oneapi::mkl::rng::weibull
¶
Generates Weibull distributed random numbers.
Syntax
namespace oneapi::mkl::rng { template<typename RealType = float, typename Method = weibull_method::by_default> class weibull { public: using method_type = Method; using result_type = RealType; weibull(): weibull((Real_Type)1.0, (RealType)0.0, (RealType)1.0){} explicit weibull(RealType alpha, RealType a, RealType beta); explicit weibull(const param_type& pt); RealType alpha() const; RealType a() const; RealType beta() const; param_type param() const; void param(const param_type& pt); }; }
Devices supported: Host, CPU, and GPU.
Include Files
oneapi/mkl/rng.hpp
Description
The oneapi::mkl::rng::weibull class object is used in the
oneapi::mkl::rng::generate
function to provide Weibull distributed random numbers with displacementa
, scalefactor β, and shape α, whereα, β, a∈R ; α > 0, β > 0
.The probability density function is given by:
F_{a, \alpha, \beta}(x) = \begin{cases} \frac{\alpha}{\beta^\alpha} (x - a)^{\alpha - 1} \exp \left( - {\left( \frac{x-a}{\beta} \right)}^{\alpha} \right), & x \geq a \\ 0, & x < a \end{cases}
The cumulative distribution function is as follows:
F_{a, \alpha, \beta}(x) = \begin{cases} 1 - \exp \left( - {\left( \frac{x-a}{\beta} \right)}^{\alpha} \right), & x \geq a \\ 0, & x < a \end{cases}, - \infty < x < + \infty
Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at https://www.intel.com/PerformanceIndex. Notice revision #20201201
Template Parameters
typename RealType = float
Type of the produced values. The specific values are as follows:
float
double
typename Method = oneapi::mkl::rng::weibull_method::by_default
Generation method. The specific values are as follows:
oneapi::mkl::rng::weibull_method::icdf
oneapi::mkl::rng::weibull_method::icdf_accurate
See brief descriptions of the methods in Distributions Template Parameter Method
Input Parameters
Name
Type
Description
alpha
RealType (float, double)
Shape α
a
RealType (float, double)
Displacement
a
.beta
RealType (float, double)
Scalefactor β.