
Intel® MPI Library for Intel® oneAPI on
Windows* OS

Developer Reference

Contents

Intel® MPI Library Developer Reference for Windows* OS.. 3

Introduction ..4
Introducing Intel® MPI Library ...4
What's New ..4
Notational Conventions ..5
Related Information...5
User Authorization...5

Command Reference.. 6
Compiler Commands..6
mpiexec.hydra ..6

Global Hydra Options...7
Local Hydra Options .. 13

cpuinfo .. 13
impi_info.. 16
mpitune ... 16

mpitune Configuration Options.. 18

Environment Variable Reference .. 23
Compilation Environment Variables .. 23
Hydra Environment Variables .. 25
I_MPI_ADJUST Family Environment Variables .. 33
Tuning Environment Variables ... 40

Autotuning ... 42
Main ThreadProcess Pinning ... 43

Environment Variables for Main ThreadProcess Pinning......................... 44
Interoperability with OpenMP* API... 49

Environment Variables for Fabrics Control ... 57
Communication Fabrics Control ... 57
OFI*-capable Network Fabrics Control.. 57

Environment Variables for Memory Policy Control... 58
Other Environment Variables... 61

Notices and Disclaimers.. 70

2

Intel® MPI Library Developer
Reference for Windows* OS
Documentation for older versions of the Intel® MPI Library are available for download only. For a list of
available documentation downloads by product version, see Download Documentation for Intel Parallel Studio
XE. To download the previous versions of Intel MPI Library documentation, refer to this page.

What's New

This Developer Reference provides you with the complete reference for the Intel® MPI Library. It is intended
to help a user fully utilize the Intel MPI Library functionality. For examples and detailed functionality
description, please refer to the Intel MPI Library Developer Guide.

The following are some popular topics in the Intel MPI Library Developer Reference:

Command Reference
Command Reference provides reference information on compilation and runtime commands (mpirun, cpuinfo,
impi_info) and describes how to use these commands.

Environment Variable Reference
Environment Variable Reference provides syntax, arguments, and descriptions for Fabrics Control, Tuning,
Autotuning, Main Thread Pinning, and I_MPI_ADJUST Family environment variables.

Hydra Global Options and Environment Variables
Describes the Global Options and provides Environment Variables used with the Hydra process manager.

Mpitune Configuration Options
Tune your MPI application with the mpitune utility.

Intel® MPI Library Developer Reference for Windows* OS

3

HTTPS://SOFTWARE.INTEL.COM/CONTENT/WWW/US/EN/DEVELOP/ARTICLES/DOWNLOAD-DOCUMENTATION-INTEL-PARALLEL-STUDIO-XE-CURRENT-PREVIOUS.HTML
HTTPS://SOFTWARE.INTEL.COM/CONTENT/WWW/US/EN/DEVELOP/ARTICLES/DOWNLOAD-DOCUMENTATION-INTEL-PARALLEL-STUDIO-XE-CURRENT-PREVIOUS.HTML
https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-documentation-overview.html

Introduction
This Developer Reference provides you with the complete reference for the Intel® MPI Library. It is intended
to help an experienced user fully utilize the Intel MPI Library functionality. You can freely redistribute this
document in any desired form.

Document Organization
Section Description
Section 1.Introduction Introduces this document and the Intel MPI Library.
Section 2.Command Reference Describes compilation and job startup commands and

their options.
Section 3. Environment Variable Reference Describes environment variables .
Section 4.Miscellaneous Contains information not related to the sections above.

Introducing Intel® MPI Library
Intel® MPI Library is a multi-fabric message passing library that implements the Message Passing Interface,
v3.1 (MPI-3.1) specification. It provides a standard library across Intel® platforms that enable adoption of
MPI-3.1 functions as their needs dictate.

Intel® MPI Library enables developers to change or to upgrade processors and interconnects as new
technology becomes available without changes to the software or to the operating environment.

You can get the latest information for the Intel® MPI Library at https://software.intel.com/intel-mpi-library.

What's New
This page lists changes to the product that are reflected in the documentation. For a list of all changes, refer
to the Release Notes.

Intel® oneAPI Gold
• No documentation changes.

Intel oneAPI Beta 10
• Added Intel® Ethernet 800 Series support.
• Added MPI + OpenMP offload examples.
• Added new algorithm for MPI_Sendrecv_replace (I_MPI_ADJUST_SENDRECV_REPLACE=2).

Intel oneAPI Beta 04 – 09
• No documentation changes.

Intel oneAPI Beta 03
• Reworked directory layout:

• Removed intel64/.
• Mpivars.[c]sh and mpi modulefile moved to env/.
• Mpivars.[c]sh renamed to vars.[c]sh.

• Removed deprecated symbolic links.
• Removed static libraries for debug configurations.

4

https://software.intel.com/intel-mpi-library
https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-release-notes.html

Notational Conventions
The following conventions are used in this document.

This type style Document or product names
This type style Hyperlinks
This type style Commands, arguments, options, file names
THIS_TYPE_STYLE Environment variables
<this type style> Placeholders for actual values
[items] Optional items
{ item | item } Selectable items separated by vertical bar(s)

Related Information

Description
The following related documents that might be useful to the user:

• Product Web Site
• Intel® MPI Library Support
• Intel® Cluster Tools Products
• Intel® Software Development Products

User Authorization
The Intel® MPI Library supports several authentication methods under Windows* OS:

I_MPI_AUTH_METHOD

Select a user authorization method.

Syntax
I_MPI_AUTH_METHOD=<method>

Arguments
<method> Define the authorization method

password Use the password-based authorization. This is the default
value.

delegate Use the domain-based authorization with delegation
ability.

impersonate Use the limited domain-based authorization. You will not
be able to open files on remote machines or access
mapped network drives.

Description
Set this environment variable to select a desired authorization method. If this environment variable is not
defined, mpiexec uses the password-based authorization method by default. Alternatively, you can change
the default behavior by using the -delegate or -impersonate options.

For more details, see the Developer Guide, section Installation and Prerequisites > User Authorization.

Introduction

5

http://www.intel.com/go/mpi
http://www.intel.com/software/products/support/mpi
https://software.intel.com/content/www/us/en/develop/tools/parallel-studio-xe.html
http://www.intel.com/software/products

Command Reference
This section provides information on different command types and how to use these commands:

• Compilation Commands lists the available Intel® MPI Library compiler commands, related options, and
environment variables.

• mpiexec gives full information on commands, options and environment variables for the Hydra process
manager.

• cpuinfo provides the syntax, arguments, description and output examples for the cpuinfo utility.
• impi_info provides information on available environment variables.
• mpitune provides information on configuration options for the mpitune utility.

Compiler Commands
The following table lists the available Intel® MPI Library compiler commands with their underlying compilers
and programming languages.

Intel® MPI Library Compiler Wrappers
Compiler Command Underlying Compiler Supported Language(s)

Common Compilers
mpicc.bat cl.exe C
mpicxx.bat cl.exe C++
mpifc.bat ifort.exe Fortran 77/Fortran 95
Microsoft* Visual C++* Compilers
mpicl.bat cl.exe C/C++
Intel® Fortran, C++ Compilers
mpiicc.bat icl.exe C
mpiicpc.bat icl.exe C++
mpiifort.bat ifort.exe Fortran 77/Fortran 95

NOTES:

• Compiler commands are available only in the Intel® MPI Library Software Development Kit (SDK).
• For the supported versions of the listed compilers, refer to the Release Notes.
• Compiler wrapper scripts are located in the <install-dir>\bin directory.
• The environment settings can be established by running the <install-dir>\env\vars.bat script. To

use a specific library configuration, pass the release or debug arguments to the script to switch to the
corresponding configuration. The ordinary multi-threaded optimized library is chosen by default.
Alternatively, you can use the I_MPI_LIBRARY_KIND environment variable to specify a configuration and
source the script without arguments.

• Ensure that the corresponding underlying compiler is already in your PATH. If you use the Intel®
compilers, run the vars.bat script from the installation directory to set up the compiler environment.

• To display mini-help of a compiler command, execute it without any parameters.

mpiexec.hydra
Launches an MPI job using the Hydra process manager.

Syntax
mpiexec <g-options> <l-options> <executable>
or

mpiexec <g-options> <l-options> <executable1> : <l-options> <executable2>

6

Arguments
<g-options> Global options that apply to all MPI processes

<l-options> Local options that apply to a single argument set

<executable> <name>.exe or path \name of the executable file

Description
Use the mpiexec utility to run MPI applications using the Hydra process manager.

Use the first short command-line syntax to start all MPI processes of the <executable> with the single set
of arguments. For example, the following command executes test.exe over the specified processes and
hosts:

> mpiexec -f <hostfile> -n <# of processes> test.exe
where:

• <# of processes> specifies the number of processes on which to run the test.exe executable
• <hostfile> specifies a list of hosts on which to run the test.exe executable

Use the second long command-line syntax to set different argument sets for different MPI program runs. For
example, the following command executes two different binaries with different argument sets:

> mpiexec -f <hostfile> -env <VAR1> <VAL1> -n 2 prog1.exe : ^
-env <VAR2> <VAL2> -n 2 prog2.exe

NOTE
You need to distinguish global options from local options. In a command-line syntax, place the local
options after the global options.

Global Hydra Options
This section describes the global options of the Intel® MPI Library's Hydra process manager. Global options
are applied to all arguments sets in the launch command. Argument sets are separated by a colon ':'.

-tune <filename>

Use this option to specify the file name that contains the tuning data in a binary format.

-usize <usize>

Use this option to set MPI_UNIVERSE_SIZE, which is available as an attribute of the MPI_COMM_WORLD.

<size> Define the universe size

SYSTEM Set the size equal to the number of cores passed to
mpiexec through the hostfile or the resource manager.

INFINITE Do not limit the size. This is the default value.

<value> Set the size to a numeric value ≥ 0.

-hostfile <hostfile> or -f <hostfile>

Use this option to specify host names on which to run the application. If a host name is repeated, this name
is used only once.

See also the I_MPI_HYDRA_HOST_FILE environment variable for more details.

NOTE
Use the following options to change the process placement on the cluster nodes:

Command Reference

7

• Use the -perhost, -ppn, and -grr options to place consecutive MPI processes on every host using the
round robin scheduling.

• Use the -rr option to place consecutive MPI processes on different hosts using the round robin
scheduling.

-machinefile <machine file> or -machine <machine file>

Use this option to control process placement through a machine file. To define the total number of processes
to start, use the -n option. For example:

> type machinefile
node0:2
node1:2
node0:1

-hosts-group

Use this option to set node ranges using brackets, commas, and dashes (like in Slurm* Workload Manager).

For more details, see the I_MPI_HYDRA_HOST_FILE environment variable in Hydra Environment Variables.

-silent-abort

Use this option to disable abort warning messages.

For more details, see the I_MPI_SILENT_ABORT environment variable in Hydra Environment Variables.

-nameserver

Use this option to specify the nameserver in the hostname:port format.

For more details, see the I_MPI_HYDRA_NAMESERVER environment variable in Hydra Environment Variables.

-genv <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI processes.

-genvall

Use this option to enable propagation of all environment variables to all MPI processes.

-genvnone

Use this option to suppress propagation of any environment variables to any MPI processes.

NOTE
The option does not work for localhost.

-genvexcl <list of env var names>

Use this option to suppress propagation of the listed environment variables to any MPI processes.

-genvlist <list>

Use this option to pass a list of environment variables with their current values. <list> is a comma
separated list of environment variables to be sent to all MPI processes.

-pmi-connect <mode>

Use this option to choose the caching mode of process management interface (PMI) message. Possible
values for <mode> are:

<mode> The caching mode to be used

nocache Do not cache PMI messages.

cache Cache PMI messages on the local pmi_proxy
management processes to minimize the number of PMI
requests. Cached information is automatically propagated
to child management processes.

lazy-cache cache mode with on-request propagation of the PMI
information.

8

alltoall Information is automatically exchanged between all
pmi_proxy before any get request can be done. This is
the default mode.

See the I_MPI_HYDRA_PMI_CONNECT environment variable for more details.

-perhost <# of processes >, -ppn <# of processes >, or -grr <# of processes>

Use this option to place the specified number of consecutive MPI processes on every host in the group using
round robin scheduling. See the I_MPI_PERHOST environment variable for more details.

NOTE
When running under a job scheduler, these options are ignored by default. To be able to control
process placement with these options, disable the I_MPI_JOB_RESPECT_PROCESS_PLACEMENT
variable.

-rr

Use this option to place consecutive MPI processes on different hosts using the round robin scheduling.
This option is equivalent to "-perhost 1". See the I_MPI_PERHOST environment variable for more
details.

-trace-pt2pt

Use this option to collect the information about point-to-point operations using Intel® Trace Analyzer and
Collector. The option requires that your application be linked against the Intel® Trace Collector profiling
library.

-trace-collectives

Use this option to collect the information about collective operations using Intel® Trace Analyzer and
Collector. The option requires that your application be linked against the Intel® Trace Collector profiling
library.

Command Reference

9

NOTE
Use the -trace-pt2pt and -trace-collectives to reduce the size of the resulting trace file or the
number of message checker reports. These options work with both statically and dynamically linked
applications.

-configfile <filename>

Use this option to specify the file <filename> that contains the command-line options with one
executable per line. Blank lines and lines that start with '#' are ignored. Other options specified in the
command line are treated as global.

You can specify global options in configuration files loaded by default (mpiexec.conf in
<installdir>/etc, ~/.mpiexec.conf, and mpiexec.conf in the working directory). The remaining
options can be specified in the command line.

-branch-count <num>

Use this option to restrict the number of child management processes launched by the Hydra process
manager, or by each pmi_proxy management process.

See the I_MPI_HYDRA_BRANCH_COUNT environment variable for more details.

-pmi-aggregate or -pmi-noaggregate

Use this option to switch on or off, respectively, the aggregation of the PMI requests. The default value
is -pmi-aggregate, which means the aggregation is enabled by default.

See the I_MPI_HYDRA_PMI_AGGREGATE environment variable for more details.

-nolocal

Use this option to avoid running the <executable> on the host where mpiexec is launched. You can use
this option on clusters that deploy a dedicated main node for starting the MPI jobs and a set of dedicated
compute nodes for running the actual MPI processes.

-hosts <nodelist>

Use this option to specify a particular <nodelist> on which the MPI processes should be run. For example,
the following command runs the executable a.out on the hosts host1 and host2:

> mpiexec -n 2 -ppn 1 -hosts host1,host2 test.exe

NOTE
If <nodelist> contains only one node, this option is interpreted as a local option. See Local Options for
details.

-iface <interface>

Use this option to choose the appropriate network interface. For example, if the IP emulation of your
InfiniBand* network is configured to ib0, you can use the following command.

> mpiexec -n 2 -iface ib0 test.exe
See the I_MPI_HYDRA_IFACE environment variable for more details.

Arguments
-l, -prepend-rank

Use this option to insert the MPI process rank at the beginning of all lines written to the standard output.

10

-s <spec>

Use this option to direct standard input to the specified MPI processes.

Arguments
<spec> Define MPI process ranks

all Use all processes.

none Do not direct standard output to any processes.

<l>,<m>,<n> Specify an exact list and use processes <l>, <m> and
<n> only. The default value is zero.

<k>,<l>-<m>,<n> Specify a range and use processes <k>, <l> through
<m>, and <n>.

-noconf

Use this option to disable processing of the mpiexec.hydra configuration files.

-ordered-output

Use this option to avoid intermingling of data output from the MPI processes. This option affects both the
standard output and the standard error streams.

NOTE
When using this option, end the last output line of each process with the end-of-line '\n' character.
Otherwise the application may stop responding.

-path <directory>

Use this option to specify the path to the executable file.

-version or -V

Use this option to display the version of the Intel® MPI Library.

-info

Use this option to display build information of the Intel® MPI Library. When this option is used, the
other command line arguments are ignored.

-delegate

Use this option to enable the domain-based authorization with the delegation ability. See User
Authorization for details.

-impersonate

Use this option to enable the limited domain-based authorization. You will not be able to open files on
remote machines or access mapped network drives. See User Authorization for details.

-localhost

Use this option to explicitly specify the local host name for the launching node.

-localroot

Use this option to launch the root process directly from mpiexec if the host is local. You can use this
option to launch GUI applications. The interactive process should be launched before any other process
in a job. For example:

> mpiexec -n 1 -host <host2> -localroot interactive.exe : -n 1 -host <host1> background.exe
-localonly

Command Reference

11

Use this option to run an application on the local node only. If you use this option only for the local node, the
Hydra service is not required.

-register [-username <user> -password <password>]

You can specify the user name and password using the -username and -password options after the -register
option. Otherwise you will be prompted to enter your credentials.

-remove

Use this option to delete the encrypted credentials from the registry.

-validate [-host <hostname>]

Validate the encrypted credentials for the current user.

-whoami

Use this option to print the current user name.

-map <drive:\\host\share>

Use this option to create network mapped drive on nodes before starting executable. Network drive will be
automatically removed after the job completion.

-mapall

Use this option to request creation of all user created network mapped drives on nodes before starting
executable. Network drives will be automatically removed after the job completion.

-logon

Use this option to force the prompt for user credentials.

-noprompt

Use this option to suppress the prompt for user credentials.

-port/-p

Use this option to specify the port that the service is listening on. See the I_MPI_HYDRA_SERVICE_PORT
environment variable for more details.

-verbose or -v

Use this option to print debug information from mpiexec , such as:

• Service processes arguments
• Environment variables and arguments passed to start an application
• PMI requests/responses during a job life cycle

See the I_MPI_HYDRA_DEBUG environment variable for more details.

-print-rank-map

Use this option to print out the MPI rank mapping.

-print-all-exitcodes

 Use this option to print the exit codes of all processes.

Arguments
-v6

Use this option to force using the IPv6 protocol.

12

Local Hydra Options
This section describes the local options of the Intel® MPI Library's Hydra process manager. Local options are
applied only to the argument set they are specified in. Argument sets are separated by a colon ':'.

-n <# of processes> or -np <# of processes>

Use this option to set the number of MPI processes to run with the current argument set.

-env <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI processes in
the current argument set.

-envall

Use this option to propagate all environment variables in the current argument set. See the
I_MPI_HYDRA_ENV environment variable for more details.

-envnone

Use this option to suppress propagation of any environment variables to the MPI processes in the current
argument set.

NOTE
The option does not work for localhost.

-envexcl <list of env var names>

Use this option to suppress propagation of the listed environment variables to the MPI processes in the
current argument set.

-envlist <list>

Use this option to pass a list of environment variables with their current values. <list> is a comma
separated list of environment variables to be sent to the MPI processes.

-host <nodename>

Use this option to specify a particular <nodename> on which the MPI processes are to be run. For
example, the following command executes test.exe on hosts host1 and host2:

> mpiexec -n 2 -host host1 test.exe : -n 2 -host host2 test.exe
-path <directory>

Use this option to specify the path to the <executable> file to be run in the current argument set.

-wdir <directory>

Use this option to specify the working directory in which the <executable> file runs in the current argument
set.

cpuinfo
Provides information on processors used in the system.

Syntax
cpuinfo [[-]<options>]

Arguments
<options> Sequence of one-letter options. Each option controls a

specific part of the output data.

Command Reference

13

g General information about single cluster node
shows:

• the processor product name
• the number of packages/sockets on the node
• core and threads numbers on the node and

within each package
• SMT mode enabling

i Logical processors identification table identifies
threads, cores, and packages of each logical
processor accordingly.

• Processor - logical processor number.
• ThreadId - unique processor identifier within a

core.
• CoreId - unique core identifier within a package.
• PackageId - unique package identifier within a

node.

d Node decomposition table shows the node contents.
Each entry contains the information on packages,
cores, and logical processors.

• Package Id - physical package identifier.
• Cores Id - list of core identifiers that belong to

this package.
• Processors Id - list of processors that belong to

this package. This list order directly corresponds
to the core list. A group of processors enclosed
in brackets belongs to one core.

c Cache sharing by logical processors shows
information of sizes and processors groups, which
share particular cache level.

• Size - cache size in bytes.
• Processors - a list of processor groups enclosed

in the parentheses those share this cache or no
sharing otherwise.

s Microprocessor signature hexadecimal fields (Intel
platform notation) show signature values:

• extended family
• extended model
• family
• model
• type
• stepping

f Microprocessor feature flags indicate what features the
microprocessor supports. The Intel platform notation is
used.

n Table shows the following information about NUMA
nodes:

• NUMA Id - NUMA node identifier.

14

• Processors - a list of processors in this node.

If the node has no processors, the node is not
shown.

A Equivalent to gidcsf
gidc Default sequence

? Utility usage info

Description
The cpuinfo utility prints out the processor architecture information that can be used to define suitable
process pinning settings. The output consists of a number of tables. Each table corresponds to one of the
single options listed in the arguments table.

NOTE
The architecture information is available on systems based on the Intel® 64 architecture.

The cpuinfo utility is available for both Intel microprocessors and non-Intel microprocessors, but it
may provide only partial information about non-Intel microprocessors.

An example of the cpuinfo output:

> cpuinfo -gdcs
===== Processor composition =====
Processor name : Intel(R) Xeon(R) X5570
Packages(sockets) : 2
Cores : 8
Processors(CPUs) : 8
Cores per package : 4
Threads per core : 1
===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 0 2 0
5 0 2 1
6 0 3 0
7 0 3 1
===== Placement on packages =====
Package Id. Core Id. Processors
0 0,1,2,3 0,2,4,6
1 0,1,2,3 1,3,5,7
===== Cache sharing =====
Cache Size Processors
L1 32 KB no sharing
L2 256 KB no sharing
L3 8 MB (0,2,4,6)(1,3,5,7)
===== Processor Signature =====
 _________ ________ ______ ________ _______ __________
xFamily	xModel	Type	Family	Model	Stepping
_________	________	______	________	_______	__________
00	1	0	6	a	5
_________	________	______	________	_______	__________

Command Reference

15

impi_info
Provides information on available Intel® MPI Library environment variables.

Syntax
impi_info <options>

Arguments
<options> List of options.

-a | -all Show all IMPI variables.

-h | -help Show a help message.

-v | -variable Show all available variables or description of the specified
variable.

-c | -category Show all available categories or variables of the specified
category.

Description
The impi_info utility provides information on environment variables available in the Intel MPI Library. For
each variable, it prints out the name, the default value, and the value data type. By default, a reduced list of
variables is displayed. Use the -all option to display all available variables with their descriptions.

The example of the impi_info output:

> impi_info
| NAME | DEFAULT VALUE | DATA TYPE |
==
| I_MPI_THREAD_SPLIT | 0 | MPI_INT |
| I_MPI_THREAD_RUNTIME | none | MPI_CHAR |
| I_MPI_THREAD_MAX | -1 | MPI_INT |
| I_MPI_THREAD_ID_KEY | thread_id | MPI_CHAR |

mpitune
Tunes the Intel® MPI Library parameters for the given MPI application.

Syntax
mpitune <options>

Arguments
<mpitune options> Options

-c | --config-file <file> Specify a configuration file to run a tuning session.

-d | --dump-file <file> Specify a file that stores the collected results. The option
is used in the analyze mode.

-m | --mode {collect | analyze} Specify the mpitune mode. The supported modes
are collect and analyze:

• the collect mode runs the tuning process and
saves results in temporary files;

16

<mpitune options> Options

• the analyze mode transforms temporary files
into a JSON-tree, which is used by the Intel®
MPI Library, and generates a table that
represents algorithm values in a human-
readable format.

-h | --help Display the help message.

-v | --version Display the product version.

Description
The mpitune utility allows you to automatically adjust Intel® MPI Library parameters, such as collective
operation algorithms, to your cluster configuration or application.

The tuner iteratively launches a benchmarking application with different configurations to measure
performance and stores the results of each launch. Based on these results, the tuner generates optimal
values for the parameters being tuned.

NOTE
Starting with the Intel® MPI Library Update 4 release, you must specify two mpitune configuration
files, which differ in their mode and dump-file fields. A simpler alternative may be to use one of the
single configuration file templates shipped with the Intel MPI Library. In this case, you must use the
command line to define the mode and dump-file fields.

• The -mode option defines one of two possible MPI tune modes: collect or analyze.
• The -dump-file option defines the path to the temporary files when in analyze mode. This path is returned

by mpitune after the first iteration.

The configuration files should specify all tuner parameters, which are passed to the tuner with the --
config-file option. A typical configuration file consists of the main section, specifying generic options, and
search space sections for specific library parameters (for example, for specific collective operations). To
comment a line, use the hash symbol #. All configuration file examples are available at <installdir>/etc/
tune_cfg. Please note that configuration files for Intel® MPI Benchmarks are already created.

The tuning process consists of two steps: data collection (the collect mode) and data analysis (the
analyze mode):

> mpitune -m collect -c /path/to/config_file2
> mpitune -m analyze -c /path/to/config_file1

Another variant of the launch is:

> mpitune -m collect -c /path/to/config_file1 -d path/to/dump-file
> mpitune -m analyze -c /path/to/config_file1

where the path to the dump-file received in the first step is used in the config file with templates inside.

The tuning results are presented as a JSON tree and can be added to the library with the I_MPI_TUNING
environment variable.
MPI Options Support

The following MPI options are available within the utility:

<MPI options> Options

-f <filename> Specify a file containing host names.

Command Reference

17

-hosts <hostlist> Specify a comma-separated list of hosts.

-np <value> Specify the number of processes.

Examples
> mpitune -np 2 -ppn 1 -hosts HOST1,HOST2 -m collect -c /path/to/config_file2
> mpitune -np 2 -ppn 1 -hosts HOST1,HOST2 -m analyze -c /path/to/config_file1

See Also
MPI Tuning in the Developer Guide

For available configuration options, refer to mpitune Configuration Options.

mpitune Configuration Options

Application Options
-app

Sets a template for the command line to be launched to gather tuning results. The command line can contain
variables declared as @<var_name>@. The variables are defined further on using other options.

For example:

-app: mpirun -np @np@ -ppn @ppn@ IMB-MPI1 -msglog 0:@logmax@ -npmin @np@ @func@
Note: The application must produce output (in stdout or file or any other destination) that can be parsed by
the tuner to pick the value to be tuned and other variables. See the -app-regex and -app-regex-legend
options below for details.

-app-regex

Sets a regular expression to be evaluated to extract the required values from the application output. Use
regular expression groups to assign the values to variables. Variables and groups associations are set using
the -app-regex-legend option.

For example, to extract the #bytes and t_max[usec] values from this output:

#bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
0 1000 0.06 0.06 0.06
1 1000 0.10 0.10 0.10

use the following configuration:

-app-regex: (\d+)\s+\d+\s+[\d.+-]+\s+([\d.+-]+)
-app-regex-legend

Specifies a list of variables extracted from the regular expression. Variables correspond to the regular
expression groups. The tuner uses the last variable as the performance indicator of the launch. Use the -
tree-opt to set the optimization direction of the indicator.

For example:

-app-regex-legend: size,time
-iter

Sets the number of iterations for each launch with a given set of parameters. Higher numbers of iterations
increase accuracy of results.

18

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-windows/top/analysis-and-tuning/mpi-tuning.html

For example:

-iter: 3

Search Space Options
Use these options to define a search space, which is a set of combinations of Intel® MPI Library parameters
that the target application uses for launches. The library parameters are generally configured using run-time
options or environment variables.

Note: A search space line can be very long, so line breaking is available for all the search space options. Use
a backslash to break a line (see examples below).

-search

Defines the search space by defining variables declared with the -app option and by setting environment
variables for the application launch.

For example:

-search: func=BCAST, \
np=4,ppn={1,4},{,I_MPI_ADJUST_BCAST=[1,3]},logmax=5

The -app variables are defined as <var1>=<value1>[,<var2>=<value2>][,...]. The following syntax is
available for setting values:

Syntax Description Examples

<value> Single value. Can be a number or a
string.

4

{<value1>[,<value2>][,...]} List of independent values. {2,4}

[<start>,<end>[,<step>]] Linear range of values with the
default step of 1.

[1,8,2] — expands to
{1,2,4,6,8}

(<start>,<end>[,<step>]) Exponential range with the default
step of 2.

(1,16) — expands to
{1,2,4,8,16}

To set environment variables for the command launch, use the following syntax:

Syntax Description Examples

<variable>=<value> Single variable definition. Any type of
the syntax above can be used for the
value: single values, lists or ranges.

I_MPI_ADJUST_BCAST=3
I_MPI_ADJUST_BCAST=[1,3]

{,<variable>=<value>} A special case of the syntax above.
When set this way, the variable
default value is first used in an
application launch.

{,I_MPI_ADJUST_BCAST=[1,3]
}

<prefix>{<value1>
[,<value2>][,...]}

Multi-value variable definition.

Prefix is a common part for all
the values, commonly the
variable name.

A value can be a singular value or
a combination of values in the
format:
<prefix>(<value1>[,<value2>
][,...]). Prefix is optional and

I_MPI_ADJUST_ALLREDUCE{=1,
=2,(=9,_KN_RADIX=(2,8))}
See below for a more complete
example.

Command Reference

19

Syntax Description Examples

a value in the combination is a
string, which can utilize the list
and range syntax above.

The following example shows a more complex option definition:

I_MPI_ADJUST_BCAST{=1,=2,(=9,_KN_RADIX=(2,8)),(={10,11},_SHM_KN_RADIX=[2,8,2])}
This directive consecutively runs the target application with the following environment variables set:

I_MPI_ADJUST_BCAST=1
I_MPI_ADJUST_BCAST=2
I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=2
I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=4
I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=8
I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=2
I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=4
I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=6
I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=8
I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=2
I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=4
I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=6
I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=8

-search-excl

Excludes certain combinations from the search space. The syntax is identical to that of the -search option.
For example:

-search-excl: I_MPI_ADJUST_BCAST={1,2}
or

-search-excl: func=BCAST,np=4,ppn=1,I_MPI_ADJUST_BCAST=1
-search-only

Defines a subset of the search space to search in. Only this subset is used for application launches. The
syntax is identical to the -search option.

This option is useful for the second and subsequent tuning sessions on a subset of parameters from the
original session, without creating a separate configuration file.

Output Options
Use these options to customize the output. The tuner can produce output of two types:

• table— useful for verifying the tuning results, contains values from all the application launches
• tree— an internal output format, contains the optimal values

-table

Defines the layout for the resulting output table. The option value is a list of variables declared with the -app
option, which are joined in colon-separated groups. Each group denotes a specific part of the table.

For example:

-table: func:ppn,np:size:*:time

20

The last group variables (time) are rendered in table cells. The second last group variables are used for
building table columns (*, denotes all the variables not present the other variable groups). The third last
group variables are used for building table rows (size). All other variable groups are used to make up the
table label. Groups containing several variables are complex groups and produce output based on all the
value combinations.

For example, the option definition above can produce the following output:

Label: "func=BCAST,ppn=2,np=2"

Legend:
set 0: ""
set 1: "I_MPI_ADJUST_BCAST=1"
set 2: "I_MPI_ADJUST_BCAST=2"
set 3: "I_MPI_ADJUST_BCAST=3"
Table:
 | set 0 | set 1 | set 2 | set 3
-----------|-------------|-------------|-------------|------------
"size=0" | "time=0.10" | "time=0.08" | "time=0.11" | "time=0.10"
 | "time=0.12" | "time=0.09" | "time=0.12" | "time=0.11"
 | | "time=0.10" | |
-----------|-------------|-------------|-------------|------------
"size=4" | "time=1.12" | "time=1.11" | "time=1.94" | "time=1.72"
 | "time=1.35" | "time=1.18" | "time=1.97" | "time=1.81"
 | "time=1.38" | "time=1.23" | "time=2.11" | "time=1.89"
-----------|-------------|-------------|-------------|------------
"size=8" | "time=1.21" | "time=1.10" | "time=1.92" | "time=1.72"
 | "time=1.36" | "time=1.16" | "time=2.01" | "time=1.75"
 | "time=1.37" | "time=1.17" | "time=2.24" | "time=1.87"
-----------|-------------|-------------|-------------|------------
...

Cells include only unique values from all the launches for the given parameter combination. The number of
launches is set with the -iter option.

-table-ignore

Specifies the variables to ignore from the -table option definition.

-tree

Defines the layout for the resulting tree of optimal values of the parameter that is tuned (for example,
collective operation algorithms). The tree is rendered as a JSON structure. The option value is a list of
variables declared with the -app option, which are joined in colon-separated groups. Each group denotes a
specific part of the tree. Groups containing several variables are complex groups and produce output based
on all the value combinations.

Example:

-tree: func:ppn,np:size:*:time
The first two groups (func and ppn,np) make up the first two levels of the tree. The last group variables
(time) are used as the optimization criteria and are not rendered. The second last group contains variables
to be optimized (*, denotes all the variables not present the other variable groups). The third last group
variables are used to split the search space into intervals based on the optimal values of parameters from the
next group (for example, I_MPI_ADJUST_<operation> algorithm numbers).

Command Reference

21

For example, the option definition above can produce the following output:

{
 "func=BCAST":
 {
 "ppn=1,np=4":
 {
 "size=0":
 {"I_MPI_ADJUST_BCAST": "3"},
 "size=64":
 {"I_MPI_ADJUST_BCAST": "1"},
 "size=512":
 {"I_MPI_ADJUST_BCAST": "2"},
 ...
 }
 }
}

This tree representation is an intermediate format of tuning results and is ultimately converted to a string
that the library can understand. The conversion script is specified with -tree-postprocess option.

-tree-ignore

Specifies the variables to ignore from the -tree option definition.

-tree-intervals

Specifies the maximum number of intervals where the optimal parameter value is applied. If not specified,
any number of intervals is allowed.

-tree-tolerance

Specifies the tolerance level. Non-zero tolerance (for example, 0.03 for 3%) joins resulting intervals with the
performance indicator value varying by the specified tolerance.

-tree-postprocess

Specifies an executable to convert the resulting JSON tree to a custom format.

-tree-opt

Specifies the optimization direction. The available values are max (default) and min.

-tree-file

Specifies a log file where the tuning results are saved.

-tree-view

Specify the mode to present the json-tree. The available values are “simple” and “default”. The “default”
mode enables an interpolation mechanism; the “simple” mode disables the interpolation mechanism. The
resulting tree contains message sizes used during the launch.

-mode

Specifies the mpitune mode. The available values are “collect” for gathering data and “analyze” for
converting this data to a JSON-tree. Note that the -mode field can be defined in the configuration file as
macros @-mode@, although the real value must be defined in the command line.

-dump-file

Specifies the path for the dump-file, which is returned by mpitune after the first iteration. The first iteration
can be initialized by way of “” (an nempty string). Note that the -dump-file field can be defined in the
configuration file as macros @-dump-file@, although the real value must be defined in the command line.

22

Environment Variable Reference
This section provides information on different variables:

• Compilation Environment Variables
• Hydra Environment Variables
• I_MPI_ADJUST Family Environment Variables
• Environment Variables for Main Thread Pinning
• Environment Variables for Fabrics Control
• Other Environment Variables

Compilation Environment Variables

I_MPI_{CC,CXX,FC,F77,F90}_PROFILE
Specify the default profiling library.

Syntax
I_MPI_CC_PROFILE=<profile_name>
I_MPI_CXX_PROFILE=<profile_name>
I_MPI_FC_PROFILE=<profile_name>
I_MPI_F77_PROFILE=<profile_name>
I_MPI_F90_PROFILE=<profile_name>

Argument
<profile_name> Specify a default profiling library.

Description
Set this environment variable to select a specific MPI profiling library to be used by default. This has the
same effect as using -profile=<profile_name> as an argument for mpiicc or another Intel® MPI Library
compiler wrapper.

I_MPI_{CC,CXX,FC,F77,F90}
Set the path/name of the underlying compiler to be used.

Syntax
I_MPI_CC=<compiler>
I_MPI_CXX=<compiler>
I_MPI_FC=<compiler>
I_MPI_F77=<compiler>
I_MPI_F90=<compiler>

Arguments
<compiler> Specify the full path/name of compiler to be used.

Environment Variable Reference

23

Description
Set this environment variable to select a specific compiler to be used. Specify the full path to the compiler if
it is not located in the search path.

NOTE
Some compilers may require additional command line options.

I_MPI_ROOT
Set the Intel® MPI Library installation directory path.

Syntax
I_MPI_ROOT=<path>

Arguments
<path> Specify the installation directory of the Intel® MPI Library.

Description
Set this environment variable to specify the installation directory of the Intel® MPI Library.

VT_ROOT
Set Intel® Trace Collector installation directory path.

Syntax
VT_ROOT=<path>

Arguments
<path> Specify the installation directory of the Intel® Trace

Collector

Description
Set this environment variable to specify the installation directory of the Intel® Trace Collector.

I_MPI_COMPILER_CONFIG_DIR
Set the location of the compiler configuration files.

Syntax
I_MPI_COMPILER_CONFIG_DIR=<path>

Arguments
<path> Specify the location of the compiler configuration files.

The default value is <installdir>\etc

Description
Set this environment variable to change the default location of the compiler configuration files.

24

I_MPI_LINK
Select a specific version of the Intel® MPI Library for linking.

Syntax
I_MPI_LINK=<arg>

Arguments
<arg> Version of library

opt Multi-threaded optimized library. This is the default value

dbg Multi-threaded debug library

Description
Set this variable to always link against the specified version of the Intel® MPI Library.

Hydra Environment Variables

I_MPI_HYDRA_HOST_FILE
Set the host file to run the application.

Syntax
I_MPI_HYDRA_HOST_FILE=<arg>

Arguments
<arg> String parameter

<hostsfile> The full or relative path to the host file

Description
Set this environment variable to specify the hosts file.

I_MPI_HYDRA_HOSTS_GROUP
Set node ranges using brackets, commas, and dashes.

Syntax
I_MPI_HYDRA_HOSTS_GROUP=<arg>

Argument
<arg> Set a node range.

Description
Set this variable to be able to set node ranges using brackets, commas, and dashes (like in Slurm* Workload
Manager). For example:

I_MPI_HYDRA_HOSTS_GROUP=”hostA[01-05],hostB,hostC[01-05,07,09-11]”
You can set node ranges with the -hosts-group option.

Environment Variable Reference

25

I_MPI_HYDRA_DEBUG
Print out the debug information.

Syntax
I_MPI_HYDRA_DEBUG=<arg>

Arguments
<arg> Binary indicator

enable | yes | on | 1 Turn on the debug output

disable | no | off | 0 Turn off the debug output. This is the default value

Description
Set this environment variable to enable the debug mode.

I_MPI_HYDRA_ENV
Control the environment propagation.

Syntax
I_MPI_HYDRA_ENV=<arg>

Arguments
<arg> String parameter

all Pass all environment to all MPI processes

Description
Set this environment variable to control the environment propagation to the MPI processes. By default, the
entire launching node environment is passed to the MPI processes. Setting this variable also overwrites
environment variables set by the remote shell.

I_MPI_JOB_TIMEOUT
Set the timeout period for mpiexec .

Syntax
I_MPI_JOB_TIMEOUT=<timeout>
I_MPI_MPIEXEC_TIMEOUT=<timeout>

Arguments
<timeout> Define mpiexec timeout period in seconds

<n> ≥ 0 The value of the timeout period. The default timeout value
is zero, which means no timeout.

Description
Set this environment variable to make mpiexec terminate the job in <timeout> seconds after its launch.
The <timeout> value should be greater than zero. Otherwise the environment variable setting is ignored.

26

I_MPI_JOB_STARTUP_TIMEOUT
Set the mpiexec job startup timeout.

Syntax
I_MPI_JOB_STARTUP_TIMEOUT=<timeout>

Arguments
<timeout> Define mpiexec startup timeout period in seconds

<n> ≥ 0 The value of the timeout period. The default timeout value
is zero, which means no timeout.

Description
Set this environment variable to make mpiexec terminate the job in <timeout> seconds if some processes
are not launched. The <timeout> value should be greater than zero.

Syntax

Arguments

Description

Syntax

Arguments

Description

Syntax

Arguments

Description

I_MPI_HYDRA_BOOTSTRAP
Set the bootstrap server.

Syntax
I_MPI_HYDRA_BOOTSTRAP=<arg>

Arguments
<arg> String parameter

service Use hydra service agent

lsf Use the LSF blaunch command

Description
Set this environment variable to specify the bootstrap server.

Environment Variable Reference

27

NOTE
LSF bootstrap is chosen automatically if LSF environment variables are found. If the -hosts option is
specified, LSF bootstrap will not be chosen by default. Set I_MPI_HYDRA_BOOTSTRAP=lsf for this
case.

I_MPI_HYDRA_BOOTSTRAP_EXEC
Set the executable file to be used as a bootstrap server.

Syntax
I_MPI_HYDRA_BOOTSTRAP_EXEC=<arg>

Arguments
<arg> String parameter

<executable> The name of the executable file

Description
Set this environment variable to specify the executable file to be used as a bootstrap server.

Syntax

Arguments

Description

NOTE

Syntax

Arguments

Description

Syntax

Arguments

Description

I_MPI_HYDRA_PMI_CONNECT
Define the processing method for PMI messages.

Syntax
I_MPI_HYDRA_PMI_CONNECT=<value>

28

Arguments
<value> The algorithm to be used

nocache Do not cache PMI messages

cache Cache PMI messages on the local pmi_proxy
management processes to minimize the number of PMI
requests. Cached information is automatically propagated
to child management processes.

lazy-cache cache mode with on-demand propagation.

alltoall Information is automatically exchanged between all
pmi_proxy before any get request can be done. This is
the default value.

Description
Use this environment variable to select the PMI messages processing method.

I_MPI_PERHOST
Define the default behavior for the -perhost option of the mpiexec command.

Syntax
I_MPI_PERHOST=<value>

Arguments
<value> Define a value used for -perhost by default

integer > 0 Exact value for the option

all All logical CPUs on the node

allcores All cores (physical CPUs) on the node. This is the default
value.

Description
Set this environment variable to define the default behavior for the -perhost option. Unless specified
explicitly, the -perhost option is implied with the value set in I_MPI_PERHOST.

NOTE
When running under a job scheduler, this environment variable is ignored by default. To control
process placement with I_MPI_PERHOST, disable the I_MPI_JOB_RESPECT_PROCESS_PLACEMENT
variable.

I_MPI_HYDRA_BRANCH_COUNT
Set the hierarchical branch count.

Syntax
I_MPI_HYDRA_BRANCH_COUNT =<num>

Environment Variable Reference

29

Arguments
<num> Number

<n> >= 0 The default value is 16. This value means that
hierarchical structure is enabled if the number of
nodes is more than 16.

If I_MPI_HYDRA_BRANCH_COUNT=0, then there is
no hierarchical structure.

If I_MPI_HYDRA_BRANCH_COUNT=-1, then branch
count is equal to default value.

Description
Set this environment variable to restrict the number of child management processes launched by the
mpiexec operation or by each pmi_proxy management process.

I_MPI_HYDRA_PMI_AGGREGATE
Turn on/off aggregation of the PMI messages.

Syntax
I_MPI_HYDRA_PMI_AGGREGATE=<arg>

Arguments
<arg> Binary indicator

enable | yes | on | 1 Enable PMI message aggregation. This is the default
value.

disable | no | off | 0 Disable PMI message aggregation.

Description
Set this environment variable to enable/disable aggregation of PMI messages.

I_MPI_HYDRA_IFACE
Set the network interface.

Syntax
I_MPI_HYDRA_IFACE=<arg>

Arguments
<arg> String parameter

<network interface> The network interface configured in your system

Description
Set this environment variable to specify the network interface to use. For example, use "-iface ib0", if the
IP emulation of your InfiniBand* network is configured on ib0.

I_MPI_TMPDIR
Specify a temporary directory.

30

Syntax
I_MPI_TMPDIR=<arg>

Arguments
<arg> String parameter

<path> Temporary directory. The default value is /tmp

Description
Set this environment variable to specify a directory for temporary files.

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT
Specify whether to use the process-per-node placement provided by the job scheduler, or set explicitly.

Syntax
I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=<arg>

Arguments
<value> Binary indicator

enable | yes | on | 1 Use the process placement provided by job scheduler. This
is the default value

disable | no | off | 0 Do not use the process placement provided by job
scheduler

Description
If the variable is set, the Hydra process manager uses the process placement provided by job scheduler
(default). In this case the -ppn option and its equivalents are ignored. If you disable the variable, the Hydra
process manager uses the process placement set with -ppn or its equivalents.

I_MPI_PORT_RANGE
Specify a range of allowed port numbers.

Syntax
I_MPI_PORT_RANGE=<range>

Arguments
<range> String parameter

<min>:<max> Allowed port range

Description
Set this environment variable to specify a range of the allowed port numbers for the Intel® MPI Library.

I_MPI_HYDRA_SERVICE_PORT
Set the port on which the hydra service is installed.

Syntax
I_MPI_HYDRA_SERVICE_PORT=<int>

Environment Variable Reference

31

Arguments
<int> Define the port number

Description
Set this environment variable to inform mpiexec.hydra, on which port the hydra service is installed. Use
this variable if you want to run a number of services on different ports.

To be able to run a number of hydra services, follow these steps:

1. Start cmd and run hydra services:

> start hydra_service -p <port1> -d> start hydra_service -p <port2> -d
2. Set the environment variable to choose the service to be used:

set I_MPI_HYDRA_SERVICE_PORT=”port2”
3. Run mpiexec as usual

I_MPI_SILENT_ABORT
Control abort warning messages.

Syntax
I_MPI_SILENT_ABORT=<arg>

Argument
<arg> Binary indicator

enable | yes | on | 1 Do not print abort warning message

disable | no | off | 0 Print abort warning message. This is the default value

Description
Set this variable to disable printing of abort warning messages. The messages are printed in case of the
MPI_Abort call.

You can also disable printing of these messages with the -silent-abort option.

I_MPI_HYDRA_NAMESERVER
Specify the nameserver.

Syntax
I_MPI_HYDRA_NAMESERVER=<arg>

Argument
<arg> String parameter

<hostname>:<port> Set the hostname and the port.

Description
Set this variable to specify the nameserver for your MPI application in the following format:

I_MPI_HYDRA_NAMESERVER = hostname:port

32

You can set the nameserver with the -nameserver option.

I_MPI_ADJUST Family Environment Variables

I_MPI_ADJUST_<opname>
Control collective operation algorithm selection.

Syntax
I_MPI_ADJUST_<opname>="<algid>[:<conditions>][;<algid>:<conditions>[...]]"

Arguments
<algid> Algorithm identifier

>= 0 The default value of zero selects the optimized default
settings

<conditions> A comma separated list of conditions. An empty list
selects all message sizes and process combinations

<l> Messages of size <l>

<l>-<m> Messages of size from <l> to <m>, inclusive

<l>@<p> Messages of size <l> and number of processes <p>

<l>-<m>@<p>-<q> Messages of size from <l> to <m> and number of
processes from <p> to <q>, inclusive

Description
Set this environment variable to select the desired algorithm(s) for the collective operation <opname> under
particular conditions. Each collective operation has its own environment variable and algorithms.

Environment Variables, Collective Operations, and Algorithms
Environment Variable Collective Operation Algorithms

I_MPI_ADJUST_ALLGATHER MPI_Allgather 1. Recursive doubling
2. Bruck's
3. Ring
4. Topology aware Gatherv +

Bcast
5. Knomial

I_MPI_ADJUST_ALLGATHERV MPI_Allgatherv 1. Recursive doubling
2. Bruck's
3. Ring
4. Topology aware Gatherv +

Bcast

I_MPI_ADJUST_ALLREDUCE MPI_Allreduce 1. Recursive doubling
2. Rabenseifner's
3. Reduce + Bcast
4. Topology aware Reduce +

Bcast
5. Binomial gather + scatter

Environment Variable Reference

33

Environment Variable Collective Operation Algorithms

6. Topology aware binominal
gather + scatter

7. Shumilin's ring
8. Ring
9. Knomial
10. Topology aware SHM-based

flat
11. Topology aware SHM-based

Knomial
12. Topology aware SHM-based

Knary

I_MPI_ADJUST_ALLTOALL MPI_Alltoall 1. Bruck's
2. Isend/Irecv + waitall
3. Pair wise exchange
4. Plum's

I_MPI_ADJUST_ALLTOALLV MPI_Alltoallv 1. Isend/Irecv + waitall
2. Plum's

I_MPI_ADJUST_ALLTOALLW MPI_Alltoallw Isend/Irecv + waitall

I_MPI_ADJUST_BARRIER MPI_Barrier 1. Dissemination
2. Recursive doubling
3. Topology aware

dissemination
4. Topology aware recursive

doubling
5. Binominal gather + scatter
6. Topology aware binominal

gather + scatter
7. Topology aware SHM-based

flat
8. Topology aware SHM-based

Knomial
9. Topology aware SHM-based

Knary

I_MPI_ADJUST_BCAST MPI_Bcast 1. Binomial
2. Recursive doubling
3. Ring
4. Topology aware binomial
5. Topology aware recursive

doubling
6. Topology aware ring
7. Shumilin's
8. Knomial
9. Topology aware SHM-based

flat
10. Topology aware SHM-based

Knomial
11. Topology aware SHM-based

Knary

34

Environment Variable Collective Operation Algorithms

12. NUMA aware SHM-based
(SSE4.2)

13. NUMA aware SHM-based
(AVX2)

14. NUMA aware SHM-based
(AVX512)

I_MPI_ADJUST_EXSCAN MPI_Exscan 1. Partial results gathering
2. Partial results gathering

regarding layout of processes

I_MPI_ADJUST_GATHER MPI_Gather 1. Binomial
2. Topology aware binomial
3. Shumilin's
4. Binomial with segmentation

I_MPI_ADJUST_GATHERV MPI_Gatherv 1. Linear
2. Topology aware linear
3. Knomial

I_MPI_ADJUST_REDUCE_SCATTE
R

MPI_Reduce_scatter 1. Recursive halving
2. Pair wise exchange
3. Recursive doubling
4. Reduce + Scatterv
5. Topology aware Reduce +

Scatterv

I_MPI_ADJUST_REDUCE MPI_Reduce 1. Shumilin's
2. Binomial
3. Topology aware Shumilin's
4. Topology aware binomial
5. Rabenseifner's
6. Topology aware

Rabenseifner's
7. Knomial
8. Topology aware SHM-based

flat
9. Topology aware SHM-based

Knomial
10. Topology aware SHM-based

Knary
11. Topology aware SHM-based

binomial

I_MPI_ADJUST_SCAN MPI_Scan 1. Partial results gathering
2. Topology aware partial

results gathering

I_MPI_ADJUST_SCATTER MPI_Scatter 1. Binomial
2. Topology aware binomial
3. Shumilin's

I_MPI_ADJUST_SCATTERV MPI_Scatterv 1. Linear
2. Topology aware linear

Environment Variable Reference

35

Environment Variable Collective Operation Algorithms

I_MPI_ADJUST_SCATTERV MPI_Sendrecv_replace 1. Generic 2. Uniform (with
restrictions)

I_MPI_ADJUST_IALLGATHER MPI_Iallgather 1. Recursive doubling
2. Bruck’s
3. Ring

I_MPI_ADJUST_IALLGATHERV MPI_Iallgatherv 1. Recursive doubling
2. Bruck’s
3. Ring

I_MPI_ADJUST_IALLREDUCE MPI_Iallreduce 1. Recursive doubling
2. Rabenseifner’s
3. Reduce + Bcast
4. Ring (patarasuk)
5. Knomial
6. Binomial
7. Reduce scatter allgather
8. SMP
9. Nreduce

I_MPI_ADJUST_IALLTOALL MPI_Ialltoall 1. Bruck’s
2. Isend/Irecv + Waitall
3. Pairwise exchange

I_MPI_ADJUST_IALLTOALLV MPI_Ialltoallv Isend/Irecv + Waitall

I_MPI_ADJUST_IALLTOALLW MPI_Ialltoallw Isend/Irecv + Waitall

I_MPI_ADJUST_IBARRIER MPI_Ibarrier Dissemination

I_MPI_ADJUST_IBCAST MPI_Ibcast 1. Binomial
2. Recursive doubling
3. Ring
4. Knomial
5. SMP
6. Tree knominal
7. Tree kary

I_MPI_ADJUST_IEXSCAN MPI_Iexscan 1. Recursive doubling
2. SMP

I_MPI_ADJUST_IGATHER MPI_Igather 1. Binomial
2. Knomial

I_MPI_ADJUST_IGATHERV MPI_Igatherv 1. Linear
2. Linear ssend

I_MPI_ADJUST_IREDUCE_SCATTER MPI_Ireduce_scatter 1. Recursive halving
2. Pairwise
3. Recursive doubling

I_MPI_ADJUST_IREDUCE MPI_Ireduce 1. Rabenseifner’s
2. Binomial
3. Knomial

I_MPI_ADJUST_ISCAN MPI_Iscan 1. Recursive Doubling

36

Environment Variable Collective Operation Algorithms

2. SMP

I_MPI_ADJUST_ISCATTER MPI_Iscatter 1. Binomial
2. Knomial

I_MPI_ADJUST_ISCATTERV MPI_Iscatterv Linear

The message size calculation rules for the collective operations are described in the table. In the following
table, "n/a" means that the corresponding interval <l>-<m> should be omitted.

NOTE The I_MPI_ADJUST_SENDRECV_REPLACE=2 ("Uniform") algorithm can be used only in the case
when datatype and objects count are the same across all ranks.

Message Collective Functions
Collective Function Message Size Formula

MPI_Allgather recv_count*recv_type_size
MPI_Allgatherv total_recv_count*recv_type_size
MPI_Allreduce count*type_size
MPI_Alltoall send_count*send_type_size
MPI_Alltoallv n/a

MPI_Alltoallw n/a

MPI_Barrier n/a

MPI_Bcast count*type_size
MPI_Exscan count*type_size
MPI_Gather recv_count*recv_type_size if MPI_IN_PLACE is

used, otherwise send_count*send_type_size
MPI_Gatherv n/a

MPI_Reduce_scatter total_recv_count*type_size
MPI_Reduce count*type_size
MPI_Scan count*type_size
MPI_Scatter send_count*send_type_size if MPI_IN_PLACE is

used, otherwise recv_count*recv_type_size
MPI_Scatterv n/a

Examples
Use the following settings to select the second algorithm for MPI_Reduce operation:
I_MPI_ADJUST_REDUCE=2
Use the following settings to define the algorithms for MPI_Reduce_scatter operation:
I_MPI_ADJUST_REDUCE_SCATTER="4:0-100,5001-10000;1:101-3200;2:3201-5000;3"
In this case. algorithm 4 is used for the message sizes between 0 and 100 bytes and from 5001 and 10000
bytes, algorithm 1 is used for the message sizes between 101 and 3200 bytes, algorithm 2 is used for the
message sizes between 3201 and 5000 bytes, and algorithm 3 is used for all other messages.

Environment Variable Reference

37

I_MPI_ADJUST_<opname>_LIST

Syntax
I_MPI_ADJUST_<opname>_LIST=<algid1>[-<algid2>][,<algid3>][,<algid4>-<algid5>]

Description
Set this environment variable to specify the set of algorithms to be considered by the Intel MPI runtime for a
specified <opname>. This variable is useful in autotuning scenarios, as well as tuning scenarios where users
would like to select a certain subset of algorithms.

NOTE Setting an empty string disables autotuning for the <opname> collective.

I_MPI_COLL_INTRANODE

Syntax
I_MPI_COLL_INTRANODE=<mode>

Arguments
<mode> Intranode collectives type

pt2pt Use only point-to-point communication-based collectives

shm Enables shared memory collectives. This is the default
value

Description
Set this environment variable to switch intranode communication type for collective operations. If there is
large set of communicators, you can switch off the SHM-collectives to avoid memory overconsumption.

I_MPI_COLL_INTRANODE_SHM_THRESHOLD

Syntax
I_MPI_COLL_INTRANODE_SHM_THRESHOLD=<nbytes>

Arguments
<nbytes> Define the maximal data block size processed by shared

memory collectives.

> 0 Use the specified size. The default value is 16384 bytes.

Description
Set this environment variable to define the size of shared memory area available for each rank for data
placement. Messages greater than this value will not be processed by SHM-based collective operation, but
will be processed by point-to-point based collective operation. The value must be a multiple of 4096.

I_MPI_COLL_EXTERNAL

Syntax
I_MPI_COLL_EXTERNAL=<arg>

38

Arguments
<arg> Binary indicator.

enable | yes | on | 1 Enable the external collective operations functionality.

disable | no | off | 0 Disable the external collective operations functionality.
This is the default value.

Description
Set this environment variable to enable external collective operations. The mechanism allows to enable
HCOLL. The functionality enables the following collective operations: I_MPI_ADJUST_ALLREDUCE=24,
I_MPI_ADJUST_BARRIER=11, I_MPI_ADJUST_BCAST=16, I_MPI_ADJUST_REDUCE=13,
I_MPI_ADJUST_ALLGATHER=6, I_MPI_ADJUST_ALLTOALL=5, I_MPI_ADJUST_ALLTOALLV=5,
I_MPI_ADJUST_SCAN=3, I_MPI_ADJUST_EXSCAN=3, I_MPI_ADJUST_GATHER=5,
I_MPI_ADJUST_GATHERV=4, I_MPI_ADJUST_SCATTER=5, I_MPI_ADJUST_SCATTERV=4,
I_MPI_ADJUST_ALLGATHERV=5, I_MPI_ADJUST_ALLTOALLW=2, I_MPI_ADJUST_REDUCE_SCATTER=6,
I_MPI_ADJUST_REDUCE_SCATTER_BLOCK=4, I_MPI_ADJUST_IALLGATHER=5,
I_MPI_ADJUST_IALLGATHERV=5, I_MPI_ADJUST_IGATHERV=3, I_MPI_ADJUST_IALLREDUCE=9,
I_MPI_ADJUST_IALLTOALLV=2, I_MPI_ADJUST_IBARRIER=2, I_MPI_ADJUST_IBCAST=5,
I_MPI_ADJUST_IREDUCE=4.

I_MPI_CBWR
Control reproducibility of floating-point operations results across different platforms, networks, and
topologies in case of the same number of processes.

Syntax
I_MPI_CBWR=<arg>

Arguments
<arg> CBWR compatibility mode Description

0 None Do not use CBWR in a library-wide
mode. CNR-safe communicators may
be created with
MPI_Comm_dup_with_info
explicitly. This is the default value.

1 Weak mode Disable topology aware collectives.
The result of a collective operation
does not depend on the rank
placement. The mode guarantees
results reproducibility across different
runs on the same cluster
(independent of the rank placement).

2 Strict mode Disable topology aware collectives,
ignore CPU architecture, and
interconnect during algorithm
selection. The mode guarantees
results reproducibility across different
runs on different clusters
(independent of the rank placement,
CPU architecture, and
interconnection)

Environment Variable Reference

39

Description
Conditional Numerical Reproducibility (CNR) provides controls for obtaining reproducible floating-point results
on collectives operations. With this feature, Intel MPI collective operations are designed to return the same
floating-point results from run to run in case of the same number of MPI ranks.

Control this feature with the I_MPI_CBWR environment variable in a library-wide manner, where all collectives
on all communicators are guaranteed to have reproducible results. To control the floating-point operations
reproducibility in a more precise and per-communicator way, pass the {“I_MPI_CBWR”, “yes”} key-value
pair to the MPI_Comm_dup_with_info call.

NOTE
Setting the I_MPI_CBWR in a library-wide mode using the environment variable leads to performance
penalty.

CNR-safe communicators created using MPI_Comm_dup_with_info always work in the strict mode.
For example:

MPI_Info hint;
MPI_Comm cbwr_safe_world, cbwr_safe_copy;
MPI_Info_create(&hint);
MPI_Info_set(hint, “I_MPI_CBWR”, “yes”);
MPI_Comm_dup_with_info(MPI_COMM_WORLD, hint, & cbwr_safe_world);
MPI_Comm_dup(cbwr_safe_world, & cbwr_safe_copy);

In the example above, both cbwr_safe_world and cbwr_safe_copy are CNR-safe. Use cbwr_safe_world and
its duplicates to get reproducible results for critical operations.

Note that MPI_COMM_WORLD itself may be used for performance-critical operations without reproducibility
limitations.

Tuning Environment Variables
I_MPI_TUNING_MODE

Select the tuning method.

Syntax
I_MPI_TUNING_MODE=<arg>

Argument
<arg> Description

none Disable tuning modes. This is the default value.

auto Enable autotuner.

auto:application Enable autotuner with application focused strategy (alias
for auto).

auto:cluster Enable autotuner without application specific logic. This is
typically performed with the help of benchmarks (for
example, IMB-MPI1) and proxy applications.

Description
Set this environment variable to enable the autotuner functionality and set the
autotuner strategy.

40

I_MPI_TUNING_BIN
Specify the path to tuning settings in a binary format.

Syntax
I_MPI_TUNING_BIN=<path>

Argument
<path> A path to a binary file with tuning settings. By default,

Intel® MPI Library uses the binary tuning file located at <
$I_MPI_ROOT/etc>.

Description
Set this environment variable to load tuning settings in a binary format.

I_MPI_TUNING_BIN_DUMP
Specify the file for storing tuning settings in a binary format.

Syntax
I_MPI_TUNING_BIN_DUMP=<filename>

Argument
<filename> A file name of a binary that stores tuning settings. By

default, the path is not specified.

Description
Set this environment variable to store tuning settings in a binary format.

I_MPI_TUNING
Load tuning settings in a JSON format.

Syntax
I_MPI_TUNING=<path>

Argument
<path> A path to a JSON file with tuning settings.

Description
Set this environment variable to load tuning settings in a JSON format.

Note: The tuning settings in the JSON format are produced by the mpitune utility.

By default, Intel® MPI library loads tuning settings in a binary format. If it is not possible, Intel MPI Library
loads the tuning file in a JSON format specified through the I_MPI_TUNING environment variable.
Thus, to enable JSON tuning, turn off the default binary tuning: I_MPI_BIN="". If it is not possible to load
tuning settings from a JSON file and in a binary format, the default tuning values are used.

You do not need to turn off binary or JSON tuning settings if you use I_MPI_ADJUST family environment
variables. The algorithms specified with I_MPI_ADJUST environment variables always have priority over
binary and JSON tuning settings.

Environment Variable Reference

41

See Also
Autotuning

Environment Variables for Autotuning

Autotuning
Tuning is very dependent on the specifications of the particular platform. Intel carefully determines the
tuning parameters for a limited set of platforms, and makes them available for autotuning using the
I_MPI_TUNING_MODE environment variable.

For the full list of platforms supported by the I_MPI_TUNING_MODE environment variable, see Tuning
Environment Variables. This variable has no effect on platforms not included in this list. For these platforms,
 use the I_MPI_TUNING_AUTO Family Environment Variables directly to find the best settings.

The autotuner functionality lets you automatically find the best algorithms for collective operations . The
autotuner search space can be modified by I_MPI_ADJUST_<opname>_LIST variables from I_MPI_ADJUST
Family Environment Variables.

The collectives currently available for autotuning are: MPI_Allreduce, MPI_Bcast, MPI_Barrier, MPI_Reduce,
MPI_Gather, MPI_Scatter, MPI_Alltoall, MPI_Allgatherv, MPI_Reduce_scatter, MPI_Reduce_scatter_block,
MPI_Scan, MPI_Exscan, MPI_Iallreduce, MPI_Ibcast, MPI_Ibarrier, MPI_Ireduce, MPI_Igather, MPI_Iscatter,
MPI_Ialltoall, MPI_Iallgatherv, MPI_Ireduce_scatter, MPI_Ireduce_scatter_block, MPI_Iscan, and
MPI_Iexscan.

To get started with autotuning, follow these steps:

1. Launch the application with the autotuner enabled and specify the dump file, which stores results:

I_MPI_TUNING_MODE=autoI_MPI_TUNING_BIN_DUMP=<tuning_results.dat>
2. Launch the application with the tuning results generated at the previous step:

I_MPI_TUNING_BIN=<tuning_results.dat>
Or use the -tune Hydra option.

3. If you experience performance issues, see Environment Variables for Autotuning.

For example:

1.> export I_MPI_TUNING_MODE=auto
> export I_MPI_TUNING_AUTO_SYNC=1
> export I_MPI_TUNING_AUTO_ITER_NUM=5
> export I_MPI_TUNING_BIN_DUMP=./tuning_results.dat
> mpirun -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

2.>
 export I_MPI_TUNING_BIN=./tuning_results.dat>
 mpirun -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE
To tune collectives on a communicator identified with the help of Application Performance Snapshot
(APS), execute the following variable at step 1: I_MPI_TUNING_AUTO_COMM_LIST=comm_id_1, … ,
comm_id_n.

See Also
Environment Variables for Autotuning

mpitune_fast

42

Main ThreadProcess Pinning
Use this feature to pin a particular MPI thread to a corresponding set of CPUs within a node and avoid
undesired thread migration. This feature is available on operating systems that provide the necessary kernel
interfaces.

Processor Identification
The following schemes are used to identify logical processors in a system:

• System-defined logical enumeration
• Topological enumeration based on three-level hierarchical identification through triplets (package/socket,

core, thread)

The number of a logical CPU is defined as the corresponding position of this CPU bit in the kernel affinity bit-
mask. Use the cpuinfo utility, provided with your Intel MPI Library installation to find out the logical
CPU numbers.
The three-level hierarchical identification uses triplets that provide information about processor location and
their order. The triplets are hierarchically ordered (package, core, and thread).

See the example for one possible processor numbering where there are two sockets, four cores (two cores
per socket), and eight logical processors (two processors per core).

Note
Logical and topological enumerations are not the same.
Logical Enumeration

0 4 1 5 2 6 3 7

Hierarchical Levels
Socket 0 0 0 0 1 1 1 1

Core 0 0 1 1 0 0 1 1

Thread 0 1 0 1 0 1 0 1

Topological Enumeration
0 1 2 3 4 5 6 7

Use the cpuinfo utility to identify the correspondence between the logical and topological enumerations. See
Processor Information Utility for more details.

Default Settings
If you do not specify values for any main thread pinning environment variables, the default settings below
are used. For details about these settings, see Environment Variables and Interoperability with OpenMP API.

• I_MPI_PIN=on
• I_MPI_PIN_MODE=pm
• I_MPI_PIN_RESPECT_CPUSET=on
• I_MPI_PIN_RESPECT_HCA=on
• I_MPI_PIN_CELL=unit
• I_MPI_PIN_DOMAIN=auto:compact
• I_MPI_PIN_ORDER=compact

Environment Variable Reference

43

NOTE
If I_MPI_PIN_ORDER is not specified and one of the sockets (NUMA-nodes) is not used, for better
performance the 'bunch' order will automatically be used instead of the default ‘compact’ order.

If hyperthreading is on, the number or processes on the node is greater than the number of cores and
no one process pinning environment variable is set. For better performance, the "spread" order will
automatically be used instead of the default "compact" order.

Environment Variables for Main ThreadProcess Pinning
I_MPI_PIN

Turn on/off main thread pinning.

Syntax
I_MPI_PIN=<arg>

Arguments
<arg> Binary indicator

enable | yes | on | 1 Enable main thread pinning. This is the default value

disable | no | off | 0 Disable main thread pinning

Description
Set this environment variable to control the main thread pinning feature of the Intel® MPI Library.

I_MPI_PIN_PROCESSOR_LIST (I_MPI_PIN_PROCS)

Define a processor subset and the mapping rules for MPI main threads within this subset.

Syntax
I_MPI_PIN_PROCESSOR_LIST=<value>
The environment variable value has the following syntax forms:

1. <proclist>

2. [<procset>][:[grain=<grain>][,shift=<shift>][,preoffset=<preoffset>]
[,postoffset=<postoffset>]
3. [<procset>][:map=<map>]
The following paragraphs provide detail descriptions for the values of these syntax forms.

44

NOTE
The postoffset keyword has offset alias.

The second form of the pinning procedure has three steps:

1. Cyclic shift of the source processor list on preoffset*grain value.
2. Round robin shift of the list derived on the first step on shift*grain value.
3. Cyclic shift of the list derived on the second step on the postoffset*grain value.

The grain, shift, preoffset, and postoffset parameters have a unified definition style.

This environment variable is available for both Intel® and non-Intel microprocessors, but it may
perform additional optimizations for Intel microprocessors than it performs for non-Intel
microprocessors.

Syntax
I_MPI_PIN_PROCESSOR_LIST=<proclist>

Arguments
<proclist> A comma-separated list of logical processor numbers

and/or ranges of processors. The main thread with the i-
th rank is pinned to the i-th processor in the list. The
number should not exceed the amount of processors on a
node.

<l> Processor with logical number <l>.

<l>-<m> Range of processors with logical numbers from <l>to
<m>.

<k>,<l>-<m> Processors <k>, as well as <l>through <m>.

Syntax
I_MPI_PIN_PROCESSOR_LIST=[<procset>][:[grain=<grain>][,shift=<shift>]
[,preoffset=<preoffset>][,postoffset=<postoffset>]

Arguments
<procset> Specify a processor subset based on the topological

numeration. The default value is allcores.

all All logical processors. Specify this subset to define the
number of CPUs on a node.

allcores All cores (physical CPUs). Specify this subset to
define the number of cores on a node. This is the
default value.

If Intel® Hyper-Threading Technology is disabled,
allcores equals to all.

allsocks All packages/sockets. Specify this subset to define the
number of sockets on a node.

<grain> Specify the pinning granularity cell for a defined
<procset>. The minimal <grain>value is a single
element of the <procset>. The maximal <grain>value

Environment Variable Reference

45

is the number of <procset>elements in a socket. The
<grain>value must be a multiple of the
<procset>value. Otherwise, the minimal <grain>value
is assumed. The default value is the minimal
<grain>value.

<shift> Specify the granularity of the round robin scheduling shift
of the cells for the <procset>. <shift>is measured in
the defined <grain>units. The <shift>value must be
positive integer. Otherwise, no shift is performed. The
default value is no shift, which is equal to 1 normal
increment.

<preoffset> Specify the cyclic shift of the processor subset
<procset>defined before the round robin shifting on the
<preoffset>value. The value is measured in the
defined <grain>units. The <preoffset>value must be
non-negative integer. Otherwise, no shift is performed.
The default value is no shift.

<postoffset> Specify the cyclic shift of the processor subset
<procset>derived after round robin shifting on the
<postoffset>value. The value is measured in the
defined <grain>units. The <postoffset>value must
be non-negative integer. Otherwise no shift is performed.
The default value is no shift.

The following table displays the values for <grain>, <shift>, <preoffset>, and <postoffset> options:

<n> Specify an explicit value of the corresponding parameters.
<n>is non-negative integer.

fine Specify the minimal value of the corresponding parameter.

core Specify the parameter value equal to the amount of the
corresponding parameter units contained in one core.

cache1 Specify the parameter value equal to the amount of the
corresponding parameter units that share an L1 cache.

cache2 Specify the parameter value equal to the amount of the
corresponding parameter units that share an L2 cache.

cache3 Specify the parameter value equal to the amount of the
corresponding parameter units that share an L3 cache.

cache The largest value among cache1, cache2, and
cache3.

socket | sock Specify the parameter value equal to the amount of the
corresponding parameter units contained in one physical
package/socket.

half | mid Specify the parameter value equal to socket/2.

third Specify the parameter value equal to socket/3.

quarter Specify the parameter value equal to socket/4.

octavo Specify the parameter value equal to socket/8.

Syntax
I_MPI_PIN_PROCESSOR_LIST=[<procset>][:map=<map>]

46

Arguments
<map> The mapping pattern used for main thread placement.

bunch The main threads are mapped as close as possible on the
sockets.

scatter The main threads are mapped as remotely as possible so
as not to share common resources: FSB, caches, and
core.

spread The main threads are mapped consecutively with the
possibility not to share common resources.

Description
Set the I_MPI_PIN_PROCESSOR_LIST environment variable to define the processor placement. To avoid
conflicts with different shell versions, the environment variable value may need to be enclosed in quotes.

NOTE
This environment variable is valid only if I_MPI_PIN is enabled.

The I_MPI_PIN_PROCESSOR_LIST environment variable has the following different syntax variants:

• Explicit processor list. This comma-separated list is defined in terms of logical processor numbers. The
relative node rank of a main thread is an index to the processor list such that the i-th main thread is
pinned on i-th list member. This permits the definition of any main thread placement on the CPUs.

For example, main thread mapping for I_MPI_PIN_PROCESSOR_LIST=p0,p1,p2,...,pn is as follows:

Rank on a
node

0 1 2 ... n-1 N

Logical CPU p0 p1 p2 ... pn-1 Pn

• grain/shift/offset mapping. This method provides cyclic shift of a defined grain along the processor
list with steps equal to shift*grain and a single shift on offset*grain at the end. This shifting action
is repeated shift times.

For example: grain = 2 logical processors, shift = 3 grains, offset = 0.

Legend:

gray - MPI main thread grains

A) red - processor grains chosen on the 1st pass

B) cyan - processor grains chosen on the 2nd pass

C) green - processor grains chosen on the final 3rd pass

D) Final map table ordered by MPI ranks

A)

0 1 2 3 ... 2n-2
2n-1

0 1 2 3 4 5 6 7 8 9 10 11 ... 6n-6
6n-5

6n-4
6n-3

6n-2
6n-1

B)

0 1 2n 2n+1 2 3 2n+2 2n
+3

 ... 2n-2
2n-1

4n-2
4n-1

Environment Variable Reference

47

0 1 2 3 4 5 6 7 8 9 10 11 ... 6n-6
6n-5

6n-4
6n-3

6n-2
6n-1

C)

0 1 2n 2n+1 4n 4n+1 2 3 2n+2 2n
+3

4n+2 4n
+3

... 2n-2
2n-1

4n-2
4n-1

6n-2
6n-1

0 1 2 3 4 5 6 7 8 9 10 11 ... 6n-6
6n-5

6n-4
6n-3

6n-2
6n-1

D)

0 1 2 3 … 2n-2
2n-1

2n 2n
+1

2n+2
2n+3

… 4n-2
4n-1

4n 4n
+1

4n+2
4n+3

… 6n-2
6n-1

0 1 6 7 … 6n-6
6n-5

2 3 8 9 … 6n-4
6n-3

4 5 10 11 … 6n-2
6n-1

• Predefined mapping scenario. In this case popular main thread pinning schemes are defined as keywords
selectable at runtime. There are two such scenarios: bunch and scatter.

In the bunch scenario the main threads are mapped proportionally to sockets as closely as possible. This
mapping makes sense for partial processor loading. In this case the number of main threads is less than the
number of processors.

In the scatter scenario the main threads are mapped as remotely as possible so as not to share common
resources: FSB, caches, and cores.

In the example, there are two sockets, four cores per socket, one logical CPU per core, and two cores per
shared cache.

Legend:

gray - MPI main threads

cyan - 1st socket processors

green - 2nd socket processors

Same color defines a processor pair sharing a cache

0 1 2 3 4

0 1 2 3 4 5 6 7

bunch scenario for 5 processes

0 4 2 6 1 5 3 7

0 1 2 3 4 5 6 7

scatter scenario for full loading

Examples
To pin the main thread to CPU0 and CPU3 on each node globally, use the following command:

> mpiexec -genv I_MPI_PIN_PROCESSOR_LIST=0,3 -n <# of main threads><executable>
To pin the main thread to different CPUs on each node individually (CPU0 and CPU3 on host1 and CPU0,
CPU1 and CPU3 on host2), use the following command:

> mpiexec -host host1 -env I_MPI_PIN_PROCESSOR_LIST=0,3 -n <# of main threads> <executable> :^
-host host2 -env I_MPI_PIN_PROCESSOR_LIST=1,2,3 -n <# of main threads> <executable>

48

To print extra debug information about the main thread pinning, use the following command:

> mpiexec -genv I_MPI_DEBUG=4 -m -host host1 -env I_MPI_PIN_PROCESSOR_LIST=0,3 -n <# of main
threads> <executable> :^
-host host2 -env I_MPI_PIN_PROCESSOR_LIST=1,2,3 -n <# of main threads> <executable>

Note

If the number of main threads is greater than the number of CPUs used for pinning, the thread list is
wrapped around to the start of the processor list.

Interoperability with OpenMP* API
I_MPI_PIN_DOMAIN

Intel® MPI Library provides an additional environment variable to control main thread pinning for hybrid MPI/
OpenMP* applications. This environment variable is used to define a number of non-overlapping subsets
(domains) of logical processors on a node, and a set of rules on how MPI processes are bound to these
domains by the following formula: one MPI process per one domain. See the picture below.

Figure 1 Domain Example

Each MPI process can create a number of children threads for running within the corresponding domain. The
process threads can freely migrate from one logical processor to another within the particular domain.

If the I_MPI_PIN_DOMAIN environment variable is defined, then the I_MPI_PIN_PROCESSOR_LIST
environment variable setting is ignored.

If the I_MPI_PIN_DOMAIN environment variable is not defined, then MPI main threads are pinned according
to the current value of the I_MPI_PIN_PROCESSOR_LIST environment variable.

The I_MPI_PIN_DOMAIN environment variable has the following syntax forms:

• Domain description through multi-core terms <mc-shape>
• Domain description through domain size and domain member layout <size>[:<layout>]
• Explicit domain description through bit mask <masklist>

The following tables describe these syntax forms.

Multi-core Shape

I_MPI_PIN_DOMAIN=<mc-shape>
<mc-shape> Define domains through multi-core terms.

Environment Variable Reference

49

core Each domain consists of the logical processors that share
a particular core. The number of domains on a node is
equal to the number of cores on the node.

socket | sock Each domain consists of the logical processors that share
a particular socket. The number of domains on a node is
equal to the number of sockets on the node. This is the
recommended value.

numa Each domain consists of the logical processors that share
a particular NUMA node. The number of domains on a
machine is equal to the number of NUMA nodes on the
machine.

node All logical processors on a node are arranged into a single
domain.

cache1 Logical processors that share a particular level 1 cache
are arranged into a single domain.

cache2 Logical processors that share a particular level 2 cache
are arranged into a single domain.

cache3 Logical processors that share a particular level 3 cache
are arranged into a single domain.

cache The largest domain among cache1, cache2, and
cache3 is selected.

NOTE
If Cluster on Die is disabled on a machine, the number of NUMA nodes equals to the number of
sockets. In this case, pinning for I_MPI_PIN_DOMAIN = numa is equivalent to pinning for
I_MPI_PIN_DOMAIN = socket.

Explicit Shape

I_MPI_PIN_DOMAIN=<size>[:<layout>]

<size> Define a number of logical processors in each domain
(domain size)

omp The domain size is equal to the OMP_NUM_THREADS
environment variable value. If the OMP_NUM_THREADS
environment variable is not set, each node is treated as a
separate domain.

auto The domain size is defined by the formula size=#cpu/
#proc, where #cpu is the number of logical processors
on a node, and #proc is the number of the MPI
processes started on a node

<n> The domain size is defined by a positive decimal number
<n>

<layout> Ordering of domain members. The default value is
compact

platform Domain members are ordered according to their BIOS
numbering (platform-depended numbering)

compact Domain members are located as close to each other as
possible in terms of common resources (cores, caches,
sockets, and so on). This is the default value

scatter Domain members are located as far away from each other
as possible in terms of common resources (cores, caches,
sockets, and so on)

Explicit Domain Mask

I_MPI_PIN_DOMAIN=<masklist>
<masklist> Define domains through the comma separated list of

hexadecimal numbers (domain masks)

50

[m1,...,mn] For <masklist>, each mi is a hexadecimail bit
mask defining an individual domain. The following
rule is used: the ith logical processor is included
into the domain if the corresponding mi value is set
to 1. All remaining processors are put into a
separate domain. BIOS numbering is used.

NOTE
To ensure that your configuration in <masklist> is
parsed correctly, use square brackets to enclose the
domains specified by the <masklist>. For example:
I_MPI_PIN_DOMAIN=[55,aa]

NOTE
These options are available for both Intel® and non-Intel microprocessors, but they may perform
additional optimizations for Intel microprocessors than they perform for non-Intel microprocessors.

To pin OpenMP* processes or threads inside the domain, the corresponding OpenMP feature (for
example, the KMP_AFFINITY environment variable for Intel® compilers) should be used.

See the following model of a symmetric multiprocessing (SMP) node in the examples:

Figure 2 Model of a Node

The figure above represents the SMP node model with a total of 8 cores on 2 sockets. Intel® Hyper-Threading
Technology is disabled. Core pairs of the same color share the L2 cache.

Figure 3 mpiexec -n 2 -env I_MPI_PIN_DOMAIN socket test.exe

Environment Variable Reference

51

In Figure 3, two domains are defined according to the number of sockets. Process rank 0 can migrate on all
cores on the 0-th socket. Process rank 1 can migrate on all cores on the first socket.

Figure 4 mpiexec -n 4 -env I_MPI_PIN_DOMAIN cache2 test.exe

In Figure 4, four domains are defined according to the amount of common L2 caches. Process rank 0 runs on
cores {0,4} that share an L2 cache. Process rank 1 runs on cores {1,5} that share an L2 cache as well, and
so on.

Figure 5 mpiexec -n 2 -env I_MPI_PIN_DOMAIN 4:platform test.exe

52

In Figure 5, two domains with size=4 are defined. The first domain contains cores {0,1,2,3}, and the second
domain contains cores {4,5,6,7}. Domain members (cores) have consecutive numbering as defined by the
platform option.

Figure 6 mpiexec -n 4 -env I_MPI_PIN_DOMAIN auto:scatter test.exe

In Figure 6, domain size=2 (defined by the number of CPUs=8 / number of processes=4), scatter layout.
Four domains {0,2}, {1,3}, {4,6}, {5,7} are defined. Domain members do not share any common
resources.

Figure 7 set OMP_NUM_THREADS=2 mpiexec -n 4 -env I_MPI_PIN_DOMAIN omp:platform test.exe

Environment Variable Reference

53

In Figure 7, domain size=2 (defined by OMP_NUM_THREADS=2), platform layout. Four domains {0,1}, {2,3},
{4,5}, {6,7} are defined. Domain members (cores) have consecutive numbering.

Figure 8 mpiexec -n 2 -env I_MPI_PIN_DOMAIN [55,aa] test.exe

In Figure 8 (the example for I_MPI_PIN_DOMAIN=<masklist>), the first domain is defined by the 55 mask.
It contains all cores with even numbers {0,2,4,6}. The second domain is defined by the AA mask. It contains
all cores with odd numbers {1,3,5,7}.

I_MPI_PIN_ORDER

Set this environment variable to define the mapping order for MPI processes to domains as specified by the
I_MPI_PIN_DOMAIN environment variable.

Syntax
I_MPI_PIN_ORDER=<order>

Arguments
<order> Specify the ranking order

range The domains are ordered according to the processor's
BIOS numbering. This is a platform-dependent
numbering.

54

scatter The domains are ordered so that adjacent domains have
minimal sharing of common resources, whenever possible.

compact The domains are ordered so that adjacent domains share
common resources as much as possible. This is the
default value.

spread The domains are ordered consecutively with the possibility
not to share common resources.

bunch The processes are mapped proportionally to sockets and
the domains are ordered as close as possible on the
sockets.

Description
The optimal setting for this environment variable is application-specific. If adjacent MPI processes prefer to
share common resources, such as cores, caches, sockets, FSB, use the compact or bunch values. Otherwise,
use the scatter or spread values. Use the range value as needed. For detail information and examples
about these values, see the Arguments table and the Example section of I_MPI_PIN_ORDER in this topic.

The options scatter, compact, spread and bunch are available for both Intel® and non-Intel
microprocessors, but they may perform additional optimizations for Intel microprocessors than they perform
for non-Intel microprocessors.

Examples
For the following configuration:

• Two socket nodes with four cores and a shared L2 cache for corresponding core pairs.
• 4 MPI processes you want to run on the node using the settings below.

Compact order:

I_MPI_PIN_DOMAIN=2I_MPI_PIN_ORDER=compact
Figure 9 Compact Order Example

Scatter order:

I_MPI_PIN_DOMAIN=2 I_MPI_PIN_ORDER=scatter
Figure 10 Scatter Order Example

Environment Variable Reference

55

Spread order:

I_MPI_PIN_DOMAIN=2 I_MPI_PIN_ORDER=spread

NOTE
For I_MPI_PIN_ORDER=spread, the order will be switched to 'compact' if:

• there are not enough CPUs to emplace all domains
• different domains share the L1 cache

Figure 11 Spread Order Example

Bunch order:

I_MPI_PIN_DOMAIN=2 I_MPI_PIN_ORDER=bunch
Figure 12 Bunch Order Example

56

Environment Variables for Fabrics Control
This section provides description of the general environment variables for controlling fabrics, as well as
description of variables for controlling specific fabrics:

• Communication Fabrics Control

Communication Fabrics Control

I_MPI_FABRICS
Select the particular fabrics to be used.

Syntax
I_MPI_FABRICS=ofi | shm

Arguments
<fabric> Define a network fabric.

shm Shared memory transport (used for intra-node
communication only).

ofi OpenFabrics Interfaces* (OFI)-capable network fabrics,
such as Intel® True Scale Fabric, Intel® Omni-Path
Architecture, InfiniBand*, and Ethernet (through OFI API).

Description
Set this environment variable to select a specific fabric combination.

NOTE
This option is not applicable to slurm and pdsh bootstrap servers.

OFI*-capable Network Fabrics Control

I_MPI_OFI_DRECV
Control the capability of the direct receive in the OFI fabric.

Environment Variable Reference

57

Syntax
I_MPI_OFI_DRECV=<arg>

Arguments
<arg> Binary indicator

enable | yes | on | 1 Enable direct receive. This is the default value

disable | no | off | 0 Disable direct receive

Description
Use the direct receive capability to block MPI_Recv calls only. Before using the direct receive capability,
ensure that you use it for single-threaded MPI applications and check if you have selected OFI as the network
fabric by setting I_MPI_FABRICS=ofi.

I_MPI_OFI_LIBRARY_INTERNAL
Control the usage of libfabric* shipped with the Intel® MPI Library.

Syntax
I_MPI_OFI_LIBRARY_INTERNAL=<arg>

Arguments
<arg> Binary indicator

enable | yes | on | 1 Use libfabric from the Intel MPI Library

disable | no | off | 0 Do not use libfabric from the Intel MPI Library

Description
Set this environment variable to disable or enable usage of libfabric from the Intel MPI Library. The variable
must be set before sourcing the vars.bat script.

Example
> set I_MPI_OFI_LIBRARY_INTERNAL=1
> call <installdir> \env\vars.bat

Setting this variable is equivalent to passing the -ofi_internal option to the vars.bat script.

For more information, refer to the Intel® MPI Library Developer Guide, section Running Applications >
Libfabric* Support.

Environment Variables for Memory Policy Control
Intel® MPI Library supports non-uniform memory access (NUMA) nodes with high-bandwidth (HBW) memory
(MCDRAM) on Intel® Xeon Phi™ processors (codenamed Knights Landing). Intel® MPI Library can attach
memory of MPI processes to the memory of specific NUMA nodes. This section describes the environment
variables for such memory placement control.

I_MPI_HBW_POLICY

Set the policy for MPI process memory placement for using HBW memory.

Syntax
I_MPI_HBW_POLICY=<user memory policy>[,<mpi memory policy>][,<win_allocate policy>]

58

In the syntax:

• <user memory policy> - memory policy used to allocate the memory for user applications (required)
• <mpi memory policy> - memory policy used to allocate the internal MPI memory (optional)
• <win_allocate policy> - memory policy used to allocate memory for window segments for RMA

operations (optional)

Each of the listed policies may have the values below:

Arguments
<value> The memory allocation policy used.

hbw_preferred Allocate the local HBW memory for each process. If the
HBW memory is not available, allocate the local dynamic
random access memory.

hbw_bind Allocate only the local HBW memory for each process.

hbw_interleave Allocate the HBW memory and dynamic random access
memory on the local node in the round-robin manner.

Description
Use this environment variable to specify the policy for MPI process memory placement on a machine with
HBW memory.

By default, Intel MPI Library allocates memory for a process in local DDR. The use of HBW memory becomes
available only when you specify the I_MPI_HBW_POLICY variable.

Examples
The following examples demonstrate different configurations of memory placement:

• I_MPI_HBW_POLICY=hbw_bind,hbw_preferred,hbw_bind
Only use the local HBW memory allocated in user applications and window segments for RMA operations.
Use the local HBW memory internally allocated in Intel® MPI Library first. If the HBW memory is not
available, use the local DDR internally allocated in Intel MPI Library.

• I_MPI_HBW_POLICY=hbw_bind,,hbw_bind
Only use the local HBW memory allocated in user applications and window segments for RMA operations.
Use the local DDR internally allocated in Intel MPI Library.

• I_MPI_HBW_POLICY=hbw_bind,hbw_preferred
Only use the local HBW memory allocated in user applications. Use the local HBW memory internally
allocated in Intel MPI Library first. If the HBW memory is not available, use the local DDR internally
allocated in Intel MPI Library. Use the local DDR allocated in window segments for RMA operations.

I_MPI_BIND_NUMA

Set the NUMA nodes for memory allocation.

Syntax
I_MPI_BIND_NUMA=<value>

Arguments
<value> Specify the NUMA nodes for memory allocation.

localalloc Allocate memory on the local node. This is the default
value.

Environment Variable Reference

59

Node_1,…,Node_k Allocate memory according to I_MPI_BIND_ORDER on
the specified NUMA nodes.

Description
Set this environment variable to specify the NUMA node set that is involved in the memory allocation
procedure.

I_MPI_BIND_ORDER

Set this environment variable to define the memory allocation manner.

Syntax
I_MPI_BIND_ORDER=<value>

Arguments
<value> Specify the allocation manner.

compact Allocate memory for processes as close as possible (in
terms of NUMA nodes), among the NUMA nodes specified
in I_MPI_BIND_NUMA. This is the default value.

scatter Allocate memory among the NUMA nodes specified in
I_MPI_BIND_NUMA using the round-robin manner.

Description
Set this environment variable to define the memory allocation manner among the NUMA nodes specified in
I_MPI_BIND_NUMA. The variable has no effect without I_MPI_BIND_NUMA set.

I_MPI_BIND_WIN_ALLOCATE

Set this environment variable to control memory allocation for window segments.

Syntax
I_MPI_BIND_WIN_ALLOCATE=<value>

Arguments
<value> Specify the memory allocation behavior for window

segments.

localalloc Allocate memory on the local node. This is the default
value.

hbw_preferred Allocate the local HBW memory for each process. If the
HBW memory is not available, allocate the local dynamic
random access memory.

hbw_bind Allocate only the local HBW memory for each process.

hbw_interleave Allocate the HBW memory and dynamic random access
memory on a local node in the round-robin manner.

<NUMA node id> Allocate memory on the given NUMA node.

Description
Set this environment variable to create window segments allocated in HBW memory with the help of the
MPI_Win_allocate_shared or MPI_Win_allocate functions.

MPI_Info

60

You can control memory allocation for window segments with the help of an MPI_Info object, which is
passed as a parameter to the MPI_Win_allocate or MPI_Win_allocate_shared function. In an
application, if you specify such an object with the numa_bind_policy key, window segments are allocated in
accordance with the value for numa_bind_policy. Possible values are the same as for
I_MPI_BIND_WIN_ALLOCATE.

A code fragment demonstrating the use of MPI_Info:

MPI_Info info;
...
MPI_Info_create(&info);
MPI_Info_set(info, "numa_bind_policy", "hbw_preferred");
...
MPI_Win_allocate_shared(size, disp_unit, info, comm, &baseptr, &win);

NOTE
When you specify the memory placement policy for window segments, Intel MPI Library recognizes the
configurations according to the following priority:

1. Setting of MPI_Info.
2. Setting of I_MPI_HBW_POLICY, if you specified <win_allocate policy>.
3. Setting of I_MPI_BIND_WIN_ALLOCATE.

Other Environment Variables

I_MPI_DEBUG
Print out debugging information when an MPI program starts running.

Syntax
I_MPI_DEBUG=<level>[,<flags>]

Arguments
<level> Indicate the level of debug information provided

0 Output no debugging information. This is the default
value.

1,2 Output libfabric* version and provider.

3 Output effective MPI rank, pid and node mapping table.

4 Output process pinning information.

5 Output environment variables specific to Intel® MPI
Library.

> 5 Add extra levels of debug information.

<flags> Comma-separated list of debug flags

pid Show process id for each debug message.

tid Show thread id for each debug message for multithreaded
library.

time Show time for each debug message.

datetime Show time and date for each debug message.

Environment Variable Reference

61

host Show host name for each debug message.

level Show level for each debug message.

scope Show scope for each debug message.

line Show source line number for each debug message.

file Show source file name for each debug message.

nofunc Do not show routine name.

norank Do not show rank.

flock Synchronize debug output from different process or
threads.

nobuf Do not use buffered I/O for debug output.

Description
Set this environment variable to print debugging information about the application.

NOTE
Set the same <level> value for all ranks.

You can specify the output file name for debug information by setting the I_MPI_DEBUG_OUTPUT
environment variable.

Each printed line has the following format:

[<identifier>] <message>
where:

• <identifier> is the MPI process rank, by default. If you add the '+' sign in front of the <level> number,
the <identifier> assumes the following format: rank#pid@hostname. Here, rank is the MPI process
rank, pid is the process ID, and hostname is the host name. If you add the '-' sign, <identifier> is not
printed at all.

• <message> contains the debugging output.

The following examples demonstrate possible command lines with the corresponding output:

> mpiexec -n 1 -env I_MPI_DEBUG=2 test.exe
...
[0] MPI startup(): shared memory data transfer mode

The following commands are equal and produce the same output:

$ mpirun -n 1 -env I_MPI_DEBUG=2,pid,host ./a.out
...
[0#1986@mpicluster001] MPI startup(): shared memory data transfer mode
> mpiexec -n 1 -env I_MPI_DEBUG=2,pid,host test.exe
...
[0#1986@mpicluster001] MPI startup(): shared memory data transfer mode

Note
Compiling with the /Zi, /ZI or /Z7 option adds a considerable amount of printed debug information.

I_MPI_DEBUG_OUTPUT
Set output file name for debug information.

62

Syntax
I_MPI_DEBUG_OUTPUT=<arg>

Arguments
<arg> String value

stdout Output to stdout. This is the default value.

stderr Output to stderr.
<file_name> Specify the output file name for debug information (the

maximum file name length is 256 symbols).

Description
Set this environment variable if you want to split output of debug information from the output produced by
an application. If you use format like %r, %p or %h, rank, process ID or host name is added to the file name
accordingly.

I_MPI_DEBUG_COREDUMP
Controls core dump files generation in case of failure during MPI application execution.

Syntax
I_MPI_DEBUG_COREDUMP=<arg>

Arguments
<arg> Binary indicator

enable|yes|on|1 Enable coredump files generation.

disable|no|off|0 Do not generate coredump files. Default value.

Description
Set this environment variable to enable coredump files dumping in case of termination caused by
segmentation fault. Available for both release and debug builds.

>I_MPI_NETMASK
Choose the network interface for MPI communication over sockets.

Syntax
I_MPI_NETMASK=<arg>

Arguments
<arg> Define the network interface (string parameter)

<interface_mnemonic> Mnemonic of the network interface: ib or eth
ib Select IPoIB*

eth Select Ethernet. This is the default value

<network_address> Network address. The trailing zero bits imply netmask

<network_address/netmask> Network address. The <netmask> value specifies the
netmask length

Environment Variable Reference

63

<list of interfaces> A colon separated list of network addresses or interface
mnemonics

Description
Set this environment variable to choose the network interface for MPI communication over sockets in the
sock and ssm communication modes. If you specify a list of interfaces, the first available interface on the
node will be used for communication.

Examples
1. Use the following setting to select the IP over InfiniBand* (IPoIB) fabric:

I_MPI_NETMASK=ib
I_MPI_NETMASK=eth

2. Use the following setting to select a particular network for socket communications. This setting implies
the 255.255.0.0 netmask:

I_MPI_NETMASK=192.169.0.0
3. Use the following setting to select a particular network for socket communications with netmask set

explicitly:

I_MPI_NETMASK=192.169.0.0/24
4. Use the following setting to select the specified network interfaces for socket communications:

I_MPI_NETMASK=192.169.0.5/24:ib0:192.169.0.0

NOTE
If the library cannot find any suitable interface by the given value of I_MPI_NETMASK, the value will be
used as a substring to search in the network adapter's description field. And if the substring is found in
the description, this network interface will be used for socket communications. For example, if
I_MPI_NETMASK=myri and the description field contains something like Myri-10G adapter, this
interface will be chosen.

I_MPI_PMI_VALUE_LENGTH_MAX
Control the length of the value buffer in PMI on the client side.

Syntax
I_MPI_PMI_VALUE_LENGTH_MAX=<length>

Arguments
<length> Define the value of the buffer length in bytes.

<n> > 0 The default value is -1, which means do not override the
value received from the
PMI_KVS_Get_value_length_max() function.

Description
Set this environment variable to control the length of the value buffer in PMI on the client side. The length of
the buffer will be the lesser of I_MPI_PMI_VALUE_LENGTH_MAX and PMI_KVS_Get_value_length_max().

64

I_MPI_REMOVED_VAR_WARNING
Print out a warning if a removed environment variable is set.

Syntax
I_MPI_REMOVED_VAR_WARNING=<arg>

Arguments
<arg> Binary indicator

enable | yes | on | 1 Print out the warning. This is the default value

disable | no | off | 0 Do not print the warning

Description
Use this environment variable to print out a warning if a removed environment variable is set. Warnings are
printed regardless of whether I_MPI_DEBUG is set.

I_MPI_VAR_CHECK_SPELLING
Print out a warning if an unknown environment variable is set.

Syntax
I_MPI_VAR_CHECK_SPELLING=<arg>

Arguments
<arg> Binary indicator

enable | yes | on | 1 Print out the warning. This is the default value

disable | no | off | 0 Do not print the warning

Description
Use this environment variable to print out a warning if an unsupported environment variable is set. Warnings
are printed in case of removed or misprinted environment variables.

I_MPI_LIBRARY_KIND
Specify the Intel® MPI Library configuration.

Syntax
I_MPI_LIBRARY_KIND=<value>

Arguments
<value> Binary indicator

release Multi-threaded optimized library. This is the default value

debug Multi-threaded debug library

Description
Use this variable to set an argument for the vars. batscript. This script establishes the Intel® MPI Library
environment and enables you to specify the appropriate library configuration. To ensure that the desired
configuration is set, check the LD_LIBRARY_PATH variable.

Environment Variable Reference

65

Example
> export I_MPI_LIBRARY_KIND=debug

Setting this variable is equivalent to passing an argument directly to the vars.[c]sh script:

Example
> <installdir> \env\vars.bat release

I_MPI_PLATFORM
Select the intended optimization platform.

Syntax
I_MPI_PLATFORM=<platform>

Arguments
<platform> Intended optimization platform (string value)

auto Use only with heterogeneous runs to determine the
appropriate platform across all nodes. May slow down MPI
initialization time due to collective operation across all
nodes.

ivb Optimize for the Intel® Xeon® Processors E3, E5, and E7
V2 series and other Intel® Architecture processors
formerly code named Ivy Bridge.

hsw Optimize for the Intel Xeon Processors E3, E5, and E7 V3
series and other Intel® Architecture processors formerly
code named Haswell.

bdw Optimize for the Intel Xeon Processors E3, E5, and E7 V4
series and other Intel Architecture processors formerly
code named Broadwell.

knl Optimize for the Intel® Xeon Phi™ processor and
coprocessor formerly code named Knights Landing.

skx Optimize for the Intel Xeon Processors E3 V5 and Intel
Xeon Scalable Family series, and other Intel Architecture
processors formerly code named Skylake.

clx Optimize for the 2nd Generation Intel Xeon Scalable
Processors, and other Intel® Architecture processors
formerly code named Cascade Lake.

clx-ap Optimize for the 2nd Generation Intel Xeon Scalable
Processors, and other Intel Architecture processors
formerly code named Cascade Lake AP Note: The explicit
clx-ap setting is ignored if the actual platform is not
Intel.

Description
Set this environment variable to use the predefined platform settings. The default value is a local platform for
each node.

The variable is available for both Intel and non-Intel microprocessors, but it may utilize additional
optimizations for Intel microprocessors than it utilizes for non-Intel microprocessors.

66

NOTE
The values auto[:min], auto:max, and auto:most may increase the MPI job startup time.

I_MPI_MALLOC
Control the Intel® MPI Library custom allocator of private memory.

Syntax
I_MPI_MALLOC=<arg>

Argument
<arg> Binary indicator

1 Enable the Intel MPI Library custom allocator of
private memory.

Use the Intel MPI custom allocator of private
memory for MPI_Alloc_mem/MPI_Free_mem.

0 Disable the Intel MPI Library custom allocator of
private memory.

Use the system-provided memory allocator for
MPI_Alloc_mem/MPI_Free_mem.

Description
Use this environment variable to enable or disable the Intel MPI Library custom allocator of private memory
for MPI_Alloc_mem/MPI_Free_mem.

By default, I_MPI_MALLOC is enabled for release and debug Intel MPI library configurations and disabled
for release_mt sand debug_mt configurations.

NOTE
If the platform is not supported by the Intel MPI Library custom allocator of private memory, a
system-provided memory allocator is used and the I_MPI_MALLOC variable is ignored.

I_MPI_WAIT_MODE
Control the Intel® MPI Library optimization for oversubscription mode.

Syntax
I_MPI_WAIT_MODE=<arg>

Argument
<arg> Binary indicator

0 Optimize MPI application to work in the normal mode (1
rank on 1 CPU). This is the default value if the number of
processes on a computation node is less than or equal to
the number of CPUs on the node.

Environment Variable Reference

67

1 Optimize MPI application to work in the oversubscription
mode (multiple ranks on 1 CPU). This is the default value
if the number of processes on a computation node is
greater than the number of CPUs on the node.

Description
It is recommended to use this variable in the oversubscription mode.

I_MPI_THREAD_YIELD
Control the Intel® MPI Library thread yield customization during MPI busy wait time.

Syntax
I_MPI_THREAD_YIELD=<arg>

Argument
<arg> Binary indicator

0 Do nothing for thread yield during the busy wait (spin
wait). This is the default value when
I_MPI_WAIT_MODE=0

1 Do the pause processor instruction for
I_MPI_PAUSE_COUNT during the busy wait.

2
Do the SwitchToThread() system call for thread
yield during the busy wait.

This is the default value when I_MPI_WAIT_MODE=1
3 Do the Sleep() system call for

I_MPI_THREAD_SLEEP number of milliseconds for
thread yield during the busy wait.

Description
I_MPI_THREAD_YIELD=0 or I_MPI_THREAD_YIELD=1 in the normal mode and I_MPI_THREAD_YIELD=2 or
I_MPI_THREAD_YIELD=3 in the oversubscription mode.

I_MPI_PAUSE_COUNT
Control the Intel® MPI Library pause count for the thread yield customization during MPI busy wait time.

Syntax
I_MPI_PAUSE_COUNT=<arg>

Argument
<arg> Description

>=0 Pause count for thread yield customization during
MPI busy wait time.

The default value is 0. Normally, the value is less
than 100.

68

Description
This variable is applicable when I_MPI_THREAD_YIELD=1. Small values of I_MPI_PAUSE_COUNT may
increase performance, while larger values may reduce energy consumption.

I_MPI_THREAD_SLEEP
Control the Intel® MPI Library thread sleep milliseconds timeout for thread yield customization while MPI busy
wait progress.

Syntax
I_MPI_THREAD_SLEEP=<arg>

Argument
<arg> Description

>=0 Thread sleep microseconds timeout. The default value is
0. Normally, the value is less than 100.

Description
This variable is applicable when I_MPI_THREAD_YIELD=3. Small values of I_MPI_PAUSE_COUNT may
increase performance in the normal mode, while larger values may increase performance in the
oversubscription mode

I_MPI_EXTRA_FILESYSTEM
Control native support for parallel file systems.

Syntax
I_MPI_EXTRA_FILESYSTEM=<arg>

Argument
<arg> Binary indicator

enable | yes | on | 1 Enable native support for parallel file systems.

disable | no | off | 0 Disable native support for parallel file systems. This is the
default value.

Description
Use this environment variable to enable or disable native support for parallel file systems.

I_MPI_EXTRA_FILESYSTEM_FORCE

Description
Force filesystem recognition logic.

Syntax
I_MPI_EXTRA_FILESYSTEM_FORCE=<ufs|nfs|gpfs|panfs|lustre>

Environment Variable Reference

69

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

>Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

70

	Contents
	Intel® MPI Library Developer Reference for Windows* OS
	Introduction
	Introducing Intel® MPI Library
	What's New
	Notational Conventions
	Related Information
	User Authorization

	Command Reference
	Compiler Commands
	mpiexec.hydra
	Global Hydra Options
	Local Hydra Options

	cpuinfo
	impi_info
	mpitune
	mpitune Configuration Options

	Environment Variable Reference
	Compilation Environment Variables
	Hydra Environment Variables
	I_MPI_ADJUST Family Environment Variables
	Tuning Environment Variables
	Autotuning

	Main ThreadProcess Pinning
	Environment Variables for Main ThreadProcess Pinning
	Interoperability with OpenMP* API

	Environment Variables for Fabrics Control
	Communication Fabrics Control
	OFI*-capable Network Fabrics Control

	Environment Variables for Memory Policy Control
	Other Environment Variables

	Notices and Disclaimers

