Tutorial: Analyze Common Performance
Bottlenecks using Intel VTune Profiler

in a C++ Sample Application - Linux*
OS

Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application - Linux* OS

Contents

Chapter 1: Tutorial: Analyze Common Performance Bottlenecks
with Intele VTune™ Profiler - C++ Sample Code (Linux* OS)

Use Case and PrereqUiSiteSuue ettt e e e e e e e e e aeenes 3
Run Performance Snapshot ANalySiS.....ccviiiiriiiiiiii e e e 4
Interpret Performance Snapshot Result Data........cccooiiiiiiiiiiiiiiiici e 7
Run and Interpret HOtSpots ANalysSis ...oveieiiiiiiii i e e e 9
ANAIYZE MEMOIY ACCESS . .euuinieit it iaat ettt e rae e raeaeeaeaernrananeaneannanans 15
ResoIve MEemOry ACCESS ISSUER ...vuiiiieiie ittt ettt e e e e e rneeas 19
Analyze Performance After Optimizationccooviiiiiii i 21
Analyze Vectorization EffiCIENCYooeiiiriii i 23
Enable Platform-Appropriate Vectorizationc.coiiiiiiiiiiii e 26
Analyze Microarchitecture USAgeoiriieiiiiiiiiii i e e e 29
Compare with Previous ReSUIt ..o e e 34
118 = Y/ 36
NOtICES and DiSClaimerS. .. cui it e e e e eneeas 37

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Tutorial: Analyze Common
Performance Bottlenecks with
Intel® VTune™ Profiler - C++
Sample Code (Linux* OS)

Discover how to use Intel® VTune™ Profiler for Linux* OS to identify algorithm or hardware utilization issues
that can cause your applications to spend large amounts of time performing tasks and underutilize available
hardware resources.

About This This tutorial guides you through the steps required to analyze and optimize a sample

Tutorial matrix application that performs multiplication of large matrices. It introduces you to
the main concepts of VTune Profiler and the iterative process of analyzing and
optimizing an application.

The tutorial was last updated for the Intel VTune Profiler 2021 product release.

Estimated 20-30 minutes.

Duration

Learning After you complete this tutorial, you should be able to:
Objectives

e Open the pre-configured matrix sample project in VTune Profiler.

e Run the Performance Snapshot analysis to locate the main problem areas in the
matrix sample application and identify next steps for optimization.

e Run the Hotspots and Memory Access analyses to better understand the main
bottleneck and determine next steps.

¢ Navigate the source code from inside VTune Profiler to locate the lines of code with
memory access bottlenecks.

e Use the HPC Performance Characterization analysis to identify microarchitecture
underutilization issues related to lack of proper vectorization.

e Compare results before and after optimization.

More Resources ¢ Other Intel VTune Profiler tutorials (HTML, PDF)
¢ Intel VTune Profiler Cookbook
¢ Additional Intel VTune Profiler documentation

Intel Software Product Support Page

Start Here

Use Case and Prerequisites

You can use Intel® VTune™ Profiler to identify and analyze performance bottlenecks in your serial or parallel
application by performing a series of steps in a workflow. This tutorial guides you through these workflow
steps while using a sample matrix multiplication application named matrix.

Prerequisites

This tutorial requires you to install several Intel software tools. You can download and use these tools for
free.

e Intel® VTune™ Profiler 2021 or later

https://software.intel.com/content/www/us/en/develop/articles/vtune-tutorials.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/introduction/get-help.html
https://software.intel.com/content/www/us/en/develop/tools/support.html

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

e Intel® C++ Compiler Classic
Follow these links to download the components:

e Intel® C++ Compiler Classic
e Standalone Intel® VTune™ Profiler

NOTE

e This tutorial uses the Intel® C++ Compiler Classic to establish a common baseline for analysis and
performance gain tracking. Your results and workflow may be different depending on the compiler
you use.

Workflow

Follow these steps to identify and fix the most prominent performance issues in the sample matrix
application.

1. Establish the application performance baseline

a. Run Performance Snapshot analysis
b. Interpret the Performance Snapshot analysis result
2. Identify main bottleneck in the matrix application

a. Run Hotspots analysis and interpret data
b. Run Memory Access analysis and interpret data
3. Eliminate the memory access bottleneck

a. Fix memory issue and recompile application
4. Assess the performance improvement

a. Run Performance Snapshot analysis and interpret result
5. Address the vectorization problem

a. Recompile the application and run the HPC Performance Characterization analysis
b. Recompile with different compiler options
6. Identify next steps

a. Run and interpret the Microarchitecture Exploration analysis
7. Visualize the performance gain

a. Compare results before and after optimization

Run Performance Snapshot Analysis

In this part of the tutorial, you open the Matrix sample
project and run the Performance Snapshot analysis of
Intel® VTune™ Profiler to identify the main problem
areas.

Performance Snapshot Analysis

For most software developers, the goal of performance optimization is to get the highest possible
performance gain with the least possible investment of time and effort.

The Performance Snapshot analysis type helps you achieve this goal by highlighting the main problem areas
in your application and providing metrics to estimate their severity. This enables you to focus on the most
acute problems, solving which can yield the highest performance gain. This analysis type also offers other
analysis types for deeper investigation into each performance problem.

https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#compilerclassic
https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#vtune

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Open Matrix Sample Project

The first step towards analyzing an application in VTune Profiler is to create a project. A project is a container
that holds analysis target configuration and data collection results.

VTune Profiler provides a sample matrix project pre-configured to work with the pre-built matrix sample
application.

Begin by opening the pre-configured matrix project:
1. Launch the VTune Profiler GUI:
a. Run the following script to set the appropriate environment variables:
e For bash users:

source <install-dir>/env/vars.sh
e For tch/tsch users:

source <install-dir>/env/vars.csh
For VTune Profiler, the default <install-dir> is:

/opt/intel/oneapi/vtune/<version>
b. Launch the vtune-gui binary located in the <install-dir>/bin64/ directory.

NOTE
You may need to run VTune Profiler as root to use certain analysis types.

2. The VTune Profiler welcome screen is displayed after the product launches.

The sample (matrix) project should already be open in the Project Navigator. If so, no further
action is required.

If the sample (matrix) project is not available from the Project Navigator, open the project
manually:

a. Click the

Menu button and select Open > Project... to open an existing project.
b. Browse to the matrix project on your local machine and click Open.

By default, it is located in this directory:
SHOME/intel/vtune/projects/sample (matrix)

VTune Profiler opens the matrix project in the Project Navigator.

NOTE

e This tutorial uses the pre-built matrix sample application. When you analyze your own application,
make sure to build it in the Release mode with full optimizations and establish a performance
baseline before running a full analysis. For more information on preparing a Linux* target, see the
Linux Targets section of the User Guide.

¢ To make sure that the performance data is accurate and repeatable, it is recommended to run the
analysis while the system is running a minimal amount of other software.

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets.html

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

Run Performance Snapshot Analysis

HOW

Local Host ~ @ Performance Snapshot ~

Get a quick snapshot of your application performance and id
next steps for deeper analysis. |.eamn more

Launch Application ~

ind configure your analysis target: an application or a script
te.

on:

elvtune/samples/matrix/matrix Ol9

on parameters:

application directory as working directory

ced s

Q.

To start the Performance Snapshot analysis for the matrix sample application:

1. Click the Configure Analysis button to begin a new analysis. The default analysis is pre-configured for
the Performance Snapshot analysis to profile the matrix application on the local system.
2. Click the Start button to run the analysis.

VTune Profiler the matrix application that calculates multiplication of large matrices before exiting. VTune
Profiler finalizes the collected results and opens the Summary viewpoint of the Performance Snapshot
analysis.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

NOTE
This tutorial explains how to run an analysis from the VTune Profiler graphical user interface (GUI).

You can also use the VTune Profiler command-line interface (vtune command) to run an analysis. A
simple way to get the appropriate command syntax is by clicking the Command Line button at the
bottom of the window. For more details, check the Command Line Interface chapter of the VTune

Profiler User Guide.

Next step: Interpret Performance Snapshot Analysis.

Interpret Performance Snapshot Result Data

At this point in the Tutorial, interpret the Performance

Snapshot analysis result to identify main problem

areas in the application.

When the sample application exits, Intel® VTune™ Profiler finalizes the result and opens the Summary tab of
the Performance Snapshot analysis result.

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/command-line-interface.html

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -

Linux* OS

Understand the Performance Snapshot Summary Tab

Summary

our next analysis type

hted recommendation based on your performance snapshot.

RITHM MICROARCHITECTURE
o O
Anomaly Microarchitecture Memory Access
Detection Exploration 79.3%
(preview)
LLELISM ACCELERATORS
0 Q O
HPC GPU Offload GPU
Performance Compute/Media
Characterization Hotspots
(preview)
CPU/FPGA
Interaction

M ANALYSES

Flatform Profiler

>tion and Platform Info

The Performance Snapshot result Summary tab shows the following:

©) Elapsed Time : 90.125s

IPC @ 0187
SP GFLOPS @ 0.002
DP GFLOPS @: 0.192
x87 GFLOPS @: 0.000

Average CPU Freguency ©: 33 G

Effective Logical Core U
99.4% (7.950 out of 8)

Microarchitecture Usage
of Pipeline Slots

Memory Bound “: 79.3%
of Pipeline Slots

Vectorization : 0.3% &
of Packed FP Operations

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Analysis tree: Performance Snapshot offers other analysis types that may be useful for a deeper
investigation into the performance issues found in your application. Analysis types that are related to
performance problems detected in your application are highlighted in red.

You can estimate the severity of each problem by studying the metric values.

Hover over an analysis type icon to understand how an analysis type is related to your performance
problem.

Metrics Panes: these panes show the high-level metrics that contribute most to estimating application
performance. Problematic areas are highlighted in red. You can expand each pane to get more information
on each problem area and to see the lower-level metrics that contributed to the verdict.

Hover over each metric to see the metric description.

Collection and Platform Info: this pane shows the information about the system on which this
particular result was collected. It is useful when opening results collected on a different hardware
platform.

Identify Problem Areas

In this case, observe these main indicators that highlight the performance bottlenecks:

The Elapsed Time for this application is very high.

The Memory Bound metric is high, indicating a memory access problem. Due to this, Performance
Snapshot highlights the Memory Access analysis as a potential starting point and indicates that this
performance bottleneck is the most severe and contributes most to the total Elapsed Time.

The IPC (Instructions per Cycle) metric value is very low for a modern superscalar processor,
indicating that the processor is stalled for most of the time.

The Performance Snapshot analysis highlights the Hotspots analysis as a good starting point. In general,
the Hotspots analysis is a good candidate for a first in-depth analysis. It highlights hotspots, or areas of
code that contributed most to the elapsed time.

Start with the Hotspots analysis to see which area of code in the matrix application contributes most to the
performance problem.

Next step: Run and Interpret Hotspots Analysis.

Run and Interpret Hotspots Analysis

In this part of the tutorial, you run the Hotspots analysis to locate hotspots, or sections of code that
contribute most to the total elapsed time of the application.

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -

Linux* OS

Run Hotspots Analysis

al Host ~

nch Application ~

figure your analysis target: an application or a script to

e/samples/matrix/matrix O |

ameters.;

ition directory as working directory

10

HOW

0 Hotspots ~

Identify the most time consuming functions and drill down to
on each line of source code. Focus optimization efforts on ho

greatest performance impact. Learn more
User-Mode Sampling @ o}
‘'@ Hardware Eveni-Based Sampling &

CPU sampling interval, ms

* |
|

Collect stacks

Show additional performance insights

Details

O

To run the Hotspots analysis from the Performance Snapshot Summary window:

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

1. Click the Hotspots icon in the Analysis tree.

The Configure Analysis window opens.

2. In the WHERE pane, select Local Host.

3. If you're using the pre-provided sample (matrix) project, the WHAT pane should already be
configured.

If not, provide the path to the application in the Application textbox.
4. In the HOW pane, the Hotspots analysis is pre-selected.

For the collection mode, you can choose between User-Mode Sampling and Hardware Event-Based
Sampling. These sampling methods are different, but, typically, it is better to use Hardware Event-
Based Sampling when possible, since it provides greater detail with lower overhead.

5. Click the Start button to run the analysis.

Interpret Hotspots Result Data

Once the sample application exits, Intel® VTune™ Profiler finalizes the result and opens the Summary
viewpoint.

11

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

TEL VTUNE PROI

Hotspots Hotspots by CPU Utilization = @& (7]

/sis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree m /
Hotspots Insights
E|ﬂp5&d Time : 98.255s If you see significant hotspots in the Top Hotspc
3 CPU Time": 646.6795 list, switch to the Bottom-up view for in-depth
. - analysis per function. Otherwise, use the

Instructions Retired: 317.176,500,000 Caller/Callee view to track critical paths for thes

) Microarchitecture Usage : 7.5% ™ of Pipeline Slo. hotspots.
CPI Rate o722 m - .
) Explore Additional Insights

Total Thread Count: 9 Microarchitecture Usage - © 7.5% *

Paused Time Os Use 4 Microarchitecture Exploration to
explore how efficiently your application run
on the used hardware.

Top Hotspots Vector Register Utilization - : 24.2% R

Use Intel Advisor to learn mare on

This section lists the most active functions in your application. el 7 _ o
vectorization efficiency of your application.

Optimizing these hotspot functions typically results in improving overall
application performance.

Function Module CFU Time
multiply 1 matrix 644 0325
read hpet vmlinux 0.136s
prepare_exit_to_usermode vmlinux 0.026s
21000 _intr_msi e1000e 0.017s
e1000_irq_enable £1000e 0.016s
[Others] MIA* 0.452s5

Ae

WA is applied to non-summabls meinics.

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhea
time adds to the ldle CPU utilization value.

4= o
8= H

3= H

re Utilization

Elapsed Time

25z -

Target Utilization

20

155

10=

=

Average Physical Core Utization

0= —

I I I
4] 1 2 3 4] = T -]
m
12 [

Simultaneously Ltilized Logical CPUs

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

This viewpoint offers multiple metrics. Hover over the question mark icons to get a detailed description of
each metric.

Note that the total CPU Time for the application is equal to about 644 seconds. It is the sum of CPU time for
all threads in the application. The Total Thread Count is 9, so the application is multi-threaded.

The Top Hotspots section of the Summary window provides data on the most time-consuming functions
(hotspot functions) sorted by CPU time spent on their execution. For the sample application, the multiplyl
function, which took roughly 640 seconds to execute, shows up at the top of the list as the hottest function.

The Effective CPU Utilization Histogram lower on the Summary window represents the Elapsed Time
and usage level for the available logical processors and provides a graphical look at how many logical
processors were used during the application execution. Ideally, the highest bar of your chart should match
the Target Utilization level.

Identify Most Time-Consuming Code Areas

To get a per-function view of the code, switch to the Bottom-up tab. By default, the data in the grid is
grouped by function. You can change the grouping level using the Grouping menu at the top of the grid.

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

rouping:| Function / Call Stack v
CPUTime ¥ [
Function / Call Stack Effective Time by Utilization B . Instructions Retired
§ide @Poor (Ok @ldeal @ Over Spin Time |~ Overhead Time
multiply1 | 641.863s NG] 0s 0s 314,944,000,00(

The multiplyl function took the most time to execute, roughly 640 seconds, and shows a poor CPU
utilization.

To get the detailed CPU utilization information per function, use the
Expand button in the Bottom-up pane to expand the Effective Time by Utilization column.

sis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

\g| Function / Call Stack v][x

CPU Time ¥
Function / Call Stack Effective Time by Utilization

Idle Poor | Ok Ideal |«
Oy 0.009s 235.164< (D 248 44Ts 158.243s @B

Double-click the multiplyl function on the Bottom-up grid to open the Source window.

13

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

multiply.c =
% CPU Time
Source Effective Time by Utilization [»] _|$_pin Overhead
fide QPoor B Ok [jldeal [Over ime Time
c[i]l[3J] = e[i]1[3] + alil (k] * b[k][3]:
y1l{int msize, int tidx, int numt, TYPE a[] [MUM], 1T
k;
e implementation of matrix multiply contains an ig
ation cof the inner locp strides across the full wi
he iterater 'k' i=z uszed in the first dimenszien of
s to bad cache reuse and significant memecry stalls
architecture and Memcry access analysis to estimat
maltiply2' functicn implementaticn to overcome the
dx; i<msize; i=i+numt)
9=0; j<msize; j++} | 0.001s Os Os
for{k=0; k<msize; k++) | 2.738s || Os 0s
c[11[j] = e[41[3] + a[i]l[k] * b[k][j]; 636355 (N @R O 0s
} 2.769s | Os 0Os

Note that the most time-consuming line is attributed to the loop that performs the matrix multiplication in
the multiplyl function.

To analyze the behavior of this loop in relation to memory, run the Memory Access analysis.

Next step: Analyze Memory Access.

14

1

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS)

Analyze Memory Access

At this stage in the Tutorial, you run the Memory
Access analysis to understand the main bottleneck
behind slow application performance.

To understand the exact mechanics behind the memory access problems in the multiplyl loop, run the
Memory Access analysis.

15

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

Run Memory Access Analysis

HOW

Host ~ Memory Access ~
Measure a set of metrics to identify memory access related i
specific for NUMA architectures). This analysis type is based
event-based sampling collection. Learn more
',h App"catlon v CPU sampling interval, ms
1
e your analysis target: an application or a script to execute. Evaluate max DRAM bandwidth
Analyze OpenMP regions
nples/matrix/matrix oo |
Details
=i H
D
directory as working directory
>

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

To run the Memory Access analysis:

1. Click the Memory Access icon in the previously collected Performance Snapshot result or click the
Configure Analysis button in the main toolbar.

2. If you clicked the Memory Access analysis icon, the Memory Access analysis should be pre-selected. If
not, select this analysis type in the HOW pane.

3. In the HOW pane, disable the Analyze OpenMP regions option as it is not required for this
application.

4. Click the Start button to run the analysis.

Interpret Memory Access Data

Once the sample application exits, Intel® VTune™ Profiler finalizes the result and opens the Summary
viewpoint.

17

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

o
|

) Elapsed Time : 102.308s

CPU Time & 634.334s
& Memory Bound ©: B4.5% & of Pipeline Slots

L1 Bound &: 19% of Clockticks
L2 Bound @: 0.5% of Clockticks
L3 Bound - 39% of Clockticks

(¥) DRAM Bound ©: 82.3% ® of Clockticks

DRAM Bandwidth Bound &: 12.7% ® of Elapsed Time

Store Bound & 0.0% of Clockticks

Loads: 155,107,053,072

Stores: 17.872,136,148

LLC Miss Count @: 7,876,151 292

Average Latency (cycles) @ 39

Tatal Thread Count: 10

Paused Time ©: 0s

() Bandwidth Utilization Histogram

Explore bandwidth utilization over time using the histogram and identify memory objects or
functions with maximum contribution to the high bandwidth utilization.

Bandwidth Domain: | DRAM, GB/sec v |

) Bandwidth Utilization Histogram
This histogram displays the wall time the bandwidth was utilized by certain value. Use
sliders at the bottom of the histogram to define thresholds for Low, Medium and High
utilization levels. You can use these bandwidth utilization types in the Bottom-up view fo
group data and see all functions executed during a particular utilization type. To learn
bandwidth capabilities, refer to your system specifications or run appropriate
benchmarks to measure them; for example, Intel Memory Latency Checker can provide
maximum achievable DRAM and Interconnect bandwidth.

B0z

Elapsed Time

B0 —

Observed Maximum

40=

20—

18

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Once again, note that the application is severely bound by memory accesses. The fact that the system is not
bound by the DRAM Bandwidth alone indicates that the application is bound by frequent, but small,
requests to memory, rather than by the saturated physical DRAM Bandwidth.

Switch to the Bottom-up tab to see the exact metrics for the multiplyl function.

Memory Access Memory Usage ~ @ (7] INTELVT“NEPRDFI‘

ysis Configuration Collection Log Summary Bottom-up Platform

O: + = A ae 0 8s&0s 100 || @y DRAM Bandwidth
18 | — . . . Average Bandwidth, (
package [Y Read
g Write

~ Total, GBlzec

ing:| Function / Call Stack v |E

Function / Call Stack CPU Time ¥ | Memory Bound | * Loads Stores | LLC Miss Co

tiply 1

628.952s (NG 89.2% 153,896,216,748 17,075,312,244 7,867,750

The multiplyl function is at the top of the grid with the highest CPU Time and high Memory Bound
metric values.

Note that the LLC Miss Count metric is very high. This indicates that the application uses a cache-unfriendly
memory access pattern, which causes the processor to frequently miss the LLC and request data from DRAM,
which is expensive in terms of latency.

A good way to resolve this issue is to apply the loop interchange technique, which, in this case, changes the
way the rows and columns of the matrices are addressed in the main loop. This way, the inefficient memory
access pattern is eliminated, enabling the processor to make better use of the LLC.

Next step: Resolve Memory Access Issue.

Resolve Memory Access Issue

At this point in the Tutorial, you edit the source code
and recompile the application to resolve the main
memory access bottleneck.

19

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

NOTE

e Across this tutorial, the Intel® C++ Compiler Classic is used. Your results and workflow may vary
depending on the compiler that you use.

e In this stage of the tutorial, you will be instructed to set the Optimization Level of the compiler to
Maximum Optimization (Favor Size) (-O1) as opposed to Maximum Optimization (Favor Speed) (-
02).

While it makes sense to perform performance profiling with maximum optimizations that favor
speed enabled, we will use this as an example to demonstrate how Intel® VTune™ Profiler can help
detect issues related to unobvious behavior of compiler options. In case of the Intel® C++ Compiler
Classic, the -O1 option disables automatic vectorization.

Such issues can occur in real, larger projects, with reasons that range from something as simple as
a typo, to something more complicated, such as the lack of awareness of how particular compiler
options influence performance.

For example, some compilers, such as gcc, do not attempt vectorization at -O2 level, unless
instructed to do so using the -ftree-vectorize option, and will only perform automatic
vectorization at the -O3 level.

Follow these steps to edit and recompile the code using the Intel® oneAPI DPC++/C++ Compiler:

1. Inthe /opt/intel/oneapi/compiler/latest/env folder, run this command to set compiler
environment variables:

sSource env.vars
2. Locate the matrix sample application folder on your machine. By default, it is placed in:

SHOME/intel/vtune/samples/matrix
3. Using a text editor of your choice, open the Makefile located in the ../matrix/linux/ folder.
4. Change line 42 from:

CFLAGS = -g -03 -fno-asm
To:
CFLAGS = -g -01

5. Change line 43 from:
OPTFLAGS = -xSSE3
To:

OPTFLAGS =

6. Save and close the Makefile.

7. Openthemultiply.h header file located in ../matrix/src folder with a text editor.
8. Change line 36 from:

#define MULTIPLY multiplyl
To:
#define MULTIPLY multiply2

This changes the program to use the multiply2 function from the multiply.c source file, which
implements the loop interchange technique that resolves the memory access problem.
9. Save and close the multiply.h file.

10. Navigate to the ../matrix/1linux folder and use this command to recompile the application:
make icc

Next step: Analyze Performance After Optimization.

20

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Analyze Performance After Optimization

In this step, run the Performance Snapshot analysis
again to profile the application with loop interchange
enabled.

To see the improvement provided by using the loop interchange technique, run the Performance Snapshot
analysis again.

NOTE
Depending on your compiler and IDE, when configuring the analysis, you may need to browse to a
different executable that was generated during recompilation in the previous step.

Once the sample application finishes, the Performance Snapshot Summary window opens.

21

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -

Linux* OS

Summary

next analysis type

commendation based on your performance snapshot.

HM

1omaly
tection
review)

LISM
s

HPC
rformance

racterization
0.0%

ANALYSES

Platform Profiler

and Platform Info

22

MICROARCHITECTURE

O ©

Microarchitecture Memory Access
Exploration 24 2%
41.5%

ACCELERATORS

O O

GPU Offload GPU
Compute/Media
Hotspots
(preview)

CPUFPGA
Interaction

® Elapsed Time : 3.353s

IPC - 0.970
SP GFLOPS : 0.000
DP GFLOPS": 5.142
x87 GFLOPS 0.001

Average CPU Frequency : 2.7 Gl

(>) Effective Logical Core L
95.1% (7.605 out of 8)

(>) Microarchitecture Usag:
of Pipeline Slots

() Memory Bound : 24.2%
of Pipeline Slots

() Vectorization : 0.0% *
of Packed FP Operation

) Instruction Mix;

) SPFLOPs : 0.
©) Packed - 12
128-bit 12

256-bit - 0.

Scalar - a7

) DPFLOPs : 28
() Packed - 0.
Scalar - 10

x87 FLOPs - 0.
Non-FP - 71

FP Arith/Mem Rd Instr. Ratio - 0.¢
FP Arith/Mem Wr Instr. Ratio - 1.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Observe these main indicators:

e The Elapsed Time for the application is significantly reduced. This improvement is mainly the result of
the eliminated memory access bottleneck, which caused the processor to frequently miss the cache and
request data from the DRAM, which is very expensive in terms of latency.

e The Vectorization metric is equal to 0.0%, which means that the code was not vectorized. Due to this,
Performance Snapshot highlights the HPC Performance Characterization analysis as a potential next step.

In this case, the code was not vectorized because the Intel® oneAPI DPC++/C++ Compiler does not perform
vectorization when compiling with binary size favored (-01).

To enable automatic vectorization by the compiler, follow these steps:

1. Open the Makefile located in ../matrix/linux folder with a text editor.
2. Change line 42 from:

CFLAGS = -g -01
To:
CFLAGS = -g -02

3. Run the following command to recompile the application:
make icc

Next step: Analyze Vectorization Efficiency.

Analyze Vectorization Efficiency

In this part, you analyze how well the application was
vectorized after the compiler options were changed.

Once you recompile the application with the -O2 level enabled, run the Performance Snapshot analysis again
to analyze vectorization efficiency.

Once the analysis is complete, see the Vectorization pane of the Summary window.

23

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

Vectorization : 99.9%
of Packed FP Operations

Instruction Mix:

SP FLOPs 0.0% of uOps
Packed 18.6% from SP FP
128-bit 18.6% & from 5P FP
256-bit 0.0% from SP FP
Scalar - 81.4% & from SPFP
DP FLOPs 24 5% of uOps
FPacked 100.0% from DF FP
128-bit 100.0% & from DP FP
256-bit 0.0% from DP FP
Scalar 0.0% from DF FP
¥87 FLOPs 0.0% of uops
Mon-FP - 75.5% of uOps

FP Arith/Mem Rd Instr. Ratio © 0.730
FF Arith/Mem Wr Instr. Ratio © 1.390

Observe these main indicators:

1. The overall Vectorization metric is equal to 99.9%, which indicates that the code was vectorized.
2. However, there are red flags next to the 128-bit Packed FLOPs metrics. Hover over the red flag icon
or the metric value to get a description of the issue.

I — L5330 Ul LA
A significant fraction of floating point arithmetic vector 100.0% from DP FP
instructions is executed with a partial vector load. Make 100.0% ® from DP EP

sure you compile the code with the latest instruction set or
use Intel Advisor for vectorization help. 0.0% from DP FP

=TT M naL frnen NP FD

In this case, Intel® VTune™ Profiler indicates that a significant portion of floating-point instructions is
executed with partial vector load.

Since the analysis was performed on a machine based on an Intel processor capable of using the AVX2
instruction set, the fact that all instructions were executed using only the 128-bit registers means that the
256-bit wide AVX2 registers were not utilized at all. Therefore, VTune Profiler flags the 100.0% utilization of
128-bit vector registers as an issue.

To understand what vector instruction set is actually used, run the HPC Performance Characterization
analysis.

24

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

HOW

il HPC Performance

LocalHost ~ ¥ Characterization

Analyze important aspects of your application performance,
including CPU utilization with additional details on OpenMP
efficiency analysis, memory usage, and FPU utilization with
vectorization information.

For vectorization optimization data, such as trip counts, data
dependencies, and memory access patterns, try Intel Advisol
identifies the loops that will benefit the most from refined
vectorization and gives tips for improvements.

The HPC Performance Characterization analysis type is best

' Launch Application ~

¢ and configure your analysis target: an application or a

0 execute. for analyzing intensive compute applications. Learm more
ation: CPU sampling interval, ms
intel/vtune/samples/matrix/matrix O|o 1
ation parameters: Collect stacks

2 .

Analyze memory bandwidth

€ application directory as working directory Evaluate max DRAM bandwidth
anced 3 Analyze OpenMP regions

Details

00

To run the analysis:

1. Click the HPC Performance Characterization analysis icon from the analysis tree.

2. Disable the Collect stacks, Analyze Memory bandwidth and Analyze OpenMP regions options as
they are not required for vectorization analysis.

3. Click the Start button to run the analysis.

25

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

Once the data collection is complete, VTune Profiler opens the default Summary window of the HPC
Performance Characterization Analysis.

actorization : 99.8% of Packed FP Operations
Instruction Mix:

SP FLOPs 0.0% of uOps
DP FLOPs 315% ofuCps
Facked 99.8% from DP FP
128-bit 99.8% & from DP FP
256-bit - 0.0% from DP FP
Scalar . 0.2% from DP FP
X87 FLOPs 0.0% of uOps
Mon-FP 6B5% ofuCps

FP ArithitMem Rd Instr. Ratio @ 0.925

FP Arith/tem \Wr Instr. Ratio - 1.852

Top Loops/Functions with FPU Usage by CPU Time

This section provides information for the most time consuming loops/functions with floating point operations.

Function CPUTime % of FPOps FP Ops: Packed FP Ops: Scalar Vector Instruction Set
[Loop at line 71 in multiply2] 16.764s 31.7% 100.0% 0.0% SSE2(128) &
[Loop at line 70 in multiply2] 0.059s 29.4% 100.0% 0.0% SSE2(128)
[Loop at line 50 in init_arr] 0.0% 100.0%

*N/A is applied to non-summabile metnics

Focus on the Vectorization section of the Summary window.

Note that the main loop of the multiply?2 function was vectorized using the older SSE2 instruction set, while
compilation and analysis were performed on an AVX2-capable processor. Therefore, a portion of hardware
resources remains underutilized.

Next step: Enable Platform-Appropriate Vectorization.

Enable Platform-Appropriate Vectorization

At this point in the Tutorial, you enable the use of
vector registers appropriate for the platform and
check vectorization efficiency.

NOTE

e For an in-depth exploration of vectorization, try Intel® Advisor. It is a performance analysis tool that
offers deep insights into vectorization opportunities, vectorization efficiency, dependencies, and
much more.

e In this section, you will be instructed to use the -xHost option compile the application with the best
instruction set extension out of the ones that your processor performing the compilation supports.
To generate multiple code paths that enable your software to run on a variety of
microarchitectures, see the ax, Qax option of the Intel® oneAPI DPC++/C++ Compiler.

26

Loop

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Enable Full Vectorization

To enable the use of a vector instruction set appropriate for the platform, one possible way is to instruct the
compiler to use the same vector extension as the best one available in the processor performing the
compilation.

Follow these steps to enable platform-appropriate vectorization:

1. Openthe Makefile located in ../matrix/linux with a text editor.
2. Change line 43 from:

OPTFLAGS =
To:
OPTFLAGS = -xHost

This option instructs the compiler to use the best instruction set extension that the processor
performing the compilation supports.
3. Save and close the Makefile and recompile the application using command:

make icc

Check Vectorization with Performance Snapshot
Run the Performance Snapshot analysis to ensure that the application is properly vectorized.

Once the application exits, Intel® VTune™ Profiler opens the Performance Snapshot Summary window.

27

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -

Linux* OS

Summary

ur next analysis type

ed recommendation based on your performance snapshot.

JITHM MICROARCHITECTURE
o O
Anomaly Microarchitecture Memory Access
Detection Exploration 65.0%
(preview) 7.9%
LELISM ACCELERATORS
g Q O
HPC GPU Offload GPU
Performance Compute/Media
Characterization Hotspots
(preview)
CPU/FPGA
Interaction
M ANALYSES

Platform Profiler

lion and Platform Info

Observe these main indicators:

28

() Elapsed Time : 2.264s

(>) Effective Logical Core U
96.6% (7.726 out of 8)

(>) Microarchitecture Usage
of Pipeline Slots

() Memory Bound : 65.0%
of Pipeline Slots

) Vectorization : 99.9%

of Packed FP Operation:
(&) Instruction Mix:

%) SPFLOPs - 0
%) Packed 7
128-bit & 7

I

256-hit & 0

Scalar- 9

I

® DPFLOPs®: 4
¥87 FLOPs 0
MNon-FP & &

FP Arith/Mem Rd Instr. Ratio ©: 1
FP Arith/hMem Wr Instr. Ratio @ 4

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

e The Elapsed Time for the application has slightly decreased.

e The Vectorization metric equals to 99.9%, so the code was fully vectorized.

e A total 100.0% of Packed DP FLOP instructions were executed using the 256-bit registers. Therefore,
even without running the HPC Performance Characterization analysis, the conclusion is that the AVX2
vector extensions were fully utilized.

e VTune Profiler highlights the Microarchitecture Usage metric and offers to use the Microarchitecture
Exploration analysis to understand how exactly the application is underutilizing the microarchitecture.

Next step: Analyze Microarchitecture Usage.

Analyze Microarchitecture Usage

In the previous part, Performance Snapshot
highlighted an issue with microarchitecture utilization.
In this part of the Tutorial, you run the
Microarchitecture Exploration analysis to look for
optimization opportunities.

While the previous optimizations resulted in great benefit to the total elapsed time of the application, there
are still areas for improvement. The Performance Snapshot analysis has highlighted that the
microarchitecture is not utilized well.

Run the Microarchitecture Exploration analysis to identify opportunities for improvement.

29

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

Run Microarchitecture Exploration Analysis

Microarchitecture
al Host ~ i
Exploration
Analyze CPU microarchitecture bottlenecks affecting the pen
your application. This analysis type is based on the hardware
sampling collection. Learm more
nCh Appllcatlon v CPU sampling interval, ms
1
figure your analysis target: an application or a script to Extend granularity for the top-level metrics:
Front-End Bound
2/samples/matrix/matrix oo Bad Speculation
Memory Bound
meters:
o Core Bound
Retiring
ion directory as working directory
Analyze memory bandwidth
>

Evaluate max DRAM bandwidth

Collection mode

Detailed

Details

()OS

1. In the Performance Snapshot analysis tree, click the Microarchitecture Exploration analysis icon.

To run the Microarchitecture Exploration analysis:

30

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS)

1

2. In the HOW pane, enable all extra options.
3. Click the Start button to run the analysis.

Interpret Microarchitecture Exploration Result Data
Once the application exits, Intel® VTune™ Profiler opens the default Summary window.

31

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

ration Microarchitecture Exploration = & 10

jonLog Summary Bottom-up Event Count Platform ‘

2.731s
37.686.500,000 \—
3 773,400 000 .
9.957 K
0.923
7.5% of Pipeline Slots
3.7% of Pipeline Slots demand memory Ic

La] Ok .
89.6% R of Pipeline Slots [RSl analysis to have th

) - breakdown by men
oy
83.6% * of Pipeline Slots hierarchy, memory
0.0% of Clockiicks

bandwidth informat
1.0% of Clockticks

correlation by menmn
19.1% R of Clockticks objects.
66.2% M of Clockticks

andwidth ®: s18% R orclockicks NN B B

atency @ 11.5% R of Clockticks /_p_/

The metric value is
This can indicate tr
significant fraction
execution pipeling
could be stalled du

0.0% of Clockticks IJPipe
. .
6.0% oTPIpeline SIS rpie siagram represents inefficiencies in CPU usage. Treat it as a pipe with an ou
Iy & 2.7 GHz equal to the "pipe efficiency” ratio: (Actual Instructions Retired)/(Maximum Pos
1 Instruction Retired). If there are pipeline stalls decreasing the pipe efficiency, th
0s shape gets more narrow.

al Core Utilization : 63.4% (2.538 out of 4) &

LHilization 2 63.4% (S.076 out of) ™
tion Histogram
s a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle

Target Utilization

o —_—— — — - T - -

£ |
o
=
[
Ly
=
o
2|
(=]
< |
B
& |
=
= |
s
@ |
-
@
I

Eimulizneously Lkilized Logical CELs

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

This view shows the following:

e Elapsed Time section: this section shows metrics related to hardware utilization levels for your
hardware. Hover over the flagged metrics to get a description of the issues, possible causes, and
suggestions for resolving the issue.

The hierarchy of event-based metrics in the Microarchitecture Exploration viewpoint depends on your
hardware architecture. Each metric is an event ratio defined by Intel architects and has its own predefined
threshold. Intel® VTune™ Profiler analyzes a ratio value for each aggregated program unit (for example,
function). When this value exceeds the threshold, it signals a potential performance problem.

e pPipe Diagram: the pPipe, or Microarchitecture pipe, provides a graphical representation of CPU
microarchitecture metrics showing inefficiencies in hardware usage. Treat the diagram as a pipe with an
output flow equal to the ratio: Actual Instructions Retired/Possible Maximum Instruction Retired
(pipe efficiency). The pPipe is based on CPU pipeline slots that represent hardware resources needed to
process one micro-operation. Usually there are several pipeline slots available on each cycle (pipeline
width). If a pipeline slot does not retire, this is considered a stall and the pPipe diagram represents this as
an obstacle making the pipe narrow.

See the Microarchitecture Pipe page of the User Guide for a more detailed explanation of the pPipe.

o Effective CPU Utilization Histogram: this histogram represents the Elapsed Time and usage level for
the available logical processors and provides a graphical look at how many logical processors were used
during the application execution. Ideally, the highest bar of your chart should match the Target Utilization
level.

In this case, observe the following indicators:

e The Memory Bound metric is high, so the application is bound by memory access.
e The Memory Bandwidth and Memory Latency metrics are high.

Considering these factors together, the conclusion is that the application has a memory access issue.
However, this issue is slightly different in nature from the memory access issue previously resolved using the
loop interchange technique.

Before the introduction of the loop interchange, the application was mainly bound by the cache-unfriendly
memory access pattern, which resulted in a large number of LLC (Last-Level Cache) misses. This, in turn,
resulted in frequent requests to the DRAM.

In this case, the fact that the Memory Bandwidth metric is high means that the application has saturated
the bandwidth limits of the DRAM. While nothing can be done to increase the physical capabilities of the
DRAM, the application can be modified to make even better use of the Last-Level Cache and to reduce the
number of loads from the DRAM even further.

(Optional) Improve Cache Reuse

In general, most developers stop further optimizing their application when they have reached their desired
performance goal. The performance improvement gained by optimizing the matrix application has resulted
in a decrease of application wall time from roughly 90 seconds to roughly 2.5 seconds.

If you wish to experiment further, you can modify the code to implement the cache blocking technique.
Cache blocking is an approach for rearranging data access in such a way that blocks of data get loaded into
the cache and are reused for as long as they are needed, greatly reducing the number of DRAM accesses.

To modify the code to use the cache blocking technique:
1. Inthemultiply.h header file, change line 36:
#define MULTIPLY multiply2
To:

#define MULTIPLY multiply4
2. Save changes and recompile the application.

33

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/microarchitecture-analysis-group/general-exploration-analysis/microarchitecture-pipe.html

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

This modifies the code to use the multiply4 function from the multiply.c source file, which implements
the cache blocking technique.

Once the application is recompiled, you can run an analysis of your choice to determine the performance
improvement.

Next step: Compare with Previous Result.

Compare with Previous Result

Over the course of the Tutorial, you've applied multiple changes to improve the performance of the matrix
sample application.

To get a detailed view of the performance improvement, you can use the Compare Results feature of Intel®
VTune™ Profiler.

Compare Performance Before and After Optimization
You can compare results collected with VTune Profiler to better see the changes in performance.

While you can compare results from different analysis types (such as Hotspots and Performance Snapshot),
only the metrics that are applicable to both analysis types simultaneously are shown.

To compare results:

1. Click the Compare Results button in the Main Toolbar.
2. Select the results that you want to compare.

Configure Analysis Compare... =

Choose Results to Compare INTEI_ UTUNE PRDF".ER

Result 1: Result 2:

r000ps - O =" ro02ps * | O

dP Compare

VTune Profiler profiler calculates the differences between metrics and opens the default Summary window.

3. Click the Compare button.

34

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Summary
alysis type < Elapsed Time : 90.125
n based on your performance snapshot. IPC @ 0.1¢
SP GFLOPS 0.01
MICROARCHITECTURE DP GFLOPS ©: 015
¥87 GFLOPS - 0.01

0 Average CPU Frequency ©: 3.3

Microarchitecture Memory Access

Exploration
(>) Effective Logical Core |
ACCELERATORS (7.950 out of 8) | 96.6%
GPU Offload GPU (3) Microarchitecture Usag
- spots 1.3% of Pipeline Slots
(preview)
() Memory Bound : 79.3%
CPUWFPGA
Interaction of Pipeline Slots
SES (>) Vectorization : 0.3% - ¢
, of Packed FP Operatior

Profiler

You can expand any metric pane and see the difference between all metrics that are applicable to both
results.

For example, for the matrix sample application, the Elapsed Time was reduced by almost 88 seconds.

35

1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -

Linux* OS

Summary

You have completed the Finding Common Bottlenecks tutorial. Here are some important things to remember
when using the Intel® VTune™ Profiler to analyze your code for hotspots and hardware issues:

factors and next steps for
optimization:

1. Using the Hotspots analysis to
isolate problem to a specific code
area.

2. Using the Memory Access
analysis to understand the exact
mechanics behind the
bottleneck.

Step Tutorial Recap Key Tutorial Takeaways
1. Find the You started with Performance * When you first analyze an application, it
bottleneck Snapshot to determine main limiting is a good idea to start with the

Performance Snapshot analysis to
determine main problem areas and next
steps.

Use the Hotspots analysis to isolate the
performance issue to a specific area of
code. Click the hotspot function name in
the Bottom-up window to see the code
lines responsible for bottleneck.

Use the Memory Access analysis to
determine issues related to inefficient
DRAM accesses, one of the most
common limiting factors in software.

2. Resolve issue
and recompile

You edited the code and recompiled
the application to eliminate the

Using efficient, cache-friendly DRAM
access patterns can result in a

vectorization
issues

different optimization level, and the
code was vectorized.

However, while using Performance
Snapshot, you've noticed that only
the 128-bit vector registers were
utilized, while the 256-bit registers
were not utilized at all.

By using the HPC Performance
Characterization analysis, you've
noticed that the vector instruction
set extension SSE2 was used, which
is an older instruction set extension.
A portion of hardware resources
remained underutilized.

You've recompiled the application
again with different options to ensure
vectorization was performed
according to full platform capability.

application cache-unfriendly DRAM access significant increase in performance.
pattern. e Compiler options can influence the
. . behavior of the application in unobvious
;I;If"'; h?iiarteics)lliltric:\;\rilna %irriaet decrease ways, especially when multiple different
PP 9 ’ compilers are used. VTune Profiler can
You've set compiler options to use a help identify issues related to the
different optimization level to see application being vectorized improperly,
how compiler options can influence which underutilizes available hardware
vectorization. resources.
3. Resolve You recompiled the application with a | * Both the Performance Snapshot and the

HPC Performance Characterization
analysis types can help identify issues
related to improper vectorization.

While compiler options are well-
documented and their behavior is
known, it is easy to miss a peculiarity of
an option. This can lead to not compiling
an application to make the best use of
hardware resources straight away, no
matter what compiler is used. VTune
Profiler can help catch such issues on all
stages of development.

36

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

Step Tutorial Recap Key Tutorial Takeaways
4. Analyze As recommended by Performance * VTune Profiler provides a large humber
Microarchitectur Snapshot, you used the of microarchitecture metrics tuned by
e Usage Microarchitecture Exploration Intel architects to enable you to make
analysis to identify next optimization an informed optimization decision.
steps. * You used the metrics and the pyPipe
diagram to make the next optimization

Using this analysis type, you saw

that the best way to further optimize decision.
the application was the cache
blocking technique.
5. Check your You used the Compare Results Perform regular regression testing by
work feature to compare the performance comparing analysis results before and after
of the application at different optimization. From the GUI, click the
optimization stages. Compare Results button on the VTune

Profiler toolbar. From command line, use
the vtune command.

Next step: Prepare your own application(s) for analysis. Then use the VTune Profiler to find and eliminate
performance problems.

See Also

Explore the User Guide

Tuning and configuration recipes in the VTune Profiler Cookbook
More tutorials with associated sample code

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

*Qther names and brands may be claimed as the property of others.

37

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/articles/vtune-tutorials.html
https://www.intel.com/PerformanceIndex

Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application - Linux* OS

Index

Enter index keyword 3, 4, 7, 15, 19, 21, 23, 26, 29

38

	Contents
	Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS)
	Use Case and Prerequisites
	Run Performance Snapshot Analysis
	Interpret Performance Snapshot Result Data
	Run and Interpret Hotspots Analysis
	Analyze Memory Access
	Resolve Memory Access Issue
	Analyze Performance After Optimization
	Analyze Vectorization Efficiency
	Enable Platform-Appropriate Vectorization
	Analyze Microarchitecture Usage
	Compare with Previous Result
	Summary
	Notices and Disclaimers

	Index

