
 EMON User Guide
Intel Corporation

www.intel.com

Legal Information

Contents
Notices and Disclaimers... 4
Revision History... 5

Chapter 1: About This Document
Intended Audience...6
Related Information...6

Chapter 2: Introduction
Informative Options...7

–h [-list-event-modifiers] ...7
–pmu-types [available] ..7
-1 [pmu-type] [-experimental | -all] ..7
-? | -H [pmu-type] [-experimental | -all]..8
-! <event name> ..8
--dry-run ...9
-M...9
-v [-display-features]...9

Event Collection Options... 10
-C <event1,event2,...>.. 10
-preset-list ... 13
-preset <name> ... 13
-t <time in sec> ... 14
-l <loops> ... 14
-L <time>.. 15
-s <delay>... 16
-w... 16
-nb | -non-blocking ... 16
-p ... 16
-osm | -os-mode... 16
-um | -user-mode ... 16
-pause... 16
-resume... 17
-stop ... 17

Input/Output Options... 17
-f <output file> .. 17
-F <output file>.. 17
-i <input file>... 17
-q ... 18
-V ... 18
-A ... 18
-S ... 19
-Sr .. 19
-X ... 19
-c ... 19
-d ... 19
-n ... 19
-u ... 20
-x ... 20

Collect and Process EDP Metrics .. 20

EMON User Guide

2

-collect-edp [edp_file=<file_name>] ... 22
-process-edp <edp_config_file>.. 22
-process-pyedp <pyedp_config_file> ... 22

Collection on Hybrid Platforms... 25
Resource Director Technology (RDT) Collection .. 33
Logging Options .. 35

--dump-driver-log [file_name] .. 35
--decode-driver-log [input_file] .. 35
--extract-driver-log <input core dump> [output file]............................ 35

Other Options ... 36
-experimental ... 36
--per-cpu-tsc.. 36
--per-cpu-absolute-tsc ... 36
-verbose .. 37

Chapter 3: Examples
Basic ... 38
Multi-group Core Events ... 38
Multi-group Core and Uncore Events .. 39

Chapter 4: Help and Troubleshoot
Getting Started With EMON... 40
Discarded Events... 40
Experimental Events .. 40
Deprecated Events .. 40

Contents

3

Notices and Disclaimers
Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Intel, the Intel logo, Intel Atom, Intel Core, Intel Xeon Phi, VTune and Xeon are trademarks of Intel
Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware,
software or service activation. Performance varies depending on system configuration. No product or
component can be absolutely secure. Check with your system manufacturer or retailer or learn more at
[intel.com].

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest
forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from
published specifications. Current characterized errata are available on request.

 EMON User Guide

4

Revision History
Revision
Number

Description Revision Date

1.0 Initial release. January 2013

2.0 Completed major documentation updates and renamed to
EMON User’s Guide.

Added Installation and Examples chapters.

Updated examples in section 2.2 General Options: Collection.

February 2016

2.1 Added and removed event modifiers. February 2017

2.2 Updated SEP driver version. April 2017

2.3 Updated examples in chapters 3 and 4. September 2017

2.4 Updated the guide with missing options and added
description where required.

June 2018

2.5 Minor updates to commands. February 2019
2.6 Added "Collect and Process EDP Metrics" section April 2022
2.7 Dropped -process-edp option April 2023
2.8 Added details about data collection on hybrid platforms August 2023
2.9 Added -per-cpu-absolute-tsc option details October 2023

Revision History

5

About This Document 1
EMON is a low-level command-line tool that provides the ability to profile application and system
performance. The tool leverages counters from hardware Performance Monitoring Units (PMUs) to collect
performance monitoring events.

Users have the option of specifying hardware events and attributes. EMON allocates and configures the
required event resources in the PMU to retrieve event counts from the processor core and uncore. The tool
collects the number of occurrences of selected events for the duration of collection.

Intended Audience

Related Information
For information on Performance Monitoring Unit (PMU), go to http://www.intel.com/content/www/us/en/
processors/architectures-software-developer-manuals.html.

 1 EMON User Guide

6

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Introduction 2
This document explains how you install EMON inside a docker container(along with dependencies) and collect
data. Although the collection runs within the container, you can collect data from the entire system. This
docker-based distribution is useful when you deploy the tool across multiple nodes.

The docker distribution feature is available for Linux* OS only.

This is a PREVIEW FEATURE. A preview feature may or may not appear in a future production release. It is
available for your use in the hopes that you will provide feedback on its usefulness and help determine its
future. Data collected with a preview feature is not guaranteed to be backward compatible with future
releases.

This guide explains how you use the following scripts to install and run EMON commands in a container.
Script Purpose

Dockerfile Build a docker image
emon_container.py Interface to create EMON image and launch EMON

commands
utility.py, helper.py Helper scripts
sample.sh Sample script to launch EMON commands and workload

With a docker-based deployment distribution, you can

• Run an EDP collection
• Run EMON commands
• Use a script to run workload and EMON commands

Informative Options
This section lists all EMON options with examples to illustrate the behavior of certain options.

–h [-list-event-modifiers]
Display help information. The tool lists and describes all supported event modifiers if the sub-option –list-
event-modifiers is specified. For details on event modifiers, see Event Modifiers.

–pmu-types [available]
Display the PMU types supported by the platform. Add the ‘available’ parameter to display PMU types
available on the current system.

-1 [pmu-type] [-experimental | -all]
List the event names that can be monitored on the host platform. This command excludes events that are
not available in the system even though the tool supports their collection. For example, if a system does not
have an FPGA, all events related to FPGA are ignored.

Introduction 2

7

Event list can be filtered by adding a PMU type from –pmu-types command. For example:

emon -1 core
Experimental events are those events that have not been validated in hardware. To list experimental along
with regular events, use the following command:

emon -1 –experimental
To list all events that the tool supports on the current platform, use the following command:

emon -1 -all

NOTE With –all option, the command lists experimental events, deprecated events, template events,
and all other events enabled for the given platform.

-? | -H [pmu-type] [-experimental | -all]
Print events that can be monitored on the host platform along with a brief description. This command
excludes events that are not available in the system even though the tool provides support for them. For
example, if a system does not have an FPGA, all events related to FPGA are ignored.

Event list can be filtered by adding a PMU type from -pmu-types command.

For example:

emon -? core
Experimental events are those events that have not been validated in hardware. To list experimental along
with regular events, use the following command:

emon -? -experimental
To list all events that the tool supports on the current platform, use the following command:

emon -? -all

NOTE This command lists experimental events, deprecated events, template events, and all other
events enabled for the given platform.

-! <event name>
Print description of a given event.

If the given event does not have the relevant hardware support in the current system, EMON displays a
warning saying that the event is not available for collection in the system.

 2 EMON User Guide

8

--dry-run
Lists event groups with names of events that will be scheduled together. In the following example, EMON
splits the command execution into two runs. The first execution includes events under Event Set 0, and
second execution includes those under Event Set 1.

-M
Print the operating system (OS) processor to hardware logical/physical processor mapping.

-v [-display-features]
Display build and version information of the tool along with other details about the hardware platform. This
option also prints the mapping of the OS processor to the logical/physical processor of the hardware. Use the
-display-features option with this command to display the capabilities supported in this version of driver.

Introduction 2

9

Event Collection Options
EMON collects event data for processor core and uncore. This section lists all EMON options related to data
collection with examples to illustrate the behavior of certain options.

-C <event1,event2,...>
Specify one or more events for which the performance data will be collected. Events to monitor can
optionally be embedded within double-quotes (") and should be separated by a comma (,). Both core and
uncore events can be specified for monitoring. However, when user specifies only uncore events in the
command line, the tool collects all the fixed core events along with the specified uncore events.

 2 EMON User Guide

10

Data Collection and Event Multiplexing
The number of events that can be monitored simultaneously in a single run is limited by the number of
hardware performance counters in the PMU of a processor. Certain events have restrictions that disallows
their programming in all counters.

To overcome the limitation of available performance counters on the hardware, EMON splits events into
multiple event groups. Each group consists of events that can be collected simultaneously in a single run.
The tool schedules an independent data collection for each event group. Events are split in to multiple groups
under following two conditions:

• If all events specified in the command line cannot fit into available performance counters on the platform,
the tool automatically splits them in to multiple groups.

• User can control splitting of events in to groups while specifying event lists in the command line. To do so,
use a semicolon to demarcate group separation instead of using a comma. To understand this use case,
see Multi-group Core Events.

Event Modifiers
Individual core/uncore event behavior can be modified using modifiers. The [:modifier=val] option
enables you to specify individual event modifiers along with the respective values for a given platform.

Event modifiers are attached to event names delimited by a colon (:). They may or may not take values.
Where applicable, values are of the following format: <yes/no>, <0/1>, <dec/hex values>. In some
special cases explicitly mentioned, they could take other string values.

Basic Event Modifiers
The following table lists the basic event modifiers and provides a short description of each modifier.

Modifier Description

:USER |
:usr=<0/1>

Specifies that events are counted only when the processor is operating at privilege
levels 1, 2, or 3. This flag can be used in conjunction with the SUP flag.

:SUP|:os Specifies that events are counted only when the processor is operating at privilege
level 0. This flag can be used in conjunction with the USER flag.

:ALL Event data is collected regardless of the current privilege level.

:cp In Check Point. When this modifier is specified, the data result will not include counts
that occurred inside of an aborted Intel® Transactional Synchronization eXtensions
(Intel® TSX) region.

:tx In Transaction. When this modifier is specified, the data result will only include counts
that occurred inside an Intel® TSX region, regardless of whether that region was
aborted or committed.

:perf_metric
s

Enable hardware based top-down metrics. This modifier is ignored on all events except
for the fixed event TOPDOWN.SLOTS.

:ocr_msr_val
=<value>

Override the default offcore MSR programming with the user specified value for the
event.

Advanced Event Modifiers
The following table lists the event modifiers for more advanced users with an understanding of hardware
PMU.

Introduction 2

11

Modifier Description

:amt<0/1> Sets (1) or clears (0) the event’s Any Thread control bit. A value of 0
causes the event to be counted on a per logical core basis, when
applicable. A value of 1 causes the event to be counted on a per physical
core basis.

Please note that this feature is not supported on 10th generation Intel Core
Processors and 3rd generation Intel Xeon Scalable Processors or newer.

:c<cmask> Value that will be compared to the count of the specified event during a
single cycle per core. If the event count is greater than or equal to this
value, the counter is incremented by one; otherwise, the counter is not
incremented. The value must be in the range of 0x0 to 0xff.

:e<0/1> Enables (when set) edge detection of the selected microarchitectural condition. The
logical processor counts the number of deasserted to asserted transitions for any
condition that can be expressed by the other fields.

For example,

emon -l1 -t0.1 -C "MACHINE_CLEARS.COUNT,
MACHINE_CLEARS.COUNT:e1:c1"

:i<0/1> When the invert flag is set, inverts :c <cmask> comparison, so that both
greater than or equal to and less than comparisons can be made (<0>:
greater than equal to comparison, <1>: less than comparison).

Invert flag is ignored when :c<cmask> is programmed to 0. A value of 0
disables invert and 1 enables it.

:u<umask> <umask> indicates the value of the event’s unit mask to identify a specific
microarchitectural condition. The <umask> value must be in the range 0x0
to 0xff.

:p<0/1> When set, enables toggling of PMi pin for each event occurrence rather
than during counter overflow.

:request=<request name
as string>

Programming request type in the off-core response facility for a transaction
request to the uncore. The request type specification must be accompanied
by a response type.

:response=<response
name as string>

Programming response type in the off-core response facility for a
transaction request to the uncore. The response type specification must be
accompanied by a request type.

:t=<threshold_num> Threshold programming for uncore PMON_CTLx register. For events that
increment more than 1 per cycle, if the threshold value is greater than 1,
the data register will accumulate instances in which the event increment is
>= threshold.

:rx_match=<value>
:rx_mask=<value>
:tx_match=<value>
:tx_mask=<value>

Modifiers are all applicable to uncore Intel® QuickPath Interconnect (Intel®
QPI) for programming filter registers.

 2 EMON User Guide

12

Modifier Description

:state=<value> Applicable to uncore CHA to program state bit field of filter MSR_0.

:tid=<value> Applicable to uncore CBO to program tid bit field of filter MSR_0.

:filter0=<value> Applicable to CBO/CHA to program filter MSR_0.

:filter1=<value> Applicable to CBO/CHA to program filter MSR_1.

:nc=<value> Applicable to CBO/CHA to filter non-coherent requests by programming nc
bit field of filter MSR_1.

:opc=<value> Applicable to CBO/CHA to filter events based on their OPCODE by
programming opc bit field of filter MSR_1.

:nid=<value> Applicable to CBO/CHA to filter events by programming nid bit field of filter
MSR_1.

:msr=<msr_index> Read static and freerun event counts based on msr index provided in the
command line.

:scope=<thread/
Module/package>

Set scope for power events specified through :msr event modifier. The
scope needs to be one of the 3 strings from the modifier column.

:type=<static/
Freerun>

Set type of power events specified through :msr event modifier. The event
type needs to be one of 2 string from the modifier column.

:ccst_debug=
<hex_num>

Applicable to Power Control Unit (PCU) for programming debug MSR.

:umask_ext=<value> Enables setting extended umask bits in the counter control register when used with
applicable uncore events.

-preset-list
Presets are predefined event sets made available by the tool. This option lists all available presets.

-preset <name>
Collect data for the given preset. To obtain available presets, use emon -preset-list command. Presets
cannot be used along with -C option. When presets are used in combination with -V or -S options, EMON
generates spreadsheet-friendly output.

Introduction 2

13

-t <time in sec>
Time (seconds) that an event set is monitored for. Default value is 3 s. To run EMON for the duration of
application execution, use -t0 along with an application. EMON kills the application after it finishes executing
all given event sets for the specified duration when -t0 is not specified.

The following command executes until matrix application finishes:

emon -t0 -C "INST_RETIRED.ANY" matrix "4 4096"
The following command kills the application and terminates after 10 s:

emon -t10 -C "INST_RETIRED.ANY" matrix "4 4096"

-l <loops>
The number of times each event set is monitored. Default value is 1. Event sets are interleaved.

For example, if two events sets A and B are specified and time equals 4 and loops equal 2, event set A is
monitored for 4 seconds, and then event set B is monitored for 4 seconds, and then event set A is monitored
for 4 seconds, and, finally, event set B is monitored for 4 seconds.

 2 EMON User Guide

14

When launched with an application and the total monitoring time is less than application execution time,
EMON kills the application after executing all loops. In the following example, each loop runs for 3 s for a
total duration of 6 s, after which EMON would kill matrix application and exit:

emon -l2 -C "INST_RETIRED.ANY" matrix "16 8192"
When specified with an application and the total monitoring time is greater than application execution time,
EMON continues executing loops in the remaining time. In the following example, each loop runs for 3 s for a
total duration of 30 s while matrix application is expected to finish much sooner:

emon -l10 -C "INST_RETIRED.ANY" matrix "2 1024"
When specified with time 0 s and an application, EMON executes each loop for the duration of application
execution. For example, in the following command assuming matrix application takes about 6 s to complete,
each loop could run for ~6 s for a total duration of 18 s:

emon -t0 -l3 -C "INST_RETIRED.ANY" matrix "2 1024"

-L <time>
Range for random delay of the monitor interval, specified in seconds. A random delay of 0 s to <time> is
introduced between each sample. When used, each monitor interval is the value of the -t switch plus the
random delay between 0 and <time> milliseconds. Defaults to 0 m. This functionality will be automatically
disabled if -t switch is set to 0 s.

Introduction 2

15

-s <delay>
One time delay in seconds before monitoring is started.

-w
Limit loops. The number of loops is limited by the application's execution time. For example, if the total
monitoring time specified by the time and loop switches is greater than the actual application execution time,
the collection is stopped after the application exits.

NOTE In the example below, even with –l10, EMON exits after first loop.

-nb | -non-blocking
Start EMON collection in the background.

-p
Start EMON in paused state. If collection is never resumed, EMON exits after monitoring interval ends. In the
following example, EMON would exit after 3 s if the collection is never resumed using emon -resume.

-osm | -os-mode
Collect data for operating system processes only.

-um | -user-mode
Collect data for user-mode processes only.

-pause
When EMON is running in non-blocking mode or in the background, use emon -pause to pause a running
collection.

If EMON is running in the foreground, use the following steps to pause collection:

1. Open a Bash* shell, and then set up EMON run time environment by sourcing sep_vars.sh file in the
current Bash* shell.

 2 EMON User Guide

16

For example, if EMON is installed in /opt/intel/emon, source /opt/intel/emon/sep_vars.sh.
2. From the new shell, issue emon -pause to pause collection.

Collection ends if the total monitoring time elapses while paused.

-resume
When EMON is running in non-blocking mode or in the background, use emon -resume to resume a paused
collection.

If EMON is running in the foreground, use the following steps to resume collection:

1. Open a Bash* shell, and then set up EMON run time environment by sourcing sep_vars.sh file in the
current Bash* shell.

For example, if EMON is installed in /opt/intel/emon, source /opt/intel/emon/sep_vars.sh.
2. From the new shell, issue emon -resume to resume collection.

-stop
When EMON is running in non-blocking mode or in the background, use emon -stop to stop a running
collection.

If EMON is running in the foreground, use the following steps to stop collection:

1. Open a Bash* shell, and then set up EMON run time environment by sourcing sep_vars.sh file in the
current Bash* shell.

For example, if EMON is installed in /opt/intel/emon source /opt/intel/emon/sep_vars.sh.
2. From the new shell, issue emon -stop to stop collection.

Input/Output Options
This section lists all options related to tool input/output with examples to illustrate the behavior of certain
options. The default output mode is text-based command-line output. Additionally, EMON provides options to
generate text or spreadsheet output in to files.

-f <output file>
EMON output is written to <output file>. The -f switch creates a new output file.

-F <output file>
EMON output is appended to <output file>. If <output file> does not exist, it will be created.

-i <input file>
EMON command-line arguments are provided by <input file>. Comments are indicated with a hashtag
(#). All text following a hashtag in an input file is ignored.

Create an input text file with desired options. Input options can be separated by spaces or new lines. Event
list following –C can either use a new-line separator or a comma (,). Use a semicolon (;) to start a new
group.

Introduction 2

17

-q
Default text output to command line. Minimal information is output.

-V
EMON generates output in a spreadsheet-friendly format. Use -f or -F options to create spreadsheet-friendly
output files.

In this mode, data is hierarchically presented (packages->devices->Specific Core/Uncore units-
>event counts), making it easier to observe event counts on a particular core or uncore unit.

-A
Display normalized event counts across all groups and loops in quiet mode output format.

To calculate the final counts:

 2 EMON User Guide

18

1. Calculate normalized count for each event across groups (i.e., add counts of all occurrences of an event
across groups and divide the accumulated value by actual number of occurrences of that event in the
groups).

2. Multiply normalized count by total number of scheduled groups.
3. If there is more than one loop, repeat steps 1 and 2 for each loop and add corresponding event counts

from each loop.

-S
Compute-tool defined performance metrics using normalized event counts and display in a semicolon-
separated, spreadsheet-friendly format. The normalized event counts are calculated from raw event counts
described in -A option. Use -f or -F options to create spreadsheet-friendly output files.

emon -preset pgx -S

-Sr
Behaves similar to -S option but additionally stores and displays raw event counts in a spreadsheet-friendly
format.

emon -preset pgx -Sr ./raw_counts_file.csv -f ./metrics_file.csv

-X
Spreadsheet-friendly format. The results are output in tab-separated format. This only works for single group
collection.

-c
Print system time (date-time) for each time interval. It is only available in the command-line output.

-d
Results are printed in formatted decimal. Formatted decimal includes comma separators. Formatted decimal
is the default.

-n
Print wall clock, user, and system time for each time interval. It is only available in the command-line output.

Introduction 2

19

-u
Results are printed in unformatted decimal. Unformatted decimal does not include comma separators.

-x
Results are printed in hex with a leading '0x'.

Collect and Process EDP Metrics
Collect and process EDP (EMON Data Processing) event data to generate several performance metrics
that provide an overview of system performance. Since the EDP event/metric/script files are integrated into
the EMON package, no additional download is necessary for this purpose. When you use the options listed in
this section, EMON selects the appropriate event/metric files to collect and process data.

Option Action

-collect-edp Collect data for several events

-process-edp
NOTE The -process-edp option is no longer supported. Please use the -process-
pyedp option instead, which supports enhanced features and is much faster.

-process-pyedp Process the data collected using the -collect-edp option. The data is
automatically processed by a python script included in the package. Refer to
the -process-pyedp section for more information.

 2 EMON User Guide

20

Usage
Here are some typical usage scenarios to collect and process EDP metrics:

• Launch an EMON collection and an application or workload separately

Use the following steps if you cannot have EMON launch the application for you (for e.g. application is
always running or has various phases but the collection is for a shorter duration).

1.Collect and save the data to a file named emon.dat, run in the background if launching the workload in
the same shell.

emon -collect-edp > emon.dat &
Alternatively, specify the emon.dat file using the -f option.

emon -collect-edp -f emon.dat &
2.Launch workload along with arguments.

<app_path_name> <app_arguments>
3.Stop the emon collection explicitly since -collect-edp by default runs for a long time (several loops).

emon -stop
4.Process the data with the default configuration, which works in most of the cases. Copy the template

file to the current folder and use the default configuration.

cp <emon_install_dir>/config/edp/pyedp_config.txt .
5.Process data using the default edp configuration file (modify to customize if needed). An EMON data file

with the name emon.dat to be present in the current folder. This step generates several .csv/.xlsx
result files with processed metrics.

emon -process-pyedp ./pyedp_config.txt
• Launch an EMON collection along with an application or workload

Use the following steps for EMON to launch the application. The data collection happens until the
application terminates. You do not have to stop the collection explicitly.

1.Collect and save the data to a file named emon.dat. The application is launched by EMON. The -w
option makes the collection to last until the application terminates and the -f option is used to save the
data to emon.dat file

emon -collect-edp -f emon.dat -w <app_path_with arguments>
If the application prints anything to console, create a script that launches the application and redirects
it's output to a file. Launch the script via EMON.

emon -collect-edp -f emon.dat -w <app_script_path>
2.Process with the default configuration, which works in most of the cases. Copy the template file to the

current folder.

cp <emon_install_dir>/config/edp/pyedp_config.txt .
3.Process data using the default edp configuration file (modify to customize if needed). An EMON data file

with the name emon.dat to be present in the current folder. This step generates several .csv/.xlsx
result files with processed metrics.

emon -process-pyedp ./pyedp_config.txt

Introduction 2

21

-collect-edp [edp_file=<file_name>]
Collect performance data for a list of predefined events to generate EDP metrics. This option detects the
hardware platform and selects the corresponding EDP events file. This option covers core and various uncore
performance blocks that are required for overall system characterization. By default, EMON uses a time
interval of 100 ms when collecting event data.

emon -collect-edp
Various commonly useful scenarios of collect-edp option are listed below.

Usage
• Collect EDP event performance data. Save the data to a file (emon.dat) in the current folder:

emon -collect-edp > emon.dat
• Specify a custom EDP event file:

emon -collect-edp edp_file=<edp_event_file>
• Launch an application/workload. Collect EDP data until the application terminates:

emon -collect-edp -w <application_path_and_arguments>
emon -collect-edp edp_file=<edp_event_file> -w <application_path_and_arguments>

• If the application/workload prints messages to the console, add the application command line to a script/
batch file and redirect the output to a file (to avoid application output going into the EMON data file).
Launch the script with EMON and collect EDP data until the application terminates:

emon -collect-edp -w <application_script>
emon -collect-edp edp_file=<edp_event_file> -w <application_script>

-process-edp <edp_config_file>

NoticeThe -process-edp option is no longer supported. Please use -process-pyedp option instead,
which supports enhanced features and is much faster.

-process-pyedp <pyedp_config_file>
Process the EDP data collected with -collect-edp option and generate metric reports in .csv/.xlsx format.

This option requires a path to the PyEDP configuration file as an argument. The <emon-install-dir>/
config/edp folder contains a template for a PyEDP configuration file (pyedp_config.txt). Copy this file to
your local folder and change configuration information as needed. For most use cases, you may be able to
use pyedp_config.txt without any modifications.

Syntax

emon -process-pyedp <path_to_pyedp_config_file>

Prerequisites
• Install Python 3.7 or later, pip, and virtualenv.

• Linux: For example (Ubuntu):

sudo -E apt-get update;
sudo -E apt-get upgrade
sudo -E apt-get install python3

 2 EMON User Guide

22

sudo -E apt-get install python3-pip
sudo -E apt-get install python3-dev
sudo -E apt-get install virtualenv
sudo -E apt-get install dos2unix

• Windows: Install Python from https://www.python.org/downloads. Then, install the virtualenv using
the following command.

python -m pip install virtualenv
• Install the Visual C++ 14.0 or later build tools (install Microsoft Visual Studio Build Tools and choose

Desktop development with C++).
• Optionally, set up python virtual environment and install the python packages listed in the next section. In

this case, the python virtual environment needs to be activated before processing data with EMON -
process-pyedp option.

1. Virtual environment setup:
 python -m venv /path/to/env
 (e.g. python -m venv ./edp-venv)
2. Activate virtual environment:
 C:\path\to\venv\script\activate (Windows)
 source /path/to/venv/bin/activate (Linux)
3. Install
 python -m pip install .
 (installs the following python packages and their dependencies - numpy, pandas,
 defusedxml, pytz, tdigest, xlsxwriter, and jsonschema)

• If not using python virtual environment, install the following python packages by running the command
below for each package (replace package_name with the name of each package).

• accumulation-tree
• attrs
• blosc2
• colorama
• cython
• defusedxml
• dill
• jsonschema
• msgpack
• multiprocess
• natsort
• numexpr
• numpy
• packaging
• pandas
• py-cpuinfo
• pyrsistent
• python-dateutil
• pytz
• pyudorandom
• six
• tables
• tdigest
• tqdm
• tzdata
• xlsxwriter
• referencing
• jsonschema-specifications

Introduction 2

23

• rpds-py

python -m pip install <package_name>

Python based EDP Configuration Parameters
The pyedp_config.txt file contains several configuration parameters that define the data processing
options. Change settings to customize the processing of collected data.

Configuration Parameter Default Value Purpose Additional Details

PYTHON_PATH python3 Specify the python package
to process data.

EMON_DATA emon.dat Save EMON output to a file. Change the value to specify
a different file name (along
with a path to the file).

METRICS Commented
out

Specify a custom file to use
for metric calculation during
data processing.

Uncomment and change the
value to specify a custom
metric file. EMON by default
uses the relevant metric file
for the hardware platform.

OUTPUT summary.xlsx Save the generated
summary spreadsheet that
contains performance
metrics data.

CHART_FORMAT Commented
out

Specify a custom file that
lists the format for the
charts to be generated in
the spreadsheet.

Uncomment and change the
value to specify a custom chart
format file. EMON by default
uses the relevant chart format
file for the hardware platform.

BEGIN Commented
out

Specify the start of the
sample number to process.
Specify the start of the
sample numbers (for
example, BEGIN=1 and
END=100000) to be used to
process the data. Specify a
sample number or a
timestamp (MM/DD/YYYY
HH:MM:SS).

The BEGIN values can also
be the time stamps for the
starting wall clock time. For
example,
BEGIN="08/24/2012
17:53:20.885". The
BEGIN and END settings
can be used to process a
subset of EMON data
collected.

END Commented
out

Specify the end of the
sample numbers (for
example, BEGIN=1 and
END=100000) to be used to
process the data. Specify a
sample number or a
timestamp (MM/DD/YYYY
HH:MM:SS).

The END values can also be
the time stamps for the
ending wall clock time. For
example, END=
"08/24/2012 17:53:35".
The BEGIN and END
settings can be used to
process a subset of EMON
data collected.

 2 EMON User Guide

24

Configuration Parameter Default Value Purpose Additional Details

VIEW --socket-view
--core-view --
thread-view

--uncore-view

Generate a combination of
socket/core/thread views of
the metrics data. If the
socket/core/thread detailed
views are not required,
specify --no-detail-views,
which makes the data
processing faster.

--uncore-view (new option)
- generates uncore views
based on the available
uncore devices for which
events were collected.
Separate reports per uncore
device are generated.

Values for this option can be a
space-separated combination
of --socket-view, --
core-view, and --thread-
view. Add --no-detail-views to
only generate summary views.

FREQUENCY Commented
out

Specify TSC frequency in
MHz (e.g. 1600) to override
the measured value by
EMON or in case the data is
not available.

TPS Commented
out

Number of transactions per
second (TPS) for
throughput-mode reports.

PERCENTILE 95 Percentile value (integer) to
include in the output, this value
can be changed

Comment out if percentile is
not required in the output,
which makes the metric
processing faster.

PARALLELISM Commented out
(uses all the
threads available
to process the
data)

Number of threads to process
data in parallel. Typically it
should equal to the number of
logical CPUs in your processing
system.

Collection on Hybrid Platforms
Introduction to Hybrid Platforms

The Intel client architectures starting from 12th gen are based on a hybrid model with Performance Core (P-
Core) and Efficiency Core (E-Core). Depending on the application, hybrid CPU architectures can distribute
core usage more efficiently than non-hybrid architectures. P-Cores are designed to handle complex
workloads while E-Cores are better suited for multi-threaded throughput and power-limited scenarios. At
higher power envelopes, P-Cores can provide better performance than E-Cores. At lower power envelopes, E-
Cores are more desirable. Each core type has different specifications and system configurations.

For these reasons, the P-Cores are preferred for

• Priority tasks
• Limited threading applications

while E-Cores are better suited for:

• Power-limited scenarios
• Background applications that can meet their QOS (Quality of Service) requirements on that performance

Introduction 2

25

Supported Core Types
To collect samples using EMON on hybrid platforms, you must first identify the core types that are supported
on your system. To do this, run:

emon -pmu-types
For example, this output indicates that two core types supported by EMON tool on the system: bigcore and
smallcore
$ emon -pmu-types
PMU Types supported on this platform:
bigcore
smallcore
imc
cbo
hac_cbo
ncu
hac_ncu
ufibridge
power

NOTE EMON notates P-Core as bigcore and E-Core as smallcore.

Available Core Types
Once you have identified the core types supported by your system, find out the core types that are available.
Run:

emon -pmu-types available
In this example, there are two core types available on the system: bigcore and smallcore.

$ emon -pmu-types available
PMU Types available on this machine:
bigcore
smallcore
imc
cbo
hac_cbo
ncu
hac_ncu
ufibridge
power

Note that a core type supported by your system will not display in this output unless it is actually available
on your system.

Core Type Specifications on Hybrid Platforms
Each core type has different specifications (such as cache, number of PerfMon counters etc) and system
configurations on hybrid platforms.

To see the core type specification, run:

emon -v
This command displays the following types of information about supported core types:

 2 EMON User Guide

26

Number of Processors per Core Type

$ emon -v
......
total_number_of_processors 22
number_of_online_processors 22
number_of_processors (bigcore) 12
number_of_online_processors (bigcore) 12
number_of_processors (smallcore) 10
number_of_online_processors (smallcore) 10
......

Cache Info per Core Type

$ emon -v
......
Cache Info (bigcore):
L1 Data Cache 48KB, 12-way, 64-byte line size
 2 HW threads share this cache, No SW Init Required
L1 Code Cache 64KB, 16-way, 64-byte line size
 2 HW threads share this cache, No SW Init Required
L2 Unified Cache 2MB, 16-way, 64-byte lin size
 8 HW threads share this cache, No SW Init Required
64-byte Prefetching

Cache Info (smallcore):
L1 Data Cache 32KB, 8-way, 64-byte line size
 No SW Init Required
L1 Code Cache 64KB, 8-way, 64-byte line size
 No SW Init Required
L2 Unified Cache 2MB, 16-way, 64-byte line size
 8 HW threads share this cache, No SW Init Required
64-byte Prefetching
......

Specs and Configurations per Core Type

$ emon -v
......
Processor Features (bigcore):
number_of_selectors 8
number_of_var_counters 8
number_of_fixed_ctrs 4
Fixed Counter Events:
counter 0 INST_RETIRED.ANY
counter 1 CPU_CLK_UNHALTED.THREAD
counter 2 CPU_CLK_UNHALTED.REF_TSC
counter 3 TOPDOWN.SLOTS
number of devices 1
number_of_events 595
 (Thermal Throttling) (Enabled)
 (Hyper-Threading) (Enabled)
 (DCU IP Prefetching) (Enabled)
 (DCU Streamer Prefetching) (Enabled)
 (MLC AMP Prefetching) (Enabled)
 (MLC Spatial Prefetching) (Enabled)
 (MLC Streamer Prefetching) (Enabled)
 (Cores Per Package: 6)
 (Threads Per Package: 12)
 (Threads Per COre: 2)

Introduction 2

27

Processor Features (smallcore):
number_of_selectors 8
number_of_var_counters 8
number_of_fixed_ctrs 3
Fixed Counter Events:
counter 0 INST_RETIRED.ANY
counter 1 CPU_CLK_UNHALTED.CORE
counter 2 CPU_CLK_UNHALTED.REF_TSC
number of devices 1
number_of_events 422
 (Thermal Throttling) (Enabled)
 (DCU IP Prefetching) (Enabled)
 (DCU Streamer Prefetching) (Enabled)
 (DCU Next Page Prefetching) (Enabled)
 (MLC Streamer Prefetching) (Enabled)
 (Cores Per Package: 5)
 (Threads Per Package: 10)
 (Threads Per Core: 1)
......

The information is displayed per core type with the each PMU name, such as bigcore and smallcore.

Mapping Core Type to Processors

EMON collects samples for perfmon events only from applicable core types. To understand the collection
result, you must first understand the core type to which each processor is mapped.

$ emon -v
.......
OS Processor <-> Physical/Logical Mapping

OS Processor Phys.Package Core Logical Processor Core Type Module
 0 0 0 0 bigcore 2
 1 0 0 1 bigcore 2
 2 0 0 0 bigcore 3
 3 0 0 1 bigcore 3
 4 0 0 0 bigcore 4
 5 0 0 1 bigcore 4
 6 0 0 0 bigcore 5
 7 0 0 1 bigcore 5
 8 0 0 0 bigcore 6
 9 0 0 1 bigcore 6
 10 0 0 0 bigcore 7
 11 0 0 1 bigcore 7
 12 0 0 0 smallcore 0
 13 0 1 0 smallcore 0
 14 0 2 0 smallcore 0
 15 0 3 0 smallcore 0
 16 0 0 0 smallcore 1
 17 0 1 0 smallcore 1
 18 0 2 0 smallcore 1
 19 0 3 0 smallcore 1
 20 0 0 0 smallcore 8
 21 0 1 0 smallcore 8
.......

The output indicates that processors 0-11 are bigcore and processors 12-21 are smallcore.

 2 EMON User Guide

28

When the tb7 file is generated from the collection, the samples from CPU 0-11 are for bigcore and the
samples from CPU 12-21 are for smallcore.

The emon -v command also provides Module ID mapping to the processor if the module exists on the
system.

Event Specifications
Each core type has a different perfmon event list. These events can be defined as common events or core-
type specific events depends on the number of core types that have these events.
Common Events

There are events supported in multiple core types. Those events are considered as common events and are
collected on all applicable processors.

To check the list of supported events per core type for all core types, run this command:

emon -1 [pmu name]
For example,

$ emon -1 bigcore
INST_RETIRED.ANY
INST_RETIRED.PREC_DIST
BR_INST_RETIRED.ALL_BRANCHES
LONGEST_LAT_CACHE.MISS
TLB_FLUSH.DTLB_THREAD
L2_RQSTS.HIT
.......
$ emon -1 smallcore
INST_RETIRED.ANY
MACHINE_CLEARS.PAGE_FAULT
SERIALIZATION.NON_C01_MS_SCB
BR_INST_RETIRED.ALL_BRANCHES
LONGEST_LAT_CACHE.MISS
ICACHE.MISSES
ICACHE.ACCESSES
.......

Events that are found in events lists for both core types are common events such as
INST_RETIRED.ANY,BR_INST_RETIRED.ALL_BRANCHES, or LONGEST_LAT_CATCHE.MISS.

Core-Type specific events

If the events are applicable only to certain core types, those events are considered as core-type specific
events and are collected only on applicable core type processors.

To check the supported event list per core type for all core types, run this command:

emon -1 [pmu name]
For example,

$ emon -1 bigcore
INST_RETIRED.ANY
INST_RETIRED.PREC_DIST
BR_INST_RETIRED.ALL_BRANCHES

Introduction 2

29

LONGEST_LAT_CACHE.MISS
TLB_FLUSH.DTLB_THREADL2_RQSTS.HIT
.......
$ emon -1 smallcore
INST_RETIRED.ANY
MACHINE_CLEARS.PAGE_FAULTSERIALIZATION.NON_C01_MS_SCB
BR_INST_RETIRED.ALL_BRANCHES
LONGEST_LAT_CACHE.MISS
ICACHE.MISSESICACHE.ACCESSES
.......

Those events which are found only in the event list for a single core type are treated as core-type specific
events.

For example, the following events are exclusively bigcore events:

• INST_RETIRED.PREC_DIST
• TLB_FLUSH.DTLB_THREAD
• L2_RQSTS.HIT

These events will be collected on bigcore processors only.

The following events are smallcore events:

• MACHINE_CLEARS_PAGE_FAULT
• SERIALIZATION.NON_C01_MS_SCB
• ICACHE.MISSES
• ICACHE.ACCESSES

These events are collected on smallcore processors only.

Event Collection
This section describes how you collect common and core-type events.

Collect Common Events

To specify common events from the event list and collect these events using EMON, run:

$ emon -C <common events>

for example>
$ emon -C INST_RETIRED.ANY,LONGEST_LAT_CACHE.MISS

Check if the events are collected from both core type processors:

$ emon -C INST_RETIRED.ANY,LONGEST_LAT_CACHE.MISS
Version Info: private V11.40 Beta (Mar 27 2023 at 08:42:46) Intel(R) microarchitecture code
named Alderlake-S M:151 S:0

INST_RETIRED.ANY 4,839,412,204 178,561,956 733,369 36,966 17,053,653
1,260,235 13,263 1,233,882 7,488,000 407,408 804,195 881,086 60,998
1,381,005 60,710 633,513 26,804 232,446 997,268 13,263 13,263 13,263 13,263 13,263
13,263
LONGEST_LAT_CACHE.MISS 4,839,412,204 272,605 21,938 738 118,055 17,451 82 359,944
5,103 46,944 41,325 74,752 5,061 190,129 2,177 42,230 358 11,468 40,597 30
26 155 69 38 23
==========

Because those events are common events across both bigcore and smallcore, counts are collected and
displayed for all processors.

Core-Type Specific events Collection

 2 EMON User Guide

30

• Bigcore events collection

To specify bigcore-specific events from the event list and collect these events using EMON, run:

$ emon -C <bigcore events>

for example>
$ emon -C INST_RETIRED.PREC_DIST,TLB_FLUSH.DTLB_THREAD

Check if the events are collected only from bigcore processors:

$ emon -C INST_RETIRED.PREC_DIST,TLB_FLUSH.DTLB_THREAD
Version Info: private V11.40 Beta (Mar 27 2023 at 08:42:46) Intel(R) microarchitecture code
named Alderlake-S M:151 S:0

TOPDOWN.SLOTS 4,839,156,320 7,358,178 246,276,822 11,110,044 11,907,492
200,196 489,414 180,475,500 3,660,096 3,743,454 11,856,576 20,444,988
830,10025,535,040 1,218,372 24,196,842 306,114 N/A N/A N/A N/A
N/A N/A N/A N/A
CORE_POWER.LICENSE_1 4,839,156,320 12,528,378 12,528,270 314,594 314,418 0
0 29,960,523 29,954,317 623,041 622,579 2,039,636 2,037,918 54,270
54,286 27,673 27,689 N/A N/A N/A N/A N/A N/A N/A N/A
==========

According to the processor mapping from emon -v output, processor 0 ~ 11 are bigcore and 12 ~ 21 are
smallcore.

Only bigcore processors 0 ~ 11 display samples and not applicable core type for example smallcore
processors 12 ~ 21 here display N/A

• Smallcore events collection

To specify smallcore-specific events from the event list and collect these events using EMON, run:

$ emon -C <smallcore events>

for example>
$ emon -C ICACHE.MISSES,ICACHE.ACCESSES

Check if the events are collected only from smallcore processors:

$ emon -C ICACHE.MISSES,ICACHE.ACCESSES
Version Info: private V11.40 Beta (Mar 27 2023 at 08:42:46) Intel(R) microarchitecture code
named Alderlake-S M:151 S:0

ICACHE.MISSES 4,839,040,570 N/A N/A N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A N/A N/A N/A 69,524 357 346 332
350 330 326 332
ICACHE.ACCESSES 4,839,040,570 N/A N/A N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A N/A N/A N/A 413,435 3,912 3,957 3,926
4,006 3,944 3,827 3,937
==========

According to the processor mapping from emon -v output, processor 0 ~ 11 are bigcore and processor 12 ~
21 are smallcore.

Only smallcore processors 12 ~ 21 display samples and not applicable core type for example bigcore
processors 0 ~ 11 here display N/A.
Collect Combination of Common and Core-Type Specific Events

Introduction 2

31

To collect a combination of common events, bigcore-specific events, and smallcore-specific events, run:

$ emon -C <common events, bigcore events, smallcore events>

for example>
$ emon -C
INST_RETIRED.ANY,LONGEST_LAT_CACHE.MISS,INST_RETIRED.PREC_DIST,TLB_FLUSH.DTLB_THREAD,ICACHE.MISSE
S,ICACHE.ACCESSES

Check if all events are collected from appropriate processors like below:

$ emon -C
INST_RETIRED.ANY,LONGEST_LAT_CACHE.MISS,INST_RETIRED.PREC_DIST,TLB_FLUSH.DTLB_THREAD,ICACHE.MISSE
S,ICACHE.ACCESSES
Version Info: private V11.40 Beta (Mar 27 2023 at 08:42:46) Intel(R) microarchitecture code
named Alderlake-S M:151 S:0

INST_RETIRED.ANY 4,839,314,982 506,626 275,038 198,690 432,955 636,401 149,327
2,265,913 38,021 617,770 406,584 1,319,512 45,189 680,545 76,944 141,486,585
37,087 28,360 13,344 84,501 13,263 13,263 13,263 13,263 13,263
LONGEST_LAT_CACHE.MISS 4,839,314,982 44,753 30,810 22,846 89,126 72,312 14,828 464,404
197 88,038 36,156 134,640 4,688 36,277 2,146 218,233 178 365 59 3,480
32 185 59 29 34
INST_RETIRED.PREC_DIST 4,839,314,982 12,851,208 5,656,428 6,224,634
12,296,808 21,284,970 3,643,590 214,964,742 473,124 16,612,392
8,115,954 37,406,490 914,070 19,349,238 1,512,282 271,917,864 412,854
N/A N/A N/A N/A N/A N/A N/A N/A
TLB_FLUSH.DTLB_THREAD 4,839,314,982 509,593 509,319 669,182 668,986 217,925 217,821
24,818,545 24,812,293 0 0 1,819,240 1,817,806 186,295 186,203
31,065,615 31,065,631 N/A N/A N/A N/A N/A N/A N/A N/A
ICACHE.MISSES 4,839,314,982 N/A N/A N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A N/A N/A N/A 1,216 339 13,600 322
352 340 338 332
ICACHE.ACCESSES 4,839,314,982 N/A N/A N/A N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A N/A N/A N/A 11,714 3,989 62,548 3,974
4,331 3,974 3,981 4,005
==========

Common events display samples to all relevent core type processors, and core type specific events display
samples only on applicable core type processors and display N/A on not-applicable core type processors.

For example, LONGEST_LAT_CACHE.MISS is common event which exists in both bigcore and smallcore,
therefore, the samples are displayed on all processors.

And INST_RETIRED.PREC_DIST is bigcore specific event, bigcore processors are 0 ~ 11, the samples are
displayed only on bigcore processors 0 ~ 11, and N/A was displayed on smallcore processors 12 ~ 21 which
are not-applicable processors to this event.

ICACHE.MISSES is smallcore event, therefore the samples are displayed only on smallcore processors 12 ~
21 while N/A was displayed on bigcore processors 0 ~ 11.
Collect Combination of Common and Core-Type Specific Events in Spreadsheet Topology Format

The output for same set of events collection in Spreadsheet Topology format can be collected using "-V"
option

$ emon -C
INST_RETIRED.ANY,LONGEST_LAT_CACHE.MISS,INST_RETIRED.PREC_DIST,TLB_FLUSH.DTLB_THREAD,ICACHE.MISSE
S,ICACHE.ACCESSES -V
SYSTEM INFORMATION FOLLOWS
emon db : meteorlake
num_packages : 1

 2 EMON User Guide

32

num_modules_per_package : 9
num_cores_per_package : 16
num_logic_processor_per_core : 2
device bigcore : num_events 4, num_unit 1
device smallcore : num_events 4, num_unit 1
tsc_freq : 2188.80 MHz
ufs_freq : N/A MHz
END OF SYSTEM INFORMATION
GROUPING INFORMATION FOLLOWS
group 0 :
INST_RETIRED.ANY,LONGEST_LAT_CACHE.MISS,INST_RETIRED.PREC_DIST,TLB_FLUSH.DTLB_THREAD,ICACHE.MISSE
S,ICACHE.ACCESSES
END OF GROUPING INFORMATIONS
START OF COLLECTION
timestamp;;package0;;
;;;;;;;;;;
;;bigcore;;smallcore;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;
epoch;timestamp;CPU0;;;;CPU1;;;;CPU2;;;;CPU3;;;;CPU4;;;;CPU5;;;;CPU6;;;;CPU7;;;;CPU8;;;;CPU9;;;;C
PU10;;;;CPU11;;;;CPU12;;;;CPU13;;;;CPU14;;;;CPU15;;;;CPU16;;;;CPU17;;;;CPU18;;;;CPU19;;;;CPU20;;;
;CPU21;;;;
;;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIR
ED.ANY;LONGEST_LAT_CACHE.MISS;INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIRED.ANY;LONGE
ST_LAT_CACHE.MISS;INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIRED.ANY;LONGEST_LAT_CACHE
.MISS;INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;INST_R
ETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;INST_RETIRED.PREC_
DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;INST_RETIRED.PREC_DIST;TLB_FLU
SH.DTLB_THREAD;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THRE
AD;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETI
RED.ANY;LONGEST_LAT_CACHE.MISS;INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIRED.ANY;LONG
EST_LAT_CACHE.MISS;1INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIRED.ANY;LONGEST_LAT_CAC
HE.MISS;INST_RETIRED.PREC_DIST;TLB_FLUSH.DTLB_THREAD;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;ICAC
HE.MISSES;ICACHE.ACCESSES;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;ICACHE.MISSES;ICACHE.ACCESSES;I
NST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;ICACHE.MISSES;ICACHE.ACCESSES;INST_RETIRED.ANY;LONGEST_LAT
_CACHE.MISS;ICACHE.MISSES;ICACHE.ACCESSES;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;ICACHE.MISSES;I
CACHE.ACCESSES;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;ICACHE.MISSES;ICACHE.ACCESSES;INST_RETIRED
.ANY;LONGEST_LAT_CACHE.MISS;ICACHE.MISSES;ICACHE.ACCESSES;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS
;ICACHE.MISSES;ICACHE.ACCESSES;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;ICACHE.MISSES;ICACHE.ACCES
SES;INST_RETIRED.ANY;LONGEST_LAT_CACHE.MISS;ICACHE.MISSES;ICACHE.ACCESSES;
1684966389500;6569377555;8979741;470077;109978866;2694901;6414492;56266;33811194;2694901;483284;1
08215;22047810;69963;15393;543;254430;91892;147192;36376;6143424;0;15391;439;292578;0;49059;7496;
1436868;12617;19924;608;315744;12617;32739;1046;660948;10492;37611;6632;1224936;10492;167034;6715
;4024518;26116;170488;39450;5492808;26116;15612;755;6569;29837;1059438;400228;1346644;2821052;323
31;6413;29063;72590;15288;624;6081;27984;15287;880;6620;28762;155176;16128;106452;319045;2625821;
27885;108750;1092889;15319;959;8323;29185;25243;2963;10368;44538;93983;51623;158700;282613;

Spreadsheet Topology format additionally provides system information as well as grouping information.

The header indicates the order of sample data in the output.

Resource Director Technology (RDT) Collection

Introduction
Intel® Resource Director Technology (Intel® RDT) is a set of monitoring capabilities that you can use to
measure shared resource metrics such as L3 cache occupancy in each logical processor.

Introduction 2

33

The Resource Monitoring ID (RMID) is used to monitor the shared resources. The RMID provides a layer of
abstraction between the software thread and logical processors. Each software thread is assigned to a unique
RMID. The RMID can be assigned to a single logical processor or multiple logical processors (through
IA32_PQR_ASSOC_MSR) for monitoring.

Operating Technologies
The operations of Intel® RDT are governed by two technologies:

Two feature within the monitoring feature set provided are like below:

• Cache Monitoring Technology (CMT): This allows an operating system, hypervisor, or similar system
management agent to determine the usage of cache by applications running on the platform. The
associated event in EMON is UNC_CMT_L3_CACHE_OCCUPANCY.

• Memory Bandwidth Monitoring (MBM): This is used to monitor the bandwidth from one level of the
cache hierarchy to the next. The associated event in EMON is UNC_MBM_TOTAL_EXTERNAL_BW,
UNC_MBM_LOCAL_EXTERNAL_BW.

You can find more information about these technologies in Chapter 17.16 of the Intel® Software Developer
Manual.

Additionally, EMON provides the RMID association and RDT allocation through these events:

• UNC_RDT_PQR_ASSOC - bit 0:9 represents RMID and bit 32:63 represents CLOS
• UNC_CAT_L2_MASK - represents L2 cache allocation capacity associated with the COS on each logical

processors.
• UNC_CAT_L3_MASK - represents L3 cache allocation capacity associated with the COS on each logical

processors.

For more information, see these chapters in the Intel® Software Developer Manual:

• Monitoring Resource (RMID) Association - Chapter 17.16.6
• Cache Allocation Technology Architecture - Chapter 17.17.1

RDT Support Information
To see support information for Intel RDT on your system, run:

emon -v
For example,

$ emon -v
.......
RDT HW Support:
 L3 Cache Occupancy : Yes
 Total Memory Bandwidth : Yes
 Local Memory Bandwidth : Yes
 L3 Cache Allocation : Yes
 L2 Cache Allocation : No
 Highest Available RMID : 175
 Sample Multiplier : 90112
 Number of MBA CLOS : 15
......

Supported RDT Events
SEP determines the support for each RDT event. To see a list of these events, run:

emon -1 rdt

 2 EMON User Guide

34

For example,

$ emon -1 rdt
UNC_CMT_L3_CACHE_OCCUPANCY
UNC_MBM_TOTAL_EXTERNAL_BW
UNC_MBM_LOCAL_EXTERNAL_BW
UNC_RDT_PQR_ASSOC
UNC_CAT_L2_MASK
UNC_CAT_L3_MASK

Collect RDT Events
To collect RDT events, run:

emon -C <RDT Event List>
For example,

$ emon -C <RDT Event List>

$ emon -C
UNC_CMT_L3_CACHE_OCCUPANCY,UNC_MBM_TOTAL_EXTERNAL_BW,UNC_MBM_LOCAL_EXTERNAL_BW,UNC_RDT_PQR_ASSOC,
UNC_CAT_L2_MASK,UNC_CAT_L3_MASK

RDT Standalone Mode
To profile cache usage by hardware core, include the -rdt-auto-rmid option. The EMON tool assigns the
core ID for each core as the RMID.

$ emon -C <RDT Event List> -rdt-auto-rmid

Logging Options

--dump-driver-log [file_name]
Dump the contents of the sampling driver’s internal log to the given file in binary format. Default file name is
driver_log.dump if none specified.

emon --dump-driver-log

--decode-driver-log [input_file]
Decode the log buffer dump to text format. Default file to decode would be driver_log.dump if none is
specified.

emon --decode-driver-log

--extract-driver-log <input core dump> [output file]
Identifies and extracts the most recent instance of the driver log from the specified uncompressed core dump
into the output file. Default output file is driver_log.dump if none specified.

emon --extract-driver-log ./core.dump

Introduction 2

35

Other Options

-experimental
Experimental events are those events that have not been validated in hardware. When used with emon -1,
all available experimental events are displayed along with regular events. To list experimental along with
regular events, use the following command:

emon -1 -experimental
To run collection on experimental events, use:

emon -C "<EVENT1,EVENT2>" -experimental

--per-cpu-tsc
Display timestamp counter value on each core.

--per-cpu-absolute-tsc
This option prints absolute timestamp value on each core. This feature helps to correlate with other types of
data collected on the system.
$emon --per-cpu-absolute-tsc -C CPU_CLK_UNHALTED.REF_TSC
Version Info: private V11.41 Beta (Aug 8 2023 at 11:08:01) Intel(R) Xeon(R) Processor code
named Sapphirera

TSC_ABSOLUTE_VALUE 1,113,637,615,387,269 1,113,637,615,387,269
1,113,637,615,386,743 1,113,637,617,615,383,395
1,113,637,615,381,571 1,113,637,615,379,725 1,113,637,615,377,535
1,113,637,615,377,378,027 1,113,637,615,386,911
1,113,637,615,385,043 1,113,637,615,389,269 1,113,637,615,381,809
1,11,113,637,615,377,941 1,113,637,615,376,899
1,113,637,615,388,045 1,113,637,615,385,497 1,113,637,617,615,382,687
1,113,637,615,381,061 1,113,637,615,380,139
1,113,637,615,378,549 1,113,637,615,376,527,961 1,113,637,615,386,641
1,113,637,615,390,025 1,113,637,615,246,661
1,113,637,615,382,265 1,11,113,637,615,424,897 1,113,637,615,437,073
1,113,637,615,434,605 1,113,637,615,433,121
1,113,637,617,615,430,705 1,113,637,615,428,775 1,113,637,615,427,143
1,113,637,615,425,615 1,113,637,615,437,225,893
1,113,637,615,433,933 1,113,637,615,431,803 1,113,637,615,429,759
1,113,637,615,427,521 1,11,113,637,615,424,741
1,113,637,615,436,951 1,113,637,615,434,829 1,113,637,615,437,451
1,113,637,617,615,430,451 1,113,637,615,428,605
1,113,637,615,427,065 1,113,637,615,425,609 1,113,637,615,442,09
CPU_CLK_UNHALTED.REF_TSC 1,113,637,615,387,269 6,794,736 1,250,496
3,784,508 910,07,844
467,896 407,056 444,860 202,800 2,172,508 259,428 235,508 1,480,180 203,268
207,064 557,95,832 202,956
489,320 606,528 199,264 193,804 445,276 197,288 1,516,476 1,816,724

 2 EMON User Guide

36

21,674,484 ,262,040 1,156,272
200,824 200,044 198,588 199,472 476,528 193,648 464,308 202,696 254,644 197,94,376 187,460
197,392 193,648 191,256 189,124
203,840 200,096 201,708 202,020 197,756
==========
3.003s real
cpu 0: 0.000s user 0.000s system 3.000s idle
cpu 1: 0.000s user 0.000s system 3.010s idle
cpu 2: 0.000s user 0.000s system 3.000s idle
cpu 3: 0.000s user 0.000s system 3.010s idle

-verbose
Display EMON output in verbose mode.

Introduction 2

37

Examples 3
This chapter describes the most common EMON use cases.

Basic
This is the most basic EMON command to run a collection.

If not otherwise specified, EMON will monitor once for an interval of 3 s. To change either the interval length
or the number of intervals (or loops), use the -t or -l options, respectively.

The basic command creates the data output in quiet mode, which means a minimal amount of output. To
print out the headers for importing into a spreadsheet, specify the spreadsheet mode with the -X flag.

Multi-group Core Events
Events can be broken in to multiple groups forcibly through command line or automatically scheduled in to
multiple groups by the tool due to hardware counter restrictions. EMON command launches multiple groups
forcibly as shown below (note the semicolon (;) instead of comma (,)):

Assuming a CPU core has four general purpose (GP) counters, the tool can program only four GP events in a
single iteration of event collection. The remaining events will be moved into new groups. EMON performs
multiple runs for each group. In the following example, the GP event UOPS_ISSUED.ANY is scheduled in a
second run.

 3 EMON User Guide

38

Multi-group Core and Uncore Events
The number of events programmed in each group for a device depends on available counters on that device.
For example, group 0 could have 4 GP events on a core, 2 GP events per CBO unit, 1 GP event per PCU unit,
and so on. In the following example, the first group has 4 GP events on a core and 2 GP events on CBO. The
remaining core and CBO events are scheduled in the next group.

Examples 3

39

Help and Troubleshoot 4
This chapter provides helpful tips and troubleshooting guidance.

Getting Started With EMON
To get started with EMON:

1. Identify hardware events of interest using emon -1/-? options.

NOTE For details on event descriptions, see Intel® Software Developer’s Manual (Intel® SDM)
documentation. Events mentioned in the examples in this guide may not work on all platforms since
each platform has its own event lists.

2. Identify processor and memory configuration using emon -v.
3. Refer to the applicable sections in this document or use emon -h to understand the available tool

options and example usages.

Discarded Events
The following situations could result in discarded events:

• An event could be discarded if it is not available on the platform. If an event is discarded due to this
reason, the event will not be displayed by emon -1.

• An event could be discarded if the system does not come with the device types that support the event.
For example, if a system does not come with FPGA units, FPGA events would be discarded.

• If it is a private event and needs special access privileges. In such a case, the event will not be displayed
by emon -1. By using an non-disclosure agreement (NDA) release package, this problem can be resolved.

Experimental Events
Some events are available as experimental events if they are not verified in the hardware. These events are
not displayed by emon -1. To get event list along with available experimental events use, emon -1 -
experimental or emon -1 -all. To collect data on experimental events, use emon -C -experimental.

Deprecated Events
Certain events are marked deprecated by the tool. EMON will stop supporting deprecated events in future
product releases. The tool provides replacement suggestions in place of deprecated events. To obtain a list of
deprecated events, use emon -? and look for "deprecated" string.

 4 EMON User Guide

40

	Contents
	Notices and Disclaimers
	Revision History
	About This Document
	Intended Audience
	Related Information

	Introduction
	Informative Options
	–h [-list-event-modifiers]
	–pmu-types [available]
	-1 [pmu-type] [-experimental | -all]
	-? | -H [pmu-type] [-experimental | -all]
	-! <event name>
	--dry-run
	-M
	-v [-display-features]

	Event Collection Options
	-C <event1,event2,...>
	-preset-list
	-preset <name>
	-t <time in sec>
	-l <loops>
	-L <time>
	-s <delay>
	-w
	-nb | -non-blocking
	-p
	-osm | -os-mode
	-um | -user-mode
	-pause
	-resume
	-stop

	Input/Output Options
	-f <output file>
	-F <output file>
	-i <input file>
	-q
	-V
	-A
	-S
	-Sr
	-X
	-c
	-d
	-n
	-u
	-x

	Collect and Process EDP Metrics
	-collect-edp [edp_file=<file_name>]
	-process-edp <edp_config_file>
	-process-pyedp <pyedp_config_file>

	Collection on Hybrid Platforms
	Resource Director Technology (RDT) Collection
	Logging Options
	--dump-driver-log [file_name]
	--decode-driver-log [input_file]
	--extract-driver-log <input core dump> [output file]

	Other Options
	-experimental
	--per-cpu-tsc
	--per-cpu-absolute-tsc
	-verbose

	Examples
	Basic
	Multi-group Core Events
	Multi-group Core and Uncore Events

	Help and Troubleshoot
	Getting Started With EMON
	Discarded Events
	Experimental Events
	Deprecated Events

