Intel® oneAPI Math Kernel Library Developer Reference - Fortran

mkl_sparse_sp2m

Computes the product of two sparse matrices. The result is stored in a newly allocated sparse matrix.

Syntax

stat = mkl_sparse_sp2m (opA, descrA, A, opB, descrB, B, request, C)

Include Files

Description

The mkl_sparse_sp2m routine performs a matrix-matrix operation:

C := opA(A) *opB(B)

where A,B, and C are sparse matrices, opA and opB are matrix modifiers for matrices A and B, respectively.

Input Parameters

opA

C_INT.

Specifies operation on input matrix.

SPARSE_OPERATION_NON_TRANSPOSE

Non-transpose, op(A)=A

SPARSE_OPERATION_TRANSPOSE

Transpose, op(A)=AT

SPARSE_OPERATION_CONJUGATE_TRANSPOSE

Conjugate transpose, op(A)=AH

opB

C_INT.

Specifies operation on input matrix.

SPARSE_OPERATION_NON_TRANSPOSE

Non-transpose, op(B)=B

SPARSE_OPERATION_TRANSPOSE

Transpose, op(B)=BT

SPARSE_OPERATION_CONJUGATE_TRANSPOSE

Conjugate transpose, op(B)=BH

descrA

MATRIX_DESCR.

Structure that specifies sparse matrix properties.

Note

Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.

sparse_matrix_type_ttype specifies the type of sparse matrix.

SPARSE_MATRIX_TYPE_GENERAL

The matrix is processed as is.

SPARSE_MATRIX_TYPE_SYMMETRIC

The matrix is symmetric (only the requested triangle is processed).

SPARSE_MATRIX_TYPE_HERMITIAN

The matrix is Hermitian (only the requested triangle is processed).

SPARSE_MATRIX_TYPE_TRIANGULAR

The matrix is triangular (only the requested triangle is processed).

SPARSE_MATRIX_TYPE_DIAGONAL

The matrix is diagonal (only diagonal elements are processed).

SPARSE_MATRIX_TYPE_BLOCK_TRIANGULAR

The matrix is block-triangular (only the requested triangle is processed). This applies to BSR format only.

SPARSE_MATRIX_TYPE_BLOCK_DIAGONAL

The matrix is block-diagonal (only the requested triangle is processed). This applies to BSR format only.

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

SPARSE_FILL_MODE_LOWER

The lower triangular matrix is processed.

SPARSE_FILL_MODE_UPPER

The upper triangular matrix is processed.

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

SPARSE_DIAG_NON_UNIT

Diagonal elements must not be equal to 1.

SPARSE_DIAG_UNIT

Diagonal elements are equal to 1.

descrB

C_INT.

Structure that specifies sparse matrix properties.

Note

Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.

sparse_matrix_type_ttype specifies the type of sparse matrix.

SPARSE_MATRIX_TYPE_GENERAL

The matrix is processed as is.

SPARSE_MATRIX_TYPE_SYMMETRIC

The matrix is symmetric (only the requested triangle is processed).

SPARSE_MATRIX_TYPE_HERMITIAN

The matrix is Hermitian (only the requested triangle is processed).

SPARSE_MATRIX_TYPE_TRIANGULAR

The matrix is triangular (only the requested triangle is processed).

SPARSE_MATRIX_TYPE_DIAGONAL

The matrix is diagonal (only diagonal elements are processed).

SPARSE_MATRIX_TYPE_BLOCK_TRIANGULAR

The matrix is block-triangular (only the requested triangle is processed). This applies to BSR format only.

SPARSE_MATRIX_TYPE_BLOCK_DIAGONAL

The matrix is block-diagonal (only the requested triangle is processed). This applies to BSR format only.

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

SPARSE_FILL_MODE_LOWER

The lower triangular matrix is processed.

SPARSE_FILL_MODE_UPPER

The upper triangular matrix is processed.

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

SPARSE_DIAG_NON_UNIT

Diagonal elements must not be equal to 1.

SPARSE_DIAG_UNIT

Diagonal elements are equal to 1.

A

SPARSE_MATRIX_T.

Handle which contains the sparse matrix A.

B

SPARSE_MATRIX_T.

Handle which contains the sparse matrix B.

request

C_INT.

Specifies whether the full computations are performed at once or using the two-stage algorithm. See Two-stage Algorithm for Inspector-executor Sparse BLAS Routines.

SPARSE_STAGE_NNZ_COUNT Only rowIndex (BSR/CSR format) or colIndex (CSC format) array of the matrix is computed internally. The computation can be extracted to measure the memory required for full operation.
SPARSE_STAGE_FINALIZE_MULT_NO_VAL Finalize computations of the matrix structure (values will not be computed). Use only after the call with SPARSE_STAGE_NNZ_COUNT parameter.
SPARSE_STAGE_FINALIZE_MULT Finalize computation. Can also be used when the matrix structure remains unchanged and only values of the resulting matrix C need to be recomputed.
SPARSE_STAGE_FULL_MULT_NO_VAL Perform computations of the matrix structure.
SPARSE_STAGE_FULL_MULT Perform the entire computation in a single step.

Output Parameters

C

SPARSE_MATRIX_T.

Handle which contains the resulting sparse matrix.

stat

INTEGER.

Value indicating whether the operation was successful or not, and why:

SPARSE_STATUS_SUCCESS

The operation was successful.

SPARSE_STATUS_NOT_INITIALIZED

The routine encountered an empty handle or matrix array.

SPARSE_STATUS_ALLOC_FAILED

Internal memory allocation failed.

SPARSE_STATUS_INVALID_VALUE

The input parameters contain an invalid value.

SPARSE_STATUS_EXECUTION_FAILED

Execution failed.

SPARSE_STATUS_INTERNAL_ERROR

An error in algorithm implementation occurred.

SPARSE_STATUS_NOT_SUPPORTED

The requested operation is not supported.