gerc (USM Version)¶
Computes a rank-1 update (conjugated) of a general complex matrix.
Description¶
The gerc
routines compute a scalar-vector-vector product and add the
result to a general matrix. The operation is defined as
where:
alpha
is a scalar,A
is anm
-by-n
matrix,x
is a vector of lengthm
,y
is vector of lengthn
.
API¶
Syntax¶
namespace oneapi::mkl::blas::column_major {
sycl::event gerc(sycl::queue &queue,
std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event gerc(sycl::queue &queue,
std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})
}
The USM version of gerc
supports the following precisions and devices.
T |
Devices Supported |
---|---|
|
Host, CPU, and GPU |
|
Host, CPU, and GPU |
Input Parameters¶
- exec_queue
The queue where the routine should be executed.
- m
Number of rows of
A
. Must be at least zero.- n
Number of columns of
A
. Must be at least zero.- alpha
Scaling factor for the matrix-vector product.
- x
Pointer to the input vector
x
. The array holding input vectorx
must be of size at least (1 + (m
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.- y
Pointer to the input/output vector
y
. The array holding the input/output vectory
must be of size at least (1 + (n
- 1)*abs(incy
)). See Matrix Storage for more details.- incy
Stride of vector
y
.- a
The array holding input matrix
A
must have size at leastlda
*n
if column major layout is used, or at leastlda
*m
if row major layout is used.- lda
Leading dimension of matrix
A
. It must be positive and at leastm
if column major layout is used or at leastn
if row major layout is used.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters¶
- a
Pointer to the updated matrix A.
Return Values¶
Output event to wait on to ensure computation is complete.