
Intel® MPI Library for Intel® oneAPI
on Windows* OS

Developer Guide

1

Introduction

The Intel® MPI Library is a multi-fabric message-passing library that implements the Message Passing
Interface, version 3.1 (MPI-3.1) specification. It provides a standard library across Intel® platforms
that:

• Delivers best in class performance for enterprise, divisional, departmental and workgroup high
performance computing. The Intel® MPI Library focuses on improving application performance
on Intel® architecture based clusters.

• Enables you to adopt MPI-3.1 functions as your needs dictate

Conventions and Symbols
The following conventions are used in this document:

This type style Document or product names.

This type style Commands, arguments, options, file names.

THIS_TYPE_STYLE Environment variables.

<this type style> Placeholders for actual values.

[items] Optional items.

{ item | item } Selectable items separated by vertical bar(s).

Related Information
To get more information about the Intel® MPI Library, explore the following resources:

• Intel® MPI Library Release Notes for updated information on requirements, technical support,
and known limitations.

The Intel® MPI Library Developer Guide explains how to use the Intel® MPI Library in some common
usage scenarios. It provides information regarding compiling, running, debugging, tuning, and
analyzing MPI applications, as well as troubleshooting information.

This Developer Guide helps a user familiar with the message passing interface start using the Intel®
MPI Library. For full information, see the Intel® MPI Library Developer Reference.

Documentation for older versions of the Intel® MPI Library are available for download only. For a list
of available Intel® Parallel Studio XE documentation by product version, see Download
Documentation for Intel Parallel Studio XE. For previous versions of Intel MPI Library documentation,
see the Legacy Documentation page.

Introducing Intel® MPI Library

https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-release-notes.html

Introduction

2

• Intel® MPI Library Developer Reference for in-depth knowledge of the product features,
commands, options, and environment variables.

For additional resources, see:

• Intel® MPI Library Product Web Site

• Intel® Software Documentation Library

• Intel® Software Products Support

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top.html
http://www.intel.com/go/mpi
https://software.intel.com/content/www/us/en/develop/documentation.html
https://software.intel.com/content/www/us/en/develop/support.html

3

Installation and Prerequisites

Installation
If you have a previous version of the Intel® MPI Library for Windows* OS installed, you do not need to
uninstall it before installing a newer version.

To install the Intel MPI Library, double-click on the distribution file
w_mpi_oneapi_p_<version>.<package_num>.exe.
You will be asked to choose a directory in which the contents of the self-extracting installation file
will be placed before the actual installation begins. After installation, the files will still be located in
this directory. By default, C:\Program Files (x86)\Intel\Download is used on machines with
Intel® 64 architecture.
Follow the prompts outlined by the installation wizard to complete the installation.

Note
You need domain administrator rights when you install the Intel® MPI Library on the Microsoft
Windows* OS. Otherwise, you cannot proceed with the Active Directory* setup. See the Intel® MPI
Library Developer Reference for more Active Directory setup information.

Prerequisite Steps
Before you start using any of the Intel® MPI Library functionality, make sure to establish the proper
environment for the Intel MPI Library. Follow these steps:

1. Set up the Intel MPI Library environment. For oneAPI, run the setvars.bat script:

> <install-dir>\env\vars.bat
For Parallel Studio XE, run the vars.bat script:

> <install-dir>\intel64\bin\mpivars.bat
By default, <install-dir>for oneAPI is C:\Program Files
(x86)\inteloneapi\mpi\<version> and for Parallel Studio XE is C:\Program
Files(x86)\IntelSWTools\compilers_and_libraries_<version>\windows\mpi.

NOTE: The vars.bat script sets environment variables required for working with the Intel®
MPI Library. To use all the Intel MPI Library functionality, launch its commands in the same
command-line session where you run the vars.bat script.

2. To run an MPI application on a cluster, the Intel MPI Library needs to know names of all its
nodes. Create a text file listing the cluster node names. The format of the file is one name per
line, and the lines starting with # are ignored. To get the name of a node, use the hostname
utility.
A sample host file may look as follows:

Installation and Prerequisites

4

> type hosts
this line is ignored
clusternode1
clusternode2
clusternode3
clusternode4

3. Make sure the Hydra service is installed and running on the cluster
nodes. To check this, enter the command:
> hydra_service -status
If the service is not running, use the following command to install
and run it:
> hydra_service -install

4. Register your Windows* user credentials to enable the process manager
to launch MPI jobs. Credentials are encrypted and stored in the
registry:
> mpiexec -register
If you do not do this in advance, you will be prompted to enter
credentials when running an MPI job with mpiexec.
You can also use the domain-based authorization, which does not ask
for your credentials, but requires some additional configuration. See
User Authorization for details.

After completing these steps, you are ready to use Intel MPI Library.

User Authorization
Intel® MPI Library supports several authentication methods under the Microsoft Windows* OS:

• Password-based authorization

• Domain-based authorization with the delegation ability

• Limited domain-based authorization

The password-based authorization is the most common method of providing remote node access
through a user’s existing account name and password. Intel MPI Library allows you to encrypt your
login information and store it in the registry with the mpiexec -register command. You need to
do this once, during the first application run.
The domain-based authorization methods use the Security Service Provider Interface (SSPI)
provided by Microsoft in a Windows environment. The SSPI allows domain to authenticate the user
on the remote machine in accordance with the domain policies. You do not need to enter and store
your account name and password when using such methods.

Note
Both domain-based authorization methods may increase MPI task launch time in comparison with
the password-based authorization. This depends on the domain configuration.

Note
The limited domain-based authorization restricts your access to the network. You will not be able to
open files on remote machines or access mapped network drives.

Intel® MPI Library Developer Guide for Windows* OS

5

This feature is supported on clusters under Windows HPC Server 2012 R2. Microsoft's Kerberos
Distribution Center* must be enabled on your domain controller (this is the default behavior).

Using the domain-based authorization method with the delegation ability requires specific
installation of the domain. You can perform this installation by using the Intel® MPI Library installer if
you have domain administrator rights or by following the instructions below.

Active Directory* Setup
To enable the delegation in the Active Directory*, do the following:

1. Log in on the domain controller under the administrator account.

2. Enable the delegation for cluster nodes:

a. Go to Administrative Tools.

b. In the Active Directory Users and Computers administrative utility open the Computers
list.

c. Right click on a desired computer object and select Properties.

d. Select the Delegation tab and check the Trust this computer for delegation to any
service (Kerberos only) option.

3. Enable the delegation for users:

a. In the Active Directory Users and Computers administrative utility open the Users list.

b. Right click on a desired user object and select Properties.

c. Select the Account tab and disable the Account is sensitive and cannot be delegated
option.

4. Register service principal name (SPN) for cluster nodes. Use one of the following methods
for
registering SPN:

a. Use the Microsoft*-provided setspn.exe utility. For example, execute the following
command on the domain controller:
> setspn.exe -A impi_hydra/<host>:<port>/impi_hydra <host>

where:

 <host> is the cluster node name.
 <port> is the Hydra port. The default value is 8679. Change this number only if your

hydra service uses the non-default port.
b. Log into each desired node under the administrator account and execute the command:

> hydra_service -register_spn

Note
In case of any issues with the MPI task start, reboot the machine from which the MPI task is started.
Alternatively, execute the command:

> klist purge

Installation and Prerequisites

6

To select a user authorization method, use the I_MPI_AUTH_METHOD environment variable with
 password, delegate, or impersonate argument. For more details, see the Developer Reference,
section Miscellaneous > User Authorization.

7

Compiling and Linking

Compiling an MPI Program
This topic describes the basic steps required to compile and link an MPI program, using the Intel®
MPI Library SDK.

To simplify linking with MPI library files, Intel MPI Library provides a set of compiler wrapper scripts
with the mpi prefix for all supported compilers. To compile and link an MPI program, do the
following:

1. Make sure you have a compiler in your PATH environment variable. For example, to check if
you have the Intel® C/C++ Compiler, enter the command:
> icl

If the command is not found, add the full path to your compiler into the PATH. For Intel®
compilers, you can run the script (vars.bat for oneAPI, compilervars.bat for PSXE) to
set the required environment variables.

2. In the same command-line session, run the mpivars.bat script to set up the proper
environment for Intel MPI Library:
> <installdir>\intel64\bin\mpivars.bat

For oneAPI:

> <installdir>\env\vars.bat

3. Compile your MPI program using the appropriate compiler wrapper script. For example, to
compile a C program with the Intel® C Compiler, use the mpiicc script as follows:
> mpiicc myprog.c

You will get an executable file myprog.exe in the current directory, which you can start immediately.
For instructions of how to launch MPI applications, see Running an MPI Program.

Note
By default, the resulting executable file is linked with the multi-threaded optimized library. If you
need to use another library configuration, see Selecting Library Configuration.

For details on the available compiler wrapper scripts, see the Developer Reference.

See Also
Intel® MPI Library Developer Reference, section Command Reference > Compiler Commands

Compiling an MPI/OpenMP* Program
To compile a hybrid MPI/OpenMP* program using the Intel® compiler, use the /Qopenmp option. For
example:

Compiling and Linking

8

> mpiicc /Qopenmp test.c
This enables the underlying compiler to generate multi-threaded code based on the OpenMP*
pragmas in the source. For details on running such programs, refer to Running an MPI/OpenMP*
Program.

Test MPI Programs
Intel® MPI Library comes with a set of source files for simple MPI programs that enable you to test
your installation. Test program sources are available for all supported programming languages and
are located at <installdir>\test, where <installdir> for oneAPI is C:\Program
Files(x86)\inteloneapi\mpi\<version and for PSXE is C:\Program Files
(x86)\IntelSWTools\compilers_and_libraries_<version>\windows\mpi by default.

Configuring a Visual Studio* Project
To configure a Visual Studio* project with Intel® MPI Library, do the following:

1. In Microsoft* Visual Studio*, create a console application project, or open an existing one.

2. Open the project properties and go to Configuration Properties > Debugging. Set the
following parameters:

Command: $(I_MPI_ROOT)\intel64\bin\mpiexec.exe
Command arguments: -n <processes_number> "$(TargetPath)"

3. In Configuration Properties > C/C++ or Fortran, as appropriate, set the following parameter:

Additional Include Directories: $(I_MPI_ROOT)\intel64\include
4. In Configuration Properties > Linker, set the following parameter:

Additional Library Directories: $(I_MPI_ROOT)\intel64\lib\<configuration>
You can set the following values for <configuration>:
o release: multi-threaded optimized library
o debug: multi-threaded debug library

5. In Configuration Properties > Linker > Input, set the following parameter:

Additional Dependencies: impi.lib
After completing these steps, you can build the solution and run the application. To run the
application from Visual Studio*, you can use the Ctrl + F5 key combination (Start Without
Debugging). For other options of running MPI applications, see Running Applications.

9

Running Applications

Running an MPI Program
Before running an MPI program, place it to a shared location and make sure it is accessible from all
cluster nodes. Alternatively, you can have a local copy of your program on all the nodes. In this case,
make sure the paths to the program match.

Run the MPI program using the mpiexec command. The command line syntax is as follows:

> mpiexec -n <# of processes> -ppn <# of processes per node> -f <hostfile>
myprog.exe
For example:

> mpiexec -n 4 -ppn 2 -f hosts myprog.exe
The mpiexec command launches the Hydra process manager, which controls the execution of your
MPI program on the cluster.
In the command line above:

• -n sets the number of MPI processes to launch; if the option is not specified, or uses the
number of cores on the machine.

• -ppn sets the number of processes to launch on each node; if the option is not specified,
processes are assigned to the physical cores on the first node; if the number of cores is
exceeded, the next node is used.

• -f specifies the path to the host file listing the cluster nodes; alternatively, you can use the -
hosts option to specify a comma-separated list of nodes; if hosts are not specified, the local
node is used.

• myprog.exe is the name of your MPI program.
For the list of all available options, run mpiexec with the -help option, or see the Intel® MPI Library
Developer Reference, section Command Reference > Hydra Process Manager Command.

See Also
Controlling Process Placement
Job Schedulers Support

Running an MPI/OpenMP* Program
To run a hybrid MPI/OpenMP* program, follow these steps:

1. Make sure the thread-safe (debug or release, as desired) Intel® MPI Library configuration is
enabled (release is the default version). To switch to such a configuration, run vars.bat for
oneAPI or mpivars.bat for PSXE with the appropriate argument, see Selecting Library
Configuration for details. For example:
> vars.bat release - for oneAPI

Running Applications

10

> mpivars.bat release - for PSXE

2. Set the I_MPI_PIN_DOMAIN environment variable to specify the desired process pinning
scheme. The recommended value is omp:
> set I_MPI_PIN_DOMAIN=omp

This sets the process pinning domain size to be equal to OMP_NUM_THREADS. Therefore, if
for example OMP_NUM_THREADS is equal to 4, each MPI process can create up to four
threads within the corresponding domain (set of logical processors). If OMP_NUM_THREADS is
not set, each node is treated as a separate domain, which allows as many threads per MPI
process as there are cores.

Note
For pinning OpenMP* threads within the domain, use the Intel® compiler KMP_AFFINITY

environment variable. See the Intel compiler documentation for more details.

3. Run your hybrid program as a regular MPI program. You can set the OMP_NUM_THREADS and
I_MPI_PIN_DOMAIN variables directly in the launch command. For example:
> mpiexec -n 4 -genv OMP_NUM_THREADS=4 -genv I_MPI_PIN_DOMAIN=omp
myprog.exe

See Also
Intel® MPI Library Developer Reference, section Tuning Reference > Process Pinning > Interoperability
with OpenMP*.

MPMD Launch Mode
Intel® MPI Library supports the multiple programs, multiple data (MPMD) launch mode. There are two
ways to do this.

The easiest way is to create a configuration file and pass it to the -configfile option. A
configuration file should contain a set of arguments for mpiexec, one group per line. For example:

> type mpmd_config
-n 1 -host node1 io.exe <io_args>

-n 4 -host node2 compute.exe <compute_args_1>

-n 4 -host node3 compute.exe <compute_args_2>
> mpiexec -configfile mpmd_config
Alternatively, you can pass a set of options to the command line by separating each group with a
colon:

> mpiexec -n 1 -host node1 io.exe <io_args> :^
-n 4 -host node2 compute.exe <compute_args_1> :^
-n 4 -host node3 compute.exe <compute_args_2>
The examples above are equivalent. The io program is launched as one process on node1, and the
compute program is launched on node2 and node3 as four processes on each.

Intel® MPI Library Developer Guide for Windows* OS

11

When an MPI job is launched, the working directory is set to the working directory of the machine
where the job is launched. To change this, use the -wdir <path>.
Use -env <var> <value> to set an environment variable for only one argument set. Using -genv
instead applies the environment variable to all argument sets. By default, all environment variables
are propagated from the environment during the launch.

Selecting Fabrics
Intel® MPI Library enables you to select a communication fabric at runtime without having to
recompile your application. By default, it automatically selects the most appropriate fabric based on
your software and hardware configuration. This means that in most cases you do not have to bother
about manually selecting a fabric.

However, in certain situations specifying a particular communication fabric can boost performance of
your application. The following fabrics are available:

Fabric Network hardware and software used

shm Shared memory (for intra-node communication only).

ofi OpenFabrics Interfaces* (OFI)-capable network fabrics, such as Intel® True Scale
Fabric, Intel® Omni-Path Architecture, InfiniBand* and Ethernet (through OFI API).

Use the I_MPI_FABRICS environment variable to specify a fabric. The description is available in the
Developer Reference, section Tuning Reference > Fabrics Control.

Selecting a Library Configuration
You can specify a particular configuration of the Intel® MPI Library to be used, depending on your
purposes. This can be a library optimized for multi-threading debug or release version with the
global lock.

To specify the configuration, run the vars.bat script for oneAPI or the mpivars.bat
script for PSXE with release, or debug,
release_mt, or debug_mt argument. For example:

> <installdir>\env\vars.bat release

For PSXE:
> <installdir>\intel64\bin\mpivars.bat release
You can use the following arguments:

Argument Definition

release Set this argument to use multi-threaded optimized library (with the
global lock). This is the default value

debug Set this argument to use multi-threaded debug library (with the global

Running Applications

12

lock)

Note
You do not need to recompile the application to change the configuration. Run the vars.bat script
for oneAPI or the mpivars.bat script for PSXE with appropriate arguments before an application
launch.

Libfabric* Support

Enabling Libfabric support
By default, the script that sets the environmental variables (vars.bat for oneAPI and mpivars.bat
for PSXE) sets the environment to libfabric shipped with the Intel MPI Library.
To disable this, use the I_MPI_OFI_LIBRARY_INTERNAL environment variable or the -
ofi_internal option passed to the script.
For Intel oneAPI:

> call <install-dir>\bin\mpivars.bat -ofi_internal=0 # do not set the
environment to libfabric from the Intel MPI Library

> call <install-dir>\bin\mpivars.bat # set the environment to libfabric from
the Intel MPI Library

For Intel Parallel Studio XE:

> call <install-dir>\intel64\bin\mpivars.bat -ofi_internal=0 # do not set the
environment to libfabric from the Intel MPI Library

> call <install-dir>\intel64\bin\mpivars.bat # set the environment to
libfabric from the Intel MPI Library

Note
Set the I_MPI_DEBUG environment variable to 1 before running an MPI application to see the
libfabric version and provider.

Example

> set I_MPI_DEBUG=1

> mpiexec -n 2 IMB-MPI1 pingpong

Intel® MPI Library Developer Guide for Windows* OS

13

[0] MPI startup(): libfabric version: 1.5.3-impi

[0] MPI startup(): libfabric provider: sockets
...

Supported providers
• libfabric.dll

See also
• Intel® MPI LIbrary 2019 over libfabric

• "OFI-Capable Network Fabrics Control" in the Intel MPI Library Developer Reference

Job Schedulers Support
Intel® MPI Library supports the majority of commonly used job schedulers in the HPC field.

The following job schedulers are supported on Windows* OS:

• Microsoft* HPC Pack*

• Altair* PBS Pro*

Microsoft* HPC Pack*
The Intel® MPI Library job startup command mpiexec can be called out of Microsoft* HPC Job
Scheduler to execute an MPI application. In this case, the mpiexec command automatically inherits
the host list, process count, and the working directory allocated to the job.
Use the following command to submit an MPI job:

> job submit /numprocessors:4 /stdout:test.out mpiexec -delegate test.exe
Make sure the mpiexec and dynamic libraries are available in PATH.

Altair* PBS Pro*
The Intel® MPI Library job startup command mpiexec can be called out of PBS Pro* job scheduler to
execute an MPI application. In this case the mpiexec command automatically inherits the host list,
process count allocated to the job if they were not specified manually by the user. mpiexec reads
%PBS_NODEFILE% environment variable to count a number of processes and uses it as a machine
file.
Example of a job script contents:

REM PBS -l nodes=4:ppn=2

REM PBS -l walltime=1:00:00

cd %PBS_O_WORKDIR%

mpiexec test.exe

https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-2019-over-libfabric.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top.html

Running Applications

14

Use the following command to submit the job:

> qsub -C "REM PBS" job
mpiexec will run two processes on each of four nodes for this job.

Controlling Per-Host Process Placement
When using a job scheduler, by default Intel MPI Library uses per-host process placement provided
by the scheduler. This means that the -ppn option has no effect. To change this behavior and
control process placement through -ppn (and related options and variables), use the
I_MPI_JOB_RESPECT_PROCESS_PLACEMENT environment variable:

> set I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=off

Controlling Process Placement
Placement of MPI processes over the cluster nodes plays a significant role in application
performance. Intel® MPI Library provides several options to control process placement.

By default, when you run an MPI program, the process manager launches all MPI processes specified
with -n on the current node. If you use a job scheduler, processes are assigned according to the
information received from the scheduler.

Specifying Hosts
You can explicitly specify the nodes on which you want to run the application using the -hosts
option. This option takes a comma-separated list of node names as an argument. Use the -ppn
option to specify the number of processes per node. For example:

> mpiexec -n 4 -ppn 2 -hosts node1,node2 testc.exe
Hello world: rank 0 of 4 running on node1
Hello world: rank 1 of 4 running on node1
Hello world: rank 2 of 4 running on node2
Hello world: rank 3 of 4 running on node2
To get the name of a node, use the hostname utility.
An alternative to using the -hosts option is creation of a host file that lists the cluster nodes. The
format of the file is one name per line, and the lines starting with # are ignored. Use the -f option to
pass the file to mpiexec. For example:

> type hosts

#nodes

node1

node2
> mpiexec -n 4 -ppn 2 -f hosts testc.exe
This program launch produces the same output as the previous example.

Intel® MPI Library Developer Guide for Windows* OS

15

If the -ppn option is not specified, the process manager assigns as many processes to the first node
as there are physical cores on it. Then the next node is used. That is, assuming there are four cores
on node1 and you launch six processes overall, four processes are launched on node1, and the
remaining two processes are launched on node2. For example:

> mpiexec -n 6 -hosts node1,node2 testc.exe
Hello world: rank 0 of 6 running on node1

Hello world: rank 1 of 6 running on node1

Hello world: rank 2 of 6 running on node1

Hello world: rank 3 of 6 running on node1

Hello world: rank 4 of 6 running on node2

Hello world: rank 5 of 6 running on node2

Note
If you use a job scheduler, specifying hosts is unnecessary. The processes manager uses the host list
provided by the scheduler.

Using Machine File
A machine file is similar to a host file with the only difference that you can assign a specific number
of processes to particular nodes directly in the file. Contents of a sample machine file may look as
follows:

> type machines

node1:2

node2:2
Specify the file with the -machine option. Running a simple test program produces the following
output:

> mpiexec -machine machines testc.exe

Hello world: rank 0 of 4 running on node1

Hello world: rank 1 of 4 running on node1

Hello world: rank 2 of 4 running on node2

Hello world: rank 3 of 4 running on node2

Using Argument Sets
Argument sets are unique groups of arguments specific to a particular node. Combined together, the
argument sets make up a single MPI job. You can provide argument sets on the command line, or in a
configuration file. To specify a node, use the -host option.
On the command line, argument sets should be separated by a colon ':'. Global options (applied to
all argument sets) should appear first, and local options (applied only to the current argument set)
should be specified within an argument set. For example:

Running Applications

16

> mpiexec -genv I_MPI_DEBUG=2 -host node1 -n 2 testc.exe : -host node2 -n 2
testc.exe
In the configuration file, each argument set should appear on a new line. Global options should
appear on the first line of the file. For example:

> type config

-genv I_MPI_DEBUG=2
-host node1 -n 2 testc.exe
-host node2 -n 2 testc.exe
Specify the configuration file with the -configfile option:

> mpiexec -configfile config

Hello world: rank 0 of 4 running on node1

Hello world: rank 1 of 4 running on node1

Hello world: rank 2 of 4 running on node2

Hello world: rank 3 of 4 running on node2

See Also
Controlling Process Placement with the Intel® MPI Library (online article)
Job Schedulers Support

https://software.intel.com/content/www/us/en/develop/articles/controlling-process-placement-with-the-intel-mpi-library.html

17

Analysis and Tuning
Intel® MPI Library provides a variety of options for analyzing MPI applications. Some of these options
are available within the Intel MPI Library, while some require additional analysis tools. For such tools,
Intel MPI Library provides compilation and runtime options and environment variables for easier
interoperability.

For step-by-step instructions on tuning an MPI application, see this article:

Tuning the Intel® MPI Library: Basic Techniques

Displaying MPI Debug Information
The I_MPI_DEBUG environment variable provides a convenient way to get detailed information
about an MPI application at runtime. You can set the variable value from 0 (the default value) to
1000. The higher the value, the more debug information you get. For example:

> mpiexec -genv I_MPI_DEBUG=2 -n 2 testc.exe
[1] MPI startup(): Internal info: pinning initialization was done
[0] MPI startup(): Internal info: pinning initialization was done
...

Note
High values of I_MPI_DEBUG can output a lot of information and significantly reduce performance of
your application. A value of I_MPI_DEBUG=5 is generally a good starting point, which provides
sufficient information to find common errors.

By default, each printed line contains the MPI rank number and the message. You can also print
additional information in front of each message, like process ID, time, host name and other
information, or exclude some information printed by default. You can do this in two ways:

• Add the '+' sign in front of the debug level number. In this case, each line is prefixed by the
string <rank>#<pid>@<hostname>. For example:
> mpiexec -genv I_MPI_DEBUG=+2 -n 2 testc.exe
[0#3520@clusternode1] MPI startup(): Multi-threaded optimized library
...

To exclude any information printed in front of the message, add the '-' sign in a similar
manner.

• Add the appropriate flag after the debug level number to include or exclude some
information. For example, to include time but exclude the rank number:

> mpiexec -genv I_MPI_DEBUG=2,time,norank -n 2 testc.exe
11:59:59 MPI startup(): Multi-threaded optimized library
...

For the list of all available flags, see description of I_MPI_DEBUG in the Developer Reference.
To redirect the debug information output from stdout to stderr or a text file, use the
I_MPI_DEBUG_OUTPUT environment variable:

https://software.intel.com/content/www/us/en/develop/articles/tuning-the-intel-mpi-library-basic-techniques.html

Analysis and Tuning

18

> mpiexec -genv I_MPI_DEBUG=2 -genv I_MPI_DEBUG_OUTPUT=debug_output.txt -n 2
testc.exe
Note that the output file name should not be longer than 256 symbols.

See Also
Intel® MPI Library Developer Reference, section Miscellaneous > Other Environment Variables >
I_MPI_DEBUG

Tracing Applications
Intel® MPI Library provides a variety of options for analyzing MPI applications. Some of these options
are available within the Intel MPI Library, while some require additional analysis tools. For such tools,
Intel MPI Library provides compilation and runtime options and environment variables for easier
interoperability.

Intel® MPI Library provides tight integration with the Intel® Trace Analyzer and Collector, which
enables you to analyze MPI applications and find errors in them. Intel® MPI Library has several
compile-time options to simplify the application analysis.

Intel® Trace Analyzer and Collector is available as part of the Intel® Parallel Studio XE Cluster Edition.
Before proceeding to the next steps, make sure you have the product installed.

To analyze an application, first you need generate a trace file of your application, and then open this
file in Intel® Trace Analyzer to analyze communication patterns, time utilization, etc. Tracing is
performed by linking with the Intel® Trace Collector profiling library, which intercepts all MPI calls
and generates a trace file. Intel MPI Library provides the -trace (-t) compiler option to simplify this
process.
Complete the following steps:

1. Set up the environment for the compiler, Intel MPI Library, and Intel Trace Analyzer and
Collector.

For Intel oneAPI:

> <compiler_installdir>\env\vars.bat intel64

> <itac_installdir>\env\vars.bat

For Intel Parallel Studio XE:

> <compiler_installdir>\bin\compilervars.bat intel64
> <itac_installdir>\bin\itacvars.bat

2. Relink your application with the Intel Trace Collector profiling library and run the application:

> mpiicc -trace myprog.c
> mpiexec -n 4 myprog.exe

As a result, a trace file .stf is generated. For the example above, it is myprog.stf.
3. Analyze the application with the Intel Trace Analyzer:

> traceanalyzer myprog.stf

The workflow above is the most common scenario of tracing with the Intel Trace Collector. For other
tracing scenarios, see the Intel Trace Collector documentation.

https://software.intel.com/content/www/us/en/develop/documentation/itc-user-and-reference-guide/top.html

Intel® MPI Library Developer Guide for Windows* OS

19

See Also
Intel® Trace Collector User and Reference Guide

MPI Tuning
Intel® MPI Library includes the mpitune tuning utility, which allows you to automatically adjust Intel
MPI Library parameters, such as collective operation algorithms, to your cluster configuration or
application. The tuner iteratively launches a benchmarking application with different configurations
to measure performance and stores the results of each launch. Based on these results, the tuner
generates optimal values for the parameters that are being tuned.

Note
The mpitune usage model changed in the 2018 release. Tuning parameters should be specified in
configuration files rather than as command-line options.

Configuration File Format
All tuner parameters should be specified in two configuration files, passed to the tuner with the --
config-file option. A typical configuration file consists of the main section, specifying generic
options, and search space sections for specific library parameters (for example, for specific collective
operations). Configuration files differ in mode and dump-file fields only. To comment a line, use the
hash symbol #.
You can also specify MPI options to simplify mpitune usage. MPI options are useful for Intel® MPI
Benchmarks that have special templates for mpitune located at <installdir>/etc/tune_cfg.
The templates require no changes in configuration files to be made.
For example, to tune the Bcast collective algorithm, use the following option:

$ mpitune -np 2 -ppn 2 -hosts HOST1 -m analyze -c /path/to/Bcast.cfg
Experienced users can change configuration files to use this option for other applications.

Output Format
The tuner presents results in a JSON tree view (since the 2019 release), where the comm_id=-1 layer
is added automatically for each tree:

{
 "coll=Reduce": {
 "ppn=2": {
 "comm_size=2": {
 "comm_id=-1": {
 "msg_size=243": {
 "REDUCE=8": {}
 },
 "msg_size=319": {
 "REDUCE=11": {}
 },
 "msg_size=8192": {

https://software.intel.com/content/www/us/en/develop/documentation/itc-user-and-reference-guide/top.html

Analysis and Tuning

20

 "REDUCE=8": {}
 },
 "msg_size=28383": {
 "REDUCE=9": {}
 },
 "msg_size=-1": {
 "REDUCE=1": {}
 }
 }
 }
 }
 }
}
To add the resulting JSON tree to the library, use the I_MPI_TUNING environment variable.

Old Output Format
The old output format is only valid for Intel MPI Library 2018 and prior versions:

I_MPI_ADJUST_BCAST=2:0-0;1:1-64;2:65-509;1:510-8832;3:8833-0
Use the resulting variable value with the application launch to achieve performance gain.

See Also
For details on mpitune configuration options, refer to the Developer Reference section Command
Reference > mpitune.

21

Troubleshooting
This section provides the troubleshooting information on typical MPI failures with corresponding
output messages and behavior when a failure occurs.

If you encounter errors or failures when using the Intel® MPI Library, take the following general
troubleshooting steps first:

1. Check the System Requirements section and the Known Issues section in the Intel® MPI
Library Release Notes.

2. Check accessibility of the hosts. Run a simple non-MPI application (for example, the
hostname utility) on the problem hosts using mpiexec. For example:
> mpiexec -ppn 1 -n 2 -hosts node01,node02 hostname
node01
node02

This may help reveal an environmental problem, or a connectivity problem (such as,
unreachable hosts).

3. Run the MPI application with debug information enabled: set the environment variables
I_MPI_DEBUG=6 and/or I_MPI_HYDRA_DEBUG=on. Increase the integer value of debug
level to get more information. This action helps narrow down to the problematic component.

4. If you have the availability, download and install the latest version of Intel MPI Library from
the official product page and check if your problem persists.

5. If the problem still persists, you can submit a ticket via Intel® Premier Support or ask experts
on the community forum.

Error Message: Bad Termination

Note
The values in the tables below may not reflect the exact node or MPI process where a failure can
occur.

Case 1

Error Message

===
======

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

https://software.intel.com/content/www/us/en/develop/tools/mpi-library.html
http://premier.intel.com/
https://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology

Troubleshooting

22

= RANK 1 PID 27494 RUNNING AT node1

= KILLED BY SIGNAL: 11 (Segmentation fault)

===
======
or:

===
======

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= RANK 1 PID 27494 RUNNING AT node1

= KILLED BY SIGNAL: 8 (Floating point exception)

===
======

Cause
One of MPI processes is terminated by a signal (for example, Segmentation fault or Floating
point exception) on the node01.

Solution
Find the reason of the MPI process termination. It can be the out-of-memory issue in case of
Segmentation fault or division by zero in case of Floating point exception.

Case 2

Error Message

===
===

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= RANK 1 PID 20066 RUNNING AT node01

= KILLED BY SIGNAL: 9 (Killed)

===
===

Intel® MPI Library Developer Guide for Windows* OS

23

Cause
One of MPI processes is terminated by a signal (for example, SIGTERM or SIGKILL) on the node01
due to:

• the host reboot;

• an unexpected signal received;

• out-of-memory manager (OOM) errors;

• killing by the process manager (if another process was terminated before the current process);

• job termination by the Job Scheduler (PBS Pro*, SLURM*) in case of resources limitation (for
example, walltime or cputime limitation).

Solution

1. Check the system log files.

2. Try to find the reason of the MPI process termination and fix the issue.

Error Message: No such file or Directory
Error Message

[proxy:0:0@node1] HYD_spawn
(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp
error on file {path to binary file}/{binary file} (No such file or directory)

Cause
Wrong path to the binary file or the binary file does not exist on the node01. The name of the binary
file is misprinted or the shared space cannot be reached.

Solution
Check the name of the binary file and check if the shared path is available across all the nodes.

Error Message: Permission Denied

Case 1

Error Message

[proxy:0:0@node1] HYD_spawn
(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp
error on file {path to binary file}/{binary file} (Permission denied)

Troubleshooting

24

Cause
You do not have permissions to execute the binary file.

Solution
Check your execute permissions for {binary file} and for folders in {path to binary file}.

Case 2

Error Message

[proxy:0:0@node1] HYD_spawn

(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp
error on file {path to binary file}/{binary file} (Permission denied)

Cause
You exceeded the limitation of 16 groups on Linux* OS.

Solution
Try reducing the number of groups.

Error Message: Fatal Error

Case 1

Error Message

Abort(1094543) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init: Other
MPI error, error stack:
MPIR_Init_thread(653)......:
MPID_Init(860).............:
MPIDI_NM_mpi_init_hook(698): OFI addrinfo() failed
(ofi_init.h:698:MPIDI_NM_mpi_init_hook:No data available)

Cause
The current provider cannot be run on these nodes. The MPI application is run over the psm2
provider on the non-Intel® Omni-Path card or over the verbs provider on the non-InfiniBand*, non-
iWARP, or non-RoCE card.

Solution
1. Change the provider or run MPI application on the right nodes. Use fi_info to get information

about the current provider.

Intel® MPI Library Developer Guide for Windows* OS

25

2. Check if services are running on nodes (opafm for Intel® Omni-Path and opensmd for
InfiniBand).

Case 2

Error Message

Abort(6337423) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init_thread:
Other MPI error, error stack:
…
MPIDI_OFI_send_handler(704)............: OFI tagged inject failed
(ofi_impl.h:704:MPIDI_OFI_send_handler:Transport endpoint is not connected)

Cause
OFI transport uses IP interface without access to remote ranks.

Solution
Set FI_SOCKET_IFACE If the socket provider is used or FI_TCP_IFACE and FI_VERBS_IFACE in
case of TCP and verbs providers, respectively. To retrieve the list of configured and active IP
interfaces, use, the ifconfig utility.

Case 3

Error Message

Abort(6337423) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init_thread:

Other MPI error, error stack:

…

MPIDI_OFI_send_handler(704)............: OFI tagged inject failed

(ofi_impl.h:704:MPIDI_OFI_send_handler:Transport endpoint is not connected)

Cause
Ethernet is used as an interconnection network.

Solution
Run FI_PROVIDER = sockets mpirun … to overcome this problem.

Troubleshooting

26

Error Message: Bad File Descriptor
Error Message

[mpiexec@node00] HYD_sock_write
(../../../../../src/pm/i_hydra/libhydra/sock/hydra_sock_intel.c:353): write
error (Bad file descriptor)
[mpiexec@node00] cmd_bcast_root
(../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:147): error sending cwd cmd
to proxy
[mpiexec@node00] stdin_cb
(../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:324): unable to send
response downstream
[mpiexec@node00] HYDI_dmx_poll_wait_for_event
(../../../../../src/pm/i_hydra/libhydra/demux/hydra_demux_poll.c:79):
callback returned error status
[mpiexec@node00] main (../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:2064):
error waiting for event
or:

[mpiexec@host1] wait_proxies_to_terminate
(../../../../../src/pm/i_hydra/mpiexec/intel/i_mpiexec.c:389): downstream
from host host2 exited with status 255

Cause
The remote hydra_pmi_proxy process is unavailable due to:

• the host reboot;

• an unexpected signal received;

• out-of-memory manager (OOM) errors;

• job termination by the Job Scheduler (PBS Pro*, SLURM*) in case of resources limitation (for
example, walltime or cputime limitation).

Solution

1. Check the system log files.

2. Try to find the reason of the hydra_pmi_proxy process termination and fix the issue.

Error Message: Too Many Open Files
Error Message

[proxy:0:0@host1] HYD_spawn
(../../../../../src/pm/i_hydra/libhydra/spawn/intel/hydra_spawn.c:57): pipe
error (Too many open files)
[proxy:0:0@host1] launch_processes

Intel® MPI Library Developer Guide for Windows* OS

27

(../../../../../src/pm/i_hydra/proxy/proxy.c:509): error creating process
[proxy:0:0@host1] main (../../../../../src/pm/i_hydra/proxy/proxy.c:860):
error launching_processes

Cause
Too many processes per node are launched on Linux* OS.

Solution
Specify fewer processes per node by the -ppn option or the I_MPI_PERHOST environment variable.

Problem: MPI Application Hangs
Problem
MPI application hangs without any output.

Case 1

Cause
Application does not use MPI in a correct way.

Solution
Run your MPI application with the -check_mpi option to perform correctness checking. The
correctness checker is specifically designed to find MPI errors, and provides tight integration with the
Intel® MPI Library. In case of a deadlock, the checker will set up a one-minute timeout and show the
state of each rank.
For more information, refer to this page.

Case 2

Cause
The remote service (for example, SSH) is not running on all nodes or it is not configured properly.

Solution
Check the state of the remote service on the nodes and connection to all nodes.

Case 3

Cause
The Intel® MPI Library runtime scripts are not available, so the shared space cannot be reached.

https://software.intel.com/content/www/us/en/develop/documentation/itc-user-and-reference-guide/top/user-guide/correctness-checking.html
https://software.intel.com/en-us/itc-user-and-reference-guide-correctness-checking-of-mpi-applications

Troubleshooting

28

Solution
Check if the shared path is available across all the nodes.

Case 4

Cause
Different CPU architectures are used in a single MPI run.

Solution
Set export I_MPI_PLATFORM=<arch> , where <arch> is the oldest platform you have, for
example skx. Note that usage of different CPU architectures in a single MPI job negatively affects
application performance, so it is recommended not to mix different CPU architecture in a single MPI
job.

Problem: Password Required
Problem
Password required.

Cause
The Intel® MPI Library uses SSH mechanism to access remote nodes. SSH requires password and this
may cause the MPI application hang.

Solution

1. Check the SSH settings.

2. Make sure that the passwordless authorization by public keys is enabled and configured.

Problem: Cannot Execute Binary File
Problem
Cannot execute a binary file.

Cause
Wrong format or architecture of the binary executable file.

Solution
Check the accuracy of the binary file and command line options.

29

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or
its subsidiaries. Other names and brands may be claimed as the property of others.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on
request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties
of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty
arising from course of performance, course of dealing, or usage in trade.

	Introduction
	Introducing Intel® MPI Library
	Conventions and Symbols
	Related Information

	Installation and Prerequisites
	Installation
	Note

	Prerequisite Steps
	User Authorization
	Note
	Note
	Active Directory* Setup
	Note

	Compiling and Linking
	Compiling an MPI Program
	Note
	See Also
	Compiling an MPI/OpenMP* Program
	Test MPI Programs

	Configuring a Visual Studio* Project

	Running Applications
	Running an MPI Program
	See Also

	Running an MPI/OpenMP* Program
	Note
	See Also

	MPMD Launch Mode
	Selecting Fabrics
	Selecting a Library Configuration
	Note

	Libfabric* Support
	Enabling Libfabric support
	Note
	Example

	Supported providers
	See also

	Job Schedulers Support
	Microsoft* HPC Pack*
	Altair* PBS Pro*
	Controlling Per-Host Process Placement

	Controlling Process Placement
	Specifying Hosts
	Note

	Using Machine File
	Using Argument Sets
	See Also

	Analysis and Tuning
	Displaying MPI Debug Information
	Note
	See Also

	Tracing Applications
	See Also

	MPI Tuning
	Note
	Configuration File Format
	Output Format
	Old Output Format
	See Also

	Troubleshooting
	Error Message: Bad Termination
	Note
	Case 1
	Error Message
	Cause
	Solution

	Case 2
	Error Message
	Cause
	Solution

	Error Message: No such file or Directory
	Error Message
	Cause
	Solution

	Error Message: Permission Denied
	Case 1
	Error Message
	Cause
	Solution

	Case 2
	Error Message
	Cause
	Solution

	Error Message: Fatal Error
	Case 1
	Error Message
	Cause
	Solution

	Case 2
	Error Message
	Cause
	Solution

	Case 3
	Error Message
	Cause
	Solution

	Error Message: Bad File Descriptor
	Error Message
	Cause
	Solution

	Error Message: Too Many Open Files
	Error Message
	Cause
	Solution

	Problem: MPI Application Hangs
	Problem
	Case 1
	Cause
	Solution

	Case 2
	Cause
	Solution

	Case 3
	Cause
	Solution

	Case 4
	Cause
	Solution

	Problem: Password Required
	Problem
	Cause
	Solution

	Problem: Cannot Execute Binary File
	Problem
	Cause
	Solution

	Notices and Disclaimers

