
Tutorial: Analyze Common Performance
Bottlenecks using Intel VTune Profiler
in a C++ Sample Application - Linux*
OS

Contents

Chapter 1: Tutorial: Analyze Common Performance Bottlenecks
with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS)

Use Case and Prerequisites ...3
Run Performance Snapshot Analysis...4
Interpret Performance Snapshot Result Data ...7
Run and Interpret Hotspots Analysis ..9
Analyze Memory Access ... 15
Resolve Memory Access Issue ... 19
Analyze Performance After Optimization ... 21
Analyze Vectorization Efficiency... 23
Enable Platform-Appropriate Vectorization .. 26
Analyze Microarchitecture Usage ... 29
Compare with Previous Result ... 34
Summary ... 36
Notices and Disclaimers.. 37

Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application - Linux* OS

2

Tutorial: Analyze Common
Performance Bottlenecks with
Intel® VTune™ Profiler - C++
Sample Code (Linux* OS) 1
Discover how to use Intel® VTune™ Profiler for Linux* OS to identify algorithm or hardware utilization issues
that can cause your applications to spend large amounts of time performing tasks and underutilize available
hardware resources.

About This
Tutorial

This tutorial guides you through the steps required to analyze and optimize a sample
matrix application that performs multiplication of large matrices. It introduces you to
the main concepts of VTune Profiler and the iterative process of analyzing and
optimizing an application.

The tutorial was last updated for the Intel VTune Profiler 2021 product release.

Estimated
Duration

20-30 minutes.

Learning
Objectives

After you complete this tutorial, you should be able to:

• Open the pre-configured matrix sample project in VTune Profiler.
• Run the Performance Snapshot analysis to locate the main problem areas in the

matrix sample application and identify next steps for optimization.
• Run the Hotspots and Memory Access analyses to better understand the main

bottleneck and determine next steps.
• Navigate the source code from inside VTune Profiler to locate the lines of code with

memory access bottlenecks.
• Use the HPC Performance Characterization analysis to identify microarchitecture

underutilization issues related to lack of proper vectorization.
• Compare results before and after optimization.

More Resources • Other Intel VTune Profiler tutorials (HTML, PDF)
• Intel VTune Profiler Cookbook
• Additional Intel VTune Profiler documentation
• Intel Software Product Support Page

Start Here

Use Case and Prerequisites
You can use Intel® VTune™ Profiler to identify and analyze performance bottlenecks in your serial or parallel
application by performing a series of steps in a workflow. This tutorial guides you through these workflow
steps while using a sample matrix multiplication application named matrix.

Prerequisites
This tutorial requires you to install several Intel software tools. You can download and use these tools for
free.

• Intel® VTune™ Profiler 2021 or later

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

3

https://software.intel.com/content/www/us/en/develop/articles/vtune-tutorials.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/introduction/get-help.html
https://software.intel.com/content/www/us/en/develop/tools/support.html

• Intel® C++ Compiler Classic

Follow these links to download the components:

• Intel® C++ Compiler Classic
• Standalone Intel® VTune™ Profiler

NOTE

• This tutorial uses the Intel® C++ Compiler Classic to establish a common baseline for analysis and
performance gain tracking. Your results and workflow may be different depending on the compiler
you use.

Workflow
Follow these steps to identify and fix the most prominent performance issues in the sample matrix
application.

1. Establish the application performance baseline

a. Run Performance Snapshot analysis
b. Interpret the Performance Snapshot analysis result

2. Identify main bottleneck in the matrix application

a. Run Hotspots analysis and interpret data
b. Run Memory Access analysis and interpret data

3. Eliminate the memory access bottleneck

a. Fix memory issue and recompile application
4. Assess the performance improvement

a. Run Performance Snapshot analysis and interpret result
5. Address the vectorization problem

a. Recompile the application and run the HPC Performance Characterization analysis
b. Recompile with different compiler options

6. Identify next steps

a. Run and interpret the Microarchitecture Exploration analysis
7. Visualize the performance gain

a. Compare results before and after optimization

Run Performance Snapshot Analysis
In this part of the tutorial, you open the Matrix sample
project and run the Performance Snapshot analysis of
Intel® VTune™ Profiler to identify the main problem
areas.

Performance Snapshot Analysis
For most software developers, the goal of performance optimization is to get the highest possible
performance gain with the least possible investment of time and effort.

The Performance Snapshot analysis type helps you achieve this goal by highlighting the main problem areas
in your application and providing metrics to estimate their severity. This enables you to focus on the most
acute problems, solving which can yield the highest performance gain. This analysis type also offers other
analysis types for deeper investigation into each performance problem.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

4

https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#compilerclassic
https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#vtune

Open Matrix Sample Project
The first step towards analyzing an application in VTune Profiler is to create a project. A project is a container
that holds analysis target configuration and data collection results.

VTune Profiler provides a sample matrix project pre-configured to work with the pre-built matrix sample
application.

Begin by opening the pre-configured matrix project:

1. Launch the VTune Profiler GUI:

a. Run the following script to set the appropriate environment variables:

• For bash users:

source <install-dir>/env/vars.sh
• For tch/tsch users:

source <install-dir>/env/vars.csh
For VTune Profiler, the default <install-dir> is:

/opt/intel/oneapi/vtune/<version>
b. Launch the vtune-gui binary located in the <install-dir>/bin64/ directory.

NOTE
You may need to run VTune Profiler as root to use certain analysis types.

2. The VTune Profiler welcome screen is displayed after the product launches.

The sample (matrix) project should already be open in the Project Navigator. If so, no further
action is required.

If the sample (matrix) project is not available from the Project Navigator, open the project
manually:

a. Click the

Menu button and select Open > Project... to open an existing project.
b. Browse to the matrix project on your local machine and click Open.

By default, it is located in this directory:

$HOME/intel/vtune/projects/sample (matrix)
VTune Profiler opens the matrix project in the Project Navigator.

NOTE

• This tutorial uses the pre-built matrix sample application. When you analyze your own application,
make sure to build it in the Release mode with full optimizations and establish a performance
baseline before running a full analysis. For more information on preparing a Linux* target, see the
Linux Targets section of the User Guide.

• To make sure that the performance data is accurate and repeatable, it is recommended to run the
analysis while the system is running a minimal amount of other software.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

5

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets.html

Run Performance Snapshot Analysis

To start the Performance Snapshot analysis for the matrix sample application:

1. Click the Configure Analysis button to begin a new analysis. The default analysis is pre-configured for
the Performance Snapshot analysis to profile the matrix application on the local system.

2. Click the Start button to run the analysis.

VTune Profiler the matrix application that calculates multiplication of large matrices before exiting. VTune
Profiler finalizes the collected results and opens the Summary viewpoint of the Performance Snapshot
analysis.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

6

NOTE
This tutorial explains how to run an analysis from the VTune Profiler graphical user interface (GUI).
You can also use the VTune Profiler command-line interface (vtune command) to run an analysis. A
simple way to get the appropriate command syntax is by clicking the Command Line button at the
bottom of the window. For more details, check the Command Line Interface chapter of the VTune
Profiler User Guide.

Next step: Interpret Performance Snapshot Analysis.

Interpret Performance Snapshot Result Data
At this point in the Tutorial, interpret the Performance
Snapshot analysis result to identify main problem
areas in the application.

When the sample application exits, Intel® VTune™ Profiler finalizes the result and opens the Summary tab of
the Performance Snapshot analysis result.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

7

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/command-line-interface.html

Understand the Performance Snapshot Summary Tab

The Performance Snapshot result Summary tab shows the following:

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

8

• Analysis tree: Performance Snapshot offers other analysis types that may be useful for a deeper
investigation into the performance issues found in your application. Analysis types that are related to
performance problems detected in your application are highlighted in red.

You can estimate the severity of each problem by studying the metric values.

Hover over an analysis type icon to understand how an analysis type is related to your performance
problem.

• Metrics Panes: these panes show the high-level metrics that contribute most to estimating application
performance. Problematic areas are highlighted in red. You can expand each pane to get more information
on each problem area and to see the lower-level metrics that contributed to the verdict.

Hover over each metric to see the metric description.
• Collection and Platform Info: this pane shows the information about the system on which this

particular result was collected. It is useful when opening results collected on a different hardware
platform.

Identify Problem Areas
In this case, observe these main indicators that highlight the performance bottlenecks:

• The Elapsed Time for this application is very high.
• The Memory Bound metric is high, indicating a memory access problem. Due to this, Performance

Snapshot highlights the Memory Access analysis as a potential starting point and indicates that this
performance bottleneck is the most severe and contributes most to the total Elapsed Time.

• The IPC (Instructions per Cycle) metric value is very low for a modern superscalar processor,
indicating that the processor is stalled for most of the time.

• The Performance Snapshot analysis highlights the Hotspots analysis as a good starting point. In general,
the Hotspots analysis is a good candidate for a first in-depth analysis. It highlights hotspots, or areas of
code that contributed most to the elapsed time.

Start with the Hotspots analysis to see which area of code in the matrix application contributes most to the
performance problem.

Next step: Run and Interpret Hotspots Analysis.

Run and Interpret Hotspots Analysis
In this part of the tutorial, you run the Hotspots analysis to locate hotspots, or sections of code that
contribute most to the total elapsed time of the application.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

9

Run Hotspots Analysis

To run the Hotspots analysis from the Performance Snapshot Summary window:

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

10

1. Click the Hotspots icon in the Analysis tree.

The Configure Analysis window opens.
2. In the WHERE pane, select Local Host.
3. If you’re using the pre-provided sample (matrix) project, the WHAT pane should already be

configured.

If not, provide the path to the application in the Application textbox.
4. In the HOW pane, the Hotspots analysis is pre-selected.

For the collection mode, you can choose between User-Mode Sampling and Hardware Event-Based
Sampling. These sampling methods are different, but, typically, it is better to use Hardware Event-
Based Sampling when possible, since it provides greater detail with lower overhead.

5. Click the Start button to run the analysis.

Interpret Hotspots Result Data
Once the sample application exits, Intel® VTune™ Profiler finalizes the result and opens the Summary
viewpoint.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

11

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

12

This viewpoint offers multiple metrics. Hover over the question mark icons to get a detailed description of
each metric.

Note that the total CPU Time for the application is equal to about 644 seconds. It is the sum of CPU time for
all threads in the application. The Total Thread Count is 9, so the application is multi-threaded.

The Top Hotspots section of the Summary window provides data on the most time-consuming functions
(hotspot functions) sorted by CPU time spent on their execution. For the sample application, the multiply1
function, which took roughly 640 seconds to execute, shows up at the top of the list as the hottest function.

The Effective CPU Utilization Histogram lower on the Summary window represents the Elapsed Time
and usage level for the available logical processors and provides a graphical look at how many logical
processors were used during the application execution. Ideally, the highest bar of your chart should match
the Target Utilization level.

Identify Most Time-Consuming Code Areas
To get a per-function view of the code, switch to the Bottom-up tab. By default, the data in the grid is
grouped by function. You can change the grouping level using the Grouping menu at the top of the grid.

The multiply1 function took the most time to execute, roughly 640 seconds, and shows a poor CPU
utilization.

To get the detailed CPU utilization information per function, use the

Expand button in the Bottom-up pane to expand the Effective Time by Utilization column.

Double-click the multiply1 function on the Bottom-up grid to open the Source window.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

13

Note that the most time-consuming line is attributed to the loop that performs the matrix multiplication in
the multiply1 function.

To analyze the behavior of this loop in relation to memory, run the Memory Access analysis.

Next step: Analyze Memory Access.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

14

Analyze Memory Access
At this stage in the Tutorial, you run the Memory
Access analysis to understand the main bottleneck
behind slow application performance.

To understand the exact mechanics behind the memory access problems in the multiply1 loop, run the
Memory Access analysis.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

15

Run Memory Access Analysis

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

16

To run the Memory Access analysis:

1. Click the Memory Access icon in the previously collected Performance Snapshot result or click the
Configure Analysis button in the main toolbar.

2. If you clicked the Memory Access analysis icon, the Memory Access analysis should be pre-selected. If
not, select this analysis type in the HOW pane.

3. In the HOW pane, disable the Analyze OpenMP regions option as it is not required for this
application.

4. Click the Start button to run the analysis.

Interpret Memory Access Data
Once the sample application exits, Intel® VTune™ Profiler finalizes the result and opens the Summary
viewpoint.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

17

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

18

Once again, note that the application is severely bound by memory accesses. The fact that the system is not
bound by the DRAM Bandwidth alone indicates that the application is bound by frequent, but small,
requests to memory, rather than by the saturated physical DRAM Bandwidth.

Switch to the Bottom-up tab to see the exact metrics for the multiply1 function.

The multiply1 function is at the top of the grid with the highest CPU Time and high Memory Bound
metric values.

Note that the LLC Miss Count metric is very high. This indicates that the application uses a cache-unfriendly
memory access pattern, which causes the processor to frequently miss the LLC and request data from DRAM,
which is expensive in terms of latency.

A good way to resolve this issue is to apply the loop interchange technique, which, in this case, changes the
way the rows and columns of the matrices are addressed in the main loop. This way, the inefficient memory
access pattern is eliminated, enabling the processor to make better use of the LLC.

Next step: Resolve Memory Access Issue.

Resolve Memory Access Issue
At this point in the Tutorial, you edit the source code
and recompile the application to resolve the main
memory access bottleneck.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

19

NOTE

• Across this tutorial, the Intel® C++ Compiler Classic is used. Your results and workflow may vary
depending on the compiler that you use.

• In this stage of the tutorial, you will be instructed to set the Optimization Level of the compiler to
Maximum Optimization (Favor Size) (-O1) as opposed to Maximum Optimization (Favor Speed) (-
O2).

While it makes sense to perform performance profiling with maximum optimizations that favor
speed enabled, we will use this as an example to demonstrate how Intel® VTune™ Profiler can help
detect issues related to unobvious behavior of compiler options. In case of the Intel® C++ Compiler
Classic, the -O1 option disables automatic vectorization.

Such issues can occur in real, larger projects, with reasons that range from something as simple as
a typo, to something more complicated, such as the lack of awareness of how particular compiler
options influence performance.

For example, some compilers, such as gcc, do not attempt vectorization at -O2 level, unless
instructed to do so using the -ftree-vectorize option, and will only perform automatic
vectorization at the -O3 level.

Follow these steps to edit and recompile the code using the Intel® oneAPI DPC++/C++ Compiler:

1. In the /opt/intel/oneapi/compiler/latest/env folder, run this command to set compiler
environment variables:

source env.vars
2. Locate the matrix sample application folder on your machine. By default, it is placed in:

$HOME/intel/vtune/samples/matrix
3. Using a text editor of your choice, open the Makefile located in the ../matrix/linux/ folder.
4. Change line 42 from:

CFLAGS = -g -O3 -fno-asm
To:

CFLAGS = -g -O1
5. Change line 43 from:

OPTFLAGS = -xSSE3
To:

OPTFLAGS =
6. Save and close the Makefile.
7. Open the multiply.h header file located in ../matrix/src folder with a text editor.
8. Change line 36 from:

#define MULTIPLY multiply1
To:

#define MULTIPLY multiply2
This changes the program to use the multiply2 function from the multiply.c source file, which
implements the loop interchange technique that resolves the memory access problem.

9. Save and close the multiply.h file.
10. Navigate to the ../matrix/linux folder and use this command to recompile the application:

make icc
Next step: Analyze Performance After Optimization.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

20

Analyze Performance After Optimization
In this step, run the Performance Snapshot analysis
again to profile the application with loop interchange
enabled.

To see the improvement provided by using the loop interchange technique, run the Performance Snapshot
analysis again.

NOTE
Depending on your compiler and IDE, when configuring the analysis, you may need to browse to a
different executable that was generated during recompilation in the previous step.

Once the sample application finishes, the Performance Snapshot Summary window opens.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

21

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

22

Observe these main indicators:

• The Elapsed Time for the application is significantly reduced. This improvement is mainly the result of
the eliminated memory access bottleneck, which caused the processor to frequently miss the cache and
request data from the DRAM, which is very expensive in terms of latency.

• The Vectorization metric is equal to 0.0%, which means that the code was not vectorized. Due to this,
Performance Snapshot highlights the HPC Performance Characterization analysis as a potential next step.

In this case, the code was not vectorized because the Intel® oneAPI DPC++/C++ Compiler does not perform
vectorization when compiling with binary size favored (-O1).

To enable automatic vectorization by the compiler, follow these steps:

1. Open the Makefile located in ../matrix/linux folder with a text editor.
2. Change line 42 from:

CFLAGS = -g -O1
To:

CFLAGS = -g -O2
3. Run the following command to recompile the application:

make icc
Next step: Analyze Vectorization Efficiency.

Analyze Vectorization Efficiency
In this part, you analyze how well the application was
vectorized after the compiler options were changed.

Once you recompile the application with the -O2 level enabled, run the Performance Snapshot analysis again
to analyze vectorization efficiency.

Once the analysis is complete, see the Vectorization pane of the Summary window.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

23

Observe these main indicators:

1. The overall Vectorization metric is equal to 99.9%, which indicates that the code was vectorized.
2. However, there are red flags next to the 128-bit Packed FLOPs metrics. Hover over the red flag icon

or the metric value to get a description of the issue.

In this case, Intel® VTune™ Profiler indicates that a significant portion of floating-point instructions is
executed with partial vector load.

Since the analysis was performed on a machine based on an Intel processor capable of using the AVX2
instruction set, the fact that all instructions were executed using only the 128-bit registers means that the
256-bit wide AVX2 registers were not utilized at all. Therefore, VTune Profiler flags the 100.0% utilization of
128-bit vector registers as an issue.

To understand what vector instruction set is actually used, run the HPC Performance Characterization
analysis.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

24

To run the analysis:

1. Click the HPC Performance Characterization analysis icon from the analysis tree.
2. Disable the Collect stacks, Analyze Memory bandwidth and Analyze OpenMP regions options as

they are not required for vectorization analysis.
3. Click the Start button to run the analysis.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

25

Once the data collection is complete, VTune Profiler opens the default Summary window of the HPC
Performance Characterization Analysis.

Focus on the Vectorization section of the Summary window.

Note that the main loop of the multiply2 function was vectorized using the older SSE2 instruction set, while
compilation and analysis were performed on an AVX2-capable processor. Therefore, a portion of hardware
resources remains underutilized.

Next step: Enable Platform-Appropriate Vectorization.

Enable Platform-Appropriate Vectorization
At this point in the Tutorial, you enable the use of
vector registers appropriate for the platform and
check vectorization efficiency.

NOTE

• For an in-depth exploration of vectorization, try Intel® Advisor. It is a performance analysis tool that
offers deep insights into vectorization opportunities, vectorization efficiency, dependencies, and
much more.

• In this section, you will be instructed to use the -xHost option compile the application with the best
instruction set extension out of the ones that your processor performing the compilation supports.
To generate multiple code paths that enable your software to run on a variety of
microarchitectures, see the ax, Qax option of the Intel® oneAPI DPC++/C++ Compiler.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

26

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/code-generation-options/ax-qax.html

Enable Full Vectorization
To enable the use of a vector instruction set appropriate for the platform, one possible way is to instruct the
compiler to use the same vector extension as the best one available in the processor performing the
compilation.

Follow these steps to enable platform-appropriate vectorization:

1. Open the Makefile located in ../matrix/linux with a text editor.
2. Change line 43 from:

OPTFLAGS =
To:

OPTFLAGS = -xHost
This option instructs the compiler to use the best instruction set extension that the processor
performing the compilation supports.

3. Save and close the Makefile and recompile the application using command:

make icc

Check Vectorization with Performance Snapshot
Run the Performance Snapshot analysis to ensure that the application is properly vectorized.

Once the application exits, Intel® VTune™ Profiler opens the Performance Snapshot Summary window.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

27

Observe these main indicators:

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

28

• The Elapsed Time for the application has slightly decreased.
• The Vectorization metric equals to 99.9%, so the code was fully vectorized.
• A total 100.0% of Packed DP FLOP instructions were executed using the 256-bit registers. Therefore,

even without running the HPC Performance Characterization analysis, the conclusion is that the AVX2
vector extensions were fully utilized.

• VTune Profiler highlights the Microarchitecture Usage metric and offers to use the Microarchitecture
Exploration analysis to understand how exactly the application is underutilizing the microarchitecture.

Next step: Analyze Microarchitecture Usage.

Analyze Microarchitecture Usage
In the previous part, Performance Snapshot
highlighted an issue with microarchitecture utilization.
In this part of the Tutorial, you run the
Microarchitecture Exploration analysis to look for
optimization opportunities.

While the previous optimizations resulted in great benefit to the total elapsed time of the application, there
are still areas for improvement. The Performance Snapshot analysis has highlighted that the
microarchitecture is not utilized well.

Run the Microarchitecture Exploration analysis to identify opportunities for improvement.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

29

Run Microarchitecture Exploration Analysis

To run the Microarchitecture Exploration analysis:

1. In the Performance Snapshot analysis tree, click the Microarchitecture Exploration analysis icon.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

30

2. In the HOW pane, enable all extra options.
3. Click the Start button to run the analysis.

Interpret Microarchitecture Exploration Result Data
Once the application exits, Intel® VTune™ Profiler opens the default Summary window.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

31

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

32

This view shows the following:

• Elapsed Time section: this section shows metrics related to hardware utilization levels for your
hardware. Hover over the flagged metrics to get a description of the issues, possible causes, and
suggestions for resolving the issue.

The hierarchy of event-based metrics in the Microarchitecture Exploration viewpoint depends on your
hardware architecture. Each metric is an event ratio defined by Intel architects and has its own predefined
threshold. Intel® VTune™ Profiler analyzes a ratio value for each aggregated program unit (for example,
function). When this value exceeds the threshold, it signals a potential performance problem.

• µPipe Diagram: the µPipe, or Microarchitecture pipe, provides a graphical representation of CPU
microarchitecture metrics showing inefficiencies in hardware usage. Treat the diagram as a pipe with an
output flow equal to the ratio: Actual Instructions Retired/Possible Maximum Instruction Retired
(pipe efficiency). The µPipe is based on CPU pipeline slots that represent hardware resources needed to
process one micro-operation. Usually there are several pipeline slots available on each cycle (pipeline
width). If a pipeline slot does not retire, this is considered a stall and the µPipe diagram represents this as
an obstacle making the pipe narrow.

See the Microarchitecture Pipe page of the User Guide for a more detailed explanation of the µPipe.
• Effective CPU Utilization Histogram: this histogram represents the Elapsed Time and usage level for

the available logical processors and provides a graphical look at how many logical processors were used
during the application execution. Ideally, the highest bar of your chart should match the Target Utilization
level.

In this case, observe the following indicators:

• The Memory Bound metric is high, so the application is bound by memory access.
• The Memory Bandwidth and Memory Latency metrics are high.

Considering these factors together, the conclusion is that the application has a memory access issue.
However, this issue is slightly different in nature from the memory access issue previously resolved using the
loop interchange technique.

Before the introduction of the loop interchange, the application was mainly bound by the cache-unfriendly
memory access pattern, which resulted in a large number of LLC (Last-Level Cache) misses. This, in turn,
resulted in frequent requests to the DRAM.

In this case, the fact that the Memory Bandwidth metric is high means that the application has saturated
the bandwidth limits of the DRAM. While nothing can be done to increase the physical capabilities of the
DRAM, the application can be modified to make even better use of the Last-Level Cache and to reduce the
number of loads from the DRAM even further.

(Optional) Improve Cache Reuse
In general, most developers stop further optimizing their application when they have reached their desired
performance goal. The performance improvement gained by optimizing the matrix application has resulted
in a decrease of application wall time from roughly 90 seconds to roughly 2.5 seconds.

If you wish to experiment further, you can modify the code to implement the cache blocking technique.
Cache blocking is an approach for rearranging data access in such a way that blocks of data get loaded into
the cache and are reused for as long as they are needed, greatly reducing the number of DRAM accesses.

To modify the code to use the cache blocking technique:

1. In the multiply.h header file, change line 36:

#define MULTIPLY multiply2
To:

#define MULTIPLY multiply4
2. Save changes and recompile the application.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

33

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/microarchitecture-analysis-group/general-exploration-analysis/microarchitecture-pipe.html

This modifies the code to use the multiply4 function from the multiply.c source file, which implements
the cache blocking technique.

Once the application is recompiled, you can run an analysis of your choice to determine the performance
improvement.

Next step: Compare with Previous Result.

Compare with Previous Result
Over the course of the Tutorial, you've applied multiple changes to improve the performance of the matrix
sample application.

To get a detailed view of the performance improvement, you can use the Compare Results feature of Intel®
VTune™ Profiler.

Compare Performance Before and After Optimization
You can compare results collected with VTune Profiler to better see the changes in performance.

While you can compare results from different analysis types (such as Hotspots and Performance Snapshot),
only the metrics that are applicable to both analysis types simultaneously are shown.

To compare results:

1. Click the Compare Results button in the Main Toolbar.
2. Select the results that you want to compare.

3. Click the Compare button.

VTune Profiler profiler calculates the differences between metrics and opens the default Summary window.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

34

You can expand any metric pane and see the difference between all metrics that are applicable to both
results.

For example, for the matrix sample application, the Elapsed Time was reduced by almost 88 seconds.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

35

Summary
You have completed the Finding Common Bottlenecks tutorial. Here are some important things to remember
when using the Intel® VTune™ Profiler to analyze your code for hotspots and hardware issues:

Step Tutorial Recap Key Tutorial Takeaways

1. Find the
bottleneck

You started with Performance
Snapshot to determine main limiting
factors and next steps for
optimization:
1. Using the Hotspots analysis to

isolate problem to a specific code
area.

2. Using the Memory Access
analysis to understand the exact
mechanics behind the
bottleneck.

• When you first analyze an application, it
is a good idea to start with the
Performance Snapshot analysis to
determine main problem areas and next
steps.

• Use the Hotspots analysis to isolate the
performance issue to a specific area of
code. Click the hotspot function name in
the Bottom-up window to see the code
lines responsible for bottleneck.

• Use the Memory Access analysis to
determine issues related to inefficient
DRAM accesses, one of the most
common limiting factors in software.

2. Resolve issue
and recompile
application

You edited the code and recompiled
the application to eliminate the
cache-unfriendly DRAM access
pattern.

This has resulted in a great decrease
of application running time.

You've set compiler options to use a
different optimization level to see
how compiler options can influence
vectorization.

• Using efficient, cache-friendly DRAM
access patterns can result in a
significant increase in performance.

• Compiler options can influence the
behavior of the application in unobvious
ways, especially when multiple different
compilers are used. VTune Profiler can
help identify issues related to the
application being vectorized improperly,
which underutilizes available hardware
resources.

3. Resolve
vectorization
issues

You recompiled the application with a
different optimization level, and the
code was vectorized.

However, while using Performance
Snapshot, you've noticed that only
the 128-bit vector registers were
utilized, while the 256-bit registers
were not utilized at all.

By using the HPC Performance
Characterization analysis, you've
noticed that the vector instruction
set extension SSE2 was used, which
is an older instruction set extension.
A portion of hardware resources
remained underutilized.

You've recompiled the application
again with different options to ensure
vectorization was performed
according to full platform capability.

• Both the Performance Snapshot and the
HPC Performance Characterization
analysis types can help identify issues
related to improper vectorization.

• While compiler options are well-
documented and their behavior is
known, it is easy to miss a peculiarity of
an option. This can lead to not compiling
an application to make the best use of
hardware resources straight away, no
matter what compiler is used. VTune
Profiler can help catch such issues on all
stages of development.

 1 Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application -
Linux* OS

36

Step Tutorial Recap Key Tutorial Takeaways

4. Analyze
Microarchitectur
e Usage

As recommended by Performance
Snapshot, you used the
Microarchitecture Exploration
analysis to identify next optimization
steps.

Using this analysis type, you saw
that the best way to further optimize
the application was the cache
blocking technique.

• VTune Profiler provides a large number
of microarchitecture metrics tuned by
Intel architects to enable you to make
an informed optimization decision.

• You used the metrics and the µPipe
diagram to make the next optimization
decision.

5. Check your
work

You used the Compare Results
feature to compare the performance
of the application at different
optimization stages.

Perform regular regression testing by
comparing analysis results before and after
optimization. From the GUI, click the
Compare Results button on the VTune
Profiler toolbar. From command line, use
the vtune command.

Next step: Prepare your own application(s) for analysis. Then use the VTune Profiler to find and eliminate
performance problems.

See Also
Explore the User Guide
Tuning and configuration recipes in the VTune Profiler Cookbook
More tutorials with associated sample code

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

*Other names and brands may be claimed as the property of others.

Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS) 1

37

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html
https://software.intel.com/content/www/us/en/develop/articles/vtune-tutorials.html
https://www.intel.com/PerformanceIndex

Index
E
Enter index keyword 3, 4, 7, 15, 19, 21, 23, 26, 29

Tutorial: Analyze Common Performance Bottlenecks using Intel VTune Profiler in a C++ Sample Application - Linux* OS

38

	Contents
	Tutorial: Analyze Common Performance Bottlenecks with Intel® VTune™ Profiler - C++ Sample Code (Linux* OS)
	Use Case and Prerequisites
	Run Performance Snapshot Analysis
	Interpret Performance Snapshot Result Data
	Run and Interpret Hotspots Analysis
	Analyze Memory Access
	Resolve Memory Access Issue
	Analyze Performance After Optimization
	Analyze Vectorization Efficiency
	Enable Platform-Appropriate Vectorization
	Analyze Microarchitecture Usage
	Compare with Previous Result
	Summary
	Notices and Disclaimers

	Index

