPI applications (Tracing Distributed Non-
MPI Applications).

VT_sample Library for automatic counter tracing with PAPI* (Recording Hardware
Performance Information).

https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-parallel-studio-xe-current-previous.html

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

3

Utilities

Component Description

stftool Utility for manipulating trace files (stftool Utility).

xstftool/expandvtlog.pl Utility for conversion of trace files into readable format
(Expanded ASCII output of STF Files).

itcconfig Configuration assistant for creating and editing configuration files
(Configuring Intel® Trace Collector).

otf2-to-stf Utility for conversion of OTF2 trace files to the STF format. See
the Intel® Trace Analyzer User and Reference Guide for details.

Compatibility with MPI Implementations
Intel® Trace Analyzer and Collector is built with the Intel® MPI Library, depends on certain MPI
constants, and is generally compatible with all MPICH* derivatives. If you use a different MPI
implementation or an old version of the supported one, you need to check its compatibility with
Intel® Trace Collector. Compile and run the check_compatibility.c program located at
<install_dir>/examples:
Linux* OS

$ mpicc –o check_compatibility check_compatibility.c

$ mpirun -n 1 ./check_compatibility
Windows* OS

> mpicc check_compatibility.c

> mpiexec -n 1 check_compatibility.exe
The program outputs whether your MPI implementation is compatible with Intel® Trace Collector.
For details on supported implementations, refer to the Release Notes.

What's New

Intel® Trace Collector 2020
• Bug fixes.

Intel® Trace Collector 2019
• Added information on tracing Python* applications to Tracing Conventional MPI

Applications.

Intel® Trace Collector 2021.2
• Bug fixes.

Introduction

4

• Added new configuration options VT_START_PAUSED and VT_COMPRESS_TRACE.

Intel® Trace Collector 2018
• Introduced support for OpenSHMEM* applications (Linux* OS only). See Tracing

OpenSHMEM Applications for details.

• Removed support of the Intel® Xeon Phi™ coprocessors (formerly code named Knights
Corner).

• Removed the macOS* support.

• Removed support for the indexed tracefile format (ITF).

Intel® Trace Collector 2017
• Introduced the otf2-to-stf utility for converting OTF2 trace files to the STF format. See

the Intel® Trace Analyzer User and Reference Guide for details.
• Introduced a new library for collecting MPI load imbalance (Linux* OS only). See Tracing MPI

Load Imbalance for details.

• Introduced a new API function VT_registerprefixed.

About This Document
This User and Reference Guide provides you with the description of the features of the Intel® Trace
Collector. This information is provided in the two main sections:

• User Guide – describes the Intel® Trace Collector functionality and provides
instructions on how to use its features.

• Intel® Trace Collector Reference – contains the reference information for Intel® Trace
Collector.

On Linux* OS, you can get help information in man pages, for example, about the Intel® Trace
Collector API calls (man VT_enter) and the Intel Trace Collector configuration (man VT_CONFIG).
The man pages are available in the <install_dir>/man directory.

Note
Information in this document is provided with the assumption that you use the latest versions of
Intel® C++/Fortran Compiler and Intel® MPI Library, unless another compiler or MPI implementation
is specified.

Notational Conventions

The documentation is OS-independent. Linux* OS and Windows* OS may have different styles in
passing parameters. This User and Reference Guide follows the nomenclature used on the Linux* OS.
Here is a list of the most important differences and how they are mapped from the Linux* OS style to
the Windows* OS one:

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

5

Linux* OS Microsoft* Windows* OS

-L<path> -LIBPATH:<path>

-l<library> <library>.lib

<directory>/<file> <directory>\<file>

The following conventions are used in this document:

Convention Explanation Example

This type style Document or product names The term process in this
documentation implicitly
includes thread.

This type style GUI elements Click OK

<this type style> Placeholders for actual values <new_name>

This type style Commands, arguments, options $ mpirun -trace -n 4
myApp

THIS_TYPE_STYLE Environment variables Set the VT_CONFIG
environment variable to the
directory that contains the
configuration file.

[items] Optional items [config options]

[item | item] Selectable items separated by
vertical bar(s)

[on|off]

$ Introduces UNIX* commands $ ls

> Introduces Windows*
commands

> cd

Related Information
Additional information about Intel® Trace Analyzer and Collector is available at:
https://software.intel.com/en-us/intel-trace-analyzer/

For a complete list of related documentation visit http://software.intel.com/en-us/articles/intel-
trace-analyzer-and-collector-documentation-2018-beta/

Information about Intel® Parallel Studio XE Cluster Edition is available at:
https://software.intel.com/en-us/intel-parallel-studio-xe/

Intel® Premier Customer Support is available at: https://premier.intel.com/

https://software.intel.com/en-us/intel-trace-analyzer
http://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation/
http://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation/
https://software.intel.com/en-us/intel-parallel-studio-xe/
https://premier.intel.com/

6

User Guide
This section describes the Intel® Trace Collector functionality and provides instructions on how to
use its features. See the brief overview of each sub-section in the table below.

Section Description

Tracing MPI
Applications

General instructions on how to trace various types of MPI applications.

Tracing MPI Load
Imbalance (Linux*
OS)

Information on tracing MPI events that cause application load imbalance.

Tracing User
Defined Events

Information on tracing non-MPI user-defined events in MPI applications. You can
do this automatically for all application functions, or manually only for selected
functions or code regions.

Configuring Intel®
Trace Collector

Information on how to configure various aspects of Intel® Trace Collector
behavior. Configuration is used to enable and disable some Intel Trace Collector
functionality and for filtering trace data.

Filtering Trace
Data

Description of the filtering capabilities of Intel® Trace Collector. Use filtering to
trace only information of interest reducing the trace file size and making the
results easier to analyze.

Recording
OpenMP* Regions
Information

Instructions on recording the information about the OpenMP* regions in your
application into the trace file.

Tracing System
Calls (Linux* OS)

Information on tracing system input/output calls.

Collecting
Lightweight
Statistics

Information on collecting the lightweight statistics about function calls and their
communication. Collecting the lightweight statistics is useful for understanding
an unknown application.

Recording Source
Location
Information

Instructions on recording the locations of certain functions in the source code.
This enables you to easily navigate the source files when analyzing the trace
data.

Recording
Hardware
Performance

Information on recording the PAPI hardware performance counters.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

7

Information (Linux*
OS)

Recording
Operating System
Counters

Information on recording operating system counters, which provide useful
information about nodes.

Tracing Library
Calls

A use case of tracing particular data using various Intel® Trace Collector
capabilities. In the example provided, an instrumented application with the use of
external libraries is used. Data tracing is presented from the points of view of the
application developer and the library developers.

Correctness
Checking

Information on the correctness checking capability. The correctness checker can
detect deadlocks, data corruption, and errors with MPI parameters, data types,
buffers, communicators, point-to-point messages and collective operations.

Tracing Distributed
Non-MPI
Applications

Information on tracing distributed applications that work without MPI.

Tracing MPI Applications
Tracing MPI Applications
Before tracing your applications, set up the environment variables for compilers, Intel® MPI Library,
and Intel® Trace Analyzer and Collector. This can be done by sourcing/running a single file that sets
the variables for all products at once.

Linux* OS:

Source the setvars.[c]sh script available in the installation directory (the default installation
directory is /opt/intel/oneapi:

$ source setvars.sh
Windows* OS:

Run the setvars.bat script available in the installation directory (the default installation directory
is C:\Program Files(x86)\Intel\oneAPI).
After setting up the environment, you are ready to trace your applications. See the instructions
below:

• Tracing Conventional MPI Applications

• Tracing Failing MPI Applications

• Tracing MPI File IO

• Handling of Communicator Names

User Guide

8

Tracing Conventional MPI Applications
Before tracing your applications make sure to complete the steps described in the previous section.

Tracing MPI Applications in Python*
To create a trace file for an MPI application written in Python*, use the -trace option with
"libVT.so libmpi.so" argument. For example:

$ mpiexec.hydra -trace "libVT.so libmpi.so" -n 2 python helloworld.py
To change the trace name, see the VT_LOGFILE_NAME variable or refer to the example below:

$ export VT_LOGFILE_NAME=helloworld.stf

$ export VT_LOGFILE_FORMAT=SINGLESTF

Tracing on Linux* OS

Tracing without rebuilding

The common way to trace an MPI application is to dynamically load the Intel® Trace Collector
profiling library during execution. The profiling library then intercepts all MPI calls and generates a
trace file. The easiest way to do this is to use the -trace option of the mpirun command. For
example:

$ mpirun -trace -n 4 ./myApp
If you use your own launch scripts, you can use the LD_PRELOAD environment variable to point to
the appropriate profiling library (see Product Components). For example, for regular tracing:

$ export LD_PRELOAD=libVT.so

$ mpirun -n 4 ./myApp

Relinking with profiling library

In some cases you may need to rebuild your application to trace it – for example, if it is statically
linked with the MPI library. In this case, use the -trace compiler option to link the libraries required
for tracing. To generate a trace file, run the application as usual. For example:

$ mpiicc -trace myApp.c -o myApp

$ mpirun -n 4 ./myApp
If you wish to specify the profiling library, use the -profile=<profiling_library> option
instead of -trace. For the list of available libraries, see Product Components. For example, for the
fail-safe tracing library:

$ mpiicc -profile=vtfs myApp.c -o myApp

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

9

Note

The -trace and -profile options link the selected Intel® Trace Collector library statically. To link it
dynamically, use the additional -dynamic_log option.

For more details on the options used, see the Intel® MPI Library documentation.

Tracing on Windows* OS
To trace an application on Windows* OS, you need to recompile your application and link it with the
Intel® Trace Collector profiling library. The -trace compiler option helps you do this job.
Do the following:

1. Rebuild your application with the -trace compiler option. For example:
> mpiicc -trace myApp.c

2. Run the application as usual:

> mpiexec -n 4 myApp.exe

After running your application, a trace file with the .stf extension is created. Open this trace file in
Intel® Trace Analyzer to analyze the application behavior. See the Intel® Trace Analyzer User and
Reference Guide for details.

Tracing Failing MPI Applications
Normally, if an MPI application fails or is aborted, all the trace data collected is lost, because libVT
needs a working MPI to write the trace file. However, the user might want to use the data collected
up to that point. To solve this problem, Intel® Trace Collector and Analyzer provides the libVTfs
library that enables tracing of failing MPI applications.

Usage Instructions
To trace failing MPI applications, do the following:

Linux* OS

Set the LD_PRELOAD environment variable to point to the libVTfs library and run the application.
For example:

$ export LD_PRELOAD=libVTfs.so

$ mpirun -n 4 ./myApp
Alternatively, rebuild your application with the static version of the library. For example:

$ mpiicc -profile=vtfs myApp.c -o myApp
Windows* OS

Relink your application with the libVTfs library before the MPI library and run it as usual. To do
this, you should create an Intel® MPI Library configuration file that points to the libVTfs library. You
can do it as follows (administrator privileges may be required):

User Guide

10

> echo SET PROFILE_PRELIB=%VT_ROOT%\lib\VTfs.lib > %I_MPI_ROOT%\lib\VTfs.conf

> mpiicc -profile=VTfs myApp.c

> mpiexec -n 4 myApp.exe

How it Works
Under normal circumstances tracing works like with libVT, but communication during trace file
writing is done through TCP sockets, so it may take more time than over MPI. In order to establish
communication, it needs to know the IP addresses of all the hosts involved. It finds them by looking
up the hostname locally on each machine or, if that only yields the 127.0.0.1 local host IP address,
falls back to broadcasting hostnames. In the latter case hostname lookup must work consistently in
the cluster. In case of a failure, libVTfs freezes all MPI processes and then writes a trace file with all
trace data.

Possible Failures

Failure Description

Signals Includes events inside the application like segmentation faults and
floating point errors, and also abort signals sent from outside, like
SIGINT or SIGTERM.
Only SIGKILL will abort the application without writing a trace because it
cannot be caught.

Premature Exit One or more processes exit without calling MPI_Finalize().

MPI Errors MPI detects certain errors itself, like communication problems or invalid
parameters for MPI functions.

Deadlocks If Intel® Trace Collector observes no progress for a certain amount of time
in any process, it assumes that a deadlock has occurred, stops the
application and writes a trace file.

You can configure the timeout with DEADLOCK-TIMEOUT. "No progress"
is defined as "inside the same MPI call". This is only a heuristic and may
fail to lead to both false positives and false negatives.

Undetected Deadlock If the application polls for a message that cannot arrive with MPI_Test()
or a similar non-blocking function, Intel® Trace Collector still assumes
that progress is made and does not stop the application.
To avoid this, use blocking MPI calls in the application, which is also
better for performance.

Premature Abort If all processes remain in MPI for a long time due to a long data transfer
for instance, then the timeout might be reached. Because the default
timeout is five minutes, this is very unlikely. After writing the trace
libVTfs will try to clean up the MPI application run by sending all
processes in the same process group an INT signal. This is necessary
because certain versions of MPICH* may have spawned child processes
which keep running when an application aborts prematurely, but there is
a certain risk that the invoking shell also receives this signal and also
terminates. If that happens, then it helps to invoke mpirun inside a

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

11

remote shell:

rsh localhost 'sh -c "mpirun . . . "'
MPI errors cannot be ignored by installing an error handler. libVTfs
overrides all requests to install one and uses its own handler instead. This
handler stops the application and writes a trace without trying to
proceed, otherwise it would be impossible to guarantee that any trace
will be written at all.
On Windows* OS, not all features of POSIX* signal handling are available.
Therefore, VTfs on Windows* OS uses some heuristics and may not work
as reliably as on Linux* OS. It is not possible to stop a Windows*
application run and get a trace file by sending a signal or terminating the
job in the Windows task manager.

Tracing OpenSHMEM Applications
Intel® Trace Collector supports tracing of OpenSHMEM* applications on Linux* OS. If an application
includes OpenSHMEM functions, Intel Trace Collector traces them and stores as a separate group in
the trace file. This support is enabled in the libVT library, while the other tracing libraries listed in
Product Components do not have this functionality.

Note

You need to have an MPICH-based MPI library available in LD_LIBRARY_PATH.

For OpenSHMEM implementations utilizing MPICH-based MPIs, to trace an OpenSHMEM application,
follow the steps described in Tracing Conventional MPI Applications. No additional steps required.

For other OpenSHMEM implementations, trace the application as follows:

$ LD_PRELOAD=libVT.so:libmpi.so oshrun -n 4 ./shmem-app
Note that we do not provide SHMEM launchers within the ITAC package.

Tracing MPI File IO
On Linux* OS, Intel® Trace Collector does not support tracing of ROMIO*, a portable implementation
of MPI-IO. Fully standard-compliant implementations of MPI-IO are untested, but might work.

This distinction is necessary because ROMIO normally uses its own request handles
(MPIO_Request) for functions like MPI_File_iread() and expects the application to call
MPIO_Wait()/MPIO_Test(). These two functions are supported if and only if Intel® Trace Collector
is compiled with ROMIO support. In that case the wrapper functions for MPI_File_iread() are
compiled for MPIO_Requests and might not work if the MPI and the application use the normal
MPI-2 MPI_Request.

User Guide

12

Applications which avoid the non-blocking IO calls should work either way.

Handling of Communicator Names
By default, Intel® Trace Collector stores names for well-known communicators in the trace:
COMM_WORLD, COMM_SELF_#0, COMM_SELF_#1 and so on. When new communicators are created,
their names are composed of a prefix, a space and the name of the old communicator. For example,
calling MPI_Comm_dup() on MPI_COMM_WORLD will lead to a communicator called DUP
COMM_WORLD.
There are the following prefixes for MPI functions:

MPI Function Prefix

MPI_Comm_create() CREATE

MPI_Comm_dup() DUP

MPI_Comm_split() SPLIT

MPI_Cart_sub() CART_SUB

MPI_Cart_create() CART_CREATE

MPI_Graph_create() GRAPH_CREATE

MPI_Intercomm_merge() MERGE

MPI_Intercomm_merge() is special because the new communicator is derived from two
communicators, not just one as in the other functions. The name of the new inter-communicator will
be MERGE <old name 1>/<old name 2> if the two existing names are different, otherwise it will
be just MERGE <old name>.
In addition to these automatically generated names, Intel® Trace Collector also intercepts
MPI_Comm_set_name() and then uses the name provided by the application. Only the last name
set with this function is stored in the trace for each communicator. Derived communicators always
use the name that is currently set in the old communicator when the new communicator is created.
Intel® Trace Collector does not attempt to synchronize the names set for the same communicator in
different processes, therefore the application has to set the same name in all processes to ensure
that this name is really used by Intel® Trace Collector.

Tracing MPI Load Imbalance
Normally, tracing of all MPI events results in a large size of the trace file, even for relatively small
applications. To reduce the trace file size, but be able to get an impression of the application
bottlenecks, you can trace only the MPI functions that cause application load imbalance. That is, an
MPI function is traced only if it was idle at some point of the application run, causing the imbalance.
This functionality is implemented in the libVTim library.
You can enable source code locations tracing to identify the regions in source code that caused the
imbalance (see Recording Source Location Information).

To generate an imbalance trace file, link your application with the libVTim library, using the -
trace-imbalance option of mpirun, or one of the methods described here. For example:

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

13

$ mpirun -n 2 -trace-imbalance ./myApp
Open the generated .stf file to view the results. Intel® Trace Analyzer displays only the regions of
MPI idle time. As a consequence, time values for MPI functions are equal to their idle time.

Known Limitations
• This feature is currently available on Linux* OS only.

• Point-to-point communication patterns displayed by Intel Trace Analyzer may be unreliable,
because the libVTim library skips tracing of certain functions.

• The library traces only those MPI functions that can potentially generate load imbalance.
Therefore, all non-blocking operations are not traced.

• The library does not trace user defined events (see Tracing User Defined Events), OpenMP*
regions (see Recording OpenMP* Regions Information), or system calls (see Tracing System
Calls).

• Intel Trace Analyzer cannot run idealization for trace files generated by libVTim.

Tracing User Defined Events
To get more detailed information about your application, you can instrument and trace various user-
defined events in your application, including non-MPI function calls. In practice, it is often useful to
record entries and exits to/from functions or code regions within larger functions.

Use the following Intel® Trace Collector capabilities:

• Automatic function instrumentation with the compiler

• Manual source code instrumentation with Intel® Trace Collector API

Automatic Function Instrumentation

Using Intel® Compilers
Intel® compilers can automatically instrument all user functions during compilation. At runtime, Intel®
Trace Collector records all function entries and exits in the compilation units.

To enable the instrumentation, use the option -tcollect (Linux* OS) or /Qtcollect (Windows*
OS) during compilation. For example:

$ mpiicc -tcollect -trace myapp.c
The option accepts an argument to specify the collecting library to link against (see Product
Components). For example, for fail-safe tracing, select libVTfs as follows: -tcollect=VTfs (VT by
default).
To define a particular set of functions to be instrumented, use the -tcollect-filter <file>
option. <file> contains a list of functions followed by on|off switcher:

User Guide

14

func1 on

func2 off
If a function is marked off, it is not instrumented.

Using GCC*
Similar function tracing is available in the GNU Compiler Collection (gcc*). Object files that contain
functions for tracing are compiled with -finstrument-functions, for example:

$ mpicc -finstrument-functions -trace myapp.c
Intel® Trace Collector obtains output about functions in the executable. By default, it starts the shell
program nm -P to do this, which can be changed with the NMCMD configuration option. See NMCMD.

Folding
Function tracing can generate large amounts of trace data. Use folding to disable tracing of calls
within certain functions. It enables you to reduce the trace file size and get information only about
events of interest. See Tracing Library Calls for details.

C++ Name Demangling
By default Intel® Trace Collector records function names in their mangled form. The DEMANGLE
configuration option enables automatic demangling of C++ names. See DEMANGLE.

Manual Source Code Instrumentation
Intel® Trace Collector provides the API that enables you to control the profiling library and trace
user-defined functions, define groups of processes, define performance counters and record their
values. All API functions, parameters, and macros are declared in the header files VT.h and VT.inc
for C/C++ and Fortran, respectively. Include the appropriate header file in your source code when
using the Intel® Trace Collector API functions.
Refer to the Intel® Trace Collector API section for detailed description and usage information on the
Intel® Trace Collector API.

To compile an application with calls to the Intel® Trace Collector API, pass the header files to the
compiler using the -I option. For example: -I$VT_ROOT/include.

Using the Dummy Libraries
To temporarily disable tracing for the application with calls to the Intel® Trace Collector API, use the
dummy library libVTnull available in the libraries folder. This way you do not have to remove the
API function calls from the source code to run your application without tracing. For instructions on
linking, see Tracing Conventional MPI Applications.

Configuring Intel® Trace Collector
When using Intel® Trace Collector, you may want to customize various aspects of its operation and
define filters for data tracing. It is achieved through setting up the appropriate configuration options.

You can set up these options in three ways:

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

15

• In a configuration file.

• In the corresponding environment variables.

• In the command line when running your application.

For the list of options and their descriptions, see Configuration Options.

Using Configuration File
Intel® Trace Collector configuration file is a plain ASCII file that contains a number of directives in
each line and has the .conf extension.
For your convenience, Intel® Trace Analyzer and Collector provides a utility called Configuration
Assistant intended for creating and editing configuration files. However, you can create the
configuration file manually using a text editor. For examples and details on syntax, see Configuration
Reference.

To run the Configuration Assistant, enter the command:

$ itcconfig <trace_file> [<configuration_file>]

Note
Configuration Assistant requires a trace file to be passed, therefore you should first trace your
application without any settings to use the utility.

If you do not specify the configuration file, the default settings will be used. Edit the file and save it
with the .conf extension.
To apply the settings, do the following:

1. Set up the VT_CONFIG environment variable to point to the full path to your configuration
file. For example:
$ export VT_CONFIG=/<configuration_file_directory>/my_settings.conf

2. Set up the VT_CONFIG_RANK environment variable to point to the process that reads and
parses the configuration file (the default value is 0).

3. Trace your application as described in Tracing MPI Applications.

Using Environment Variables
Each option has an equivalent environment variable. To set the variables, use the option names, but
prefix them with VT_ and replace hyphens with underscores. For the SYMBOL, STATE and ACTIVITY
options you can also list multiple values in one variable (see Filtering Trace Data for details). For
example:

$ export VT_STATE=* OFF MPI:* ON

Note
Environment variables are checked by the process that reads the configuration file after it has parsed
the file, so the variables override the configuration file options.

User Guide

16

Using Command-Line Options
To specify configuration options in the command line, at runtime use a string of the following syntax
as an argument to your application:

--itc-args --<configuration_option> <value> --itc-args-end
For example, to generate a trace file of the SINGLESTF format:

$ mpirun -n 4 ./MyApp --itc-args --logfile-format SINGLESTF --itc-args-end

Note
Fortran programs are an exception, because Intel Trace Collector has limited access to command line
parameters of Fortran programs.

Protocol File
After tracing your application, a protocol file .prot is created. The file lists all configuration options
with their values used when your application was traced, and other useful information. You can use
the protocol file of a particular run as a configuration file to trace the application with the same
settings again. See Protocol File for details.

See Also
Configuration Reference
Filtering Trace Data
Configuration Assistant section in the Intel® Trace Analyzer User and Reference Guide

Filtering Trace Data
Filtering in Intel® Trace Collector applies specified filters to the trace collection process. This directly
reduces the amount of data collected. The filter rules can be defined in a configuration file, in the
environment variables or as command line arguments (see Configuring Intel® Trace Collector for
details). Filters are evaluated in the order they are listed, and all matching is case-insensitive. For
filtering by collective and point-to-point MPI operations the corresponding mpirun/mpiexec
options are also available.
In the following discussion, items within angle brackets (< and >) are placeholders for actual values,
optional items are put within square brackets ([and]), and alternatives are separated by a vertical
bar |.

Filtering by Collective and P2P Operations
Use the following mpirun/mpiexec options at runtime:

• -trace-collectives – to collect information only about collective operations
• -trace-pt2pt – to collect information only about point-to-point operations

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

17

Note
These options are mutually exclusive, use only one option at a time.

An example command line for tracing collective operations may look as follows:

$ mpirun -trace -n 4 -trace-collectives ./myApp
These options are special cases of filtering by specific functions discussed below. They use
predefined configuration files to collect the appropriate operation types. The options override the
VT_CONFIG environment variable, so you cannot use your own configuration files when using them.
If you need to set additional filters, you can set them through individual environment variables.

Filtering by Specific Functions

Basic Function Filtering
Function filtering is accomplished by defining the STATE, SYMBOL and ACTIVITY options. Each
option accepts the pattern matching the filtered function, and the filtering rule. The formal definition
is as follows:

STATE|SYMBOL|ACTIVITY <PATTERN> <RULE>
The general option is STATE, while SYMBOL and ACTIVITY are its replacers:

• SYMBOL filters functions by their names, regardless of the class. The following definitions are
considered equal:
SYMBOL <PATTERN> <RULE>
STATE **:<PATTERN> <RULE>

• ACTIVITY filters functions by their class names. The following definitions are considered
equal:
ACTIVITY <PATTERN> <RULE>
STATE <PATTERN>:* <RULE>

• STATE can filter functions both by names and their class names.
Pattern should match the name of the function for filtering. You can use the following wildcards:

Wildcard Description

* Any number of characters, excluding ":"

** Any number of characters, including ":"

? A single character

[] A list of characters

For example the following definition will filter out all functions containing the word send, regardless
of the class:

STATE **send* OFF
The basic filter rule should contain one of the following entries:

<RULE> = ON | OFF | <trace level> | <skip level>:<trace level>

User Guide

18

The <trace level> value defines how far up the call stack is traced. The <skip level> value
defines how many levels to skip while going up the call stack. This is useful if a function is called
within a library, and the library stack can be ignored. Specifying ON turns on tracing with a <trace
level> of 1 and a <skip level> of 0, and OFF turns off tracing completely (this is not equivalent
to 0:0).

Example

In the example below the following events will be traced: all functions in the class Application, all
MPI send functions except MPI_Bsend(), and all receive, test and wait functions. All other MPI
functions will not be traced.

disable all MPI functions

ACTIVITY MPI OFF

enable all send functions in MPI

STATE MPI:*send ON

except MPI_Bsend

SYMBOL MPI_bsend OFF

enable receive functions

SYMBOL MPI_recv ON

and all test functions

SYMBOL MPI_test* ON

and all wait functions, tracing four call levels

SYMBOL MPI_wait* 4

enable all functions within the Application class

ACTIVITY Application 0

Advanced Function Filtering
For function filtering a finer control is also available. Here is a list of additional filter rule entries,
which can be used along with the basic rule in any combination:

<ENTRYTRIGGER> | <EXITTRIGGER> | <COUNTERSTATE> | <FOLDING> | <CALLER>
Here is the specification for each filter entry available:

Entry/Exit Trigger

<ENTRYTRIGGER> = entry <TRIGGER>

<EXITTRIGGER> = exit <TRIGGER>
Activate a trigger on entry/exit for the matching pattern.

<TRIGGER> = [<TRIPLET>] <ACTION> [<ACTION>]
Triggers define a set of actions over a set of processes (triplets, see Filtering by Ranks below for
definition).

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

19

<ACTION> = traceon | traceoff | restore | none | begin_scope <SCOPE_NAME> |
end_scope <SCOPE_NAME>
The action defines what happens to tracing. Using traceon or traceoff turns tracing on or off,
respectively. begin_scope and end_scope start or end the named scope.

<SCOPE_NAME> = [<class name as string>:]<scope name as string>
A scope is a user-defined region in the program. See Defining and Recording Scopes.

Counter State

<COUNTERSTATE> = counteron | counteroff
Counter state turns on or off sampling for the matching pattern. By default, all enabled counters are
sampled at every state change. There is no method for controlling which counters are sampled.

Folding

<FOLDING> = fold | unfold
Enabling folding for a function disables tracing of any functions called by that function. By default, all
functions are unfolded.

Caller

<CALLER> = caller <PATTERN>
Specifying the caller enables tracing only for functions called by the functions matching the pattern.

For details on use of the FOLDING and CALLER keywords, see Tracing Library Calls.

Filtering by Ranks
Besides filtering by functions, you can also filter the trace data by ranks in MPI_COMM_WORLD using
the PROCESS configuration option. Its value is a comma separated list of Fortran 90-style triplets.
The formal definition is as follows:

PROCESS <TRIPLET>[,<TRIPLET>,...] on | off
Triplet definition is as follows:

<TRIPLET> = <LOWER-BOUND>[:<UPPER-BOUND>[:<INCREMENT>]]
The default value for <UPPER-BOUND> is the size of MPI_COMM_WORLD (N) and the default value for
<INCREMENT> is 1.
For example, to trace only even ranks and rank 1 use the following triplets: 0:N:2,1:1:1, where N is
the total number of processes. All processes are enabled by default, so you have to disable all of
them first (PROCESS 0:N OFF) before enabling a certain subset again. For SMP clusters, you can
also use the CLUSTER option to filter for particular SMP nodes.

User Guide

20

Recording OpenMP* Regions Information
Intel® Trace Collector can record information about OpenMP* regions in your application into trace
file.

To collect this information, make sure to do the following:

Linux* OS

1. Your application should be:

• linked with the Intel implementation of OpenMP. See User and Reference Guide for the
Intel® C++ Compiler for details.

• dynamically linked with Intel® MPI Library.

2. Use the -trace option of mpirun to trace the data.

Note
Using the LD_PRELOAD environment variable to trace data will not have the desired effect.

Windows* OS

1. Your application should be:

• linked with the Intel implementation of OpenMP.

• dynamically linked with the VT.dll library and Intel MPI Library.
The example command line to compile the application may look as follows:

> mpiicc -trace -openmp myapp.c

2. Make sure the INTEL_LIBITTNOTIFY64 environment variable contains the full path to the
VT.dll library.

3. Run your application using the mpiexec command to trace the data.

See Also
Tracing Conventional MPI Applications

Tracing System Calls (Linux* OS)
On Linux* OS use this capability to track I/O calls.

By default, system call profiling is disabled. To collect system calls, set the following configuration
option (see Configuring Intel® Trace Collector for details):

ACTIVITY SYSTEM ON
To enable collection of an exact function add the following line into a configuration file:

STATE SYSTEM:<func_name> ON

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

21

Note
Intel® Trace Collector does not collect any information on the amount of data saved or read during
these operations.

The following functions are supported:

access clearerr close creat

dup dup2 fclose fdopen

feof ferror fflush fgetc

fgetpos fgets fileno fopen

fprintf fputc fputs fread

freopen fseek fsetpos ftell

fwrite getc getchar gets

lseek lseek64 mkfifo perror

pipe poll printf putc

putchar puts read readv

remove rename rewind setbuf

setvbuf sprintf sync tmpfile

tmpnam umask ungetc vfprintf

vprintf vsprintf write writev

See Also
Configuring Intel® Trace Collector
ACTIVITY
STATE

Collecting Lightweight Statistics
Intel® Trace Collector can gather and store statistics about the function calls and their
communication. These statistics are gathered even if no trace data is collected, so it is a good starting
point for trying to understand an unknown application that might produce an unmanageable trace.

Usage Instructions
To collect this light-weight statistics for your application, set the following environment variables
before tracing:

$ export VT_STATISTICS=ON

User Guide

22

$ export VT_PROCESS=OFF
Alternatively, set the VT_CONFIG environment variable to point to the configuration file:

Enable statistics gathering

STATISTICS ON

Do not gather trace data

PROCESS 0:N OFF

$ export VT_CONFIG=<configuration_file_path>/config.conf
The statistics is written into the *.stf file. Use the stftool to convert the data to the ASCII text
with --print-statistics. For example:

$ stftool tracefile.stf --print-statistics

TIP
The resulting output has easy-to-process format, so you can use text processing programs and
scripts such as awk*, perl*, and Microsoft Excel* for better readability. A perl script convert-
stats with this capability is provided in the bin folder.

Output Format
Each line contains the following information:

• Thread or process

• Function ID

• Receiver (if applicable)

• Message size (if applicable)

• Number of involved processes (if applicable)

And the following statistics:

• Count – number of communications or number of calls as applicable

• Minimum execution time excluding callee times

• Maximum execution time excluding callee times

• Total execution time excluding callee times

• Minimum execution time including callee times

• Maximum execution time including callee times

• Total execution time including callee times

Within each line the fields are separated by colons.

Receiver is set to 0xffffffff for file operations and to 0xfffffffe for collective operations. If
message size equals 0xffffffff the only defined value is 0xfffffffe to mark it as a collective
operation.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

23

The message size is the number of bytes sent or received per single message. With collective
operations the following values (buckets of message size) are used for individual instances:

Value Process-local bucket Is the same value on all
processes?

MPI_Barrier 0 Yes

MPI_Bcast Broadcast bytes Yes

MPI_Gather Bytes sent Yes

MPI_Gatherv Bytes sent No

MPI_Scatter Bytes received Yes

MPI_Scatterv Bytes received No

MPI_Allgather Bytes sent + received Yes

MPI_Allgatherv Bytes sent + received No

MPI_Alltoall Bytes sent + received Yes

MPI_Alltoallv Bytes sent + received No

MPI_Reduce Bytes sent Yes

MPI_Allreduce Bytes sent + received Yes

MPI_Reduce_Scatter Bytes sent + received Yes

MPI_Scan Bytes sent + received Yes

Message is set to 0xffffffff if no message was sent, for example, for non-MPI functions or
functions like MPI_Comm_rank.
If more than one communication event (message or collective operation) occur in the same function
call (for example in MPI_Waitall, MPI_Waitany, MPI_Testsome, MPI_Sendrecv etc.), the time in
that function is evenly distributed over all communications and counted once for each message or
collective operation. Therefore, it is impossible to compute a correct traditional function profile from
the data referring to such function instances (for example, those that are involved in more than one
message per actual function call). Only the Total execution time including callee times and the
Total execution time excluding callee times can be interpreted similar to the traditional function
profile in all cases.
The number of involved processes is negative for received messages. If messages were received
from a different process/thread it is -2.
Statistics are gathered on the thread level for all MPI functions, and for all functions instrumented
through the API or compiler instrumentation.

User Guide

24

See Also
Tracing User Defined Events
stftool Utility
Intel® Trace Collector API

Recording Source Location Information
Intel® Trace Collector can automatically record locations of function calls in the source code. To
record this information, do the following:

1. Compile the relevant application modules with support for debug information by using the -
g (Linux* OS) and /Zi or /Z7 (Windows* OS) compiler flags. For example:
$ mpiicc -g -c ctest.c

2. Enable Program Counter (PC) tracing by setting the environment variable VT_PCTRACE to 5
for example:
$ export VT_PCTRACE=5

Alternatively, set the VT_CONFIG variable to the configuration file specifying the following,
for example:
trace 4 call levels whenever MPI is used
ACTIVITY MPI 4
trace one call level in all functions not specified
explicitly; can also be for example, PCTRACE 5
PCTRACE ON

$ export VT_CONFIG=<config_file>

3. Trace your application as described in Tracing MPI Applications.

PCTRACE sets the number of call levels for all functions. To avoid performance issues, PCTRACE is
disabled by default and should be handled carefully. It is useful to get the initial understanding of
the application before recording the source location information.
Manual instrumentation of the source code with the Intel® Trace Collector API can provide similar
information but without performance overhead. See Defining and Recording Source Locations for
details.

Pay attention that the compiler has to use normal stack frames. This is the default in GCC, but may
be disabled with -fomit-frame-pointer. If the flag is used, then only the direct caller of MPI or
API functions can be found, and asking Intel® Trace Collector to unwind more than one stack level
may lead to crashes.
The Intel® compilers do not use normal stack frames by default if optimization is enabled, but they
can be enabled with with -fno-omit-frame-pointer.

See Also
Configuring Intel® Trace Collector
PCTRACE

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

25

Recording Hardware Performance Information
(Linux* OS)
On Linux* OS Intel® Trace Collector can sample hardware counters with the Performance Application
Programming Interface (PAPI). Because PAPI might not be available on a system, support for it is
provided as an additional layer on top of the normal Intel® Trace Collector.

This layer is implemented in the VT_sample.c source file. It is a sample file that traces counters
available through PAPI High level API.
To record hardware counters, do the following:

1. Adjust the VT_sample.c sample with the necessary counters
2. Rebuild the libVTsample.so file:

a. Copy the contents of <isntall-dir>/slib directory into your working directory.
b. Edit the provided Makefile to match the local setup.
c. Build the file using the make command.

3. Set the LD_LIBRARY_PATH environment variable as follows:
$ export LD_LIBRARY_PATH=<path_to_libVTsample>:<path_to_PAPI>

4. Add libVTsample.so to the link line in front of the Intel® Trace Collector library. The link
line will look as follows:
$ mpiicc ctest.c -L$VT_SLIB_DIR -L. -L$PAPI_ROOT -lVTsample -lVT -
lpapi $VT_ADD_LIBS -o ctest

To view the counters in Intel® Trace Analyzer, use Counter Timeline.

Recording Operating System Counters
Similar to recording of process specific counters, Intel® Trace Collector can record operating system
counters, which provide information about a node. In contrast to the process specific counters, OS
counters are sampled very infrequently by one background thread per node and thus the overhead
is very low. The amount of trace data also increases insignificantly.

By default, recording of OS counters is disabled. To enable it, set the configuration option:

COUNTER <counter_name> ON

Supported Counters

Counter Name Unit Comment

disk_io KB/s Read/write disk IO (any disk in the node).

net_io KB/s Read/write network IO (any system interface). This might not
include the MPI transport layer.

cpu_idle percent Average percentage of CPU time of all CPUs spent in idle
mode.

User Guide

26

cpu_sys percent Average percentage of CPU time of all CPUs spent in system
code.

cpu_usr percent Average percentage of CPU time of all CPUs spent in user
code.

You can change the delay between recording the current counter values with the configuration
option OS-COUNTER-DELAY (by default, 1 second). CPU utilization is calculated by the OS with
sampling, therefore a smaller value does not necessarily provide more detailed information.
Increasing it could reduce the overhead further, but only slightly because the overhead is hardly
measurable already.
These OS counters appear in the trace as normal counters which apply to all processes running on a
node. To view the counters in Intel® Trace Analyzer, use Counter Timeline.

See Also
Configuring Intel® Trace Collector
COUNTER
OS-COUNTER-DELAY

Tracing Library Calls
If you have an application that makes heavy use of libraries or software components developed
independently, you may want to exclude the information not related directly to your application
from the trace data. At the same time, the library developer might want to do the opposite – trace
only data related to their library.

Intel® Trace Collector provides a capability to turn off tracing for functions at a certain call stack level,
that is to fold them. If you want to trace calls within the folded functions, you can unfold them.

To enable folding, use the FOLD and UNFOLD keywords for the STATE, SYMBOL or ACTIVITY
configuration options to select functions for folding by their name (SYMBOL), class (ACTIVITY) or
both (STATE). Use the CALLER keyword to specify the function caller. See Filtering Trace Data for
details on syntax.

Note
To enable Intel® Trace Collector to profile non-MPI functions, make sure to instrument them using
the compiler instrumentation or API. See Tracing User Defined Events.

Below are examples of folding for the application with four additional libraries.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

27

General Structure of an Application Using Multiple Libraries

From the figure above, the following information may be of interest for the application and the
library developers:

Application developer

• lib1, lib2, lib4 are called by the application. The application developer codes these calls
and can change the sequence and parameters to them to improve performance (arrows "1").

• lib3 is never called directly by the application. The application developer has no way to
tailor the use of lib3, therefore these calls (arrows "3") are of no interest to him.

• lib4 is called both directly by the application, and indirectly through lib2. Only the direct
use of lib4 can be influenced by the application developer, therefore is of interest to them.

Library developer

The lib2 developer will need information about the calls from the application, to component
libraries (lib3 and lib4), and to system-level services (MPI). They will have no interest in
performance data for lib1. The lib1 developer will have no interest in data from lib2, lib3, and
lib4.

Examples
In this section folding is illustrated by giving configurations that apply to the example above. The
sample libraries.c program (available at https://software.intel.com/en-us/product-code-
samples) reproduces the same pattern. Its call tree looks as follows (calls are aggregated and sorted
by name, therefore the order is not sequential):

https://software.intel.com/en-us/product-code-samples
https://software.intel.com/en-us/product-code-samples

User Guide

28

By using the configuration options listed below, different parties can run the same executable to get
different traces:

Application developer: Trace the application only with the top-level calls in lib1, lib2, and lib4.
Configuration file: run_splibraries_app.conf

STATE lib*:* FOLD

Call tree:

lib2 developer: Trace only calls in lib2, including its top-level calls
Configuration file: run_splibraries_lib2.conf

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

29

Call tree:

lib2 Developer, detailed view: Trace the top-level calls to lib2 and all lib2, lib3, lib4 and
system services invoked by them
Configuration file: run_splibraries_lib2detail.conf

STATE Application:* FOLD

STATE lib2:* UNFOLD

Call tree:

Application and lib4 Developers: Trace the calls in lib4 only made by the application
Configuration file: run_splibraries_lib4.conf

STATE *:* FOLD

STATE lib4:* UNFOLD CALLER Application:*

Call tree:

It is assumed that the application, library and system calls are instrumented in the way that their
classes are different. Alternatively, you can match against the function name prefix that is shared by
all library calls in the same library.

User Guide

30

Correctness Checking

Correctness Checking
Intel® Trace Collector provides the correctness checking functionality, which addresses the following
tasks:

• Finding programming mistakes in the application. They include potential portability
problems and violations of the MPI standard, which do not immediately cause problems, but
might when switching to different hardware or a different MPI implementation. In this case
you are recommended to perform correctness checking interactively on a smaller
development cluster, but you can also include it in automated regression testing.

• Detecting errors in the execution environment. In this case use the hardware and software
stack on the system that is to be checked.

While doing correctness checking, you should distinguish between error detection that is done
automatically by tools, and error analysis that is done by the user to determine the root cause of an
error and eventually fix it.

The error detection in Intel® Trace Collector is implemented in the libVTmc library, which performs
error detection at runtime. To address both of the above scenarios, Intel® Trace Collector supports
recording of error reports for later analysis, and interactive debugging at runtime.
The correctness checker prints errors to stderr as soon as they are found. You can perform
interactive debugging with the help of a traditional debugger: if the application is already running
under debugger control, the debugger can stop a process when an error is found. You should
manually set a breakpoint in the function MessageCheckingBreakpoint(). This function and
debug information about it are contained in the Intel® Trace Collector library. Therefore, you can set
the breakpoint and inspect the parameters of the function after a process is stopped. The
parameters indicate what error occurred.
See the following topics on the usage of correctness checking:

• Correctness Checking of MPI Applications

• Running with Valgrind*

• Configuration

• Analyzing the Results

• Debugger Integration

Correctness Checking of MPI Applications
By default, the libVTmc library does not write a tracefile. To perform correctness checking of an MPI
application, enable trace collection and link your application with the libVTmc library. Do the
following:

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

31

Linux* OS
1. Switch the CHECK-TRACING configuration option to on to enable Intel® Trace Collector to

record the correctness checking reports to the tracefile. For example:
$ export VT_CHECK_TRACING=on

2. Run your application with the -check_mpi option of mpirun. For example:
$ mpirun -check_mpi -n 4 ./myApp

Windows* OS
1. Relink your application with the libVTmc library using the -check_mpi compiler option. For

example:
> mpiicc -check_mpi myApp.c

2. Run your application with the CHECK-TRACING configuration option enabled. For example:
> mpiexec -n 4 myApp.exe --itc-args --check-tracing ON --itc-args-end

Use Intel® Trace Analyzer to view correctness checking events.

See Also
CHECK-TRACING

Running with Valgrind* (Linux* OS)
For distributed memory checking (LOCAL:MEMORY:INITIALIZATION) and detecting illegal
accesses to memory owned by MPI (LOCAL:MEMORY:ILLEGAL_ACCESS) it is necessary to run all
MPI processes under control of the Valgrind* memory checker (version 3.2.0 or higher). See
http://www.valgrind.org/ for more information.
To run Valgrind, invoke it directly on the main MPI process and add the mpirun -l option. This way
all output printed by Valgrind is automatically prefixed with the MPI process rank. Intel® Trace
Collector detects that -l is in effect and then leaves adding the rank prefix to mpirun also for Intel®
Trace Collector output.
The LOCAL:MEMORY:ILLEGAL_ACCESS check causes Valgrind reports not only for illegal
application accesses (as desired) but also for Intel® MPI Library own access to the locked memory
(not desired, because MPI currently owns it and must read or write it). These reports are normal and
the Valgrind suppression file in Intel® Trace Collector lib folder tells Valgrind to not print them, but
Valgrind must be notified about it through its --suppressions option.
When the MPI executable is given on the command line, an MPI application could be started under
Valgrind like this:

$ mpirun -check_mpi -l -n <num procs>

$ valgrind --suppressions=$VT_LIB_DIR/impi.supp <application>

...
When a wrapper script is used, then it might be possible to trace through the wrapper script by
adding the --trace-children=yes option, but that could lead to reports about the script
interpreter and other programs, so adding Valgrind to the actual invocation of the MPI binary is
easier.

User Guide

32

Configuration
You can configure manually which errors are checked: all errors have a unique name and are
categorized in a hierarchy similar to functions. For example, LOCAL:MEMORY:OVERLAP is a local
check which ensures that memory is not used twice in concurrent MPI operations. By disabling
certain errors you can skip a report about it and reduce the checking overhead.
Use the configuration options listed below. For instructions on how to set them, see Configuring
Intel® Trace Collector.

CHECK
Use the CHECK configuration option to match against the names of supported errors and turn it on or
off, as in the example below. See Correctness Checking Errors for the list of all errors.

Turn all checking off:

** matches colons

* does not

CHECK ** OFF

Selectively turn on specific checks:

- All local checks

CHECK LOCAL:** ON

- Only one global check

CHECK GLOBAL:MSG:DATATYPE:MISMATCH ON

PCTRACE
By default, Intel® Trace Collector checks for all errors and tries to provide as much information about
them as possible. In particular it does stack unwinding and reports source code information for each
level in the call hierarchy. This can be controlled with the PCTRACE configuration option. For
performance analysis that option is off by default, but for correctness checking with libVTmc it is
enabled.

DEADLOCK-TIMEOUT
This option controls the same mechanism to detect deadlocks as in libVTfs. For interactive use it is
recommended to set it to a small value like 10s to detect deadlocks quickly without having to wait
long for the timeout.

DEADLOCK-WARNING
Displays a GLOBAL:DEADLOCK:NO_PROGRESS warning if the time spent by MPI processes in their
last MPI call exceeds the threshold specified with this option. This warning indicates a load
imbalance or a deadlock that cannot be detected, which may occur when at least one process polls
for progress instead of blocking inside an MPI call.

VERBOSE
Different levels of verbosity specified with this option have the following effects:

Level Effect

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

33

0 All extra output disabled, only error summary at the end is printed.

1 Adds a summary of configuration options as the application starts (default).

2 Adds a one-line info message at the beginning by each process with host name, process
ID and the normal rank prefix. This can be useful if output is redirected into one file per
process, because it identifies to which process in the parallel application the output
belongs.

3 Adds internal progress messages and a dump of MPI call entry/exit with their parameters
and results.

See Also
CHECK
PCTRACE
DEADLOCK-TIMEOUT
DEADLOCK-WARNING
VERBOSE

Analyzing the Results
For interactive debugging, you should start the application so that stderr is printed to a console
window. Then you can follow which errors are found while the application is running and start
analyzing them without having to wait for it to complete. If critical errors are found early, you can
abort the run, fix the problem and restart. This ensures a much faster code and test cycle than a
post-mortem analysis.
The output for each error varies, depending on the error: only the relevant information is printed,
thus avoiding the need to manually skip over irrelevant information. In general, Intel® Trace Collector
starts with the error name and then continues with a description of the failure.

For each MPI call involved in the error the MPI parameters are dumped. If PC tracing is enabled (see
PCTRACE), Intel® Trace Collector also provides a backtrace of source code locations for each call. For
entities like requests, the involved calls include the places where a request was created or activated.
This helps to track down errors where the problem is not at the place where it is detected.

Because multiple processes might print errors concurrently, each line is prefixed with a tag that
includes the rank of the process in MPI_COMM_WORLD which reports the problem. MPI applications
which use process spawning or attachment are not supported, therefore that rank is unique.
When the application terminates, Intel® Trace Collector does further error checks (for example,
unfree resources, pending messages).

Note

If any process is killed without giving it a chance to clean up (that is, by sending it a SIGKILL), this
final step is not possible.

User Guide

34

Note

Sending a SIGINT to mpiexec through kill or pressing CTRL-C will cause Intel® MPI Library to
abort all processes with such a hard SIGKILL.

Debugger Integration

Debugger Integration
It is necessary to manually set a breakpoint in the function MessageCheckingBreakpoint().
Immediately after reporting an error on stderr this function is called, so the stack backtrace directly
leads to the source code location of the MPI call where the error was detected. In addition to the
printed error report, you can also look at the parameters of the MessageCheckingBreakpoint()
which contain the same information. It is also possible to look at the actual MPI parameters with the
debugger because the initial layer of MPI wrappers in libVTmc is always compiled with debug
information. This can be useful if the application itself lacks debug information or calls MPI with a
complex expression or function call as parameter for which the result is not immediately obvious.
The exact methods to set breakpoints depend on the debugger used. Here is some information how
it works with specific debuggers. For additional information or other debuggers please refer to the
debugger documentation.

The first two debuggers mentioned below can be started by Intel® MPI Library by adding the -tv and
-gdb options to the command line of mpirun. Allinea Distributed Debugging Tool* can be
reconfigured to attach to MPI jobs that it starts.
Using debuggers like that and Valgrind* are mutually exclusive because the debuggers would try to
debug Valgrind, not the actual application. The Valgrind --db-attach option does not work out-of-
the-box either because each process would try to read from the terminal. One solution that is known
to work on some systems for analyzing at least Valgrind reports is to start each process in its own X
terminal:

$ mpirun -check_mpi -l -n <numprocs> xterm -e bash -c 'valgrind --db-
attach=yes

--suppressions=$VT_LIB_DIR/impi.supp <app>; echo press return; read'
In that case the Intel® Trace Collector error handling still occurs outside the debugger, so those
errors have to be analyzed based on the printed reports.

TotalView* Debugger
For TotalView* Debugger, it is necessary to pay attention that the breakpoint should be set for all
processes. There are several ways to automate procedure of setting breakpoints. Mostly it depends
on how commonly it is planned to use this automation.

If it is planned to apply it only for the current program, you can create the file filename.tvd (file
name being the name of the executable) in the working directory in advance and put the following
line into it:

dfocus gW2 dbreak MessageCheckingBreakpoint

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

35

Alternatively, you can set the breakpoint in the TotalView* GUI and save breakpoints, which will also
create this file and then reuse the settings for further debug sessions with the same executable.

To apply setting this breakpoint for all programs in current working directory, create a file .tvdrc
with the following lines (or add them if it already exists):

proc my_callback {_id} {

 if { $_id == 2 } {

 dfocus p$_id dbreak MessageCheckingBreakpoint

 }

 if { $_id > 2 } {

 dfocus p$_id denable -a

 }

}

dset TV::process_load_callbacks ::my_callback
To apply this for all debugging sessions, add these lines to the following file
$HOME/.totalview/tvdrc.
Run your MPI application as follows:

$ mpirun -check_mpi -tv -n <numprocs> <app>

See Also

TotalVeiw* Debugger Product Page

GNU* Symbolic Debugger
To automate the procedure of setting breakpoints, GNU* Symbolic Debugger (GDB) supports
executing commands automatically. To apply setting this breakpoint for all programs in the current
working directory, you can create a file .gdbinit with the following lines (or add them if it already
exists):

set breakpoint pending on

break MessageCheckingBreakpoint
Due to the order in which files are processed, placing the same commands in a .gdbinit file in the
home directory does not work because the main binary is not loaded yet. As a workaround, you can
put the following commands into ~/.gdbinit:

define hook-run

important, output is expected by MPI startup helper

echo Starting program...

allow pending breakpoint

set breakpoint pending on

set breakpoint now or as soon as function becomes available

http://www.roguewave.com/products-services/totalview

User Guide

36

break MessageCheckingBreakpoint

restore default behavior

set breakpoint pending auto

end
Then start your MPI application as follows:

$ mpirun -check_mpi -gdb -n <numprocs> <app>

Allinea* Distributed Debugging Tool* (DDT*)
Allinea* Distributed Debugging Tool (DDT) must be configured to run the user application with the
necessary Intel libraries preloaded.

Do the following:

1. Go to the Run dialog box

2. Select the Session/Options menu

3. In the Session/Options menu, choose Intel MPI Library and the Submit through queue or
configure own mpirun command option

4. In the Submit Command box enter without line breaks:

$ mpirun -genv LD_PRELOAD libVTmc.so -genv VT_DEADLOCK_TIMEOUT 20s -
genv VT_DEADLOCK_WARNING 25s
-n NUM_PROCS_TAG DDTPATH_TAG/bin/ddt-debugger

5. You can leave other boxes empty. Click OK.

6. To start the application, press the submit button on DDT's job launch dialog box.

7. When the application is ready, select the Control/Add Breakpoint menu and add a
breakpoint at the MessageCheckingBreakpoint function.

8. Continue to run and debug your application as normal, the program will stop automatically
at MessageCheckingBreakpoint when an MPI error is detected.

You can use the parallel stack browser to find the processes that are stopped and select any of these
processes. The local variables in this function will identify the error type, the number of errors so far,
and the error message.

You can also set a condition on this breakpoint from the Breakpoints tab, or Add Breakpoint menu,
for example, to stop only after 20 errors are reported use a condition of reportnumber > 20.

See Also

Allinea* DDT* Product Page

Tracing Distributed Non-MPI Applications
Processes in non-MPI applications or systems are created and communicate using non-standard and
varying methods. The communication may be slow or unsuitable for Intel® Trace Collector

http://www.allinea.com/products/ddt

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

37

communication patterns. Therefore a special version of the Intel® Trace Collector library libVTcs
was developed that neither relies on MPI nor on the application's communication, but rather
implements its own communication layer using TCP/IP. This is why it is called client-server.
The libVTcs library allows the generation of executables that work without MPI. Linking is
accomplished by adding libVTcs.a (VTcs.lib on Microsoft* Windows* OS) and the libraries it
needs to the link line: -lVTcs $VT_ADD_LIBS. The application has to call VT_initialize() and
VT_finalize() to generate a tracefile. Function tracing can be used with and without further Intel®
Trace Collector API calls to actually generate trace events.
This section describes the design, implementation and usage of Intel® Trace Collector for distributed
applications.

Design
The application has to meet the following requirements:

• The application handles startup and termination of all processes itself. Both startup with a
fixed number of processes and dynamic spawning of processes is supported, but spawning
processes is an expensive operation and should not be done too frequently.

• For a reliable startup, the application has to gather a short string from every process in one
place to bootstrap the TCP/IP communication in Intel® Trace Collector. Alternatively, one
process is started first and its string is passed to the others. In this case you can assume that
the string is always the same for each program run, but this is less reliable because the string
encodes a dynamically chosen port which may change.

• Map the hostname to an IP address that all processes can connect to.

Note
This is not the case if /etc/hosts lists the hostname as alias for 127.0.0.1 and processes are
started on different hosts. As a workaround for that case the hostname is sent to other processes,
which then requires a working name lookup on their host systems.

Intel® Trace Collector for distributed applications consists of a special library (libVTcs) that is linked
into the application's processes and the VTserver executable, which connects to all processes and
coordinates the trace file writing. Linking with libVTcs is required to keep the overhead of logging
events as small as possible, while VTserver can be run easily in a different process.
Alternatively, the functionality of the VTserver can be accomplished with another API call by one of
the processes.

Using VTserver
This is how the application starts, collects trace data and terminates:

1. The application initializes itself and its communication.

2. The application initializes communication between VTserver and processes.

3. Trace data is collected locally by each process.

4. VT data collection is finalized, which moves the data from the processes to the VTserver,
where it is written into a file.

User Guide

38

5. The application terminates.

The application may iterate several times over points 2 till 4. Looping over 3 and the trace data
collection part of 4 are not supported at the moment, because:

• it requires a more complex communication between the application and VTserver

• the startup time for 2 is expected to be sufficiently small

• reusing the existing communication would only work well if the selection of active processes
does not change

If the startup time turns out to be unacceptably high, then the protocol between application and
Intel® Trace Collector could be revised to support reusing the established communication channels.

Initialize and Finalize
The application has to bootstrap the communication between the VTserver and its clients. This is
done as follows:

1. The application server initiates its processes.

2. Each process calls VT_clientinit().
3. VT_clientinit() allocates a port for TCP/IP communication with the VTserver or other

clients and generates a string which identifies the machine and this port.
4. Each process gets its own string as result of VT_clientinit().
5. The application collects these strings in one place and calls VTserver with all strings as soon

as all clients are ready. VT configuration is given to the VTserver as file or through command
line options.

6. Each process calls VT_initialize() to actually establish communication.
7. The VTserver establishes communication with the processes, then waits for them to finalize

the trace data collection.

8. Trace data collection is finalized when all processes have called VT_finalize().
9. Once the VTserver has written the trace file, it quits with a return code indicating success or

failure.

Some of the VT API calls may block, especially VT_initialize(). Execute them in a separate
thread if the process wants to continue. These pending calls can be aborted with VT_abort(), for
example if another process failed to initialize trace data collection. This failure has to be
communicated by the application itself and it also has to terminate the VTserver by sending it a kill
signal, because it cannot be guaranteed that all processes and the VTserver will detect all failures
that might prevent establishing the communication.

Running without VTserver
Instead of starting VTserver as rank 0 with the contact strings of all application processes, one
application process can take over that role. It becomes rank 0 and calls VT_serverinit() with the
information normally given to VTserver. This changes the application startup only slightly.
A more fundamental change is supported by first starting one process with rank 0 as server, then
taking its contact string and passing it to the other processes. These processes then give this string
as the initial value of the contact parameter in VT_clientinit(). To distinguish this kind of startup
from the dynamic spawning of process described in the next section, the prefix S needs to be added

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

39

by the application before calling VT_clientinit(). An example where this kind of startup is useful
is a process which preforks several child processes to do some work.
In both cases it may be useful to note that the command line arguments previously passed to
VTserver can be given in the argc/argv array as described in the documentation of
VT_initialize().

Spawning Processes
Spawning new processes is expensive, because it involves setting up TCP communication, clock
synchronization, configuration broadcasting, amongst others. Its flexibility is also restricted because
it needs to map the new processes into the model of communicators that provide the context for all
communication events. This model follows the one used in MPI and implies that only processes
inside the same communicator can communicate at all.

For spawned processes, the following model is currently supported: one of the existing processes
starts one or more new processes. These processes need to know the contact string of the spawning
process and call VT_clientinit() with that information; in contrast to the startup model from the
previous section, no prefix is used. Then while all spawned processes are inside VT_clientinit(),
the spawning process calls VT_attach() which does all the work required to connect with the new
processes.
The results of this operation are:

• a new VT_COMM_WORLD which contains all of the spawned processes, but not the spawning
process

• a communicator which contains the spawning process and the spawned ones; the spawning
process gets it as result from VT_attach() and the spawned processes by calling
VT_get_parent()

The first of these communicators can be used to log communication among the spawned processes,
the second for communication with their parent. There's currently no way to log communication with
other processes, even if the parent has a communicator that includes them.

Tracing Events
Once a process' call to VT_initialize() has completed successfully it can start calling VT API
functions that log events. These events will be associated with a time stamp generated by Intel®
Trace Collector and with the thread that calls the function.
Should the need arise, then VT API functions could be provided that allow one thread to log events
from several different sources instead of just itself.

Event types supported at the moment are those also provided in the normal Intel® Trace Collector,
like state changes (VT_enter(), VT_leave()) and sending and receiving of data
(VT_log_sendmsg(), VT_log_recvmsg()). The resulting trace file is in a format that can be
loaded and analyzed with Intel® Trace Analyzer.

Usage
Executables in the application are linked with -lVTcs and $VT_ADD_LIBS. It is possible to have
processes implemented in different languages, as long as they use the same version of the libVTcs.
The VTserver has the following synopsis:

User Guide

40

VTserver <contact infos> [config options]
Each contact info is guaranteed to be one word and their order on the command line is irrelevant.
The configuration options can be specified on the command line by adding the prefix -- and listing
its arguments after the keyword. This is an example for contacting two processes and writing into the
file example.stf in STF format:

VTserver <contact1> <contact2> --logfile-name example.stf
All options can be given as environment variables. The format of the configuration file and the
environment variables are described in more detail in the chapter about VT_CONFIG.

Signals
libVTcs uses the same techniques as fail-safe MPI tracing to handle failures inside the application,
therefore it will generate a trace even if the application segfaults or is aborted with Ctrl + C.
When only one process runs into a problem, then libVTcs tries to notify the other processes, which
then should stop their normal work and enter trace file writing mode. If this fails and the application
hangs, then it might still be possible to generate a trace by sending a SIGINT to all processes
manually.

Examples
There are two examples using MPI as means of communication and process handling. But as they are
not linked against the normal Intel® Trace Collector library, tracing of MPI has to be done with Intel
Trace Collector API calls.

clientserver.c is a full-blown example that simulates and handles various error conditions. It
uses threads and fork/exec to run API functions and VTserver concurrently. simplecs.c is a
stripped down version that is easier to read, but does not check for errors.
The dynamic spawning of processes is demonstrated by forkcs.c. It first initializes one process as
server with no clients, then forks to create new processes and connects to them with VT_attach().
This is repeated recursively. Communication is done through pipes and logged in the new
communicators.
forkcs2.c is a variation of the previous example which also uses fork and pipes, but creates the
additional processes at the beginning without relying on dynamic spawning.
The examples are available at: https://software.intel.com/en-us/product-code-samples

See Also
Intel® Trace Collector API

https://software.intel.com/en-us/product-code-samples

41

Intel® Trace Collector Reference
This section contains the reference information for Intel® Trace Collector. See the brief overview of
each sub-section in the table below.

Section Description

API Reference Detailed information and usage instructions on the Intel® Trace Collector API
functions.
Related User Guide topic: Tracing User Defined Events

Configuration
Reference

Information on the configuration file syntax, protocol file and description of all
configuration options supported.
Related User Guide topics: Configuring Intel® Trace Collector, Filtering Trace Data

Correctness
Checking Errors

The list of supported correctness checking errors and explanation of their
detection method.
Related User Guide topic: Correctness Checking

Structured
Tracefile Format

Information on the structured tracefile format (STF) used by Intel® Trace
Collector to store the trace data. The section also describes the single-STF
format, lists all STF components and provides information on its configuration.

stftool Utility Information on manipulating STF trace files using the stftool and xstftool
utilities.

Time Stamping Description of the time stamps Intel® Trace Collector assigns to events during
tracing.

Secure Loading of
DLLs on Windows*
OS

Information on the security options for the loading of DLLs on Windows* OS.

API Reference

API Reference
The Intel® Trace Collector library provides the user with a number of functions that control the
profiling library and record user-defined activities, define groups of processes, define performance

Intel® Trace Collector Reference

42

counters and record their values. Header files with the necessary parameter, macro and function
declarations are provided in the include directory: VT.h for ANSI C and C++ and VT.inc for
Fortran 77 and Fortran 90. It is strongly recommended to include these header files if any Intel®
Trace Collector API functions are to be called.
You can also find the description of all available API functions in comments for VT.h and in the man
pages on Linux* OS (man VT).
The Intel® Trace Collector library is thread-safe in the sense that all of its API functions can be called
by several threads at the same time. Some API functions can really be executed concurrently, others
protect global data with POSIX* mutexes.

Concepts
This section uses the following concepts, essential for understanding the Intel® Trace Collector API:

• Symbol – function referred to by its name without the class name. For example: MPI_Send.
• Activity – set of functions referred to by their class name. For example: MPI.
• State – function referred to by its full name including the class name (combination of activity

and symbol). For example: MPI:MPI_Send.

• State change – event of entering or leaving a function (state).

For detailed description and examples of these concepts within the framework of the configuration
functionality, see Filtering Trace Data.

General Macros and Errors

#define VT_VERSION

API version constant. It is incremented each time the API changes, even if the change does not break
compatibility with the existing API. It can be used to determine at compile time how to call the API,
like this:

#if VT_VERSION > 4000

 do something

#else

 do something different

#endif
VT_version() provides the same information at runtime.
To check whether the current revision of the API is still compatible with the revision of the API that
the application was written against, compare against both VT_VERSION and
VT_VERSION_COMPATIBILITY, as shown below.

#define VT_VERSION_COMPATIBILITY

Oldest API definition, which is still compatible with the current one.

It is set to the current version each time an API change can break programs written for the previous
API. For example, a program written for VT_VERSION 2090 will work with API 3000 if
VT_VERSION_COMPATIBILITY remained at 2090. It may even work without modifications when
VT_VERSION_COMPATIBILITY was increased to 3000, but this cannot be determined automatically
and will require a source code review.
Here is a usage example:

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

43

#define APP_VT_VERSION 1000 // API version used by APP

#ifdef VT_VERSION_COMPATIBILITY > APP_EXPECTED_VT_VERSION

error "VT.h is no longer compatible with APP's usage of the API"

#endif

#ifdef VT_VERSION < APP_EXPECTED_VT_VERSION

error "VT.h is not recent enough for APP"

#endif
Suppose you instrumented your C source code for the API with VT_VERSION equal to 3100. Then
you could add the following code fragment to detect incompatible changes in the API:

#include <VT.h>

#if VT_VERSION_COMPATIBILITY > 3100

error ITC API is no longer compatible with our calls

#endif
Make sure to compare against a fixed number but not VT_VERSION, because VT_VERSION will
always be greater or equal VT_VERSION_COMPATIBILITY.
To make the instrumentation work again after such a change, you can either just update the
instrumentation to accommodate for the change or even provide different instrumentation that is
chosen by the C preprocessor based on the value of VT_VERSION.

enum _VT_ErrorCode

Error codes returned by Intel® Trace Collector API.

Enumerator Description

VT_OK OK

VT_ERR_NOLICENSE No valid license found

VT_ERR_NOTIMPLEMENTED Not implemented

VT_ERR_NOTINITIALIZED Not initialized

VT_ERR_BADREQUEST Invalid request type

VT_ERR_BADSYMBOLID Wrong symbol ID

VT_ERR_BADSCLID Wrong SCL ID

VT_ERR_BADSCL Wrong SCL

VT_ERR_BADFORMAT Wrong format

VT_ERR_BADKIND Wrong kind found

Intel® Trace Collector Reference

44

VT_ERR_NOMEMORY Could not get memory

VT_ERR_BADFILE Error while handling file

VT_ERR_FLUSH Error while flushing

VT_ERR_BADARG Wrong argument

VT_ERR_NOTHREADS No worker threads

VT_ERR_BADINDEX Wrong thread index

VT_ERR_COMM Communication error

VT_ERR_INVT Intel® Trace Collector API called while inside an Intel® Trace
Collector function

VT_ERR_IGNORE Non-fatal error code

Initialization, Termination and Control

Initialization, Termination and Control
Intel® Trace Collector is automatically initialized within the execution of the MPI_Init() function.
During the execution of the MPI_Finalize() function, the trace data collected in memory or in
temporary files is consolidated and written into the permanent trace file(s), and Intel® Trace Collector
is terminated. Thus, it is an error to call Intel® Trace Collector API functions before MPI_Init() has
been executed or after MPI_Finalize() has returned.
In non-MPI applications it may be necessary to start and stop Intel® Trace Collector explicitly. These
calls also help write programs and libraries that use Intel® Trace Collector without depending on MPI.

VT_initialize(), VT_getrank(), VT_finalize() can be used to write applications or libraries
which work both with and without MPI, depending on whether they are linked with libVT.a plus
MPI or with libVTcs.a (distributed tracing) and no MPI.
If the MPI that Intel® Trace Collector was compiled for provides MPI_Init_thread(), then
VT_init() will call MPI_Init_thread() with the parameter required set to
MPI_THREAD_FUNNELED. This is sufficient to initialize multithreaded applications where only the
main thread calls MPI. If your application requires a higher thread level, then either use
MPI_Init_thread() instead of VT_init() or (if VT_init() is called for example, by your
runtime environment) set the environment variable VT_THREAD_LEVEL to a value of 0 till 3 to
choose thread levels MPI_THREAD_SINGLE till MPI_THREAD_MULTIPLE.
It is not an error to call VT_initialize() twice or after a MPI_Init().
In an MPI application written in C, the program parameters must be passed, because the underlying
MPI might require them. Otherwise they are optional, and 0 or a NULL pointer may be used. If
parameters are passed, then the number of parameters and the array itself may be modified, either
by MPI or Intel® Trace Collector itself.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

45

Intel® Trace Collector assumes that argv[0] is the executable name and uses this string to find the
executable and as the basename for the default logfile name. Other parameters are ignored unless
there are special --itc-args parameters.
See the description of the following functions:

• VT_initialize

• VT_finalize

• VT_getrank

• VT_getdescription

• VT_setfinalizecallback

• VT_countsetcallback

The following functions control the tracing of threads in a multithreaded application:

• VT_registerthread

• VT_registernamed

• VT_registerprefixed

• VT_getthrank

The recording of performance data can be controlled on a per-process basis by calls to the
VT_traceon() and VT_traceoff() functions: a thread calling VT_traceoff() will no longer
record any state changes, MPI communication or counter events. Tracing can be re-enabled by
calling the VT_traceon() function. The collection of statistics data is not affected by calls to these
functions. With the API function VT_tracestate() a process can query whether events are
currently being recorded.
See the description of functions:

• VT_traceon

• VT_traceoff

• VT_tracestate

With the Intel® Trace Collector configuration mechanisms described in Filtering Trace Data, the
recording of state changes can be controlled per symbol or activity. For any defined symbol, the
VT_symstate() function returns whether data recording for that symbol has been disabled.
Find the function description in the following section:

• VT_symstate

Intel® Trace Collector minimizes the instrumentation overhead by first storing the recorded trace
data locally in the memory of each processor and saving it to disk only when the memory buffers are
filled up. Calling the VT_flush() function forces a process to save the in-memory trace data to disk,
and mark the duration of this in the trace. After returning, Intel® Trace Collector continues to work
normally.

• VT_flush

Intel® Trace Collector makes its internal clock available to applications, which can be useful to write
instrumentation code that works with MPI and non-MPI applications.

For more detailed information, refer to the following sections:

• VT_timestamp

Intel® Trace Collector Reference

46

• VT_timestart

VT_initialize
int VT_initialize (int * argc, char *** argv)

Description

Initializes the Intel® Trace Collector and underlying communication.

Fortran
VTINIT(ierr)

Parameters

argc a pointer to the number of command line arguments

argv a pointer to the program's command line arguments

Return values

Returns error code

VT_finalize
int VT_finalize(void)

Description

Finalizes Intel® Trace Collector and underlying communication.

It is not an error to call VT_finalize() twice or after a MPI_Finalize().

Fortran
VTFINI(ierr)

Return values

Returns error code

VT_getrank
int VT_getrank(int * rank)

Description

Gets process index (same as MPI rank within MPI_COMM_WORLD).

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

47

Note
This number is not unique in applications with dynamic process spawning.

Fortran
VTGETRANK(rank, ierr)

Return values

rank stores process index
Returns error code

VT_registerthread
int VT_registerthread(int thindex)

Description

Registers a new thread with Intel® Trace Collector under the given number.

Threads are numbered starting from 0, which is always the thread that has called
VT_initialize() or MPI_Init(). The call to VT_registerthread() is optional, as the thread
that uses Intel® Trace Collector without having called VT_registerthread() is automatically
assigned the lowest free index. If a thread terminates, then its index becomes available again and
might be reused for another thread.
Calling VT_registerthread() when the thread has been assigned an index already is an error,
unless the argument of VT_registerthread() is equal to this index. The thread is not (re-
)registered in case of an error.

Fortran
VTREGISTERTHREAD(thindex, ierr)

Parameters

thindex thread number, only used if >= 0

Return values

Returns error codes:

• VT_ERR_BADINDEX - thread index is currently assigned to another thread
• VT_ERR_BADARG - thread has been assigned a different index already
• VT_ERR_NOTINITIALIZED - Intel® Trace Collector has not been initialized yet

VT_registernamed
int VT_registernamed (const char * threadname, int thindex)

Intel® Trace Collector Reference

48

Description

Registers a new thread with Intel® Trace Collector under the given number and name.

Threads with the same number cannot have different names. If you try doing that, the thread uses
the number, but not the new name.

Registering a thread twice with different names or numbers is an error. You can add a name to an
already registered thread with VT_registernamed("new name", -1) if no name has been set
before.

Parameters

threadname desired name of the thread, or NULL/empty string if no name wanted

thindex desired thread number, pass negative number to let Intel® Trace Collector pick a
number

Return values

Returns error code, see VT_registerthread

VT_registerprefixed
int VT_registerprefixed (const char * threadname, int thindex)

Description

This functions is identical to VT_registernamed, with the only difference that it appends the process
number as a prefix for the thread name. For example, for threadname = "ThreadA" and process
number 127, the resulting thread name displayed in Intel® Trace Analyzer will be "P127 ThreadA".

Parameters

threadname desired name of the thread, or NULL/empty string if no name wanted

thindex desired thread number, pass negative number to let Intel® Trace Collector pick a
number

Return values

Returns error code, see VT_registerthread

VT_getthrank
int VT_getthrank (int * thrank)

Description

Gets thread index within a process.

Can be assigned either automatically by Intel® Trace Collector, or manually with

VT_registerthread().

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

49

Fortran
VTGETTHRANK(thrank, ierr)

Return values

thrank thread index within current thread is stored here
Returns error code

VT_traceon
void VT_traceon (void)

Description

Turns on tracing for the thread if it was disabled, otherwise does nothing.

Cannot enable tracing if PROCESS/CLUSTER NO was applied to the process in the configuration.

Fortran
VTTRACEON()

VT_traceoff
void VT_traceoff (void)

Description

Turns off tracing for the thread if it was enabled, does nothing otherwise.

Fortran
VTTRACEOFF()

VT_tracestate
int VT_tracestate (int * state)

Description

Gets logging state of current thread.

Set by configuration options PROCESS/CLUSTER, modified by VT_traceon/off().
There are three states:

• 0 = thread is logging

• 1 = thread is currently not logging

• 2 = logging has been turned off completely

Intel® Trace Collector Reference

50

Note
Different threads within one process may be in state 0 and 1 at the same time because
VT_traceon/off() sets the state of the calling thread, but not for the whole process.

State 2 is set through the configuration option PROCESS/CLUSTER NO for the whole process and
cannot be changed.

Fortran
VTTRACESTATE(state, ierr)

Return values

state is set to current state
Returns error code

VT_symstate
int VT_symstate (int statehandle, int * on)

Description

Gets filter state of one state.

Set by configuration options SYMBOL, ACTIVITY.

Note
A state may be active even if the thread logging state is off.

Fortran
VTSYMSTATE(statehandle, on, ierr)

Parameters

statehandle result of VT_funcdef() or VT_symdef()

Return values

on set to 1 if symbol is active
Returns error code

VT_flush
int VT_flush (void)

Description

Flushes all trace records from memory into the flush file.

51

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

The location of the flush file is controlled by options in the configuration file. Flushing will be
recorded in the trace file as entering and leaving the state VT_API:TRACE_FLUSH with time stamps
that indicate the duration of the flushing. Automatic flushing is recorded as VT_API:AUTO_FLUSH.
Refer to Configuration Options to learn about the MEM-BLOCKSIZE and MEM-MAXBLOCKS
configuration options that control Intel® Trace Collector memory usage.

Fortran
VTFLUSH(ierr)

Return values

Returns error code

VT_timestamp
double VT_timestamp (void)

Description

In contrast to previous versions, this time stamp no longer represents seconds. Use
VT_timeofday() for that instead. The result of VT_timestamp() can be copied verbatim and
given to other API calls, but nothing else.

Fortran
DOUBLE PRECISION VTSTAMP()

Return values

Returns an opaque time stamp, or VT_ERR_NOTINITIALIZED.

VT_timestart
double VT_timestart (void)

Description

Writes instrumentation code that works with MPI and non-MPI applications

Fortran
DOUBLE PRECISION VTTIMESTART()

Return values

Returns point in time in seconds when process started, or VT_ERR_NOTINITIALIZED.

VT_setfinalizecallback
int VT_setfinalizecallback(VT_Callback_t callback)

Intel® Trace Collector Reference

52

Description

Sets a callback which is called by the Intel® Trace Collector at the beginning of finalization. This
function may use the Intel Trace Collector API to log events.

Only one callback can be stored per process, setting another or NULL removes the previous callback.

Parameters

callback a pointer to the callback

Return values

Returns error code

VT_getdescription
const char *VT_getdescription(int type)

Description
Returns a pointer that describes certain aspects of the library that implements the Intel® Trace
Collector API. This call can be used by code that is compatible with any library implementing the API,
but nevertheless wants to identify the implementation.

Parameters

type to specify what kind of information is requested (VT_DESCRIPTION_LIB, ...)

Return values

Returns error code

VT_countsetcallback
int VT_countsetcallback(VT_CountCallback_t callback, void *custom, int
ncounters)

Description

Sets a callback for counter sampling for the calling thread.

The data provided by the callback is logged with the same time stamp as the event that triggered the
callback. The callback must be set for each thread individually. Setting NULL disables sampling for
the thread.

Parameters

callback address of the callback function or NULL

custom opaque data that is passed to the callback function by the Intel® Trace Collector;
can be used by the callback function to identify the thread or enabled counters

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

53

ncounters upper limit for the number of counters returned by the callback. It is not a
problem to specify a number that is larger than the one that will be actually used,
because the extra memory provided to the callback function will be reused
efficiently.

Return values

Returns error code

Defining and Recording Source Locations
Source locations can be specified and recorded in two different contexts:

• State changes, associating a source location with the state change. This is useful to record
where a function has been called, or where a code region begins and ends.

• Communication events, associating a source location with calls to MPI functions, for example,
calls to the send/receive or collective communication and I/O functions.

To minimize instrumentation overhead, locations for the state changes and communication events
are referred to by integer location handles that can be defined by calling the API function
VT_scldef(), which will automatically assign a handle. A source location is a pair of a filename and
a line number within that file.

VT_scldef
int VT_scldef (const char * file, int line_nr, int * sclhandle)

Description

Allocates a handle for a source code location (SCL).

Fortran
VTSCLDEF(file, line_nr, sclhandle, ierr)

Parameters

file file name

line_nr line number in this file, counting from 1

Return values

sclhandle the integer it points to is set by Intel® Trace Collector
Returns error code

Some functions require a location handle, but they all accept VT_NOSCL instead of a real handle:

Intel® Trace Collector Reference

54

#define VT_NOSCL
Special SCL handle — no location available.

VT_sclstack
int VT_sclstack (void * pc, void * stackframe, int skip, int trace, int *
sclhandle)

Description

Allocates a handle for a source code location (SCL) handle which refers to the current call stack.

This SCL can then be used in several API calls without having to repeat the stack unwinding each
time. Which stack frames are preserved and which are skipped is determined by the PCTRACE
configuration option, but can be overridden with function parameters.
Special support is available for recording source code locations from inside signal handlers by calling
this function with the pc and stackframe parameters different from NULL. Other usages of these
special parameters include:

• Remembering the stack frame in those API calls of a library that are invoked directly by the
application, then at arbitrary points in the library do stack unwinding based on that stack
frame to catch just the application code

• Defining a source code location ID for a specific program counter value

Here is a usage example of this call inside a library that implements a message send:

void MySend(struct *msg) {

 int sclhandle;

 VT_sclstack(NULL, NULL, // we use the default stack unwinding

 1, // MySend() is called directly by the

 // application code we want to trace:

 // skip our own source code, but not

 // more

 -1, // default PCTRACE setting for size

 // of recorded stack

 &sclhandle);

 // if an error occurs, we continue with the sclhandle == VT_NOSCL

 // that VT_sclstack() sets

 VT_enter(funchandle,

 sclhandle);

 VT_log_sendmsg(msg->receiver,

 msg->count,

 msg->tag,

 msg->commid,

 sclhandle);

 // do the send here

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

55

 VT_leave(sclhandle);

}

Parameters

pc record the source code of this program counter value as the innermost call
location, then continue with normal stack unwinding; NULL if only stack
unwinding is to be used

stackframe start unwinding at this stack frame, NULL for starting with the stack frame of
VT_sclstack() itself: on Intel® 64 architecture the stack frame is found in the
RBP register

skip -1: get the number of stack frames to skip from the PCTRACE configuration
option
0: first recorded program counter value after the (optional) pc address is the
return address of the initial stack frame
>0: skip the given number of return addresses

trace -1: get the number of stack frames to record from the PCTRACE configuration
option
0: do not record any source code locations for the call stack: returns an SCL ID
for the pc address if one is given, otherwise returns VT_NOSCL immediately
>0: the number of stack frames to record

Return values

sclhandle points to the integer set by Intel® Trace Collector to a valid SCL handle in case of
success and VT_NOSCL otherwise

Returns error code

Intel® Trace Collector automatically records all available information about MPI calls. On some
systems, the source location of these calls is automatically recorded. On the other systems, the
source location of MPI calls can be recorded by calling the VT_thisloc() function immediately
before the call to the MPI function, with no intervening MPI or Intel® Trace Collector API calls.

VT_thisloc
int VT_thisloc (int sclhandle)

Description

Sets source code location for next activity that is logged by Intel® Trace Collector.

After being logged it is reset to the default behavior again: automatic PC tracing if enabled in the
configuration file, and supported or no SCL otherwise.

Fortran
VTTHISL(sclhandle, ierr)

Intel® Trace Collector Reference

56

Parameters

sclhandle handle defined either with VT_scldef()

Return values

Returns error code

Defining and Recording Functions or Regions

Defining and Recording Functions or Regions
Intel® Trace Analyzer can display and analyze general (properly nested) state changes, relating to
function calls, entry/exit to/from code regions and other events occurring in a process. Intel® Trace
Analyzer implements a two-level model of states: a state is referred to by an activity name that
identifies a group of states, and the state (or symbol) name that references a particular state in that
group. For instance, all MPI functions are part of the activity MPI, and each one is identified by its
function name, for instance MPI_Send for C and for Fortran.
The Intel® Trace Collector API allows the user to define arbitrary activities and symbols and to record
entry and exit to/from them. In order to reduce the instrumentation overhead, symbols are referred
to by integer handles that can be managed automatically (using the VT_funcdef() interface) or
assigned by the user (using the old VT_symdef() function). All activities and symbols are defined by
each process that uses them, but it is not necessary to define them consistently on all processes (see
UNIFY-SYMBOLS).
Optionally, information about source locations can be recorded for state enter and exit events by
passing a non-null location handle to the VT_enter()/VT_leave() or VT_beginl()/VT_endl()
functions.

New Interface
To simplify the use of user-defined states, a new interface has been introduced for Intel® Trace
Collector. It manages the symbol handles automatically, freeing the user from the task of assigning
and keeping track of symbol handles, and has a reduced number of arguments. Furthermore, the
performance of the new functions has been optimized, reducing the overhead of recording state
changes.

To define a new symbol, first create the respective activity by calling the VT_classdef() function. A
handle for that activity is returned, and the symbol can be defined with it by calling VT_funcdef().
The returned symbol handle is passed, for example, to VT_enter() to record a state entry event.

VT_classdef
int VT_classdef (const char * classname, int * classhandle)

Description
Allocates a handle for a class name.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

57

The classname may consist of several components separated by a colon :. Leading and trailing
colons are ignored. Several colons in a row are treated as just one separator.

Fortran
VTCLASSDEF(classname, classhandle, ierr)

Parameters

classname name of the class

Return values

classhandle the integer it points to is set by Intel® Trace Collector
Returns error code

VT_funcdef
int VT_funcdef (const char * symname, int classhandle, int * statehandle)

Description
Allocates a handle for a state.

The symname may consist of several components separated by a colon :. If that's the case, then these
become the parent class(es). Leading and trailing colons are ignored. Several colons in a row are
treated as just one separator.
This is a replacement for VT_symdef() which doesn't require the application to provide a unique
numeric handle.

Fortran
VTFUNCDEF(symname, classhandle, statehandle, ierr)

Parameters

symname name of the symbol

classhandle handle for the class this symbol belongs to, created with VT_classdef(), or
VT_NOCLASS, which is an alias for "Application" if the symname does not contain
a class name and ignored otherwise

Return values

statehandle the integer it points to is set by Intel® Trace Collector
Returns error code

#define VT_NOCLASS

Special value for VT_funcdef() – put function into the default class Application.

Intel® Trace Collector Reference

58

Old Interface
To define a new symbol, first determine which value has to be used for the symbol handle, and then
call the VT_symdef() function, passing the symbol and activity names, plus the handle value. It is
not necessary to define the activity itself. Make sure to not use the same handle value for different
symbols.

VT_symdef
int VT_symdef (int statehandle, const char * symname, const char *
activity)

Description
Defines the numeric statehandle as shortcut for a state.
This function will become obsolete and should not be used for new code. Both symname and
activity may consist of more than one component, separated by a colon :.
Leading and trailing colons are ignored. Several colons in a row are treated as just one separator.

Fortran
VTSYMDEF(code, symname, activity, ierr)

Parameters

statehandle numeric value chosen by the application

symname name of the symbol

activity name of activity this symbol belongs to

Return values
Returns error code

State Changes
The following functions take a state handle defined with either the new or old interface. Handles
defined with the old interface incur a higher overhead in these functions, because they need to be
mapped to the real internal handles. Therefore it is better to use the new interface.

Intel® Trace Collector distinguishes between code regions (marked with VT_begin()/VT_end())
and functions (marked with VT_enter()/VT_leave()). The difference is only relevant when
passing source code locations.

VT_begin
int VT_begin (int statehandle)

Description
Marks the beginning of a region with the name that was assigned to the symbol.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

59

Regions should be used to subdivide a function into different parts or to mark the location where a
function is called.

If automatic tracing of source code locations (PC tracing) is supported, then Intel® Trace Collector will
log the location where VT_begin() is called as source code location for this region and the location
where VT_end() is called as SCL for the next part of the calling symbol (which may be a function or
another larger region).
If an SCL has been set with VT_thisloc(), then this SCL will be used even if PC tracing is
supported.
The functions VT_enter() and VT_leave() have been added that can be used to mark the
beginning and end of a function call within the function itself. The difference is that a manual source
code location which is given to VT_leave() cannot specify where the function call took place, but
rather where the function is left.
If PC tracing is enabled, then the VT_leave function stores the SCL where the instrumented function
was called as SCL for the next part of the calling symbol. In other words, it skips the location where
the function is left, which would be recorded if VT_end() were used instead.
VT_begin() adds an entry to a stack which can be removed only with VT_end().

Fortran
VTBEGIN(statehandle, ierr)

Parameters

statehandle handle defined either with VT_symdef() or VT_funcdef()

Return values
Returns error code

VT_beginl
int VT_beginl (int statehandle, int sclhandle)

Description
Shortcut for VT_thisloc(sclhandle); VT_begin(statehandle).

Fortran
VTBEGINL(statehandle, sclhandle, ierr)

VT_end
int VT_end (int statehandle)

Description
Marks the end of a region.

Has to match a VT_begin(). The parameter was used to check this, but this is no longer done to
simplify instrumentation; now it is safe to pass a 0 instead of the original state handle.

Fortran
VTEND(statehandle, ierr)

Intel® Trace Collector Reference

60

Parameters

statehandle obsolete, pass anything you want

Return values
Returns error code

VT_endl
int VT_endl (int statehandle, int sclhandle)

Description
Shortcut for VT_thisloc(sclhandle); VT_end(statehandle).

Fortran
VTENDL(statehandle, sclhandle, ierr)

VT_enter
int VT_enter (int statehandle, int sclhandle)

Description
Mark the beginning of a function.

Usage similar to VT_beginl(). See also VT_begin().

Fortran
VTENTER(statehandle, sclhandle, ierr)

Parameters

statehandle handle defined either with VT_symdef() or VT_funcdef()

sclhandle handle, defined by VT_scldef. Use VT_NOSCL if you don't have a specific value.

Return values
Returns error code

VT_leave
int VT_leave (int sclhandle)

Description
Mark the end of a function.

See also VT_begin().

Fortran
VTLEAVE(sclhandle, ierr)

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

61

Parameters

sclhandle handle, defined by VT_scldef. Currently ignored, but is meant to specify the
location of exactly where the function was left in the future. Use VT_NOSCL if you
don't have a specific value.

Return values
Returns error code

VT_enterstate
int VT_enterstate (const char * name, int * statehandle, int * truncated)

Description
Defines a state (when invoked the first time) and enters it.

It relies on the caller to provide persistent storage for state handles.

The corresponding call to leave the state again is the normal VT_leave(). VT_leave() must be
called if and only if VT_enterstate() returns a zero return code.

static int bsend_handle, bsend_truncated;

int bsend_retval;

bsend_retval = VT_enterstate("MPI:TRANSFER:BSEND", &bsend_handle,
&bsend_truncated);

...

if(!bsend_retval) VT_leave(VT_NOSCL);
As demonstrated in this example, one or more colons : may be used to specify parent classes of the
state, just as in VT_funcdef() and others.
But in contrast to those, VT_enterstate() also treats a slash / as special and uses it to log states
at a varying degree of detail: depending on the value of DETAILED-STATES (0 = OFF, 1 = ON, 2, 3...),
only the part of the name before the first slash is used (DETAILED-STATES 0). For higher values of
DETAILED-STATES more components of the name are used and the slashes in the part of the name
which is used is treated like the class separator (:).

Examples
1. "MPI:TRANSFER/SEND/COPY" + DETAILED-STATES 0: "MPI:TRANSFER"
2. "MPI:TRANSFER/SEND/COPY" + DETAILED-STATES 1: "MPI:TRANSFER:SEND"
3. "MPI:TRANSFER/SEND/COPY" + DETAILED-STATES >= 2:

"MPI:TRANSFER:SEND:COPY"
4. "/MPI:INTERNAL" + DETAILED-STATES 0: "" = not logged
5. "/MPI:INTERNAL" + DETAILED-STATES 1: ":MPI:INTERNAL" = "MPI:INTERNAL"

If (and only if) the configuration option DETAILED-STATES causes the truncation of a certain state
name, then entering that state is ignored if the process already is in that state.
Example of trace with DETAILED-STATES 0:

1. enter "MPI:TRANSFER/WAIT" = enter "MPI:TRANSFER"
2. enter "MPI:TRANSFER/COPY" = "MPI:TRANSFER" = ignored by Intel® Trace Collector,

return code != 0
3. leave "MPI:TRANSFER/COPY" = ignored by application

Intel® Trace Collector Reference

62

4. enter "MPI:TRANSFER/WAIT" = recursive call; ignored too
5. leave "MPI:TRANSFER/WAIT" = ignored by application
6. leave "MPI:TRANSFER/WAIT" = leave "MPI:TRANSFER"

The same trace with DETAILED-STATES 1:
1. enter "MPI:TRANSFER/WAIT" = enter "MPI:TRANSFER:WAIT"
2. enter "MPI:TRANSFER/COPY" = enter "MPI:TRANSFER:COPY"
3. leave "MPI:TRANSFER/COPY" = leave "MPI:TRANSFER:COPY"
4. enter "MPI:TRANSFER/WAIT" = enter "MPI:TRANSFER:WAIT"
5. leave "MPI:TRANSFER/WAIT" = leave "MPI:TRANSFER:WAIT"
6. leave "MPI:TRANSFER/WAIT" = leave "MPI:TRANSFER:WAIT"

Fortran
VTENTERSTATE(name, statehandle, truncated, ierr)

Parameters

name the name of the state, with colons and/or slashes as separators as described
above

Return values

statehandle must be initialized to zero before calling this function for the first time, then is set
inside the function to the state handle which corresponds to the function which
is logged

truncated set when calling the function for the first time: zero if the full name is logged
Returns zero if state was entered and VT_leave() needs to be called

VT_wakeup
int VT_wakeup (void)

Description
Triggers the same additional actions as logging a function call, but without actually logging a call.

When Intel® Trace Collector logs a function entry or exit it might also execute other actions, like
sampling and logging counter data. If a function runs for a very long time, then Intel® Trace Collector
has no chance to execute these actions. To avoid that, the programmer can insert calls to this
function into the source code of the long-running function.

Fortran
VTWAKEUP(ierr)

Return values
Returns error code

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

63

Defining and Recording Scopes
Scope is a user-defined region in the source code. In contrast to regions and functions, which are
entered and left with VT_begin/VT_end() or VT_enter/VT_leave(), scope does not follow the
stack based approach. It is possible to start scope a, then start scope b and stop a before b, that is
they can overlap one another:

 |---- a -----|

 |------ b ----|

VT_scopedef
int VT_scopedef (const char * scopename, int classhandle, int scl1, int
scl2, int * scopehandle)

Description

Define a new scope. A scope is identified by its name and class, like functions. The source code
locations that can be associated with it are additional and optional attributes; they can be used to
mark a static start and end of the scope in the source.

Like functions, scopename may consist of several components separated by a colon :.

Fortran
VTSCOPEDEF(scopename, classhandle, scl1, scl2, scopehandle, ierr)

Parameters

scopename the name of the scope

classhandle the class this scope belongs to (defined with VT_classdef())

scl1 any kind of SCL as defined with VT_scldef(), or VT_NOSCL

scl2 any kind of SCL as defined with VT_scldef(), or VT_NOSCL

Return values

scopehandle set to a numeric handle for the scope, needed by VT_scopebegin()
Returns error code

VT_scopebegin
int VT_scopebegin (int scopehandle, int scl, int * seqnr)

Description

Starts a new instance of the scope previously defined with VT_scopedef().
There can be more than one instance of a scope at the same time. In order to have the flexibility to
stop an arbitrary instance, Intel® Trace Collector assigns an intermediate identifier to it which can
(but does not have to) be passed to VT_scopeend(). If the application does not need this flexibility,
then it can simply pass 0 to VT_scopeend().

Intel® Trace Collector Reference

64

Fortran
VTSCOPEBEGIN(scopehandle, scl, seqnr, ierr)

Parameters

scopehandle the scope as defined by VT_scopedef()

scl in contrast to the static SCL given in the scope definition this you can vary with
each instance; pass VT_NOSCL if not needed

Return values

seqnr is set to a number that together with the handle identifies the scope instance;
pointer may be NULL

Returns error code

VT_scopeend
int VT_scopeend (int scopehandle, int seqnr, int scl)

Description

Stops a scope that was previously started with VT_scopebegin().

Fortran
VTSCOPEEND(scopehandle, seqnr, scl)

Parameters

scopehandle identifies the scope that is to be terminated

seqnr 0 terminates the most recent scope with the given handle, passing the seqnr
returned from VT_scopebegin() terminates exactly that instance

scl a dynamic SCL for leaving the scope

Defining Groups of Processes
Intel® Trace Collector enables you to define an arbitrary, recursive group structure over the
processes of an MPI application, and Intel® Trace Analyzer can display profiling and communication
statistics for these groups. Thus, you can start with the top-level groups and walk down the
hierarchy, unfolding interesting groups into ever more detail until you arrive at the level of processes
or threads.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

65

Groups are defined recursively with a simple bottom-up scheme: the VT_groupdef() function
builds a new group from a list of already defined groups of processes, returning an integer group
handle to identify the newly defined group. The following handles are predefined:

enum VT_Group

Enumerator Description
VT_ME The calling thread or process

VT_GROUP_THREAD Group of all threads

VT_GROUP_PROCESS Group of all processes

VT_GROUP_CLUSTER Group of all clusters

To refer to non-local processes, the lookup function VT_getprocid() translates between ranks in
MPI_COMM_WORLD and handles that can be used for VT_groupdef().

VT_getprocid
int VT_getprocid(int procindex, int * procid)

Description

Get global ID for process which is identified by process index.

If threads are supported, then this ID refers to the group of all threads within the process, otherwise
the result is identical to VT_getthreadid(procindex, 0, procid).

Fortran
VTGETPROCID(procindex, procid, ierr)

Parameters

procindex index of process (0 <= procindex < N)

Return values

procidpointer pointer to the memory location where the ID is written
Returns error code

The same works for threads.

VT_getthreadid
int VT_getthreadid(int procindex, int thindex, int _ threadid)

Intel® Trace Collector Reference

66

Description

Get global id for the thread which is identified by the pair of process and thread index.

Fortran
VTGETTHREADID(procindex, thindex, threadid, ierr)

Parameters

procindex index of process (0 <= procindex < N)

thindex index of thread

Return values

threadid pointer to the memory location where the ID is written
Returns error code

VT_groupdef
int VT_groupdef(const char * name, int n_members, int * ids, int *
grouphandle)

Description

Defines a new group and returns a handle for it.

Groups are distinguished by their name and their members. The order of group members is
preserved, which can lead to groups with the same name and same set of members, but different
order of these members.

Fortran
VTGROUPDEF(name, n_members, ids[], grouphandle, ierr)

Parameters

name the name of the group

n_members number of entries in the ids array

ids array where each entry can be either a VT_Group value, or result of
VT_getthreadid(), VT_getprocid() or VT_groupdef()

Return values

grouphandle handle for the new group, or old handle if the group has already been defined
Returns error code

To generate a new group that includes the processes with even ranks in MPI_COMM_WORLD, you can
use the code:

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

67

int *IDS = malloc(sizeof(*IDS)*(number_procs/2));

int i, even_group;

for(i = 0; i < number_procs; i += 2)

 VT_getprocid(i, IDS + i/2);

VT_groupdef("Even Group", number_procs/2, IDS, &even_group);
If threads are used, then they automatically become part of a group that is formed by all threads
inside the same process. The numbering of threads inside this group depends on the order in which
threads call the Intel® Trace Collector library because they are registered the first time they invoke
the Intel Trace Collector library. The order can be controlled by calling VT_registerthread() as
the first API function with a positive parameter.

Defining and Recording Counters
Intel® Trace Collector introduces the concept of counters to model numeric performance data that
changes over the execution time. Use counters to capture the values of hardware performance
counters, or of program variables (iteration counts, convergence rate, etc.) or any other numerical
quantity. An Intel® Trace Collector counter is identified by its name, the counter class it belongs to
(similar to the two-level symbol naming), and the type of its values (integer or floating-point) and the
units that the values are quoted in (Example: MFlop/sec).

A counter can be attached to MPI processes to record process-local data, or to arbitrary groups.
When using a group, then each member of the group will have its own instance of the counter and
when a process logs a value it will only update the counter value of the instance the process belongs
to.

Similar to other Intel® Trace Collector objects, counters are referred to by integer counter handles
that are managed automatically by the library.

To define a counter, the class it belongs to needs to be defined by calling VT_classdef(). Then,
call VT_countdef(), and pass the following information:

• Counter name

• Data type

enum VT_CountData

Enumerator Description

VT_COUNT_INTEGER Counter measures 64 bit integer value, passed to Intel® Trace
Collector API as a pair of high and low 32 bit integers

VT_COUNT_FLOAT Counter measures 64 bit floating point value (native format)

VT_COUNT_INTEGER64 Counter measures 64 bit integer value (native format)

VT_COUNT_DATA Mask to extract the data format

Intel® Trace Collector Reference

68

• Kind of data

enum VT_CountDisplay

Enumerator Description

VT_COUNT_ABSVAL Counter are displayed with absolute values

VT_COUNT_RATE First derivative of counter values is displayed

VT_COUNT_DISPLAY Mask to extract the display type

• Semantic associated with a sample value

enum VT_CountScope

Enumerator Description

VT_COUNT_VALID_BEFORE The value is valid until and at the current time

VT_COUNT_VALID_POINT The value is valid exactly at the current time, and no value is
available before or after it

VT_COUNT_VALID_AFTER The value is valid at and after the current time

VT_COUNT_VALID_SAMPLE The value is valid at the current time and samples a curve, so for
example, linear interpolation between sample values is possible

VT_COUNT_SCOPE Mask to extract the scope

• Counter target, that is the process or group of processes it belongs to (VT_GROUP_THREAD
for a thread-local counter, VT_GROUP_PROCESS for a process-local counter, or an arbitrary
previously defined group handle)

• Lower and upper bounds

• Counter unit (an arbitrary string like FLOP, Mbytes)

VT_countdef
int VT_countdef (const char * name, int classhandle, int genre, int target,
const void * bounds, const char * unit, int * counterhandle)

Description

Define a counter and get handle for it.

Counters are identified by their name (string) alone.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

69

Fortran
VTCOUNTDEF(name, classhandle, genre, target, bounds[], unit, counterhandle,
ierr)

Parameters

name string identifying the counter

classhandle class to group counters, handle must have been retrieved by VT_classdef

genre bitwise or of one value from VT_CountScope, VT_CountDisplay and
VT_CountData

target target which the counter refers to (VT_ME, VT_GROUP_THREAD,
VT_GROUP_PROCESS, VT_GROUP_CLUSTER or thread/process-id or user-defined
group handle).

bounds array of lower and upper bounds (2x 64 bit float, 2x2 32 bit integer, 2x 64 bit
integer ->16 byte)

unit string identifying the unit for the counter (like Volt, pints etc.)

Return values

counterhandle handle identifying the defined counter
Returns error code

The integer counters have 64-bit integer values, while the floating-point counters have a value
domain of 64-bit IEEE floating point numbers. On systems that have no 64-bit integer type in C, and
for Fortran, the 64-bit values are specified using two 32-bit integers. Integers and floats are passed
in the native byte order, but for VT_COUNT_INTEGER the integer with the higher 32 bits needs to be
given first on all platforms:
Counter Value

VT_COUNT_INTEGER 32 bit integer (high)

32 bit integer (low)

VT_COUNT_INTEGER64 64 bit integer

VT_COUNT_FLOAT 64 bit float

At any time during execution, a process can record a new value for any of the defined counters by
calling one of the Intel® Trace Collector API routines described below. To minimize the overhead, it is
possible to set the values of several counters with one call by passing an integer array of counter
handles and a corresponding array of values. In C, it is possible to mix 64-bit integers and 64-bit
floating point values in one value array; in Fortran, the language requires that the value array
contains either all integer or all floating point values.

Intel® Trace Collector Reference

70

VT_countval
int VT_countval(int ncounters, int * handles, void * values)

Description

Record counter values.

Values are expected as two 4-byte integers, one 8-byte integer or one 8-byte double, according to
the counter it refers to.

Fortran
VTCOUNTVAL(ncounters, handles[], values[], ierr)

Parameters

ncounters number of counters to be recorded

handles array of ncounters many handles (previously defined by VT_countdef)

values array of ncounters many values, value[i] corresponds to handles[i].

Return Values

Returns error code

The online samples resource contains counterscopec.c, which demonstrates all of these facilities.

Recording Communication Events
These are API calls that allow logging of message send and receive and MPI-style collective
operations. Because they are modeled after MPI operations, they use the same kind of
communicator to define the context for the operation.

enum _VT_CommIDs
Logging send/receive events evaluates the rank local within the active communicator, and matches
events only if they take place in the same communicator (in other words, it is the same behavior as in
MPI).

Defining new communicators is not supported, but the predefined ones can be used.

Enumerator Description

VT_COMM_INVALID Invalid ID, do not pass to Intel® Trace Collector

VT_COMM_WORLD Global ranks are the same as local ones

https://software.intel.com/en-us/product-code-samples

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

71

VT_COMM_SELF Communicator that only contains the active process

VT_log_sendmsg
int VT_log_sendmsg(int other_rank, int count, int tag, int commid, int
sclhandle)

Description

Logs sending of a message.

Fortran
VTLOGSENDMSG(other_rank, count, tag, commid, sclhandle, ierr)

Parameters

my_rank rank of the sending process

other_rank rank of the target process

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT_COMM_WORLD, VT_COMM_SELF, or see
VT_commdef())

sclhandle handle as defined by VT_scldef, or VT_NOSCL

Return values

Returns error code

VT_log_recvmsg
int VT_log_recvmsg(int other_rank, int count, int tag, int commid, int
sclhandle)

Description

Logs receiving of a message.

Fortran
VTLOGRECVMSG(other_rank, count, tag, commid, sclhandle, ierr)

Parameters

my_rank rank of the receiving process

other_rank rank of the source process

Intel® Trace Collector Reference

72

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT_COMM_WORLD, VT_COMM_SELF, or see
VT_commdef())

sclhandle handle as defined by VT_scldef, or VT_NOSCL

Return values

Returns error code

The next three calls require a little extra care, because they generate events that not only have a time
stamp, but also a duration. This means that you need to take a time stamp first, then do the
operation and finally log the event.

VT_log_msgevent
int VT_log_msgevent(int sender, int receiver, int count, int tag, int commid,
double sendts, int sendscl, int recvscl)

Description

Logs sending and receiving of a message.

Fortran
VTLOGMSGEVENT(sender, receiver, count, tag, commid, sendts, sendscl, recvscl,
ierr)

Parameters

sender rank of the sending process

receiver rank of the target process

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT_COMM_WORLD, VT_COMM_SELF, or see
VT_commdef())

sendts time stamp obtained with VT_timestamp()

sendscl handle as defined by VT_scldef() for the source code location where the
message was sent, or VT_NOSCL

recvscl the same for the receive location

Return values

Returns error code

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

73

VT_log_op
int VT_log_op(int opid, int commid, int root, int bsend, int brecv, double
startts, int sclhandle)

Description

Logs the duration and amount of transferred data of an operation for one process.

Fortran
VTLOGOP(opid, commid, root, bsend, brecv, startts, sclhandle, ierr)

Parameters

opid id of the operation; must be one of the predefined constants in enum
_VT_OpTypes

commid numeric ID for the communicator; see VT_log_sendmsg() for valid numbers

root rank of the root process in the communicator (ignored for operations without
root, must still be valid, though)

bsend bytes sent by process (ignored for operations that send no data)

brecv bytes received by process (ignored for operations that receive no data)

startts the start time of the operation (as returned by VT_timestamp())

sclhandle handle as defined by VT_scldef, or VT_NOSCL

Return values

Returns error code

VT_log_opevent
int VT_log_opevent(int opid, int commid, int root, int numprocs, int _ bsend,
int _ brecv, double _ startts, int sclhandle)

Description

Logs the duration and amount of transferred data of an operation for all involved processes at once.

Intel® Trace Collector knows which processes send and receive data in each operation. Unused byte
counts are ignored when writing the trace, so they can be left uninitialized, but NULL is not allowed
as array address even if no entry is used at all.

Fortran
VTLOGOPEVENT(opid, commid, root, numprocs, bsend, brecv, startts, sclhandle,
ierr)

Parameters

opid id of the operation; must be one of the predefined constants in enum
_VT_OpTypes

Intel® Trace Collector Reference

74

commid numeric ID for the communicator; see VT_log_sendmsg() for valid numbers

root rank of the root process in the communicator (ignored for operations without
root, must still be valid, though)

numprocs the number of processes in the communicator

bsend bytes sent by process

brecv bytes received by process

startts the start time of the operation (as returned by VT_timestamp())

sclhandle handle as defined by VT_scldef, or VT_NOSCL

Return values

Returns error code

enum _VT_OpTypes
These are operation IDs that can be passed to VT_log_op().
Their representation in the trace file matches that of the equivalent MPI operation.

User-defined operations are not supported.

Enumerator Description

VT_OP_INVALID Undefined operation, should not be passed to Intel® Trace
Collector

VT_OP_COUNT Number of predefined operations

VT_OP_BARRIER
VT_OP_IBARRIER
VT_OP_BCAST
VT_OP_IBCAST
VT_OP_GATHER
VT_OP_IGATHER
VT_OP_GATHERV
VT_OP_IGATHERV
VT_OP_SCATTER
VT_OP_ISCATTER
VT_OP_SCATTERV
VT_OP_ISCATTERV
VT_OP_ALLGATHER
VT_OP_IALLGATHER
VT_OP_ALLGATHERV
VT_OP_IALLGATHERV
VT_OP_ALLTOALL
VT_OP_IALLTOALL
VT_OP_ALLTOALLV
VT_OP_IALLTOALLV
VT_OP_ALLTOALLW

MPI operation representations

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

75

VT_OP_IALLTOALLW
VT_OP_NEIGHBOR_ALLGATHER
VT_OP_INEIGHBOR_ALLGATHER
VT_OP_NEIGHBOR_ALLGATHERV
VT_OP_INEIGHBOR_ALLGATHERV
VT_OP_NEIGHBOR_ALLTOALL
VT_OP_INEIGHBOR_ALLTOALL
VT_OP_NEIGHBOR_ALLTOALLV
VT_OP_INEIGHBOR_ALLTOALLV
VT_OP_NEIGHBOR_ALLTOALLW
VT_OP_INEIGHBOR_ALLTOALLW
VT_OP_REDUCE
VT_OP_REDUCE_LOCAL
VT_OP_IREDUCE
VT_OP_ALLREDUCE
VT_OP_IALLREDUCE
VT_OP_REDUCE_SCATTER
VT_OP_REDUCE_SCATTER_BLOCK
VT_OP_IREDUCE_SCATTER
VT_OP_IREDUCE_SCATTER_BLOCK
VT_OP_SCAN
VT_OP_ISCAN
VT_OP_EXSCAN
VT_OP_IEXSCAN

Having a duration also may introduce the problem of having overlapping operations, which has to be
taken care of with the following two calls.

VT_begin_unordered
int VT_begin_unordered(void)

Description

Starts a period with out-of-order events.

Most API functions log events with just one time stamp which is taken when the event is logged. That
guarantees strict chronological order of the events.

VT_log_msgevent() and VT_log_opevent() are logged when the event has finished with a start
time taken earlier with VT_timestamp(). This can break the chronological order, for example, like
in the following two examples:

t1: VT_timestamp() "start message"

t2: VT_end() "leave function"

t3: VT_log_msgevent(t1) "finish message"

t1: VT_timestamp() "start first message"

t2: VT_timestamp() "start second message"

t3: VT_log_msgevent(t1) "finish first message"

t4: VT_log_msgevent(t2) "finish second message"

Intel® Trace Collector Reference

76

In other words, it is okay to just log a complex event if and only if no other event is logged between
its start and end in this thread. "logged" in this context includes other complex events that are logged
later, but with a start time between the other events start and end time.

In all other cases you have to alert Intel® Trace Collector of the fact that out-of-order events will
follow by calling VT_begin_unordered() before and VT_end_unordered() after these events.
When writing the events into the trace file Intel® Trace Collector increases a counter per thread when
it sees a VT_begin_unordered() and decrease it at a VT_end_unordered(). Events are
remembered and sorted until the counter reaches zero, or till the end of the data.
This means that:

• unordered periods can be nested

• it is not necessary to close each unordered period at the end of the trace

• but not closing them properly in the middle of a trace will force Intel® Trace Collector to use
a lot more memory when writing the trace (proportional to the number of events till the end
of the trace).

Fortran
VTBEGINUNORDERED(ierr)

VT_end_unordered
int VT_end_unordered (void)

Description

Close a period with out-of-order events that was started with VT_begin_unordered().

Fortran
VTENDNORDERED(ierr)

Additional API Calls in libVTcs

VT_abort
int VT_abort (void)

Description

Abort a VT_initialize() or VT_finalize() call running concurrently in a different thread.
This call will not block, but it might still take a while before the aborted calls actually return. They will
return either successfully (if they have completed without aborting) or with an error code.

Return values

0 if abort request was sent successfully, error code otherwise

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

77

VT_clientinit
int VT_clientinit(int procid, const char * clientname, const char *
contact)

Description

Initializes communication in a client/server application.

Must be called before VT_initialize() in the client of the application. There are three
possibilities:

• client is initialized first, which produces a contact string that must be passed to the server
(*contact == NULL)

• the server was started first, its contact string is passed to the clients (*contact ==
<result of VT_serverinit() with the prefix "S" - this prefix must be
added by the application>)

• a process spawns children dynamically, its contact string is given to its children (*contact
== <result of VT_serverinit() or VT_clientinit()>)

Parameters

procid All clients must be enumerated by the application. This will become the process
id of the local client inside its VT_COMM_WORLD. If the VTserver is used, then
enumeration must start at 1 because VTserver always gets rank 0. Threads can
be enumerated automatically by Intel® Trace Collector or by the client by calling
VT_registerthread().

clientname The name of the client. Currently only used for error messages. Copied by Intel®
Trace Collector.

Return values

contact Will be set to a string which tells other processes how to contact this process.
Guaranteed not to contain spaces. The client may copy this string, but doesn't
have to, because Intel® Trace Collector will not free this string until
VT_finalize() is called.

Returns error code

VT_serverinit
int VT_serverinit(const char * servername, int numcontacts, const char *
contacts[], const char ** contact)

Description

Initializes one process as the server that contacts the other processes and coordinates trace file
writing.

The calling process always gets rank 0.

There are two possibilities:

1. Collect all information from the clients and pass them here (numcontacts >= 0, contacts
!= NULL)

Intel® Trace Collector Reference

78

2. Start the server first, pass its contact string to the clients (numcontacts >= 0, contacts ==
NULL)

This call replaces starting the VTserver executable in a separate process. Parameters that used to
be passed to the VTserver to control tracing and trace writing can be passed to VT_initialize()
instead.

Parameters

servername similar to clientname in VT_clientinit(): the name of the server. Currently
only used for error messages. Copied by Intel® Trace Collector.

numcontacts number of client processes

contacts contact string for each client process (order is irrelevant); copied by Intel® Trace
Collector

Return values

contact will be set to a string which tells spawned children how to contact this server.
Guaranteed not to contain spaces. The server may copy this string, but doesn't
have to, because Intel® Trace Collector will not free this string until
VT_finalize() is called. contact must have been set to NULL before calling
this function.

Returns error code

VT_attach
int VT_attach(int root, int comm, int numchildren, int * childcomm)

Description

Connect to several new processes.

These processes must have been spawned already and need to know the contact string of the root
process when calling VT_clientinit().
comm == VT_COMM_WORLD is currently not implemented. It has some design problems: if several
children want to use VT_COMM_WORLD to recursively spawn more processes, then their parents must
also call VT_attach(), because they are part of this communicator. If the VTserver is part of the
initial VT_COMM_WORLD, then VT_attach() with VT_COMM_WORLD won't work, because the VTserver
does not know about the spawned processes and never calls VT_attach().

Parameters

root rank of the process that the spawned processes will contact

comm either VT_COMM_SELF or VT_COMM_WORLD: in the first case root must be 0 and
the spawned processes are connected to just the calling process. In the latter
case all processes that share this VT_COMM_WORLD must call VT_attach() and
are included in the new communicator. root then indicates whose contact infos
were given to the children.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

79

numchildren number of children that the spawning processes will wait for

Return values

childcomm an identifier for a new communicator that includes the parent processes in the
same order as in their VT_COMM_WORLD, followed by the child processes in the
order specified by their procid argument in VT_clientinit(). The spawned
processes will have access to this communicator through VT_get_parent().

Returns error code

VT_get_parent
int VT_get_parent (int * parentcomm)

Description

Returns the communicator that connects the process with its parent, or VT_COMM_INVALID if not
spawned.

Return values

parentcomm set to the communicator number that can be used to log communication with
parents

Returns error code

C++ API

C++ API
These are wrappers around the C API calls which simplify instrumentation of C++ source code and
ensure correct tracing if exceptions are used. Because all the member functions are provided as
inline functions it is sufficient to include VT.h to use these classes with every C++ compiler.
Here are some examples how the C++ API can be used. nohandles() uses the simpler interface
without storing handles, while handles() saves these handles in static instances of the definition
classes for later reuse when the function is called again:

void nohandles()

{

 VT_Function func("nohandles", "C++ API", __FILE__, __LINE__);

}

void handles()

{

 static VT_SclDef scldef(__FILE__, __LINE__);

 // VT_SCL_DEF_CXX(scldef) could be used instead

Intel® Trace Collector Reference

80

 static VT_FuncDef funcdef("handles", "C++ API");

 VT_Function func(funcdef, scldef);

}

int main(int argc, char **argv)

{

 VT_Region region("call nohandles()", "main");

 nohandles();

 region.end();

 handles();

 handles();

 return 0;

}

VT_FuncDef Class Reference

Description

Defines a function on request and then remembers the handle.

Can be used to avoid the overhead of defining the function several times in VT_Function.

Constructor & Destructor Documentation
VT_FuncDef (const char *symname, const char *classname)

Member Function Documentation

int m_handle
Stores the function handle, 0 if not defined yet.

const char *m_symname
Stores the symbol name.

const char *m_classname
Stores the class name.

int GetHandle()
Checks whether the function is already defined or not.

Returns handle as soon as it is available, otherwise 0. Defining the function may be impossible for
example, because Intel® Trace Collector was not initialized or ran out of memory.

81

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

VT_SclDef Class Reference

Description

Defines a source code location on request and then remembers the handle.

Can be used to avoid the overhead of defining the location several times in VT_Function. Best used
together with the define VT_SCL_DEF_CXX().

Constructor & Destructor Documentation
VT_SclDef(const char *file, int line)

Member Function Documentation

int m_handle
Stores the SCL handle, 0 if not defined yet.

const char *m_file
Stores the file name.

int m_line
Stores the line number.

int GetHandle()
Checks whether the SCL is already defined or not.

Returns handle as soon as it is available, else 0. Defining the function may be impossible for example,
because Intel® Trace Collector was not initialized or ran out of memory.

#define VT_SCL_DEF_CXX(_sclvar) static VT_SclDef _sclvar(__FILE__, __LINE__)
This preprocessor macro creates a static source code location definition for the current file and line
in C++.

VT_Function Class Reference

Description

In C++ an instance of this class should be created at the beginning of a function.

The constructor will then log the function entry, and the destructor the function exit.

Providing a source code location for the function exit manually is not supported, because this source
code location would have to define where the function returns to. This cannot be determined at
compile time.

Constructor & Destructor Documentation

VT_Function(const char *symname, const char *classname)
Defines the function with VT_classdef() and VT_funcdef(), then enters it.

Intel® Trace Collector Reference

82

This is less efficient than defining the function once and then reusing the handle. Silently ignores
errors, like uninitialized Intel® Trace Collector.

Parameters:

symname name of the function

classname the class this function belongs to

VT_Function(const char *symname, const char *classname, const char *file, int line)
The same as the previous constructor, but also stores information about where the function is
located in the source code.

Parameters:

symname name of the function

classname the class this function belongs to

file name of source file, may but does not have to include path

line line in this file where function starts

VT_Function(VT_FuncDef &funcdef)
This is a more efficient version which supports defining the function only once.

Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
function handle

VT_Function (VT_FuncDef &funcdef, VT_SclDef &scldef)
This is a more efficient version which supports defining the function and source code location only
once.

Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
function handle

scldef this is a reference to the (usually static) instance that defines and remembers the
scl handle

~VT_Function()
The destructor marks the function exit.

VT_Region Class Reference

Description

This is similar to VT_Function, but should be used to mark regions within a function.
The difference is that source code locations can be provided for the beginning and end of the region,
and one instance of this class can be used to mark several regions in one function.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

83

Constructor & Destructor Documentation

VT_Region()
Default constructor. Does not start a region.

VT_Region(const char *symname, const char *classname)
Enters the region upon creation.

VT_Region(const char *symname, const char *classname, const char *file, int line)
The same as the previous constructor, but also stores information about where the region is located
in the source code.

VT_Region(VT_FuncDef &funcdef)
This is a more efficient version which supports defining the region only once.

VT_Region(VT_FuncDef &funcdef, VT_SclDef &scldef)
This is a more efficient version which supports defining the region and source code location only
once.

~VT_Region()
The destructor marks the region exit.

Member Function Documentation

void begin(const char *symname, const char *classname)
Defines the region with VT_classdef() and VT_funcdef(), then enters it.
This is less efficient than defining the region once and then reusing the handle. Silently ignores
errors, like for example, uninitialized Intel® Trace Collector.

Parameters:

symname the name of the region

classname the class this region belongs to

void begin(const char *symname, const char *classname, const char *file, int line)
The same as the previous begin(), but also stores information about where the region is located in
the source code.
Parameters:

symname the name of the region

classname the class this region belongs to

file name of source file, may but does not have to include path

line line in this file where region starts

void begin(VT_FuncDef &funcdef)
This is a more efficient version which supports defining the region only once.

Intel® Trace Collector Reference

84

Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
region handle

void begin(VT_FuncDef &funcdef, VT_SclDef &scldef)
This is a more efficient version which supports defining the region and source code location only
once.

Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
region handle

scldef this is a reference to the (usually static) instance that defines and remembers the
scl handle

void end()
Leaves the region.

void end(const char *file, int line)
The same as the previous end(), but also stores information about where the region ends in the
source code.
Parameters:

file name of source file, may but does not have to include path

line line in this file where region starts

void end (VT_SclDef &scldef)
This is a more efficient version which supports defining the source code location only once.

Parameters:

scldef this is a reference to the (usually static) instance that defines and remembers the
scl handle.

Configuration Reference

Configuration Reference
This section provides the information on the Intel® Trace Collector configuration:

• Configuration File Format – information on syntax of a configuration file.

• Protocol File – information on the protocol file listing all configuration settings of a particular
run.

• Configuration Options – description of all configuration options available.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

85

Configuration File Format

General Syntax
The configuration file is a plain ASCII file with the .conf extension containing a number of
configuration options with their values, one option per line. Options are evaluated in the order they
are listed.
Any line starting with the # character is ignored. Within a line, a whitespace separates fields, and
double quotation marks " are used to quote fields containing whitespace. All text is case-insensitive,
except for filenames.

Syntax of Parameters
Apart from having numeric or text values, some configuration options may have one of the values
below. See description of particular options for their values.

Time Value

Time values are usually specified as a pair of one floating point value and one character that
represents the unit: c for microseconds, l for milliseconds, s for seconds, m for minutes, h for hours,
d for days and w for weeks. These elementary times are added with a plus sign. For instance, the
string 1m+30s refers to one minute and 30 seconds of execution time.

Boolean Value

Boolean values are set to on/true to turn something on and off/false to turn it off. Using only the
option name without the on/off argument is the same as on.

Number of Bytes

The amount of bytes can be specified with optional suffices B/KB/MB/GB, which multiply the amount
in front of them by 1, 1024, 10242, 10243, respectively. If no suffix is given the number specifies
bytes.

Example
Below is an example of a valid configuration file.

This line will be ignored

LOGFILE-NAME trace.stf

CURRENT-DIR "My Directory/tracing"
MEM-MAXBLOCKS 8KB
OS-COUNTER-DELAY 2s
KEEP-RAW-EVENTS ON

Intel® Trace Collector Reference

86

Protocol File
The protocol file lists all options with their values used when the program was started and can be
used to restart an application with exactly the same options.

The protocol file is generated along with the tracefile, has the same basename and the .prot
extension. It has the same syntax and entries as a Intel® Trace Collector configuration file.
All options are listed, even if they were not present in the original configuration. This way you can
find about for example, the default value of SYNCED-HOST/CLUSTER on your machine. Comments
tell where the value came from (default, modified by user, default value set explicitly by the user).
Besides the configuration entries, the protocol file contains some entries that are only informative.
They are all introduced by the keyword INFO. The following information entries are supported:

INFO NUMPROCS
Syntax: <num>
Description: Number of processes in MPI_COMM_WORLD.

INFO CLUSTERDEF
Syntax: <name> [<rank>:<pid>]+
Description: For clustered systems, the processes with Unix process ID <pid> and rank in
MPI_COMM_WORLD <rank> are running on the cluster node <name>. There will be one line per
cluster node.

INFO PROCESS
Syntax: <rank> "<hostname>" "<IP>" <pid>
Description: For each process identified by its MPI <rank>, the <hostname> as returned by
gethostname(), the <pid> from getpid() and all <IP> addresses that <hostname> translates
into with gethostbyname() are given. IP addresses are converted to string with ntoa() and
separated with commas. Both hostname and IP string might be empty, if the information was not
available.

INFO BINMODE
Syntax: <mode>
Description: Records the floating-point and integer-length execution mode used by the application.

There may be other INFO entries that represent statistical data about the program run. Their syntax
is explained in the file itself.

Configuration Options

Configuration Options
This topic gives information on the options that you can use to configure Intel® Trace Collector. For
instructions on how to set these options, see Configuring Intel® Trace Collector.

• ACTIVITY

• ALTSTACK

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

87

• AUTOFLUSH

• CHECK

• CHECK-LEAK-REPORT-SIZE

• CHECK-MAX-DATATYPES

• CHECK-MAX-ERRORS

• CHECK-MAX-PENDING

• CHECK-MAX-REPORTS

• CHECK-MAX-REQUESTS

• CHECK-SUPPRESSION-LIMIT

• CHECK-TIMEOUT

• CHECK-TRACING

• CLUSTER

• COMPRESS-RAW-DATA

• COUNTER

• CURRENT-DIR

• DEADLOCK-TIMEOUT

• DEADLOCK-WARNING

• DEMANGLE

• DETAILED-STATES

• ENTER-USERCODE

• ENVIRONMENT

• EXTENDED-VTF

• FLUSH-PID

• FLUSH-PREFIX

• GROUP

• HANDLE-SIGNALS

• INTERNAL-MPI

• ITFLOGFILE

• KEEP-RAW-EVENTS

• LOGFILE-FORMAT

• LOGFILE-NAME

• LOGFILE-PREFIX

• LOGFILE-RANK

• MEM-BLOCKSIZE

Intel® Trace Collector Reference

88

• MEM-FLUSHBLOCKS

• MEM-INFO

• MEM-MAXBLOCKS

• MEM-MINBLOCKS

• MEM-OVERWRITE

• NMCMD

• OS-COUNTER-DELAY

• PCTRACE

• PCTRACE-CACHE

• PCTRACE-FAST

• PLUGIN

• PROCESS

• PROGNAME

• PROTOFILE-NAME

• STATE

• STATISTICS

• STF-PROCS-PER-FILE

• STF-USE-HW-STRUCTURE

• STOPFILE-NAME

• SYMBOL

• SYNC-MAX-DURATION

• SYNC-MAX-MESSAGES

• SYNC-PERIOD

• SYNCED-CLUSTER

• SYNCED-HOST

• TIME-WINDOWS

• TIMER

• TIMER-SKIP

• UNIFY-COUNTERS

• UNIFY-GROUPS

• UNIFY-SCLS

• UNIFY-SYMBOLS

• VERBOSE

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

89

ACTIVITY

Syntax
ACTIVITY <pattern> <filter body>

Variable
VT_ACTIVITY

Default
on

Description

A shortcut for STATE "<pattern>:*".

ALTSTACK

Syntax
ALTSTACK [on|off]

Variable
VT_ALTSTACK

Description
Handling segfaults due to a stack overflow requires that the signal handler runs on an alternative
stack, otherwise it will just segfault again, causing the process to terminate.

Because installing an alternative signal handler affects application behavior, it is normally not done.
If it is known to work, it is enabled only for MPI correctness checking.

AUTOFLUSH

Syntax
AUTOFLUSH [on|off]

Variable
VT_AUTOFLUSH

Default
on

Intel® Trace Collector Reference

90

Description

If enabled (which it is by default), Intel Trace Collector appends blocks that are currently in main
memory to one flush file per process. During trace file generation this data is taken from the flush
file, so no data is lost. The number of blocks remaining in memory can be controlled with MEM-
MINBLOCKS.

CHECK

Syntax
CHECK <pattern><on|off>

Variable
VT_CHECK

Default
on

Description

Enables or disables error checks matching the pattern.

CHECK-LEAK-REPORT-SIZE

Syntax
CHECK-LEAK-REPORT-SIZE <number>

Variable
VT_CHECK_LEAK_REPORT_SIZE

Default
10

Description
Determines the number of call locations to include in a summary of leaked requests or data types. By
default only the top ten of the calls which have no matching free call are printed.

CHECK-MAX-DATATYPES

Syntax
CHECK-MAX-DATATYPES <number>

91

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

Variable
VT_CHECK_MAX_DATATYPES

Default
1000

Description

Each time the total number of currently defined data types exceeds a multiple of this threshold, a
LOCAL:DATATYPE:NOT_FREED warning is printed with a summary of the calls where those requests
were created.

Set this to 0 to disable the warning.

CHECK-MAX-ERRORS

Syntax
CHECK-MAX-ERRORS <number>

Variable
VT_CHECK_MAX_ERRORS

Default
1

Description

Number of errors that has to be reached by a process before aborting the application. 0 disables the
limit. Some errors are fatal and always cause an abort. Errors are counted per-process to avoid the
need for communication among processes, as that has several drawbacks which outweigh the
advantage of a global counter.
Do not ignore errors, because they change the behavior of the application, thus the default value
stops immediately when the first such error is found.

CHECK-MAX-PENDING

Syntax
CHECK-MAX-PENDING <number>

Variable
VT_CHECK_MAX_PENDING

Default
20

Intel® Trace Collector Reference

92

Description

Upper limit of pending messages that are reported per GLOBAL:MSG:PENDING error.

CHECK-MAX-REPORTS

Syntax
CHECK-MAX-REPORTS <number>

Variable
VT_CHECK_MAX_REPORTS

Default
0

Description

Number of reports (regardless whether they contain warnings or errors) that has to be reached by a
process before aborting the application. 0 disables the limit. Just as with CHECK-MAX-ERRORS, this is
a per-process counter.
It is disabled by default because the CHECK-SUPPRESSION-LIMIT setting already ensures that each
type of error or warning is only reported a limited number of times. Setting CHECK-MAX-REPORTS
would help to automatically shut down the application, if that is desired.

CHECK-MAX-REQUESTS

Syntax
CHECK-MAX-REQUESTS <number>

Variable
VT_CHECK_MAX_REQUESTS

Default
100

Description

Each time the total number of active requests or inactive persistent requests exceeds a multiple of
this threshold, a LOCAL:REQUEST:NOT_FREED warning is printed with a summary of the calls where
those requests were created.
Set this to 0 to disable just the warning at runtime without also disabling the warnings at the end of
the application run. Disable the LOCAL:REQUEST:NOT_FREED check to suppress all warnings.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

93

CHECK-SUPPRESSION-LIMIT

Syntax
CHECK-SUPPRESSION-LIMIT <number>

Variable
VT_CHECK_SUPPRESSION_LIMIT

Default
10

Description

Maximum number of times a specific error or warning is reported before suppressing further reports
about it. The application continues to run and other problems are still reported. Just as with CHECK-
MAX-ERRORS these are a per-process counters.

Note
This only counts per error check and does not distinguish between different incarnations of the error
in different parts of the application.

CHECK-TIMEOUT

Syntax
CHECK-TIMEOUT <time>

Variable
VT_CHECK_TIMEOUT

Default
5s

Description
After stopping one process because it cannot or is not allowed to continue, the other processes are
allowed to continue for this amount of time to see whether they run into other errors.

CHECK-TRACING

Syntax
CHECK-TRACING [on|off]

Intel® Trace Collector Reference

94

Variable
VT_CHECK_TRACING

Default
off

Description

By default, no events are recorded and no trace file is written during correctness checking with
libVTmc. This option enables recording of all events also supported by the normal libVT and the
writing of a trace file. The trace file also contains the errors found during the run.
In the normal libraries tracing is always enabled.

CLUSTER

Syntax
CLUSTER <triplets> [on|off|no|discard]

Variable
VT_CLUSTER

Description

Same as PROCESS, but filters are based on the host number of each process. Hosts are distinguished
by their name as returned by MPI_Get_processor_name() and enumerated according to the
lowest rank of the MPI processes running on them.

COMPRESS-RAW-DATA

Syntax
COMPRESS-RAW-DATA [on|off]

Variable
VT_COMPRESS_RAW_DATA

Default

on in Intel Trace Collector

Description

The Intel Trace Collector can store raw data in compressed format. The compression runs in the
background and does not impact the merge process. By using COMPRESS-RAW-DATA option, you can
save space in underlying file system and time in transfer over networks.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

95

COUNTER

Syntax
COUNTER <pattern> [on|off]

Variable
VT_COUNTER

Description
Enables or disables a counter whose name matches the pattern. By default, all counters defined
manually are enabled, whereas counters defined and sampled automatically by the Intel Trace
Collector are disabled. Those automatic counters are not supported for every platform.

CURRENT-DIR

Syntax
CURRENT-DIR <directory name>

Variable
VT_CURRENT_DIR

Description
The Intel Trace Collector uses the current working directory of the process that reads the
configuration on all processes to resolve relative path names. You can override the current working
directory with this option.

DEADLOCK-TIMEOUT

Syntax
DEADLOCK-TIMEOUT <delay>

Variable
VT_DEADLOCK_TIMEOUT

Default
1 minute

Description
If Intel Trace Collector observes no progress for this amount of time in any process, then it assumes
that a deadlock has occurred, stops the application and writes a trace file.

As usual, the value may also be specified with units, 1m for one minute, for example.

Intel® Trace Collector Reference

96

DEADLOCK-WARNING

Syntax
DEADLOCK-WARNING <delay>

Variable
VT_DEADLOCK_WARNING

Default
5 minutes

Description

If on average the MPI processes are stuck in their last MPI call for more than this threshold, then a
GLOBAL:DEADLOCK:NO_PROGRESS warning is generated. This is a sign of a load imbalance or a
deadlock which cannot be detected because at least one process polls for progress instead of
blocking inside an MPI call.

As usual, the value may also be specified with units, 1m for one minute, for example.

DEMANGLE

Syntax
DEMANGLE [on|off]

Variable
VT_DEMANGLE

Default
off

Description
Intel® Trace Collector automatically demangles mangled names if this switch is enabled. Name
demangling is used in compiler driven instrumentation and in correctness checking reports. Intel®
Trace Collector uses __cxa_demangle from the C++ ABI or UnDecorateSymbolName on
Windows* OS. On Linux* OS demangling C++ names only works with the naming scheme used by
GCC 3.x and newer compilers.

Note
Some versions of Libstdc++ provide __cxa_demangle that does not work properly in all cases.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

97

DETAILED-STATES

Syntax
DETAILED-STATES [on|off|<level>]

Variable
VT_DETAILED_STATES

Default
off

Description

Enables or disables logging of more information in calls to VT_enterstate(). That function might
be used by certain MPI implementations, runtime systems or applications to log internal states. If
that is the case, it will be mentioned in the documentation of those components.
<level> is a positive number, with larger numbers enabling more details:

1. 0 (= off) suppresses all additional states
2. 1 (= on) enables one level of additional states
3. 2, 3, ... enables even more details

ENTER-USERCODE

Syntax
ENTER-USERCODE [on|off]

Variable
VT_ENTER_USERCODE

Default

on in most cases, off for Java* function tracing

Description

Usually the Intel Trace Collector enters the Application:User_Code state automatically when
registering a new thread. This makes little sense when function profiling is enabled, because then the
user can choose whether he wants the main() function or the entry function of a child thread to be
logged or not. Therefore it is always turned off for Java* function tracing. In all other cases it can be
turned off manually with this configuration option.
However, without automatically entering this state and without instrumenting functions threads
might be outside of any state and thus not visible in the trace although they exist. This may or may
not be intended.

Intel® Trace Collector Reference

98

ENVIRONMENT

Syntax

ENVIRONMENT [on|off]

Variable
VT_ENVIRONMENT

Default
on

Description

Enables or disables logging of attributes of the runtime environment.

EXTENDED-VTF

Syntax
EXTENDED-VTF

Variable
VT_EXTENDED_VTF

Default

off in Intel Trace Collector, on in stftool.

Description
Several events can only be stored in STF, but not in VTF. The Intel Trace Collector libraries default to
writing valid VTF trace files and thus skip these events. This option enables writing of non-standard
VTF records in ASCII mode that Intel Trace Analyzer would complain about. In the stftool the default
is to write these extended records, because the output is more likely to be parsed by scripts rather
than by Intel Trace Analyzer.

FLUSH-PID

Syntax
FLUSH-PID [on|off]

Variable
VT_FLUSH_PID

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

99

Default
on

Description

The -<pid> part in the flush file name is optional and can be disabled with FLUSH-PID off.

FLUSH-PREFIX

Syntax
FLUSH-PREFIX <directory name>

Variable
VT_FLUSH_PREFIX

Default

Content of environment variables or /tmp

Description
Specifies the directory of the flush file. It can be an absolute or relative pathname; in the latter case,
it is interpreted relative to the current working directory of the process writing it.

On Unix* systems, the flush file of each process is created and immediately removed while the
processes keep their file open. This has two effects:

1. if processes get killed prematurely, flush files do not clutter the file system

2. during flushing, the remaining space on the file systems gets less although the file which
grows is not visible anymore

The file name is VT-flush-<program name>_<rank>-<pid>.dat, with <rank> being the rank of
the process in MPI_COMM_WORLD and <pid> the Unix process id.
A good default directory is searched for among the candidates listed below in this order:

1. first folder with more than 512MB

2. failing that, folder with most available space

Candidates (in this order) are the directories referred to with these environment variables and hard-
coded directory names:

1. BIGTEMP
2. FASTTEMP
3. TMPDIR
4. TMP
5. TMPVAR
6. /work
7. /scratch
8. /tmp

Intel® Trace Collector Reference

100

GROUP

Syntax
GROUP <name> <name>|<triplet>[, ...]

Variable
VT_GROUP

Description

This option defines a new group. The members of the group can be other groups or processes
enumerated with triplets. Groups are identified by their name. It is possible to refer to automatically
generated groups (Example: those for the nodes in the machine), however, groups generated with
API functions have to be defined on the process which reads the config to be usable in config
groups.

Example

GROUP odd 1:N:2

GROUP even 0:N:2

GROUP "odd even" odd,even

HANDLE-SIGNALS

Syntax
HANDLE-SIGNALS <triplets of signal numbers>

Variable
VT_HANDLE_SIGNALS

Default

none in libVTcs, all in other fail-safe libs

Description

This option controls whether the Intel Trace Collector replaces a signal handler previously set by the
application or runtime system with its own handler. libVTcs by default does not override handlers,
while the fail-safe MPI tracing libraries do: otherwise they would not be able to log the reason for an
abort by MPI.
Using the standard triplet notation, you can both list individual signals (Example: 3) as well as a
whole range of signals (3,10:100).

101

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

INTERNAL-MPI

Syntax
INTERNAL-MPI [on|off]

Variable
VT_INTERNAL_MPI

Default
on

Description
Allows tracing of events inside the MPI implementation. This is enabled by default, but even then it
still requires an MPI implementation which actually records events. The Intel Trace Collector
documentation describes in more detail how an MPI implementation might do that.

KEEP-RAW-EVENTS

Syntax
KEEP-RAW-EVENTS [on|off]

Variable
VT_KEEP_RAW_EVENTS

Default

off in Intel Trace Collector

Description
The Intel Trace Collector can merge the final trace from the collected data at the MPI finalization
stage. Sometimes it may take much time, especially for large amount of MPI processes and for
applications rich of MPI events. This option forces the Intel Trace Collector to store the raw data
obtained in each process into the disk without the merge. Then, you can use the merge function
offline.

LOGFILE-FORMAT

Syntax
LOGFILE-FORMAT [ASCII|STF|STFSINGLE|SINGLESTF]

Variable
VT_LOGFILE_FORMAT

Intel® Trace Collector Reference

102

Default
STF

Description

Specifies the format of the tracefile. ASCII is the traditional Vampir file format where all trace data is
written into one file. It is human-readable.

The Structured Trace File (STF) is a binary format which supports storage of trace data in several files
and allows Intel Trace Analyzer to analyze the data without loading all of it, so it is more scalable.
Writing it is only supported by the Intel Trace Collector at the moment.

One trace in STF format consists of several different files which are referenced by one index file
(.stf). The advantage is that different processes can write their data in parallel (see STF-PROCS-
PER-FILE, STF-USE-HW-STRUCTURE). SINGLESTF rolls all of these files into one (.single.stf),
which can be read without unpacking them again. However, this format does not support distributed
writing, so for large program runs with many processes the generic STF format is better.

LOGFILE-NAME

Syntax
LOGFILE-NAME <file name>

Variable
VT_LOGFILE_NAME

Description
Specifies the name for the tracefile containing all the trace data. Can be an absolute or relative
pathname; in the latter case, it is interpreted relative to the log prefix (if set) or the current working
directory of the process writing it.

If unspecified, then the name is the name of the program plus .avt for ASCII, .stf for STF and
.single.stf for single STF tracefiles. If one of these suffices is used, then they also determine the
logfile format, unless the format is specified explicitly.
In the stftool the name has to be specified explicitly, either by using this option or as argument of the
--convert or --move switch.

LOGFILE-PREFIX

Syntax
LOGFILE-PREFIX <directory name>

Variable
VT_LOGFILE_PREFIX

103

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

Description

Specifies the directory of the trace or log file. It can be an absolute or relative pathname; in the latter
case, it is interpreted relative to the current working directory of the process writing it.

LOGFILE-RANK

Syntax
LOGFILE-RANK <rank>

Variable
VT_LOGFILE_RANK

Default
0

Description

Determines which process creates and writes the tracefile in MPI_Finalize(). Default value is the
process reading the configuration file, or the process with rank 0 in MPI_COMM_WORLD.

MEM-BLOCKSIZE

Syntax
MEM-BLOCKSIZE <number of bytes>

Variable
VT_MEM_BLOCKSIZE

Default
64KB

Description

Intel Trace Collector keeps trace data in chunks of main memory that have this size.

MEM-FLUSHBLOCKS

Syntax
MEM-FLUSHBLOCKS <number of blocks>

Variable
VT_MEM_FLUSHBLOCKS

Intel® Trace Collector Reference

104

Default
1024

Description

This option controls when a background thread flushes trace data into the flush file without blocking
the application. It has no effect if AUTOFLUSH is disabled. Setting this option to a negative value also
disables the background flushing.
Flushing is started whenever the number of blocks in memory exceeds this threshold or when a
thread needs a new block, but cannot get it without flushing.

If the number of blocks also exceeds MEM-MAXBLOCKS, then the application is stopped until the
background thread has flushed enough data.

MEM-INFO

Syntax
MEM-INFO <threshold in bytes>

Variable
VT_MEM_INFO

Default
500MB

Description
If larger than zero, Intel Trace Collector prints a message to stderr each time more than this amount
of new data has been recorded. These messages tell how much data was stored in RAM and in the
flush file, and can serve as a warning when too much data is recorded.

MEM-MAXBLOCKS

Syntax
MEM-MAXBLOCKS <maximum number of blocks>

Variable
VT_MEM_MAXBLOCKS

Default
4096

Description
Intel Trace Collector does not allocate more than this number of blocks in main memory. If the
maximum number of blocks is filled or allocating new blocks fails, Intel Trace Collector either flushes

105

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

some of them onto disk (AUTOFLUSH), or overwrites the oldest blocks (MEM-OVERWRITE) or stops
recording further trace data.

MEM-MINBLOCKS

Syntax
MEM-MINBLOCKS <minimum number of blocks after flush>

Variable
VT_MEM_MINBLOCKS

Default
0

Description
When Intel Trace Collector starts to flush some blocks automatically, it can flush all of them (the
default) or keep some in memory. The latter may be useful to avoid long delays or unnecessary disk
activity.

MEM-OVERWRITE

Syntax
MEM-OVERWRITE [on|off]

Variable
VT_MEM_OVERWRITE

Default
off

Description
If auto flushing is disabled, enabling this option lets Intel Trace Collector overwrite the oldest blocks
of trace data with more recent data.

NMCMD

Syntax
NMCMD <command + args> "nm -P"

Intel® Trace Collector Reference

106

Variable
VT_NMCMD

Description

If function tracing with GCC 2.95.2+'s -finstrument-functions is used, Intel Trace Collector is
called at function entry/exit. Before logging these events, it has to map from the function's address in
the executable to its name.
This is done with the help of an external program, usually nm. If it is not appropriate on your system,
you can override the default. The executable's filename (including the path) is appended at the end
of the command, and the command is expected to print the result to stdout in the format defined for
POSIX.2 nm.

OS-COUNTER-DELAY

Syntax
OS-COUNTER-DELAY <delay>

Variable
VT_OS_COUNTER_DELAY

Default
1 second

Description

If OS counters have been enabled with the COUNTER configuration option, then these counters are
sampled every <delay> seconds. As usual, the value may also be specified with units, 1m for one
minute, for example.

PCTRACE

Syntax
PCTRACE [on|off|<trace levels>|<skip levels>:<trace levels>]

Variable
VT_PCTRACE

Default

off for performance analysis, on otherwise

Description
Some platforms support the automatic stack sampling for MPI calls and user-defined events. Intel
Trace Collector then remembers the Program Counter (PC) values on the call stack and translates

107

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

them to source code locations based on debug information in the executable. It can sample a certain
number of levels (<trace levels>) and skip the initial levels (<skip levels>). Both values can
be in the range of 0 to 15.
Skipping levels is useful when a function is called from within another library and the source code
locations within this library shall be ignored. ON is equivalent to 0:1 (no skip levels, one trace level).
The value specified with PCTRACE applies to all symbols that are not matched by any filter rule or
where the relevant filter rule sets the logging state to ON. In other words, an explicit logging state in a
filter rule overrides the value given with PCTRACE.

PCTRACE-CACHE

Syntax
PCTRACE-CACHE [on|off]

Variable
VT_PCTRACE_CACHE

Default
on

Description

When the reliable stack unwinding through libunwind is used, caching the previous stack back
trace can reduce the number of times libunwind has to be called later on. When unwinding only a
few levels this caching can negatively affect performance, therefore it can be turned off with this
option.

PCTRACE-FAST

Syntax
PCTRACE-FAST [on|off]

Variable
VT_PCTRACE_FAST

Default

on for performance tracing, off for correctness checking

Description

Controls whether the fast, but less reliable stack unwinding is used or the slower, but less error-
prone unwinding through libunwind. The fast unwinding relies on frame pointers, therefore all
code must be compiled accordingly for it to work correctly.

Intel® Trace Collector Reference

108

PLUGIN

Syntax
PLUGIN <plugin name>

Variable
VT_PLUGIN

Description
If this option is used, the Intel Trace Collector activates the given plugin after initialization. The
plugin takes over responsibility for all function wrappers and normal tracing is disabled. Most of the
normal configuration options have no effect. Refer to the documentation of the plugin that you want
to use for further information.

PROCESS

Syntax
PROCESS <triplets> [on|off|no|discard]

Variable
VT_PROCESS

Default
0:N on

Description

Specifies for which processes tracing is to be enabled. This option accepts a comma separated list of
triplets, each of the form <start>:<stop>:<incr> specifying the minimum and maximum rank
and the increment to determine a set of processes (similar to the Fortran 90 notation). Ranks are
interpreted relative to MPI_COMM_WORLD, which means that they start with 0. The letter N can be
used as maximum rank and is replaced by the current number of processes. For example, to enable
tracing only on odd process ranks, specify PROCESS 0:N OFF and PROCESS 1:N:2 ON.
A process that is turned off can later turn logging on by calling VT_traceon() (and vice versa).
Using no disables Intel Trace Collector for a process completely to reduce the overhead even further,
but also so that even VT_traceon() cannot enable tracing.
discard is the same as no, so data is collected and trace statistics is calculated, but the collected
data is not actually written into the trace file. This mode is useful if looking at the statistics is
sufficient: in this case there is no need to write the trace data.

PROGNAME

Syntax
PROGNAME <file name>

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

109

Variable
VT_PROGNAME

Description

This option can be used to provide a fallback for the executable name in case the Intel Trace
Collector is unable to determine this name from the program arguments. It is also the base name for
the trace file.

In Fortran, it may be technically impossible to determine the name of the executable automatically
and the Intel Trace Collector may need to read the executable to find source code information (see

PCTRACE config option). If the file name is unknown and not specified explicitly, UNKNOWN is used.

PROTOFILE-NAME

Syntax
PROTOFILE-NAME <file name>

Variable
VT_PROTOFILE_NAME

Description
Specifies the name for the protocol file containing the config options and (optionally) summary
statistics for a program run. It can be an absolute or relative pathname; in the latter case, it is
interpreted relative to the current working directory of the process writing it.

If unspecified, the name is the name of the tracefile with the suffix .prot.

STATISTICS

Syntax
STATISTICS [on|off|<hash_size>]

Variable
VT_STATISTICS

Default
off

Description

Enables or disables statistics about messages and symbols. These statistics are gathered by the Intel
Trace Collector independently from logging them and stored in the tracefile. Apart from on and off,
it allows specifying the hash size used on each collecting thread. For extensively instrumented codes
or for codes with a volatile communication pattern, this might be useful to control its performance.

Intel® Trace Collector Reference

110

STATE

Syntax
STATE <pattern> <filter body>

Variable
VT_STATE

Default
on

Description

Defines a filter for any state or function that matches the pattern. Patterns are extended shell
patterns: they may contain the wildcard characters *, **, ? and [] to match any number of
characters but not the colon, any number of characters including the colon, exactly one character or
a list of specific characters. Pattern matching is case insensitive.
The state or function name that the pattern is applied to consists of a class name and the symbol
name, separated by a : (colon). Deeper class hierarchies as in Java* or C++ may have several class
names, also separated by a colon. The colon is special and not matched by the * or ? wildcard. To
match it use **. The body of the filter may specify the logging state with the same options as
PCTRACE. On some platforms further options are supported, as described below.
Valid patterns are:

• MPI:* (all MPI functions)
• *:*send* (any function that contains "send" inside any class)
• **:*send* (any function that contains "send", even if the class actually consists of multiple

levels; same as **send*)
• MPI:*send* (only send functions in MPI)

STF-PROCS-PER-FILE

Syntax
STF-PROCS-PER-FILE <number of processes>

Variable
VT_STF_PROCS_PER_FILE

Default
16

111

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

Description

In addition to or instead of combining trace data per node, the number of processes per file can be
limited. This helps to restrict the amount of data that has to be loaded when analyzing a sub-set of
the processes.

If STF-USE-HW-STRUCTURE is enabled, then STF-PROCS-PER-FILE has no effect unless it is set to
a value smaller than the number of processes running on a node. To get files that contain exactly the
data of <n> processes, set STF-USE-HW-STRUCTURE to OFF and STF-PROCS-PER-FILE to <n>.
In a single-process multi-threaded application trace, this configuration option is used to determine
the number of threads per file.

STF-USE-HW-STRUCTURE

Syntax
STF-USE-HW-STRUCTURE [on|off]

Variable
VT_STF_USE_HW_STRUCTURE

Default

usually on

Description
If the STF format is used, trace information can be stored in different files. If this option is enabled,
trace data of processes running on the same node are combined in one file for that node. This is
enabled by default on most machines, because it both reduces inter-node communication during
trace file generation and resembles the access pattern during analysis.Iif each process is running on
its own node, it is not enabled .

This option can be combined with STF-PROCS-PER-FILE to reduce the number of processes
whose data is written into the same file even further.

STOPFILE-NAME

Syntax
STOPFILE-NAME <file name>

Variable
VT_STOPFILE_NAME

Description
Specifies the name of a file which indicates that the Intel Trace Collector should stop the application
prematurely and write a tracefile. This works only with the fail-safe Intel Trace Collector libraries. On

Intel® Trace Collector Reference

112

Linux* systems the same behavior can be achieved by sending the signal SIGINT to one of the
application processes, but this is not possible on Microsoft* Windows* OS.
If specified, the Intel Trace Collector checks for the existence of such a file from time to time. If
detected, the stop file is removed again and the shutdown is initiated.

SYMBOL

Syntax
SYMBOL <pattern> <filter body>

Variable
VT_SYMBOL

Default
on

Description

A shortcut for STATE "**:<pattern>".

SYNC-MAX-DURATION
Syntax:

SYNC-MAX-DURATION <duration>

Variable
VT_SYNC_MAX_DURATION

Default
1 minute

Description
Intel Trace Collector can use either a barrier at the beginning and the end of the program run to take
synchronized time stamps on processes or it can use a more advanced algorithm based on statistical
analysis of message round-trip times.

This option enables this algorithm by setting the maximum number of seconds that Intel Trace
Collector exchanges messages among processes. A value less than or equal to zero disables the
statistical algorithm.

The default duration is much longer than actually needed, because usually the maximum number of
messages (set through SYNC-MAX-MESSAGES)is reached first. This setting mostly acts as a safe-
guard against excessive synchronization times, at the cost of potentially reducing the quality of clock
synchronization when reaching it and then sending less messages.

113

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

SYNC-MAX-MESSAGES

Syntax
SYNC-MAX-MESSAGES <message number>

Variable
VT_SYNC_MAX_MESSAGES

Default
100

Description

If SYNC-MAX-DURATION is larger than zero and thus statistical analysis of message round-trip times
is done, then this option limits the number of message exchanges.

SYNC-PERIOD

Syntax
SYNC-PERIOD <duration>

Variable
VT_SYNC_PERIOD

Default

-1 seconds = disabled

Description
If clock synchronization through message exchanges is enabled (the default), then Intel Trace
Collector can be told to do message exchanges during the application run automatically. By default,
this is disabled and needs to be enabled by setting this option to a positive time value.

The message exchange is done by a background thread and thus needs a means of communication,
which can execute in parallel to the application's communication, therefore it is not supported by the

normal MPI tracing library libVT.

SYNCED-CLUSTER

Syntax
SYNCED-CLUSTER [on|off]

Variable
VT_SYNCED_CLUSTER

Intel® Trace Collector Reference

114

Default
off

Description

Use this setting to override whether Intel Trace Collector treats the clock of all processes anywhere
in the cluster as synchronized or not. Whether Intel Trace Collector makes that assumption depends
on the selected time source.

SYNCED-HOST

Syntax
SYNCED-HOST [on|off]

Variable
VT_SYNCED_HOST

Default
off

Description
Use this setting to override whether Intel Trace Collector treats the clock of all processes one the
same node as synchronized or not. Whether Intel Trace Collector makes that assumption depends
on the selected time source.

If SYNCED-CLUSTER is on, this option is ignored.

TIME-WINDOWS (Experimental)

Syntax
TIME-WINDOWS <time_value1>:<time_value2>[,<time_value1:time_value2>]
See the description of the time format in Time Value.

Variable
VT_TIME_WINDOWS

Description

Use the TIME-WINDOWS option to set up a time frame within which the Intel® Trace Collector will
save the events into the trace file. When TIME-WINDOWS is not set, Intel Trace Collector collects the
whole trace.
To set several time windows, use the necessary number of time frames separated by commas.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

115

Note
In some cases correct order of messages can be lost and you can get a message about reversed
timestamps:

[0] Intel® Trace Collector WARNING: message logging: 168 different
messages, 0 (0.0%) sends without receive, 5 (3.0%) receives without send,
163 (97.0%) messages with reversed time stamps.
To avoid this issue, include the first communication into the first time window. The time of the first
communication depends on the application.

Example

TIME-WINDOWS 0:1,10:20
In this case, Intel Trace Collector will trace the first communication, the events from the beginning to
the first second and the events from the 10th to the 20th second.

TIMER

Syntax
TIMER <timer name or LIST>

Variable
VT_TIMER

Default
gettimeofday

Description
Intel Trace Collector can use different sources for time stamps. The availability of the different timers
may depend on the actual machine configuration.

To get a full list, link an application with the Intel Trace Collector, then run it with this configuration
option set to LIST. By setting the verbosity to 2 or higher, you get output for each node in a cluster.
If initialization of a certain timer fails, no error messages are printed in this mode and the timer is
specified as unavailable. To see error messages, run the program with TIMER set to the name of the
timer that you want to use.

TIMER-SKIP

Syntax
TIMER-SKIP <number> 0

Variable
VT_TIMER_SKIP

Intel® Trace Collector Reference

116

Description

Number of intermediate clock sample points, which are to be skipped when running the timertest
program: they then serve as check that the interpolation makes sense.

UNIFY-COUNTERS

Syntax
UNIFY-COUNTERS [on|off]

Variable
VT_UNIFY_COUNTERS

Default
on

Description

Same as UNIFY-SYMBOLS for counters.

UNIFY-GROUPS

Syntax
UNIFY-GROUPS [on|off]

Variable
VT_UNIFY_GROUPS

Default
on

Description

Same as UNIFY-SYMBOLS for groups.

UNIFY-SCLS

Syntax
UNIFY-SCLS [on|off]

Variable
VT_UNIFY_SCLS

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

117

Default
on

Description

Same as UNIFY-SYMBOLS for SCLs.

UNIFY-SYMBOLS

Syntax
UNIFY-SYMBOLS [on|off]

Variable
VT_UNIFY_SYMBOLS

Default
on

Description
During post-processing Intel Trace Collector unifies the ids assigned to symbols on different
processes. This step is redundant only if all processes define all symbols in exactly the same order
with exactly the same names. As Intel Trace Collector cannot recognize this automatically, the
unification can be disabled by the user to reduce the time required for trace file generation. Before
using this option, make sure that your program really defines symbols consistently.

VERBOSE

Syntax
VERBOSE [on|off|<level>]

Variable
VT_VERBOSE

Default
on

Description
Enables or disables additional output on stderr. <level> is a positive number, with larger numbers
enabling more output:

1. 0 (= off) disables all output
2. 1 (= on) enables only one final message about generating the result
3. 2 enables general progress reports by the main process

4. 3 enables detailed progress reports by the main process

Intel® Trace Collector Reference

118

5. 4 the same, but for all processes (if multiple processes are used at all)

6. Levels larger than 2 may contain output that only makes sense to the developers of the Intel
Trace Collector.

Correctness Checking Errors

Correctness Checking Errors
This topic introduces the errors types that Intel® Trace Collector supports and explains how it
detects them.

• Supported Errors

• How it Works

Supported Errors
Errors fall into two different categories:

• Local errors that need only the information available in the process itself and do not require
additional communication between processes

• Global errors that require information from other processes

Another aspect of errors is whether the application can continue after they occurred. Minor problems
are reported as warnings and allow the application to continue, but they lead to resource leaks or
portability problems. Real errors are invalid operations that can only be skipped to proceed, but this
either changes the application semantic (for example, transmission errors) or leads to follow-up
errors (for example, skipping an invalid send can lead to a deadlock because of the missing
message). Fatal errors cannot be resolved at all and require an application shutdown.

Problems are counted separately per process. Disabled errors are neither reported nor counted,
even if they still happen to be detected. The application will be aborted as soon as a certain number
of errors are encountered: obviously the first fatal error always requires an abort. Once the number
of errors reaches CHECK-MAX-ERRORS or the total number of reports (regardless whether they are
warnings or errors) reaches CHECK-MAX-REPORTS (whatever comes first), the application is aborted.
These limits apply to each process separately. Even if one process gets stopped, the other processes
are allowed to continue to see whether they run into further errors. The whole application is then
aborted after a certain trace period. This timeout can be set through CHECK-TIMEOUT.
The default for CHECK-MAX-ERRORS is 1 so that the first error already aborts, whereas CHECK-MAX-
REPORTS is at 100 and thus that many warnings errors are allowed. Setting both values to 0 removes
the limits. Setting CHECK-MAX-REPORTS to 1 turns the first warning into a reason to abort.
When using an interactive debugger the limits can be set to 0 manually and thus removed, because
the user can decide to abort using the normal debugger facilities for application shutdown. If he
chooses to continue then Intel® Trace Collector will skip over warnings and non-fatal errors and try
to proceed. Fatal errors still force Intel® Trace Collector to abort the application.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

119

See the lists of supported errors (the description provides just a few keywords for each error, a more
detailed description can be found in the following sections).

Local Errors

Error Name Type Description

LOCAL:EXIT:SIGNAL Fatal Process terminated by fatal signal

LOCAL:EXIT:BEFORE_MPI_FINALIZE Fatal Process exits without calling
MPI_Finalize()

LOCAL:MPI:CALL_FAILED Depends
on MPI
and
error

MPI itself or wrapper detects an error

LOCAL:MEMORY:OVERLAP Warning Multiple MPI operations are started
using the same memory

LOCAL:MEMORY:ILLEGAL_MODIFICATION Error Data modified while owned by MPI

LOCAL:MEMORY:INACCESSIBLE Error Buffer given to MPI cannot be read
or written

LOCAL:MEMORY:ILLEGAL_ACCESS Error Read or write access to memory
currently owned by MPI

LOCAL:MEMORY:INITIALIZATION Error Distributed memory checking

LOCAL:REQUEST:ILLEGAL_CALL Error Invalid sequence of calls

LOCAL:REQUEST:NOT_FREED Warning Program creates suspiciously high
number of requests or exits with
pending requests

LOCAL:REQUEST:PREMATURE_FREE Warning An active request has been freed

LOCAL:DATATYPE:NOT_FREED Warning Program creates high number of
data types

LOCAL:BUFFER:INSUFFICIENT_BUFFER Warning Not enough space for buffered send

Global Errors

Error Name Type Description

GLOBAL:MSG/COLLECTIVE:DATATYPE:MISMATCH Error The type signature
does not match

Intel® Trace Collector Reference

120

GLOBAL:MSG/COLLECTIVE:DATA_TRANSMISSION_CORRUPTED Error Data modified
during transmission

GLOBAL:MSG:PENDING Warning Program terminates
with unreceived
messages

GLOBAL:DEADLOCK:HARD Fatal A cycle of
processes waiting
for each other

GLOBAL:DEADLOCK:POTENTIAL Fatala A cycle of
processes, one or
more in blocking
send

GLOBAL:DEADLOCK:NO_PROGRESS Warning Warning when
application might
be stuck

GLOBAL:COLLECTIVE:OPERATION_MISMATCH Error Processes enter
different collective
operations

GLOBAL:COLLECTIVE:SIZE_MISMATCH Error More or less data
than expected

GLOBAL:COLLECTIVE:REDUCTION_OPERATION_MISMATCH Error Reduction
operation
inconsistent

GLOBAL:COLLECTIVE:ROOT_MISMATCH Error Root parameter
inconsistent

GLOBAL:COLLECTIVE:INVALID_PARAMETER Error Invalid parameter
for collective
operation

GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH Warning MPI_Comm_free()
must be called
collectively

a if check is enabled, otherwise it depends on the MPI implementation

How It Works

121

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

How It Works
Understanding how Intel® Trace Collector finds the various supported errors is important because it
helps to understand what the different configuration options mean, what Intel® Trace Collector can
do and what it cannot, and how to interpret the results.

Just as for performance analysis, Intel® Trace Collector intercepts all MPI calls using the MPI profiling
interface. It has different wrappers for each MPI call. In these wrappers it can execute additional
checks not normally done by the MPI implementation itself.

For global checks Intel® Trace Collector uses two different methods for transmitting the additional
information: in collective operations it executes another collective operation before or after the
original operation, using the same communicator[1]. For point-to-point communication it sends one
additional message over a shadow communicator for each message sent by the application.

In addition to exchanging this extra data through MPI itself, Intel® Trace Collector also creates one
background thread per process. These threads are connected to each other through TCP sockets
and thus can communicate with each other even while MPI is being used by the main application
thread.

For distributed memory checking and locking memory that the application should not access, Intel®
Trace Collector interacts with Valgrind* through Valgrind's client request mechanism. Valgrind tracks
definedness of memory (that is, whether it was initialized or not) within a process; Intel® Trace
Collector extends that mechanism to the whole application by transmitting this additional
information between processes using the same methods which also transmit the additional data
type information and restoring the correct Valgrind state at the recipient.

Without Valgrind the LOCAL:MEMORY:ILLEGAL_MODIFICATION check is limited to reporting write
accesses which modified buffers; typically this is detected long after the fact. With Valgrind, memory
which the application hands over to MPI is set to "inaccessible" in Valgrind by Intel® Trace Collector
and accessibility is restored when ownership is transferred back. In between any access by the
application is flagged by Valgrind right at the point where it occurs. Suppressions are used to avoid
reports for the required accesses to the locked memory by the MPI library itself.

See Also

Running with Valgrind*

Parameter Checking
(LOCAL:MPI:CALL_FAILED)

Most parameters are checked by the MPI implementation itself. Intel® Trace Collector ensures that
the MPI does not abort when it finds an error, but rather reports back the error through a function's
result code. Then Intel® Trace Collector looks at the error class and depending on the function where
the error occurred decides whether the error has to be considered as a warning or a real error. As a
general rule, calls which free resources lead to warnings and everything else is an error. The error
report of such a problem includes a stack backtrace (if enabled) and the error message generated by
MPI.

To catch MPI errors this way, Intel® Trace Collector overrides any error handlers installed by the
application. Errors will always be reported, even if the application or test program sets an error
handler to skip over known and/or intentionally bad calls. Because the MPI standard does not
guarantee that errors are detected and that proceeding after a detected error is possible, such

Intel® Trace Collector Reference

122

programs are not portable and should be fixed. Intel® Trace Collector on the other hand knows that
proceeding despite an error is allowed by all supported MPIs and thus none of the parameter errors
is considered a hard error.

Communicator handles are checked right at the start of an MPI wrapper by calling an MPI function
which is expected to check its arguments for correctness. Data type handles are tracked and then
checked by Intel® Trace Collector itself. The extra parameter check is visible when investigating such
an error in a debugger and although perhaps unexpected is perfectly normal. It is done to centralize
the error checking.

Premature Exit
(LOCAL:EXIT)

Intel® Trace Collector monitors the ways how a process can abort prematurely: otherwise fatal
signals are caught in Intel® Trace Collector signal handlers. An atexit() handler detects situations
where the application or some library decides to quit. MPI_Abort() is also intercepted.
This error is presented just like a LOCAL:MPI:CALL_FAILED, with the same options for investigating
the problem in a debugger. However, these are hard errors and the application cannot continue to
run.

Overlapping Memory
(LOCAL:MEMORY:OVERLAP)

Intel® Trace Collector keeps track of memory currently in use by MPI and before starting a new
operation, checks that the memory that it references is not in use already.

The MPI standard explicitly transfers ownership of memory to MPI even for send operations. The
application is not allowed to read it while a send operation is active and must not setup another send
operation which reads it either. The rationale is that the MPI might modify the data in place before
sending it and might revert the change afterwards. In practice MPI implementation do not modify the
memory, so this is a minor problem and just triggers a warning.

Obviously, writing into the same memory twice in possibly random order or writing into memory
which the MPI might read from is a real error. However, detecting these real errors is harder for
message receives because the size of the buffer given to MPI might be larger than the actual
message: even if buffers overlap, the messages might be small enough to not lead to writes into the
same memory. Because the overlap check is done when a send buffer is handed over to MPI, only a
warning is generated. The application might be able to continue normally, but the source code
should be fixed because under a strict interpretation of the MPI standard using the same buffer twice
is already illegal even if the actual messages do not overlap.

Because the problem might be at the place where the memory was given to MPI initially and not
where it is reused, Intel® Trace Collector also provides both call stacks.

Detecting Illegal Buffer Modifications
(LOCAL:MEMORY:ILLEGAL_MODIFICATION)

123

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

MPI owns the memory that active communication references. The application must not touch it
during that time. Illegal writes into buffers that the MPI is asked to send are detected by calculating a
checksum of the data immediately before the request is activated and comparing it against a
checksum when the send completes. If the checksum is different, someone must have modified the
buffer. The reported LOCAL:MEMORY:ILLEGAL_MODIFICATION is a real error.
This problem is more common with non-blocking communication because the application gets
control back while MPI still owns the buffer and then might accidentally modify the buffer. For non-
blocking communication the call stacks of where the send was initiated and where it completed are
provided. For persistent requests it is also shown where it was created.

The problem might also occur for blocking communication, for example when the MPI
implementation incorrectly modifies the send buffer, the program is multithreaded and writes into it
or other communication happens to write into the buffer. In this case only the call stack of the
blocking call where the problem was detected gets printed.

Strictly speaking, reads are also illegal because the MPI standard makes no guaranteed about the
content of buffers while MPI owns them. Because reads do not modify buffers, such errors are not
detected. Writes are also not detected when they happen (which would make debugging a lot easier)
but only later when the damage is detected.

Buffer Given to MPI Cannot Be Read or Written
(LOCAL:MEMORY:INACCESSIBLE)

During the check for LOCAL:MEMORY:ILLEGAL_MODIFICATION of a send buffer Intel® Trace
Collector will read each byte in the buffer once. This works for contiguous as well as non-contiguous
data types. If any byte cannot be read because the memory is inaccessible, a
LOCAL:MEMORY:INACCESSIBLE is reported. This is an error because it is only possible to proceed
by skipping the entire operation.
Disabling the LOCAL:MEMORY:ILLEGAL_MODIFICATION check also disables the accessibility check
and send operations are then treated like receive operations: for receive operations no similar check
is performed because the MPI standard does not say explicitly that the whole receive buffer has to
be accessible - only the part into which an incoming message actually gets copied must be writable.

Violations of that rule are caught and reported as fatal LOCAL:EXIT:SIGNAL errors.

Distributed Memory Checking
(LOCAL:MEMORY:INITIALIZATION)

This feature is enabled by default if all processes run under Valgrind*. If that is not the case, it is
disabled. If in doubt, check the configuration summary at the beginning of the run to see whether
this feature was enabled or not. There are no Intel® Trace Collector error reports with this type;
Valgrind's error reports have to be watched instead to find problems related to memory initialization.
See the section "Use of uninitialized values" in Valgrind's user guide for details.

If enabled, then Valgrind's tracking of memory definedness is extended to the whole application. For
applications which transmit partially initialized data between processes, this avoids two cases:

• False positive: sending the message with the partially initialized data triggers a valgrind
report for send or write system calls at the sender side

Intel® Trace Collector Reference

124

• False negative: at the recipient, valgrind incorrectly assumes that all incoming data is
completely initialized and thus will not warn if the uninitialized data influences the control
flow in the recipient; normally it would report that

To handle the false positive case Valgrind must have been started with the suppression file provided
with Intel® Trace Collector. The local_memory_valgrind example (available at
https://software.intel.com/en-us/product-code-samples) demonstrates both cases.
Turning this feature off is useful if the application is supposed to be written in such a way that it
never transmits uninitialized data. In that case Intel® Trace Collector suppression file should not be
used because it would suppress warnings at the sender and the LOCAL:MEMORY:ILLEGAL_ACCESS
must be disabled as it would cause extra valgrind reports.

See Also

Running with Valgrind*

Illegal Memory Access
(LOCAL:MEMORY:ILLEGAL_ACCESS)

This feature depends on valgrind the same way as LOCAL:MEMORY:INITIALIZATION. This check
goes beyond LOCAL:MEMORY:ILLEGAL_MODIFICATION by detecting also reads and reporting
them through valgrind at the point where the access happens. Disabling it might improve
performance and help if the provided suppression rules do not manage to suppress reports about
valid accesses to locked memory.

Request Handling
(LOCAL:REQUEST)

When the program terminates Intel® Trace Collector prints a list of all unfreed MPI requests together
with their status. Unfreed requests are usually currently active and application should have checked
their status before terminating. Persistent requests can also be passive and need to be freed
explicitly with MPI_Request_free().
Not freeing requests blocks resources inside the MPI and can cause application failures. Each time
the total number of active requests or inactive persistent requests exceeds another multiple of the
CHECK-MAX-REQUESTS threshold (that is, after 100, 200, 300, . . . requests) a
LOCAL:REQUEST:NOT_FREED warning is printed with a summary of the most frequent calls where
those requests were created. The number of calls is configured through CHECK-LEAK-REPORT-
SIZE.
Finalizing the application with pending requests is not an error according to the MPI standard, but is
not a good practice and can potentially mask real problems. Therefore a request leak report will be
always generated during finalize if at least one request was not freed.

If there are pending receives the check for pending incoming messages is disabled because some or
all of them might match with the pending receives.

Active requests that were explicitly deleted with MPI_Request_free() will show up in another leak
report if they have not completed by the time when the application terminates. Most likely this is due
to not having a matching send or receive elsewhere in the application, but it might also be caused by
posting and deleting a request and then terminating without giving it sufficient time to complete.

https://software.intel.com/en-us/product-code-samples

125

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

The MPI standard recommends that receive requests are not freed before they have completed.
Otherwise it is impossible to determine whether the receive buffer can be read. Although not strictly
marked an error in the standard, a LOCAL:REQUEST:PREMATURE_FREE warning is reported if the
application frees such a request prematurely. For send requests the standard describes a method
how the application can determine that it is safe to reuse the buffer, thus this is not reported as an
error. In both cases actually deleting the request is deferred in a way which is transparent to the
application: at the exit from all MPI calls which communicate with other processes Intel® Trace
Collector will check whether any of them has completed and then execute the normal checking that
it does at completion of a request (LOCAL:MEMORY:ILLEGAL_MODIFICATION) and also keep track
of the ownership of the memory (LOCAL:MEMORY:OVERLAP).
In addition not freeing a request or freeing it too early, persistent requests also require that calls
follow a certain sequence: create the request, start it and check for completion (can be repeated
multiple times), delete the request. Starting a request while it is still active is an error which is
reported as LOCAL:REQUEST:ILLEGAL_CALL. Checking for completion of an inactive persistent
request on the other hand is not an error.

Datatype Handling
(LOCAL:DATATYPE)

Unfreed data types can cause the same problems as unfreed requests, so the same kind of leak
report is generated for them when their number exceeds CHECK-MAX-DATATYPES. However,
because not freeing data types is common practice there is no leak report during finalize unless their
number exceeds the threshold at that time. That is in contrast to requests which are always reported
then.

Buffered Sends
(LOCAL:BUFFER:INSUFFICIENT_BUFFER)

Intel® Trace Collector intercepts all calls related to buffered sends and simulates the worst-case
scenario that the application has to be prepared for according to the standard. By default
(GLOBAL:DEADLOCK:POTENTIAL enabled) it also ensures that the sends do not complete before
there is a matching receive.
By doing both it detects several different error scenarios which all can lead to insufficient available
buffer errors that might not occur depending on timing and/or MPI implementation aspects:

Buffer Size: The most obvious error is that the application did not reserve enough buffer to store the
message(s), perhaps because it did not actually calculate the size with MPI_Pack_size() or forgot
to add the MPI_BSEND_OVERHEAD. This might not show up if the MPI implementation bypasses the
buffer, for example, for large messages. See the local_buffered_send_size example at the
online samples resource.
Race Condition: Memory becomes available again only when the oldest messages are transmitted. It
is the responsibility of the application to ensure that this happens in time before the buffer is
required again; without suitable synchronization an application might run only because it is lucky
and the recipients enter their receives early enough. See the local_buffered_send_race and
local_buffered_send_policy examples at the online samples resource.
Deadlock: MPI_Buffer_detach() will block until all messages inside the buffer have been sent.
This can lead to the same (potential) deadlocks as normal sends. See the
local_buffered_send_deadlock example at the online samples resource.

https://software.intel.com/en-us/product-code-samples
https://software.intel.com/en-us/product-code-samples
https://software.intel.com/en-us/product-code-samples

Intel® Trace Collector Reference

126

Since it is critical to understand how the buffer is currently being used when a new buffered send
does not find enough free space to proceed, the LOCAL:BUFFER:INSUFFICIENT_BUFFER error
message contains all information about free space, active and completed messages and the
corresponding memory ranges. Memory ranges are given using the [<start address>, <end
address>] notation where the <end address> is not part of the memory range. For convenience
the number of bytes in each range is also printed. For messages this includes the

MPI_BSEND_OVERHEAD, so even empty messages have a non-zero size.

Deadlocks
(GLOBAL:DEADLOCK)

Deadlocks are detected through a heuristic: the background thread in each process cooperates with
the MPI wrappers to detect that the process is stuck in a certain MPI call. That alone is not an error
because some other processes might still make progress. Therefore the background threads
communicate if at least one process appears to be stuck. If all processes are stuck, this is treated as a
deadlock. The timeout after which a process and thus the application is considered as stuck is
configurable with DEADLOCK-TIMEOUT.
The timeout defaults to one minute which should be long enough to ensure that even very long
running MPI operations are not incorrectly detected as being stuck. In applications which are known
to execute correct MPI calls much faster, it is advisable to decrease this timeout to detect a deadlock
sooner.

This heuristic fails if the application is using non-blocking calls like MPI_Test() to poll for
completion of an operation which can no longer complete. This case is covered by another heuristic:
if the average time spent inside the last MPI call of each process exceeds the DEADLOCK-WARNING
threshold, then a GLOBAL:DEADLOCK:NO_PROGRESS warning is printed, but the application is
allowed to continue because the same high average blocking time also occurs in correct application
with a high load imbalance. For the same reason the warning threshold is also higher than the hard
deadlock timeout.
To help analyzing the deadlock, Intel® Trace Collector prints the call stack of all process. A real hard
deadlock exists if there is a cycle of processes waiting for data from the previous process in the cycle.
This data dependency can be an explicit MPI_Recv(), but also a collective operation like
MPI_Reduce().
If message are involved in the cycle, then it might help to replace send or receive calls with their non-
blocking variant. If a collective operation prevents one process from reaching a message send that
another process is waiting for, then reordering the message send and the collective operation in the
first process would fix the problem.

Another reason could be messages which were accidentally sent to the wrong process. This can be
checked in debuggers which support that by looking at the pending message queues. In the future
Intel® Trace Collector might also support visualizing the program run in Intel® Trace Analyzer in case
of an error. This would help to find messages which were not only sent to the wrong process, but
also received by that processes and thus do not show up in the pending message queue.

In addition to the real hard deadlock from which the application cannot recover MPI applications
might also contain potential deadlocks: the MPI standard does not guarantee that a blocking send
returns unless the recipient calls a matching receive. In the simplest case of a head-to-head send
with two processes, both enter a send and then the receive for the message that the peer just sent.
This deadlocks unless the MPI buffers the message completely and returns from the send without
waiting for the corresponding receive.

127

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

Because this relies on undocumented behavior of MPI implementations this is a hard to detect
portability problem. Intel® Trace Collector detects these GLOBAL:DEADLOCK:POTENTIAL errors by
turning each normal send into a synchronous send. The MPI standard then guarantees that the send
blocks until the corresponding receive is at least started. Send requests are also converted to their
synchronous counterparts; they block in the call which waits for completion. With these changes any
potential deadlock automatically leads to a real deadlock at runtime and will be handled as
described above. To distinguish between the two types, check whether any process is stuck in a send
function. Due to this way of detecting it, even the normally non-critical potential deadlocks do not
allow the application to proceed.

Checking Message Transmission
(GLOBAL:MSG)

For each application message, another extra message is sent which includes:

• Data type signature hash code (for GLOBAL:MSG:DATATYPE:MISMATCH)
• Checksum of the data (for GLOBAL:MSG:DATA_TRANSMISSION_CORRUPTED)
• Stack backtrace for the place where the message was sent (for both of these errors and also

for GLOBAL:MSG:PENDING)
Only disabling of all of these three errors avoids the overhead for the extra messages.

Buffered messages which are not received lead to a resource leak. They are detected each time a
communicator is freed or (if a communicator does not get freed) when the application terminates.

The information provided includes a call stack of where the message was sent as well as the current
call stack where the error is detected.

Datatype Mismatches
(GLOBAL:*:DATATYPE:MISMATCH)

Data type mismatches are detected by calculating a hash value of the data type signature and
comparing that hash value: if the hash values are different, the type signatures must have been
different too and an error is reported. Because the information about the full type signature at the
sender is not available, it has to be deduced from the function call parameters and/or source code
locations where the data is transmitted.

If the hash values are identical, then there is some small chance that the signatures were different
although no error is reported. Because of the choice of a very advanced hash function[2] this is very
unlikely. This hash function can also be calculated more efficiently than traditional hash functions.

Data Modified during Transmission
(GLOBAL:*:DATA_TRANSMISSION_CORRUPTED)

After checking that the data type signatures in a point-to-point message transfer or collective data
gather/scatter operation at sender and receiver match, Intel ®Trace Collector also verifies that the
data was transferred correctly by comparing additional checksums that are calculated inside the
sending and receiving process. This adds another end-to-end data integrity check which will fail if

Intel® Trace Collector Reference

128

any of the components involved in the data transmission malfunctioned (MPI layer, device drivers,
hardware).

In cases where this GLOBAL:*:DATA_TRANSMISSION_CORRUPTED error is obviously the result of
some other error, it is not reported separately. This currently works for truncated message receives
and data type mismatches.

Checking Collective Operations
(GLOBAL:COLLECTIVE)

Checking correct usage of collective operations is easier than checking messages. At the beginning of
each operation, Intel® Trace Collector broadcasts the same data from rank #0 of the communicator.
This data includes:

• Type of the operation

• Root (zero if not applicable)

• Reduction type (predefined types only)

Now all involved processes check these parameters against their own parameters and report an error
in case of a mismatch. If the type is the same, for collective operations with a root process that rank
and for reduce operations the reduction operation are also checked. The
GLOBAL:COLLECTIVE:REDUCTION_OPERATION_MISMATCH error can only be detected for
predefined reduction operation because it is impossible to verify whether the program code
associated with a custom reduction operation has the same semantic on all processes. After this step
depending on the operation different other parameters are also shared between the processes and
checked.
Invalid parameters like MPI_DATATYPE_NULL where a valid data type is required are detected while
checking the parameters. They are reported as one GLOBAL:COLLECTIVE:INVALID_PARAMETER
error with a description of the parameter which is invalid in each process. This leads to less output
than printing one error for each process.
If any of these checks fails, the original operation is not executed on any process. Therefore
proceeding is possible, but application semantic will be affected.

Freeing Communicators
(GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH)

A mistake related to MPI_Comm_free() is freeing them in different orders on the involved
processes. The MPI standard specifies that MPI_Comm_free() must be entered by the processes in
the communicator collectively. Some MPIs including Intel® MPI Library deadlock if this rule is broken,
whereas others implement MPI_Comm_free() as a local call with no communication.
To ensure that this error is detected all the time, Intel® Trace Collector treats MPI_Comm_free() just
like the other collective operations. There is no special error message for
GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH, it will be reported as a mismatch between collective
calls (GLOBAL:COLLECTIVE:OPERATION_MISMATCH) or a deadlock, so
GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH just refers to the check which enables or disables
this test, not a specific error instance.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

129

Structured Tracefile Format

Structured Tracefile Format
The Structured Trace File Format (STF) is a format that stores data in several physical files by default.
This chapter describes the structure of this format and provides the technical background to
configure and work with the STF format. It is safe to skip over this chapter because all configuration
options that control writing of STF have reasonable default values.

The development of STF was motivated by the observation that the conventional approach of
handling trace data in a single trace file is not suitable for large applications or systems, where the
trace file can quickly grow into the tens of gigabytes range. On the display side, such huge amounts
of data cannot be squeezed into one display at once. There should be mechanisms to enable one to
start at a coarser level and then dive into details. Additionally, the ability to request and inspect only
parts of the data becomes essential with the amount of trace data growing.

These requirements necessitate a more powerful data organization than the previous Intel® Trace
Analyzer tracefile format can provide. In response to this, the STF has been developed. The aim of
the STF is to provide a file format which:

• Can arbitrarily be partitioned into several files, each one containing a specific subset of the
data

• Allows fast random access and easy extraction of data

• Is extensible, portable, and upward compatible

• Is clearly defined and structured

• Can efficiently exploit parallelism for reading and writing

• Is as compact as possible

The traditional tracefile format is only suitable for small applications, and cannot efficiently be
written in parallel. Also, it was designed for reading the entire file at once, rather than for extracting
arbitrary data. The structured tracefile implements these new requirements, with the ability to store
large amounts of data in a more compact form.

STF Components
A structured tracefile consists of a number of files, which can be interpreted as one conceptual data
set. See the approximate structure in the figure below. Depending on the organization of actual files,
the following component files will be written:

• Index file <trace>.stf
• Record declaration file <trace>.stf.dcl
• Statistics file <trace>.stf.sts
• Message file <trace>.stf.msg
• Collective operation file <trace>.stf.cop

Intel® Trace Collector Reference

130

• Process file(s) <trace>.stf.*.<index> (where * is one of the symbols, f, i, s, c, r, or
x)

• For the above three kinds of files, one anchor file each with the extension .anc
<trace> is the tracefile name, which is determined automatically or set in the LOGFILE-NAME
configuration option.

STF Components

Additionally, five data files may be created for the given trace. These files are Summary Data files.
They have common name <trace>.stf.sum.<suffix> (where suffix is one of fnc, cop, msg, cnt,
or rep) and formally are not a part of the trace. You can use these files as additional input for Intel®
Trace Analyzer. For details of Summary Data usage, see Intel® Trace Analyzer User and Reference
Guide.
The records for routine entry/exit and counters are contained in the process files. The anchor files
are used by Intel® Trace Analyzer to fast-forward within the record files; they can be deleted, but that
may result in slower operation of Intel® Trace Analyzer.

Make sure that you use different names for traces from different runs; otherwise you will experience
difficulties in identifying which process files belong to an index file, and which ones are left over from
a previous run. To catch all component files, use the stftool with the --remove option to delete a
STF file, or put the files into single-file STF format for transmission or archival with the stftool --
convert option.
The number of actual process files will depend on the setting of the STF-USE-HW-STRUCTURE and
STF-PROCS-PER-FILE configuration options described below.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

131

See Also
stftool Utility

Single-File STF
Intel® Trace Collector can save the trace data in the single-file STF format. This format is selected by
specifying the LOGFILE-FORMAT STFSINGLE configuration option, and it causes all the component
files of an STF trace to be combined into one file with the extension .single.stf. The logical
structure is preserved. The drawback of the single-file STF format is that no I/O parallelism can be
exploited when writing the tracefile.
Reading it for analysis with Intel® Trace Analyzer is only marginally slower than the normal STF
format, unless the operating system imposes a performance penalty on parallel read accesses to the
same file.

See Also
Configuring Intel® Trace Collector

Configuring STF
To determine the file layout, you can use the following configuration options:

• STF-USE-HW-STRUCTURE will save the local events for all processes running on the same node
into one process file

• STF-PROCS-PER-FILE <number> limits the number of processes whose events can be
written in a single process file

All of these options are explained in more detail in the Configuration Reference section.

stftool Utility

stftool Utility

Synopsis

stftool <input file> <config options>

--help

--version

Description
The stftool utility program reads a structured trace file (STF) in normal or single-file format. It can
perform various operations with this file:

Intel® Trace Collector Reference

132

• Extract all or a subset of the trace data (default)

• Convert the file format without modifying the content (--convert)
• List the components of the file (--print-files)
• Remove all components (--remove)
• Rename or move the file (--move)
• List statistics (--print-statistics)

The output and behavior of stftool is configured similarly to Intel® Trace Collector: with a
configuration file, environment variables, and command-line options. The environment variable
VT_CONFIG can be set to the name of an Intel® Trace Collector configuration file. If the file exists and
is readable, then it is parsed first. Its settings are overridden with environment variables, which in
turn are overridden by configuration options on the command line.
All configuration options can be specified on the command line by adding the prefix '--' and listing
its arguments after the keyword. The output format is derived automatically from the suffix of the
output file. You can write to stdout by using '-' as the filename; this defaults to writing ASCII VTF*.
These are examples of converting the entire file into different formats:

stftool example.stf --convert example.avt # ASCII

stftool example.stf --convert - # ASCII to stdout

stftool example.stf --convert - --logfile-format SINGLESTF | gzip -c
>example.single.stf.gz # gzipped single-file STF
Without the --convert switch one can extract certain parts, but only write VTF:

stftool example.stf --request 1s:5s --logfile-name example_1s5s.avt # extract
interval as ASCII
All options can be given as environment variables. The format of the configuration file and
environment variables are described in more detail in the documentation in the Configuration
Reference section.

stftool Utility Options

convert
Syntax: --convert [<filename>]
Default: off
Description: Converts the entire file into the file format specified with --logfile-format or the
filename suffix. Options that normally select a subset of the trace data are ignored when this low-
level conversion is done. Without this flag writing is restricted to ASCII format, while this flag can also
be used to copy any kind of STF trace.

delete-raw-data
Syntax: --delete-raw-data
Default: off
Description: Sub-option to --merge. Deletes or removes the given raw trace after merging.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

133

dump
Syntax: --dump
Default: off
Description: A shortcut for --logfile-name - and --logfile-format ASCII, that is, it prints
the trace data to stdout.

extended-vtf
Syntax: --extended-vtf
Default: off in Intel Trace Collector, on in stftool
Description: Several events can only be stored in STF, but not in VTF. Intel® Trace Collector libraries
default to writing valid VTF trace files and thus skip these events. This option enables writing of non-
standard VTF records in ASCII mode that Intel® Trace Analyzer would complain about. In the
stftool the default is to write these extended records, because the output is more likely to be
parsed by scripts rather than by the Intel Trace Analyzer.

logfile-format
Syntax: --logfile-format [ASCII|STF|STFSINGLE|SINGLESTF]
Default: STF
Description: Specifies the format of the tracefile. ASCII is the traditional Vampir* file format where all
trace data is written into one file. It is human-readable.

The Structured Trace File (STF) is a binary format which supports storage of trace data in several files
and allows Intel® Trace Analyzer to analyze the data without loading all of it, so it is more scalable.
Writing it is only supported by Intel® Trace Collector.

One trace in STF format consists of several different files which are referenced by one index file
(.stf). The advantage is that different processes can write their data in parallel (see STF-PROCS-
PER-FILE, STF-USE-HW-STRUCTURE). SINGLESTF rolls all of these files into one (.single.stf),
which can be read without unpacking them again. However, this format does not support distributed
writing, so for large program runs with many processes the generic STF format is better.

logfile-name
Syntax: --logfile-name <file name>
Description: Specifies the name for the tracefile containing all the trace data. Can be an absolute or
relative pathname; in the latter case, it is interpreted relative to the log prefix (if set) or the current
working directory of the process writing it.

If unspecified, then the name is the name of the program plus .avt for ASCII, .stf for STF and
.single.stf for single STF tracefiles. If one of these suffices is used, then they also determine the
logfile format, unless the format is specified explicitly.
In the stftool the name has to be specified explicitly, either by using this option or as argument of
the --convert or --move switch.

matched-vtf
Syntax: --matched-vtf
Default: off
Description: When converting from STF to ASCII-VTF communication records are usually split up
into conventional VTF records. If this option is enabled, an extended format is written, which puts all
information about the communication into a single line.

Intel® Trace Collector Reference

134

merge
Syntax: --merge [<merged trace name>]
Default: off
Description: Merges the given raw trace. When you use the --merge option with the --delete-
raw-data option, such configuration deletes the given raw trace after merging. When you use --
merge option with the --sumdata option, such configuration creates additional Summary Data files
for the given unmerged trace.

move
Syntax: --move [<file/dirname>]
Default: off
Description: Moves the given file without otherwise changing it. The target can be a directory.

print-errors
Syntax: --print-errors
Default: off
Description: Prints the errors that were found in the application.

print-files
Syntax: --print-files
Default: off
Description: Lists all components that are part of the given STF file, including their size. This is
similar to ls -l, but also works with single-file STF.

print-reports
Syntax: --print-reports
Default: off
Description: Prints the Message Checker reports of the input file to stdout.

print-statistics
Syntax: --print-statistics
Default: off
Description: Prints the precomputed statistics of the input file to stdout.

print-threads
Syntax: --print-threads
Default: off
Description: Prints information about each native thread that was encountered by the Intel® Trace
Collector when generating the trace.

remove
Syntax: --remove
Default: off
Description: Removes the given file and all of its components.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

135

request
Syntax: --request <type>, <thread triplets>, <categories>, <window>
Description: Restricts the data written into the new trace to the one that matches the arguments. If a
window is given (in the form <timespec>:<timespec> with at least one unit descriptor), data is
restricted to this time interval. It has the usual format of a time value, with one exception: the unit for
seconds s is required to distinguish it from a thread triplet; in other words, use 10s instead of just 10.
The <type> can be any kind of string in single or double quotation marks, but it has to identify
uniquely the kind of data. Valid <categories> are FUNCTIONS, SCOPES, FILEIO, COUNTERS,
MESSAGES, COLLOPS, ERRORS and REQUESTS.
All of the arguments are optional and default to all threads, all categories and the whole time
interval. They can be separated by commas or spaces and it is possible to mix them as desired. This
option can be used more than once and then data matching any request is written.

sumdata
Syntax: --sumdata <output trace name>
Default: off
Description: Forces creation of additional Summary Data files for the given trace.

You can use the --sumdat option with or without --merge option. Thus, there can be the following
three scenarios:

1. --merge <output trace> Merges the given unmerged trace and creates output merged
trace.

2. --sumdata <output trace> Creates Summary Data files for the given merged trace.

Note

In this scenario, only Summary Data files is created. No output trace is generated.

3. --merge --sumdata <output trace> Merges the given unmerged trace; creates output
merged trace and the Summary Data files for this output trace.

ticks
Syntax: --ticks
Default: off
Description: Setting this option to on lets stftool interpret all timestamps as ticks (rather than
seconds, milliseconds and so on). Given time values are converted into seconds and then truncated
(floor). The clock ticks are based on the nominal clock period specified by the CLKPERIOD header,
just as the time stamps printed by the stftool for events.

verbose
Syntax: --verbose [on|off|<level>]
Default: on
Description: Enables or disables additional output on stderr. <level> is a positive number, with
larger numbers enabling more output:

1. 0 (= off) disables all output
2. 1 (= on) enables only one final message about generating the result
3. 2 enables general progress reports by the main process
4. 3 enables detailed progress reports by the main process
5. 4 the same, but for all processes (if multiple processes are used at all)

Intel® Trace Collector Reference

136

Levels higher than 2 may contain output that only makes sense to the developers of Intel® Trace
Collector.

Expanded ASCII output of STF Files

Synopsis

xstftool <STF file> [stftool options]
Valid options are those that work together with stftool --dump, the most important ones being:

• --request: extract a subset of the data
• --matched-vtf: put information about complex events like messages and collective

operations into one line

Description
The xstftool is a simple wrapper around the stftool and the expandvtlog.pl Perl* script
which tells the stftool to dump a given Structured Trace Format (STF) file in ASCII format and uses
the script as a filter to make the output more readable.
It is intended to be used for doing custom analysis of trace data with scripts that parse the output to
extract information not provided by the existing tools, or for situations where a few shell commands
provide the desired information more quickly than a graphical analysis tool.

Output
The output has the format of the ASCII Vampir* Trace Format (VTF), but entities like function names
are not represented by integer numbers that cannot be understood without remembering their
definitions, but rather inserted into each record. The CPU numbers that encode process and thread
ranks resp. groups are also expanded.

Examples
The following examples compare the output of stftool --dump with the expanded output of
xstftool:

• definition of a group

DEFGROUP 2147942402 "All_Processes" NMEMBS 2 2147483649 2147483650

DEFGROUP All_Processes NMEMBS 2 "Process_0" "Process_2"
• a counter sample on thread 2 of the first process

8629175798 SAMP CPU 131074 DEF 6 UINT 8 3897889661

8629175798 SAMP CPU 2:1 DEF "PERF_DATA:PAPI_TOT_INS" UINT 8 3897889661

Time Stamping

137

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

Time Stamping
Intel® Trace Collector assigns a local time stamp to each event it records. A time stamp consists of
two parts which together guarantee that each time stamp is unique:

Clock Tick counts how often the timing source incremented since the start of the run.

Event Counter is incremented for each time stamp which happens to have the same clock tick as the
previous time stamp. In the unlikely situation that the event counter overflows, Intel® Trace Collector
artificially increments the clock tick. When running Intel® Trace Collector with VERBOSE > 2, it will
print the maximum number of events on the same clock tick during the whole application run. A
non-zero number implies that the clock resolution was too low to distinguish different events.
Both counters are stored in a 64-bit unsigned integer with the event counter in the low-order bits.
Legacy applications can still convert time stamps as found in a trace file to seconds by multiplying
the time stamp with the nominal clock period defined in the trace file header: if the event counter is
zero, this will not incur any error at all. Otherwise the error is most likely still very small. The accurate
solution however is to shift the time stamp by the amount specified as event bits in the trace header
(and thus removing the event counter), then multiplying with the nominal clock period and 2 to the
power of event bits.

Intel® Trace Collector uses 51 bits for clock ticks, which is large enough to count 251ns, which equals
to more than 26 days before the counter overflows. At the same time with a clock of only ms
resolution, you can distinguish 8192 different events with the same clock tick, which are events with
duration of 0.1 μs.

Before writing the events into the global trace file, local time stamps are replaced with global ones by
modifying their clock tick. A situation where time stamps with different local clock ticks fall on the
same global clock tick is avoided by ensuring that global clock ticks are always larger than local ones.
The nominal clock period in the trace file is chosen so that it is sufficiently small to capture the
offsets between nodes as well as the clock correction: both leads to fractions of the real clock period
and rounding errors would be incurred when storing the trace with the real clock period. The real
clock period might be hard to figure out exactly anyway. Also, the clock ticks are scaled so that the

whole run takes exactly as long as determined with gettimeofday() on the master process.

Clock Synchronization
By default, Intel® Trace Collector synchronizes the different clocks at the start and at the end of a
program run by exchanging messages in a fashion similar to the Network Time Protocol (NTP): one
process is treated as the master and its clock becomes the global clock of the whole application run.
During clock synchronization, the master process receives a message from a child process and
replies by sending its current time stamp. The child process then stores that time stamp together
with its own local send and receive time stamps. One message is exchanged with each child, then the
cycles starts again with the first child until SYNC-MAX-MESSAGES have been exchanged between
master and each child or the total duration of the synchronization exceeds SYNC-MAX-DURATION.
Intel® Trace Collector can handle timers which are already synchronized among all process on a
node (SYNCED-HOST) and then only does the message exchange between nodes. If the clock is even
synchronized across the whole cluster (SYNCED-CLUSTER), then no synchronization is done by Intel®
Trace Collector at all.
The gathered data of one message exchange session is used by the child processes to calculate the
offset between its clock and the master clock: it is assumed that the duration of messages with equal
size is equally fast in both directions, so that the average of local send and receive time coincides

Intel® Trace Collector Reference

138

with the master time stamp in the middle of the message exchange. To reduce the noise, the 10%
message pairs with the highest local round-trip time are ignored because those are the ones which
most likely suffered from not running either process in time to react in a timely fashion or other
external delays.

With clock synchronization at the start and the end, Intel® Trace Collector clock correction uses a
linear transformation; that is a scaling local clock ticks and shifting them, which is calculated by linear
regression of all available sample data. If the application also calls VT_timesync() during the run,
then clock correction is done with a piece-wise interpolation: the data of each message exchange
session is condensed into one pair of local and master time by averaging all data points, then a
constrained spline is constructed which goes through all of the condensed points and has a
contiguous first derivative at each of these joints.

VT_timesync
int VT_timesync(void)

Description

Gathers data needed for clock synchronization.

This is a collective call, so all processes which were started together must call this function or it will
block.

This function does not work if processes were spawned dynamically.

Fortran
VTTIMESYNC(ierr)

Choosing a Timer

Choosing a Timer
A good timer has the following properties:

• High resolution (one order of magnitude higher than the resolution of the events that are to be
traced)

• Low overhead

• Linearly increasing values for a long period of time (at least for the duration of a program run);
in particular it should not jump forwards or backwards

Intel® Trace Collector supports several different timers. Because the quality of these timers depends
on factors which are hard to predict (like specific OS bugs, available hardware and so on), you can
run a test program if you want to find answers to the following questions:

• What is the resolution of a timer?

• What is its overhead?

• How well does clock synchronization work with the default linear transformation?

• If it does not work well, how often does the application have to synchronize to achieve good
non-linear interpolation?

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

139

To test the quality of each timer, link the timerperformance.c sample program (available at the
online samples resource). The makefile already has a target vttimertest (linked against libVT
and MPI) and for timertestcs (linked against libVTcs and no MPI). Use the MPI version if you
have MPI, because libVT supports all the normal timers from libVTcs plus MPI_Wtime and
because only the MPI version can test whether the clock increases linearly by time-stamping
message exchanges.
To get a list of supported timers, run with the configuration option TIMER set to LIST. This can be
done easily by setting the VT_TIMER environment variable. The subsections below have more
information about possible choices, but not all of them may be available on each system.
To test an individual timer, run the binary with TIMER set to the name of the timer to be tested. It will
repeatedly acquire time stamps and then for each process (vttimertest) or the current machine
(timertestcs) print a histogram of the clock increments observed. A good timer has most
increments close or equal to the minimum clock increment that it can measure. Bad clocks have a
very high minimum clock increment (a bad resolution) or only occasionally increment by a smaller
amount.
Here is the output of timertestcs one a machine with a good gettimeofday() clock:

bash$ VT_TIMER=gettimeofday ./timertestcs

performance: 2323603 calls in 5.000s wall clock time = 2.152us/call =

464720 calls/s

measured clock period/frequency vs. nominal:

1.000us/1.000MHz vs. 1.000us/1.000MHz

overhead for sampling loop: 758957 clock ticks (= 758.958ms)

for 10000000 iterations = 0 ticks/iteration

average increase: 2 clock ticks = 2.244us = 0.446MHz

median increase: 2 clock ticks = 2.000us = 0.500MHz

< 0 ticks = 0.00s : 0

< 1 ticks = 1.00us: 0

>= 1 ticks = 1.00us: #################### 2261760

>= 501 ticks = 501.00us: 1

>= 1001 ticks = 1.00ms: 0

...
The additional information at the top starts with the performance (and thus overhead) of the timer.
The next line compares the measured clock period (calculated as elapsed wall clock time divided by
clock ticks in the measurement interval) against the one that the timer is said to have; for
gettimeofday() this is not useful, but for example CPU cycle counters (details below) there might
be differences. Similarly, the overhead for an empty loop with a dummy function call is only relevant
for a timer like CPU cycle counters with a very high precision. For that counter however the overhead
caused by the loop is considerable, so during the measurement of the clock increments Intel® Trace
Collector subtracts the loop overhead.
Here is an example with the CPU cycle counter as timer:

bash$ VT_TIMER=CPU ./timertestcs

performance: 3432873 calls in 5.000s wall clock time = 1.457us/call =

https://software.intel.com/en-us/product-code-samples

Intel® Trace Collector Reference

140

686535 calls/s

measured clock period/frequency vs. nominal:

0.418ns/2392.218MHz vs. 0.418ns/2392.356MHz

overhead for sampling loop: 1913800372 clock ticks (= 800.011ms)

for 10000000 iterations = 191 ticks/iteration

average increase: 3476 clock ticks = 1.453us = 0.688MHz

median increase: 3473 clock ticks = 1.452us = 0.689MHz

< 0 ticks = 0.00s : 0

< 1 ticks = 0.42ns: 0

>= 1 ticks = 0.42ns: 0

>= 501 ticks = 209.43ns: 0

>= 1001 ticks = 418.44ns: 0

>= 1501 ticks = 627.45ns: 0

>= 2001 ticks = 836.46ns: 0

>= 2501 ticks = 1.05us: 0

>= 3001 ticks = 1.25us: #################### 3282286

>= 3501 ticks = 1.46us: 587

>= 4001 ticks = 1.67us: 8

>= 4501 ticks = 1.88us: 1

>= 5001 ticks = 2.09us: 869
Testing whether the timer increases linearly is more difficult. It is done by comparing the send and
receive time stamps of ping-pong message exchanges between two processes after Intel® Trace
Collector has applied its time synchronization algorithm to them: the algorithm will scale and shift
the time stamps based on the assumption that data transfer in both directions is equally fast. So if
the synchronization works, the average difference between the duration of messages in one
direction minus the duration of the replies has to be zero. The visualization of the trace
timertest.stf should show equilateral triangles.
If the timer increases linearly, then one set of correction parameters applies to the whole trace. If it
does not, then clock synchronization might be good in one part of the trace and bad in another or
even more obvious, be biased towards one process in one part with a positive difference and biased
towards the other in another part with a negative difference. In either case tweaking the correction
parameters would fix the time stamps of one data exchange, but just worsen the time stamps of
another.

When running the MPI vttimertest with two or more processes it will do a short burst of data
exchanges between each pair of processes, then sleep for 10 seconds. This cycle is repeated for a
total runtime of 30 seconds. This total duration can be modified by giving the number of seconds as
command line parameter. Another argument on the command line also overrides the duration of the
sleep. After MPI_Finalize() the main process will read the resulting trace file and print statistics
about the message exchanges: for each pair of processes and each burst of message exchanges, the
average offset between the two processes is given. Ideally these offsets will be close to zero, so at
the end the pair of processes with the highest absolute clock offset between sender and receiver will
be printed:

maximum clock offset during run:

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

141

1 <-> 2 374.738ns (latency 6.752us)

to produce graph showing trace timing, run: gnuplot timertest.gnuplot
If the value is much smaller than the message latency, then clock correction worked well throughout
the whole program run and can be trusted to accurately time individual messages.

Running the test program for a short interval is useful to test whether the NTP-like message
exchange works in principle, but to get realistic results you have to run the test for several minutes. If
a timer is used which is synchronized within a node, then you should run with one process per node
because Intel® Trace Collector would use the same clock correction for all processes on the same
node anyway. Running with multiple processes per node in this case would only be useful to check
whether the timer really is synchronized within the node.

To better understand the behavior of large runs, several data files and one command file for
gnuplot are generated. Running gnuplot as indicated above will produce several graphs:
Graph Description

Application Run Connects the offsets derived from the application's message exchanges
with straight lines: it shows whether the deviation from the expected zero
offset is linear or not; it can be very noisy because outliers are not
removed

Clock
Transformation

Shows the clock samples that Intel® Trace Collector itself took at the
application start, end and in VT_timesync() and what the
transformation from local clock ticks to global clock ticks looks like

Interpolation Error Compares a simple linear interpolation of Intel® Trace Collector's sample
data against the non-linear constrained spline interpolation: at each
sample point, the absolute delta between measured time offset and the
corresponding interpolated value is shown above the x-axis (for linear
interpolation) and below (for splines)

Raw Clock Samples For the first three message exchanges of each process, the raw clock
samples taken by Intel® Trace Collector are shown in two different ways:
all samples and just those actually used by Intel® Trace Collector after
removing outliers.

In these displays the height of the error bars corresponds to the round-
trip time of each sample measured on the master. If communication
works reliably, most samples should have the same round-trip time.

The graphs use different coordinate systems: the first one uses global time for both axis; the latter
two have local time on the x-axis and a delta in global time on the y-axis. Thus although the same
error will show up in all of them, in one graph it will appear as a deviation for example below the x-
axis and in the other above it.

Also, the latter two graphs are only useful if Intel® Trace Collector really uses non-linear interpolation
which is not the case if all intermediate clock samples are skipped: although the test program causes
a clock synchronization before each message exchange by calling VT_timesync(), at the same time
it tells Intel® Trace Collector to not use those results and thus simulates a default application run
where synchronization is only done at the start and end.
This can be overridden by setting the TIMER-SKIP configuration option or VT_TIMER_SKIP
environment variable to a small integer value: it chooses how often the result of a VT_timesync()

Intel® Trace Collector Reference

142

is ignored before using a sample for non-linear clock correction. The skipped samples serve as
checks that the interpolation is sound.
In the following figures the test program was run using the CPU timer source, with a total runtime of
10 minutes and skipping 5 samples:

bash$ VT_TIMER_SKIP=5 VT_TIMER=CPU mpirun -np 4 timertest 600

...

[0 (node0)] performance: 115750510 calls in 5.000s wall

clock time = 43.197ns/call = 23149574 calls/s

...

0. recording messages 0 <-> 1...

0. recording messages 0 <-> 2...

0. recording messages 0 <-> 3...

0. recording messages 1 <-> 2...

0. recording messages 1 <-> 3...

0. recording messages 2 <-> 3...

1. recording messages 0 <-> 1...

...

maximum clock offset during run:

0 <-> 1 -1.031us (latency 6.756us)
The application run in Figure 5.1 below shows that in general Intel® Trace Collector managed to keep
the test results inside a range of plus-minus 1μs although it did not use all the information collected
with VT_timesync(). The clock transformation function in Figure 5.2 is non-linear for all three child
processes and interpolates the intermediate samples well. Using a linear interpolation between start
and end would have led to deviations in the middle of more than 16 μs. Also, the constrained spline
interpolation is superior compared to a simple linear interpolation between the sample points
(Figure 5.3).

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

143

Figure 5.1 CPU Timer: Application Run with Non-linear Clock Correction

gettimeofday/_ftime
gettimeofday is the default timer on Linux* OS with _ftime being the equivalent on Microsoft*
Windows* OS. Its API limits the clock resolution to 1μs, but depending on which timer the OS
actually uses the clock resolution may be much lower (_ftime usually shows a resolution of only 1
millisecond). It is implemented as a system call; therefore it has a higher overhead than other timers.
In theory the advantage of this call is that the OS can make better use of the available hardware, so
this timer should be stable over time even if NTP is not running. However, Figure 5.4 shows that in
practice at least on that system quite a high deviation between different nodes occurred during the
run.

If NTP is running, then the clock of each node might be modified by the NTP daemon in a non-linear
way. NTP should not cause jumps, only accelerate or slow down the system time.

Intel® Trace Collector Reference

144

Figure 5.2 CPU Timer: clock Transformation and the Sample Points It Is Based on

However, even decreasing system time stamps have been observed on some systems. This may or
may not have been due to NTP.

Due to the clock synchronization at runtime enabling NTP did not make the result worse than it is
without NTP (Figure 5.5). However, NTP alone without the additional intermediate synchronization
would have led to deviations of nearly 70 μs.

So the recommendation is to enable NTP, but intermediate clock synchronization by Intel® Trace
Collector is still needed to achieve good results.

QueryPerformanceCounter
On Microsoft* Windows* OS, Intel® Trace Collector uses QueryPerformanceCounter as the default
timer. As a system function it comes with the same side-effects as _ftime but has a higher
resolution of around 1 μs.

CPU Cycle Counter
This is a high-resolution counter inside the CPU which counts CPU cycles. This counter is called
Timer Stamp Counter (TSC) on x86/Intel®64 architectures. It can be read through an assembler
instruction, so the overhead is much lower than gettimeofday(). On the other hand, these
counters were never meant to measure long time intervals, so the clock speed also varies a lot, as
seen earlier in Figure 5.2.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

145

Figure 5.3 CPU Timer: Error with Linear (above x-axis) and Non-linear Interpolation (below)

Additional complications are:

Intel® Trace Collector Reference

146

Multi-CPU machines: the counter is CPU-specific, so if threads migrate from one CPU to another the
clock that Intel® Trace Collector reads might jump arbitrarily. Intel® Trace Collector cannot
compensate this as it would have to identify the current CPU and read the register in one atomic
operation, which cannot be done from user space without considerable overhead.

CPU cycle counters might still be useful on multi-CPU systems: Linux* OS tries to set the registers of
all CPUs to the same value when it boots. If all CPUs receive their clock pulse from the same source
their counters do not drift apart later on and it does not matter on which CPU a thread reads the CPU
register, the value will be the same one each.

This problem could be addressed by locking threads onto a specific CPU, but that could have an
adverse effect on application performance and thus is not supported by Intel® Trace Collector itself.
If done by the application or some other component, then care has to be taken that all threads in a
process run on the same CPU, including those created by Intel® Trace Collector itself. If the
application already is single-threaded, then the additional Intel® Trace Collector threads could be
disabled to avoid this complication.

Frequency scaling: power-saving mode might lead to a change in the frequency of the cycle count
register during the run and thus a non-linear clock drift. Machines meant for HPC probably do not
support frequency scaling or will not enter power-saving mode. Even then, on Intel CPUs, TSC often
continues to run at the original frequency.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

147

Figure 5.4 getimeofday() without NTP

Intel® Trace Collector Reference

148

See Also

MEM-FLUSHBLOCKS
Recording OS Counters

Normalized CPU Cycle Counter
The CPU timer described in CPU Cycle Counter is applicable for homogenous systems only.
Specifically, the CPU frequency should match across the systems.

For heterogeneous systems with different CPU frequencies, a special Normalized CPU timer
(VT_TIMER=CPU_Norm) can be used. This timer is based on the Timer Stamp Counter (TSC) CPU
ticks as well as the original CPU timer (VT_TIMER=CPU). The normalized timer converts the local CPU
ticks into microseconds on the fly to allow usage of TSC on heterogeneous systems.

MPI_Wtime()
This timer is provided by the MPI implementation. In general this is simply a wrapper around
gettimeofday() and then using it instead of gettimeofday() only has disadvantages: with
gettimeofday() Intel® Trace Collector knows that processes running on the same node share the
same clock and thus does not synchronize between them. The same information cannot be obtained
through the MPI API and thus Intel® Trace Collector is conservative and assumes that clock
synchronization is needed. This can be overridden with the SYNCED-HOST configuration option.
Another disadvantage is increased overhead and potentially implementation errors in MPI.
If the MPI has access to a better timer source (for example a global clock in the underlying
communication hardware), then using this timer would be advantageous.

High Precision Event Timers
This is a hardware timer source designed by Intel as replacement for the real time clock (RTC)
hardware commonly found in PC boards. Availability and support for it in BIOS and OS is still very
limited, therefore Intel® Trace Collector does not support it yet.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

149

Figure 5.5 getimeofday() with NTP

Intel® Trace Collector Reference

150

POSIX* clock_gettime
This is another API specified by the Single Unix Specification and POSIX*. It offers a monotonic
system clock which is not affected (for good or bad) by NTP, but the current implementation in
Linux*/glibc does not provide better timing through this API than through gettimeofday(). Intel®
Trace Collector does not support this API.

Secure Loading of Dynamic Link Libraries* on
Windows* OS
To improve security protections on Microsoft Windows* OS, Intel® Trace Collector provides the
enhanced security options for the loading of Dynamic-Link Libraries*. You can enable the secure DLL
loading mode, as well as define a set of directories in which the library will attempt to locate an
external DLL.

The security options are placed in the HKEY_LOCAL_MACHINE\Software\Intel\ITAC protected
Windows* registry key. The location prevents the options from being changed with non-
administrative privileges.

SecureDynamicLibraryLoading
Select the secure DLL loading mode.

Syntax
SecureDynamicLibraryLoading=<value>

Arguments

<value> Binary indicator

enable | yes | on | 1 Enable the secure DLL loading mode

disable | no | off | 0 Disable the secure DLL loading mode. This is the default value

Description
Use HKEY_LOCAL_MACHINE\Software\Intel\ITAC registry key to define the
SecureDynamicLibraryLoading registry entry. Set this entry to enable the secure DLL loading
mode.

VT_MPI_DLL and VT_FMPI_DLL
Specify the MPI library to be used in the secure DLL loading mode.

Syntax
VT_MPI_DLL=<library>
VT_FMPI_DLL=<library>

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

151

Arguments

<library> Specify the name of the library to be loaded

Description
In the secure DLL loading mode, the library changes the default-defined set of directories to locate
DLLs. Therefore, the current working directory and the directories that are listed in the PATH
environment variable may be ignored. To select a specific MPI library to be loaded, define the
VT_MPI_DLL and VT_FMPI_DLL entries of the HKEY_LOCAL_MACHINE\Software\Intel\ITAC
registry key. Specify the full path to the MPI library.

Note
The VT_MPI_DLL and VT_FMPI_DLL environment variables have no effect in the secure DLL loading
mode.

SecurePath
Specify a set of directories to locate an external DLL.

Syntax
SecurePath=<path>[;<path>[...]]

Arguments

<path> Specify paths to directories. The paths must be separated with
a semicolon ;.

Description
Use HKEY_LOCAL_MACHINE\Software\Intel\ITAC registry key to define the SecurePath
registry entry. Set this entry to specify a set of directories to locate loaded DLLs in the secure DLL
loading mode. Use a safe set of directories instead of some publicly writable directories to avoid
insecure library loading.

Note
Use this option if the static tracing library VT*.lib is linked into the executable or if the tracing
library is unable to load a DLL in the secure DLL loading mode. The option has no effect if the secure
DLL loading mode is turned off.

Intel® Trace Collector for Intel® oneAPI User and Reference Guide

153

Appendix A Copyright and Licenses
The MPI datatype hash code was developed by Julien Langou and George Bosilca, University of
Tennessee, and is used with permission under the following license:

Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.

$COPYRIGHT$

Additional copyrights may follow

$HEADER$

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer listed in this license
in the documentation and/or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS

 AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

 AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING

 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

[1] This is similar to the method described in "Collective Error Detection for MPI Collective
Operations", Chris Falzone, Anthony Chan, Ewing Lusk, William Gropp,
http://www.mcs.anl.gov/~gropp/bib/papers/2005/collective-checking.pdf

[2] "Hash functions for MPI datatypes", Julien Langou, George Bosilca, Graham Fagg, Jack Dongarra,
http://www.cs.utk.edu/~library/TechReports/2005/ut-cs-05-552.pdf

1

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

>Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

No license (express or implied, by estoppel or otherwise) to any intellectual property
rights is granted by this document.

The products described may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

	Introduction
	Introduction
	Product Components
	Compatibility with MPI Implementations
	What's New
	Intel® Trace Collector 2020
	Intel® Trace Collector 2019
	Intel® Trace Collector 2018
	Intel® Trace Collector 2017

	About this Document
	Note

	Related Information

	User Guide
	User Guide
	Tracing MPI Applications
	Tracing MPI Applications
	Tracing Conventional MPI Applications
	Tracing MPI Applications in Python*
	Tracing on Linux* OS
	Tracing without rebuilding
	Relinking with profiling library
	Note

	Tracing on Windows* OS

	Tracing Failing MPI Applications
	Usage Instructions
	How it Works
	Possible Failures

	Tracing OpenSHMEM Applications
	Note

	Tracing MPI File IO
	Handling of Communicator Names

	Tracing MPI Load Imbalance
	Known Limitations

	Tracing User Defined Events
	Automatic Function Instrumentation
	Using Intel® Compilers
	Using GCC*
	Folding
	C++ Name Demangling

	Manual Source Code Instrumentation
	Using the Dummy Libraries

	Configuring Intel® Trace Collector
	Using Configuration File
	Note

	Using Environment Variables
	Note

	Using Command-Line Options
	Note

	Protocol File
	See Also

	Filtering Trace Data
	Filtering by Collective and P2P Operations
	Note

	Filtering by Specific Functions
	Basic Function Filtering
	Example

	Advanced Function Filtering
	Entry/Exit Trigger
	Counter State
	Folding
	Caller

	Filtering by Ranks

	Recording OpenMP* Regions Information
	Note
	See Also

	Tracing System Calls (Linux* OS)
	Note
	See Also

	Collecting Lightweight Statistics
	Usage Instructions
	TIP

	Output Format
	See Also

	Recording Source Location Information
	See Also

	Recording Hardware Performance Information (Linux* OS)
	Recording Operating System Counters
	See Also

	Tracing Library Calls
	Note
	Examples

	Correctness Checking
	Correctness Checking
	Correctness Checking of MPI Applications
	Linux* OS
	Windows* OS
	See Also

	Running with Valgrind* (Linux* OS)
	Configuration
	CHECK
	PCTRACE
	DEADLOCK-TIMEOUT
	DEADLOCK-WARNING
	VERBOSE
	See Also

	Analyzing the Results
	Note
	Note

	Debugger Integration
	Debugger Integration
	TotalView* Debugger
	See Also

	GNU* Symbolic Debugger
	Allinea* Distributed Debugging Tool* (DDT*)
	See Also

	Tracing Distributed Non-MPI Applications
	Design
	Note

	Using VTserver
	Initialize and Finalize
	Running without VTserver
	Spawning Processes
	Tracing Events
	Usage
	Signals
	Examples
	See Also

	Intel® Trace Collector Reference
	Intel® Trace Collector Reference
	API Reference
	API Reference
	Concepts
	General Macros and Errors
	#define VT_VERSION
	#define VT_VERSION_COMPATIBILITY
	enum _VT_ErrorCode

	Initialization, Termination and Control
	Initialization, Termination and Control
	VT_initialize
	Description
	Fortran
	Parameters
	Return values

	VT_finalize
	Description
	Fortran
	Return values

	VT_getrank
	Description
	Note

	Fortran
	Return values

	VT_registerthread
	Description
	Fortran
	Parameters
	Return values

	VT_registernamed
	Description
	Parameters
	Return values

	VT_registerprefixed
	Description
	Parameters
	Return values

	VT_getthrank
	Description
	Fortran
	Return values

	VT_traceon
	Description
	Fortran

	VT_traceoff
	Description
	Fortran

	VT_tracestate
	Description
	Note

	Fortran
	Return values

	VT_symstate
	Description
	Note

	Fortran
	Parameters
	Return values

	VT_flush
	Description
	Fortran
	Return values

	VT_timestamp
	Description
	Fortran
	Return values

	VT_timestart
	Description
	Fortran
	Return values

	VT_setfinalizecallback
	Description
	Parameters
	Return values

	VT_getdescription
	Description
	Parameters
	Return values

	VT_countsetcallback
	Description
	Parameters
	Return values

	Defining and Recording Source Locations
	VT_scldef
	Description
	Fortran
	Parameters
	Return values

	#define VT_NOSCL
	VT_sclstack
	Description
	Parameters
	Return values

	VT_thisloc
	Description
	Fortran
	Parameters
	Return values

	Defining and Recording Functions or Regions
	Defining and Recording Functions or Regions
	New Interface
	VT_classdef
	Description
	Fortran
	Parameters
	Return values

	VT_funcdef
	Description
	Fortran
	Parameters
	Return values

	#define VT_NOCLASS

	Old Interface
	VT_symdef
	Description
	Fortran
	Parameters
	Return values

	State Changes
	VT_begin
	Description
	Fortran
	Parameters
	Return values

	VT_beginl
	Description
	Fortran

	VT_end
	Description
	Fortran
	Parameters
	Return values

	VT_endl
	Description
	Fortran

	VT_enter
	Description
	Fortran
	Parameters
	Return values

	VT_leave
	Description
	Fortran
	Parameters
	Return values

	VT_enterstate
	Description
	Examples
	Fortran
	Parameters
	Return values

	VT_wakeup
	Description
	Fortran
	Return values

	Defining and Recording Scopes
	VT_scopedef
	Description
	Fortran
	Parameters
	Return values

	VT_scopebegin
	Description
	Fortran
	Parameters
	Return values

	VT_scopeend
	Description
	Fortran
	Parameters

	Defining Groups of Processes
	enum VT_Group
	VT_getprocid
	Description
	Fortran
	Parameters
	Return values

	VT_getthreadid
	Description
	Fortran
	Parameters
	Return values

	VT_groupdef
	Description
	Fortran
	Parameters
	Return values

	Defining and Recording Counters
	enum VT_CountData
	enum VT_CountDisplay
	enum VT_CountScope
	VT_countdef
	Description
	Fortran
	Parameters
	Return values

	VT_countval
	Description
	Fortran
	Parameters
	Return Values

	Recording Communication Events
	enum _VT_CommIDs
	VT_log_sendmsg
	Description
	Fortran
	Parameters
	Return values

	VT_log_recvmsg
	Description
	Fortran
	Parameters
	Return values

	VT_log_msgevent
	Description
	Fortran
	Parameters
	Return values

	VT_log_op
	Description
	Fortran
	Parameters
	Return values

	VT_log_opevent
	Description
	Fortran
	Parameters
	Return values

	enum _VT_OpTypes
	VT_begin_unordered
	Description
	Fortran

	VT_end_unordered
	Description
	Fortran

	Additional API Calls in libVTcs
	VT_abort
	Description
	Return values

	VT_clientinit
	Description
	Parameters
	Return values

	VT_serverinit
	Description
	Parameters
	Return values

	VT_attach
	Description
	Parameters
	Return values

	VT_get_parent
	Description
	Return values

	C++ API
	C++ API
	VT_FuncDef Class Reference
	Description
	Constructor & Destructor Documentation
	Member Function Documentation
	int m_handle
	const char *m_symname
	const char *m_classname
	int GetHandle()

	VT_SclDef Class Reference
	Description
	Constructor & Destructor Documentation
	Member Function Documentation
	int m_handle
	const char *m_file
	int m_line
	int GetHandle()

	#define VT_SCL_DEF_CXX(_sclvar) static VT_SclDef _sclvar(__FILE__, __LINE__)

	VT_Function Class Reference
	Description
	Constructor & Destructor Documentation
	VT_Function(const char *symname, const char *classname)
	VT_Function(const char *symname, const char *classname, const char *file, int line)
	VT_Function(VT_FuncDef &funcdef)
	VT_Function (VT_FuncDef &funcdef, VT_SclDef &scldef)
	~VT_Function()

	VT_Region Class Reference
	Description
	Constructor & Destructor Documentation
	VT_Region()
	VT_Region(const char *symname, const char *classname)
	VT_Region(const char *symname, const char *classname, const char *file, int line)
	VT_Region(VT_FuncDef &funcdef)
	VT_Region(VT_FuncDef &funcdef, VT_SclDef &scldef)
	~VT_Region()

	Member Function Documentation
	void begin(const char *symname, const char *classname)
	void begin(const char *symname, const char *classname, const char *file, int line)
	void begin(VT_FuncDef &funcdef)
	void begin(VT_FuncDef &funcdef, VT_SclDef &scldef)
	void end()
	void end(const char *file, int line)
	void end (VT_SclDef &scldef)

	Configuration Reference
	Configuration Reference
	Configuration File Format
	General Syntax
	Syntax of Parameters
	Time Value
	Boolean Value
	Number of Bytes

	Example

	Protocol File
	INFO NUMPROCS
	INFO CLUSTERDEF
	INFO PROCESS
	INFO BINMODE

	Configuration Options
	Configuration Options
	ACTIVITY
	Syntax
	Variable
	Default
	Description

	ALTSTACK
	Syntax
	Variable
	Description

	AUTOFLUSH
	Syntax
	Variable
	Default
	Description

	CHECK
	Syntax
	Variable
	Default
	Description

	CHECK-LEAK-REPORT-SIZE
	Syntax
	Variable
	Default
	Description

	CHECK-MAX-DATATYPES
	Syntax
	Variable
	Default
	Description

	CHECK-MAX-ERRORS
	Syntax
	Variable
	Default
	Description

	CHECK-MAX-PENDING
	Syntax
	Variable
	Default
	Description

	CHECK-MAX-REPORTS
	Syntax
	Variable
	Default
	Description

	CHECK-MAX-REQUESTS
	Syntax
	Variable
	Default
	Description

	CHECK-SUPPRESSION-LIMIT
	Syntax
	Variable
	Default
	Description
	Note

	CHECK-TIMEOUT
	Syntax
	Variable
	Default
	Description

	CHECK-TRACING
	Syntax
	Variable
	Default
	Description

	CLUSTER
	Syntax
	Variable
	Description

	COMPRESS-RAW-DATA
	Syntax
	Variable
	Default
	Description

	COUNTER
	Syntax
	Variable
	Description

	CURRENT-DIR
	Syntax
	Variable
	Description

	DEADLOCK-TIMEOUT
	Syntax
	Variable
	Default
	Description

	DEADLOCK-WARNING
	Syntax
	Variable
	Default
	Description

	DEMANGLE
	Syntax
	Variable
	Default
	Description
	Note

	DETAILED-STATES
	Syntax
	Variable
	Default
	Description

	ENTER-USERCODE
	Syntax
	Variable
	Default
	Description

	ENVIRONMENT
	Syntax
	Variable
	Default
	Description

	EXTENDED-VTF
	Syntax
	Variable
	Default
	Description

	FLUSH-PID
	Syntax
	Variable
	Default
	Description

	FLUSH-PREFIX
	Syntax
	Variable
	Default
	Description

	GROUP
	Syntax
	Variable
	Description

	HANDLE-SIGNALS
	Syntax
	Variable
	Default
	Description

	INTERNAL-MPI
	Syntax
	Variable
	Default
	Description

	KEEP-RAW-EVENTS
	Syntax
	Variable
	Default
	Description

	LOGFILE-FORMAT
	Syntax
	Variable
	Default
	Description

	LOGFILE-NAME
	Syntax
	Variable
	Description

	LOGFILE-PREFIX
	Syntax
	Variable
	Description

	LOGFILE-RANK
	Syntax
	Variable
	Default
	Description

	MEM-BLOCKSIZE
	Syntax
	Variable
	Default
	Description

	MEM-FLUSHBLOCKS
	Syntax
	Variable
	Default
	Description

	MEM-INFO
	Syntax
	Variable
	Default
	Description

	MEM-MAXBLOCKS
	Syntax
	Variable
	Default
	Description

	MEM-MINBLOCKS
	Syntax
	Variable
	Default
	Description

	MEM-OVERWRITE
	Syntax
	Variable
	Default
	Description

	NMCMD
	Syntax
	Variable
	Description

	OS-COUNTER-DELAY
	Syntax
	Variable
	Default
	Description

	PCTRACE
	Syntax
	Variable
	Default
	Description

	PCTRACE-CACHE
	Syntax
	Variable
	Default
	Description

	PCTRACE-FAST
	Syntax
	Variable
	Default
	Description

	PLUGIN
	Syntax
	Variable
	Description

	PROCESS
	Syntax
	Variable
	Default
	Description

	PROGNAME
	Syntax
	Variable
	Description

	PROTOFILE-NAME
	Syntax
	Variable
	Description

	STATISTICS
	Syntax
	Variable
	Default
	Description

	STATE
	Syntax
	Variable
	Default
	Description

	STF-PROCS-PER-FILE
	Syntax
	Variable
	Default
	Description

	STF-USE-HW-STRUCTURE
	Syntax
	Variable
	Default
	Description

	STOPFILE-NAME
	Syntax
	Variable
	Description

	SYMBOL
	Syntax
	Variable
	Default
	Description

	SYNC-MAX-DURATION
	Variable
	Default
	Description

	SYNC-MAX-MESSAGES
	Syntax
	Variable
	Default
	Description

	SYNC-PERIOD
	Syntax
	Variable
	Default
	Description

	SYNCED-CLUSTER
	Syntax
	Variable
	Default
	Description

	SYNCED-HOST
	Syntax
	Variable
	Default
	Description

	TIME-WINDOWS (Experimental)
	Syntax
	Variable
	Description
	Note

	TIMER
	Syntax
	Variable
	Default
	Description

	TIMER-SKIP
	Syntax
	Variable
	Description

	UNIFY-COUNTERS
	Syntax
	Variable
	Default
	Description

	UNIFY-GROUPS
	Syntax
	Variable
	Default
	Description

	UNIFY-SCLS
	Syntax
	Variable
	Default
	Description

	UNIFY-SYMBOLS
	Syntax
	Variable
	Default
	Description

	VERBOSE
	Syntax
	Variable
	Default
	Description

	Correctness Checking Errors
	Correctness Checking Errors
	Supported Errors
	Local Errors
	Global Errors

	How It Works
	How It Works
	See Also

	Parameter Checking
	Premature Exit
	Overlapping Memory
	Detecting Illegal Buffer Modifications
	Buffer Given to MPI Cannot Be Read or Written
	Distributed Memory Checking
	See Also

	Illegal Memory Access
	Request Handling
	Datatype Handling
	Buffered Sends
	Deadlocks
	Checking Message Transmission
	Datatype Mismatches
	Data Modified during Transmission
	Checking Collective Operations
	Freeing Communicators

	Structured Tracefile Format
	Structured Tracefile Format
	STF Components
	See Also

	Single-File STF
	See Also

	Configuring STF

	stftool Utility
	stftool Utility
	Synopsis
	Description

	stftool Utility Options
	convert
	delete-raw-data
	dump
	extended-vtf
	logfile-format
	logfile-name
	matched-vtf
	merge
	move
	print-errors
	print-files
	print-reports
	print-statistics
	print-threads
	remove
	request
	sumdata
	Note

	ticks
	verbose

	Expanded ASCII output of STF Files
	Synopsis
	Description
	Output
	Examples

	Time Stamping
	Time Stamping
	Clock Synchronization
	VT_timesync
	Description
	Fortran

	Choosing a Timer
	Choosing a Timer
	gettimeofday/_ftime
	QueryPerformanceCounter
	CPU Cycle Counter
	See Also

	Normalized CPU Cycle Counter
	MPI_Wtime()
	High Precision Event Timers
	POSIX* clock_gettime

	Secure Loading of Dynamic Link Libraries* on Windows* OS
	SecureDynamicLibraryLoading
	Syntax
	Arguments
	Description

	VT_MPI_DLL and VT_FMPI_DLL
	Syntax
	Arguments
	Description
	Note

	SecurePath
	Syntax
	Arguments
	Description
	Note

	Appendix A Copyright and Licenses
	Notices and Disclaimers

