
Intel® VTune™ Profiler Performance
Analysis Cookbook

Contents

Chapter 1: Intel® VTune™ Profiler Performance Analysis Cookbook
Methodologies...4

Top-down Microarchitecture Analysis Method...4
OpenMP* Code Analysis Method .. 13
Custom Data Collection for Performance Analysis (NEW)....................... 18
Software Optimization for Intel® GPUs (NEW)...................................... 26
Core Utilization in DPDK Apps ... 41
PCIe Traffic in DPDK Apps .. 46
DPDK Event Device Profiling ... 51
Effective Utilization of Intel® Data Direct I/O Technology....................... 56
Compile a Portable Optimized Binary with the Latest Instruction Set 67

Configuration Recipes .. 73
Profiling High Bandwidth Memory Performance on Intel® Xeon® CPU

Max Series (NEW) ... 74
Profiling Windows* Applications for Hybrid CPU Platforms (NEW) 81
Viewing Analysis Results on a Web Browser (NEW) 89
Profiling Machine Learning Applications (NEW) 93
Profiling Single-Node Kubernetes* Applications (NEW) 100
Analyzing Hot Code Paths Using Flame Graphs (NEW) 110
Improving Hotspot Observability in a C++ Application Using Flame

Graphs .. 116
Measuring Performance Impact of NUMA in Multi-Processor Systems.... 131
Profiling Games built with Unity* (NEW)... 143
Profiling Games built with Unreal Engine* (NEW)............................... 152
Profiling Java Applications as a Remote User (NEW) 156
Profiling JavaScript* Code in Node.js*.. 160
Analyzing CPU and FPGA (Intel® Arria® 10 GX) Interaction 163
Profiling a .NET* Core Application.. 168
Profiling Applications in Amazon Web Services* (AWS) EC2 Instances .. 174
Enabling Performance Profiling in GitLab* CI..................................... 178
Configuring a Hyper-V* Virtual Machine for Hardware-Based Hotspots

Analysis .. 184
Profiling an Application for Performance Anomalies (NEW) 190
Profiling an OpenMP* Offload Application running on a GPU 196
Profiling a SYCL* Application running on a GPU 207
Profiling an FPGA-driven SYCL* Application....................................... 212
Profiling Hardware Without Intel Sampling Drivers 217
Profiling MPI Applications ... 224
Profiling Docker* Containers ... 233
Profiling a Remote Target Through a Proxy Server (NEW) 244
Profiling in a Singularity* Container .. 246
Profiling Linux*, Android*, and QNX* System Boot Time 250
Using Intel® VTune™ Profiler Server with Visual Studio Code and Intel®

DevCloud for oneAPI (NEW).. 259
Using Intel® VTune™ Profiler Server in HPC Clusters 263
Using the Command-Line Interface to Analyze the Performance of a

SYCL* Application running on a GPU (NEW) 269
Tuning Recipes .. 278

Intel® VTune™ Profiler Performance Analysis Cookbook

2

Cache-Related Latency Issues in Segmented Cache Environment......... 278
False Sharing.. 285
Frequent DRAM Accesses ... 291
Poor Port Utilization ... 296
Page Faults... 305
Instruction Cache Misses.. 308
Inefficient Synchronization ... 314
Inefficient TCP/IP Synchronization .. 318
OS Thread Migration.. 322
OpenMP* Imbalance and Scheduling Overhead 325
Processor Cores Underutilization: OpenMP* Serial Time 332
Scheduling Overhead in an Intel® oneAPI Threading Building Blocks

Application ... 338
PMDK Application Overhead.. 344

Notices and Disclaimers.. 348

Contents

3

Intel® VTune™ Profiler
Performance Analysis Cookbook 1
This Cookbook introduces methodologies and use-case recipes to analyze the performance of your code with
VTune Profiler, a tool that helps you identify ineffective algorithm and hardware usage and provides tuning
advice.

• To download VTune Profiler or request product support, visit the product page.
• All recipes in this Cookbook are scalable. You can apply them to any version of VTune Profiler, or 2018 and

newer versions of its predecessor, Intel® VTune™ Amplifier . Slight version-specific configuration changes
are possible.

• Some recipes were translated to Simplified Chinese, and are available in the Simplified Chinese version of
this Cookbook.

• Intel® VTune™ Profiler is a new renamed version of Intel® VTune™ Amplifier.

Documentation Formats for Intel® VTune™ Profiler
Starting with VTune Profiler 2023, you can access both online and offline (PDF) versions of the
documentation by selecting the required version from the Version drop-down menu on top of the web
page. To download the PDF version, click the Download button in the top right corner of the page.

Access documentation for VTune Profiler release versions prior to 2023 in these ways:
VTune Profiler Release Version Available Documentation

Formats
Links

2021 - 2022.4 releases Online Online documentation for VTune
Profiler

Offline Downloadable documents for
VTune Profiler

Versions older than 2021
release

Offline only Available documentation
downloads by product version:
• Download Documentation

for Intel Parallel Studio XE
• Download Documentation

for Intel System Studio

Methodologies
Start cooking your performance analysis. Understand
tuning techniques, performance metrics and hardware
solutions to collect statistics. Next, drill down to
particular tuning or configuration recipes that feature
Intel® VTune™ Profiler or its predecessor, Intel® VTune™
Amplifier.

Top-down Microarchitecture Analysis Method
Use this recipe to know how an application is utilizing
available hardware resources and how to make it take
advantage of CPU microarchitectures. One way to
obtain this knowledge is by using on-chip Performance
Monitoring Units (PMUs).

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

4

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://intel.com/content/www/us/en/develop/documentation/vtune-cookbook-zh-cn/top.html
https://intel.com/content/www/us/en/develop/documentation/vtune-cookbook-zh-cn/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#linklist_847060602_c
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#linklist_847060602_c
https://d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/
https://d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-parallel-studio-xe-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-parallel-studio-xe-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-system-studio-current-previous.html
https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-system-studio-current-previous.html

NOTE This recipe is also available in Simplified Chinese.

PMUs are dedicated pieces of logic within a CPU core that count specific hardware events as they occur on
the system. Examples of these events may be Cache Misses or Branch Mispredictions. These events can be
observed and combined to create useful high-level metrics such as Cycles per Instruction (CPI).

A specific microarchitecture may make available hundreds of events through its PMU. However, it is
frequently non-obvious to determine which events are useful in detecting and fixing specific performance
issues. Often it requires an in-depth knowledge of both the microarchitecture design and PMU specifications
to obtain useful information from raw event data. But you can benefit from using predefined events and
metrics, and the top-down characterization method to convert the data into actionable information.

Explore the PMU analysis recipe to learn the methodology and how it is used in the Intel® VTune™ Profiler:

• INGREDIENTS:

• Top-down Microarchitecture Analysis Method (TMA) overview
• Top-Down Analysis Method with VTune Profiler
• Microarchitectural Tuning Methodology

• DIRECTIONS:

• Tune for the Back-End Bound Category
• Tune for the Front-End Bound Category
• Tune for the Bad Speculation Category
• Tune for the Retiring Category

• Related Cookbook Recipes

Top-down Microarchitecture Analysis Method Overview
Modern CPUs employ pipelining as well as techniques like hardware threading, out-of-order execution and
instruction-level parallelism to utilize resources as effectively as possible. In spite of this, some types of
software patterns and algorithms still result in inefficiencies. For example, linked data structures are
commonly used in software, but cause indirect addressing that can defeat hardware prefetchers. In many
cases, this behavior can create bubbles of idleness in the pipeline while data is retrieved and there are no
other instructions to execute. Linked data structures could be an appropriate solution to a software problem,
but may result in inefficiencies. There are many other examples at the software level that have implications
on the underlying CPU pipelines. The Top-down Microarchitecture Analysis Method based on the Top-Down
Characterization methodology aims to provide an insight into whether you have made wise choices with your
algorithms and data structures. See the Intel® 64 and IA-32 Architectures Optimization Reference Manual,
Appendix B.1 for more details on the Top-down Microarchitecture Analysis Method.

The Top-Down Characterization is a hierarchical organization of event-based metrics that identifies the
dominant performance bottlenecks in an application. Its aim is to show, on average, how well the CPU’s
pipeline(s) were being utilized while running an application. Previous frameworks for interpreting events
relied on accounting for CPU clockticks - determining what fraction of CPU’s clockticks was spent on what
type of operations (retrieving data due to L2 cache misses, for example). This framework instead is based on
accounting for the pipeline’s resources. To understand the Top-Down Characterization, explore a few
microarchitectural concepts below, at a high level. Many of the details of the microarchitecture are abstracted
in this framework, enabling you to use and understand it without being a hardware expert.

The pipeline of a modern high-performance CPU is quite complex. In the simplified view blow, the pipeline is
divided conceptually into two halves, the Front-end and the Back-end. The Front-end is responsible for
fetching the program code represented in architectural instructions and decoding them into one or more low-
level hardware operations called micro-ops (uOps). The uOps are then fed to the Back-end in a process called
allocation. Once allocated, the Back-end is responsible for monitoring when uOp’s data operands are available
and executing the uOp in an available execution unit. The completion of a uOp’s execution is called
retirement, and is where results of the uOp are committed to the architectural state (CPU registers or written
back to memory). Usually, most uOps pass completely through the pipeline and retire, but sometimes
speculatively fetched uOps may get cancelled before retirement – like in the case of mis-predicted branches.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

5

https://intel.com/content/www/us/en/develop/documentation/vtune-cookbook-zh-cn/top/methodologies/top-down-microarchitecture-analysis-method.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

The Front-end of the pipeline on recent Intel microarchitectures can allocate four uOps per cycle, while the
Back-end can retire four uOps per cycle. From these capabilities the abstract concept of a pipeline slot can be
derived. A pipeline slot represents the hardware resources needed to process one uOp. The Top-Down
Characterization assumes that for each CPU core, on each clock cycle, there are four pipeline slots available.
It then uses specially designed PMU events to measure how well those pipeline slots were utilized. The status
of the pipeline slots is taken at the allocation point (marked with a star in the figure above), where uOps
leave the Front-end for the Back-end. Each pipeline slot available during an application’s runtime will be
classified into one of four categories based on the simplified pipeline view described above.

During any cycle, a pipeline slot can either be empty or filled with a uOp. If a slot is empty during one clock
cycle, this is attributed to a stall. The next step needed to classify this pipeline slot is to determine whether
the Front-end or the Back-end portion of the pipeline caused the stall. This is done using designated PMU
events and formulas. The goal of the Top-Down Characterization is to identify dominant bottlenecks, hence
the attribution of the stall to either the Front- or Back-end is a critical point of consideration. Generally, if the
stall is caused by the Front-end’s inability to fill the slot with a uOp, it will be classified as a Front-End Bound
slot for this cycle, meaning, the performance was limited by some bottleneck under the Front-End Bound
category. In the case where the Front-end has a uOp ready but cannot deliver it because the Back-end is not

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

6

ready to handle it, the empty pipeline slot will be classified as Back-End Bound. Back-end stalls are generally
caused by the Back-end running out of some resource, for example, load buffers. However, if both the Front-
end and the Back-end are stalled, then the slot will be classified as Back-End Bound. This is because, in that
case, fixing the stall in the Front-end would most likely not help an application’s performance. The Back-end
is the blocking bottleneck, and it would need to be removed first before fixing issues in the Front-end would
have any effect.

If the processor is not stalled then a pipeline slot will be filled with a uOp at the allocation point. In this case,
the determining factor for how to classify the slot is whether the uOp eventually retires. If it does retire, the
slot is classified as Retiring. If it does not, either because of incorrect branch predictions by the Front-end or
a clearing event like a pipeline flush due to Self-Modifying-Code, the slot will be classified as Bad Speculation.
These four categories make up the top level of the Top-Down Characterization. To characterize an application,
each pipeline slot is classified into exactly one of these four categories:

The distribution of pipeline slots in these four categories is very useful. Although metrics based on events
have been possible for many years, before this characterization there was no approach for identifying which
possible performance issues were the most impactful. When performance metrics are placed into this
framework, you can see which issues need to be tackled first. The events needed to classify pipeline slots
into the four categories are available beginning with Intel® microarchitecture code name Sandy Bridge –
which is used in the 2nd Generation Intel Core processor family and the Intel Xeon® processor E5 family.
Subsequent microarchitectures may allow further decomposition of these high-level categories into more
detailed performance metrics.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

7

Top-Down Analysis Method with VTune Profiler

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

Intel® VTune™ Profiler provides a Microarchitecture Exploration analysis type that is pre-configured to collect
the events defined in the Top-Down Characterization starting with the Intel microarchitecture code name Ivy
Bridge. Microarchitecture Exploration also collects the events required to calculate many other useful
performance metrics. The results of a Microarchitecture Exploration analysis are displayed by default in the
Microarchitecture Exploration viewpoint .

Microarchitecture Exploration results are displayed in hierarchical columns to reinforce the top-down nature
of the characterization. The Summary window gives the percentage of pipeline slots in each category for the
whole application. You can explore results in multiple ways. The most common way to explore results is to
view metrics at the function level:

For each function, the fraction of pipeline slots in each category is shown. For example, the price_out_impl
function, selected above, had 2.2% of its pipeline slots in the Front-End Bound category, 7.4% in Bad
Speculation, 64.2% in Memory Bound, 8.4% in Core Bound, and 17.8% in the Retiring category. Each
category can be expanded to view metrics underneath that category. Automatic highlighting is used to draw
your attention to potential problem areas, in this case, to the high percentage of Memory Bound pipeline
slots for price_out_impl.

Microarchitectural Tuning Methodology
When doing any performance tuning, it is important to focus on the top hotspots of the application. Hotspots
are the functions taking the most CPU time. Focus on these spots will ensure that optimizations impact the
overall application performance. VTune Profiler has a Hotspots analysis with two specific collection modes:
user-mode sampling and hardware event-based sampling. Within the Microarchitecture Exploration
viewpoint, hotspots can be identified by determining the functions or modules with the highest Clockticks

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

8

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-view.html

event counts, which measures the number of CPU clockticks. To obtain maximum benefit from
microarchitectural tuning, ensure that algorithmic optimizations such as adding parallelism have already been
applied. Generally system tuning is performed first, then application-level algorithm tuning, then
architectural and microarchitectural tuning. This process is also referred to as "Top-Down", as in the Top-
Down software tuning methodology. It, as well as other important aspects of performance tuning like
workload selection, are described in the De-Mystifying Software Performance Optimization article.

1. Select a hotspot function (one with a large percentage of the application's total clockticks).
2. Evaluate the efficiency of that hotspot using the Top-Down Method and the guidelines given below.
3. If inefficient, drill down the category representing the primary bottleneck, and use the next levels of

sub-bottlenecks to identify causes.
4. Optimize the issue(s). VTune Profiler tuning guides contain specific tuning suggestions for many of the

underlying performance issues in each category.
5. Repeat until all significant hotspots have been evaluated.

VTune Profiler automatically highlights metric values in the GUI if they are outside a predefined threshold and
occur in a hotspot. VTune Profiler classifies a function as a hotspot if greater than 5% of the total clockticks
for an application accrued within it. Determining whether a given fraction of pipeline slots in a particular
category constitutes a bottleneck can be workload-dependent, but some general guidelines are provided in
the table below:

Expected Range of Pipeline Slots in This Category, for a Hotspot in a
Well-Tuned:

Category Client/Desktop
Application

Server/Database/
Distributed
application

High Performance
Computing (HPC)
application

Retiring 20-50% 10-30% 30-70%

Back-End Bound 20-40% 20-60% 20-40%

Front-End Bound 5-10% 10-25% 5-10%

Bad Speculation 5-10% 5-10% 1-5%

These thresholds are based on analysis of some workloads in labs at Intel. If the fraction of time spent in a
category (other than Retiring) for a hotspot is on the high end or greater than the range indicated, an
investigation might be useful. If this is true for more than one category, the category with the highest
fraction of time should be investigated first. Note that it is expected that hotspots will have some fraction of
time spent in each category, and that values within the normal range below may not indicate a problem.

The important thing to realize about the Top-Down Method is that you do not need to spend time optimizing
issues in a category that is not identified as a bottleneck - doing so will likely not lead to a significant
performance improvement.

Tune for the Back-End Bound Category
The majority of un-tuned applications will be Back-End Bound. Resolving Back-end issues is often about
resolving sources of latency, which cause retirement to take longer than necessary. On the Intel
microarchitecture code name Sandy Bridge, VTune Profiler has Back-End Bound metrics to find the sources of
high latency. For example, the LLC Miss (Last-Level Cache Miss) metric identifies regions of code that need to
access DRAM for data, and the Split Loads and Split Stores metrics point out memory access patterns that
can harm performance. For more details on Intel microarchitecture code name Sandy Bridge metrics, see the
Tuning Guide. Starting with Intel microarchitecture code name Ivy Bridge (which is used in the 3rd
Generation Intel Core processor family), events are available to breakdown the Back-End Bound classification

Intel® VTune™ Profiler Performance Analysis Cookbook 1

9

https://www.intel.com/content/www/us/en/developer/articles/technical/demystifying-software-performance-optimization.html
https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html

into Memory Bound and Core Bound sub-metrics. A metric beneath the top 4 categories may use a domain
other than the pipeline slots domain. Each metric will use the most appropriate domain based on underlying
PMU events. For more details see the documentation for each metric or category.

The Memory and Core Bound sub-metrics are determined using events corresponding to the utilization of the
execution units - as opposed to the allocation stage used in the top-level classifications. Therefore, the sum
of these metrics will not necessarily match the Back-End Bound ratio determined at the top-level (though
they correlate well).

Stalls in the Memory Bound category have causes related to the memory subsystem. For example, cache
misses and memory accesses can cause Memory Bound stalls. Core Bound stalls are caused by a less-than-
optimal use of the available execution units in the CPU during each cycle. For example, several multi-cycle
divide instructions in a row competing for the divide units could cause Core Bound stalls. For this breakdown,
slots are only classified as Core Bound if they are stalled AND there are no uncompleted memory accesses.
For example, if there are pending loads, the cycle is classified as Memory Bound because the execution units
are being starved while the loads have not returned data yet. PMU events were designed into the hardware
to specifically allow this type of breakdown, which helps identify the true bottleneck in an application. The
majority of Back-End Bound issues will fall into the Memory Bound category.

Most of the metrics under the Memory Bound category identify which level of the memory hierarchy from the
L1 cache through the memory is the bottleneck. Again, the events used for this determination were carefully
designed. Once the Back-end is stalled the metrics try to attribute the stalls of pending loads to a particular
level of cache or to in-flight stores. If a hotspot is bound at a given level, it means that most of its data is
being retrieved from that cache- or memory-level. Optimizations should focus on moving data closer to the
core. Store Bound is also called out as a sub-category, which can indicate dependancies - such as when loads
in the pipeline depend on prior stores. Under each of these categories, there are metrics that can identify
specific application behaviors resulting in Memory Bound execution. For example, Loads Blocked by Store
Forwarding and 4k Aliasing are metrics that flag behaviors that can cause an application to be L1 Bound.

Core Bound stalls are typically less common within Back-End Bound. These can occur when available
computing resources are not sufficiently utilized and/or used without significant memory requirements. For
example, a tight loop doing Floating Point (FP) arithmetic calculations on data that fits within cache. VTune
Profiler provides some metrics to detect behaviors in this category. For example the Divider metric identifies
cycles when divider hardware is heavily used and the Port Utilization metric identifies competition for discrete
execution units.

NOTE
Grayed out metric values indicate that the data collected for this metric is unreliable. This may
happen, for example, if the number of samples collected for PMU events is too low. You may either
ignore this data, or rerun the collection with the data collection time, sampling interval, or workload
increased.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

10

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/cpu-metrics-reference.html

Tune for the Front-End Bound Category
The Front-End Bound category covers several other types of pipeline stalls. It is less common for the Front-
end portion of the pipelines to become the application's bottleneck; however there are cases where the
Front-end can contribute in a significant manner to machine stalls. For example, JITed code and interpreted
code can cause Front-end stalls because the instruction stream is dynamically created without the benefit of
compiler code layout in advance. Improving performance in the Front-End Bound category will generally
relate to code layout (co-locating hot code) and compiler techniques. For example, branchy code or code with
a large footprint may highlight the Front-End Bound category. Techniques like code size optimization and
compiler profile-guided optimization (PGO) are likely to reduce stalls in many cases.

The Top-Down Method on Intel microarchitecture code name Ivy Bridge and beyond divides Front-End Bound
stalls into 2 categories, Front-End Latency and Front-End Bandwidth. The Front-End Latency metric reports
cycles in which no uops were issued by the Front-end in a cycle, while the Back-end was ready to consume
them. Recall that the Front-end cluster can issue up to 4 uops per cycle. The Front-End Bandwidth metric
reports cycles in which less than 4 uops were issued, representing an inefficient use of the Front-end's
capability. Further metrics are identified below each of the categories.

Branch mispredictions, which are mostly accounted for in the Bad Speculation category, could also lead to
inefficiencies in the Front-end as denoted by the Branch Resteers bottleneck metric underneath Front-End
Latency starting in the Intel microarchitecture code name Ivy Bridge.

VTune Profiler lists metrics that may identify causes of Front-End Bound code. If any of these categories
shows up significantly in the results, dig deeper into the metrics to determine the causes and how to correct
them. For example, the ITLB Overhead (Instruction Translation Lookaside Buffer Overhead) and ICache Miss
(Instruction Cache miss) metrics may point out areas suffering from Front-End Bound execution. For tuning
suggestions see the VTune Profiler tuning guides.

Tune for the Bad Speculation Category
The third top-level category, Bad Speculation, denotes when the pipeline is busy fetching and executing non-
useful operations. Bad Speculation pipeline slots are slots wasted by issued uops that never retired or stalled
while the machine recovers from an incorrect speculation. Bad Speculation is caused by branch
mispredictions and machine clears and less commonly by cases like Self-Modifying-Code. Bad Speculation
can be reduced through compiler techniques such as Profile-Guided Optimization (PGO), avoiding indirect
branches, and eliminating error conditions that cause machine clears. Correcting Bad Speculation issues may
also help decrease the number of Front-End Bound stalls. For specific tuning techniques refer to the VTune
Profiler tuning guide appropriate for your microarchitecture.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

11

Tune for the Retiring Category
The last category at the top level is Retiring. It denotes when the pipeline is busy with typically useful
operations. Ideally an application would have as many slots classified in this category as possible. However,
even regions of code with a large portion of their pipeline slots retiring may have room for improvement. One
performance issue that will fall under the retiring category is heavy use of the micro-sequencer, which assists
the Front-end by generating a long stream of uops to address a particular condition. In this case, although
there are many retiring uops, some of them could have been avoided. For example, FP Assists that apply in
the event of Denormals can often be reduced through compiler options (like DAZ or FTZ). Code generation
choices can also help mitigate these issues - for more details see the VTune Profiler tuning guides. In the
Intel microarchitecture code name Sandy Bridge, Assists are identified as a metric under the Retiring
category. In the Intel microarchitecture code name Ivy Bridge and beyond, the pipeline slots in the ideal
category of retirement are broken into a sub-category called General Retirement, and Microcode Sequencer
uops are identified separately.

If not already done, algorithmic tuning techniques like parallelization and vectorization can help improve the
performance of code regions that fall into the retiring category.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

12

Conclusion
The Top-Down Method and its availability in VTune Profiler represent a new direction for performance tuning
using PMUs. Developer time invested in becoming familiar with this characterization will be worth the effort,
since support for it is designed into recent PMUs and, where possible, the hierarchy is further expanded on
future Intel microarchitectures. For example, the characterization was significantly expanded between Intel
microarchitecture code name Sandy Bridge and Intel microarchitecture code name Ivy Bridge.

The goal of the Top-Down Method is to identify the dominant bottlenecks in an application performance. The
goal of Microarchitecture Exploration analysis and visualization features in VTune Profiler is to give you
actionable information for improving your applications. Together, these capabilities can significantly boost not
only application performance, but also the productivity of your optimizations.

Related Cookbook Recipes
• Tuning Recipe: False Sharing
• Tuning Recipe: Frequent DRAM Accesses
• Tuning Recipe: Poor Port Utilization
• Tuning Recipe: Instruction Cache Misses

See Also
Microarchitecture Pipe

Microarchitecture Exploration View

Tuning Guides and Performance Analysis Papers
Clockticks vs Pipeline Slots Based Metrics

OpenMP* Code Analysis Method
This recipe introduces a flow to analyze CPU utilization
of your OpenMP* or hybrid OpenMP-MPI application
and identify causes of possible inefficiencies.

Content Expert: Rupak Roy

OpenMP is a fork-join parallel model, which starts with an OpenMP program running with a single master
serial-code thread. When a parallel region is encountered, that thread forks into multiple threads, which then
execute the parallel region. At the end of the parallel region, the threads join at a barrier, and then the
master thread continues executing serial code. It is possible to write an OpenMP program more like an MPI
program, where the master thread immediately forks to a parallel region and constructs such as barrier and
single are used for work coordination. But it is far more common for an OpenMP program to consist of a
sequence of parallel regions interspersed with serial code.

Ideally, parallelized applications have working threads doing useful work from the beginning to the end of
execution, utilizing 100% of available CPU core processing time. In real life, useful CPU utilization is likely to
be less when working threads are waiting, either actively spinning (for performance, expecting to have a
short wait) or waiting passively, not consuming CPU. There are several major reasons why working threads
wait, not doing useful work:

• Execution of serial portions (outside of any parallel region): When the master thread is executing a
serial region, the worker threads are in the OpenMP runtime waiting for the next parallel region.

• Load imbalance: When a thread finishes its part of workload in a parallel region, it waits at a barrier for
the other threads to finish.

• Not enough parallel work: The number of loop iterations is less than the number of working threads so
several threads from the team are waiting at the barrier not doing useful work at all.

• Synchronization on locks: When synchronization objects are used inside a parallel region, threads can
wait on a lock release, contending with other threads for a shared resource.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

13

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/microarchitecture-pipe.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-view.html
https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/cpu-metrics-reference.html#CLOCKTICKS-VS-PIPELINE-SLOTS-BASED-METRICS
https://community.intel.com/t5/user/viewprofilepage/user-id/183427

Use VTune Profiler to understand how an application utilizes available CPUs and identify causes of CPU
underutilization.

To analyze an OpenMP application with VTune Profiler:

1. Compile your code with recommended options.
2. Configure OpenMP regions analysis.
3. Explore application-level OpenMP metrics.
4. Identify serial code.
5. Estimate potential gain.
6. Understand limitations.

Compile Your Code with Recommended Options
To enable parallel regions and source analysis during compilation, do the following:

• To analyze OpenMP parallel regions, make sure to compile and run your code with the Intel® oneAPI DPC
+/C++ Compiler version 2023.2.0 (or newer). If an obsolete version of the OpenMP runtime libraries is
detected, VTune Profiler provides a warning message. In this case the collection results may be
incomplete.

To access the newest OpenMP analysis options described in the documentation, make sure you always use
the latest version of the Intel compiler.

• On Linux*, to analyze an OpenMP application compiled with GCC*, make sure the GCC OpenMP library
(libgomp.so) contains symbol information. To verify, search for libgomp.so and use the nm command to
check symbols, for example:

nm libgomp.so.1.0.0
If the library does not contain any symbols, either install/compile a new library with symbols or generate
debug information for the library. For example, on Fedora* you can install GCC debug information from
the yum repository:

yum install gcc-debuginfo.x86_64

Configure OpenMP Analysis
To enable OpenMP analysis for your target:

1. Click the

(standalone GUI)/

(Visual Studio IDE)Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From HOW pane, click the

Browse button and select an analysis type that supports OpenMP analysis: Threading, HPC Performance
Characterization, Memory Access, or any Custom Analysis type.

3. Select the Analyze OpenMP regions option, if it is not pre-selected (see the Details section to
confirm).

4. Click the

Start button to run the analysis.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

14

The OpenMP runtime library in the Intel Composer provides special markers for applications running under
profiling that can be used by the VTune Profiler to decipher the statistics of OpenMP parallel regions and
distinguish serial parts of the application code.

Explore Application-Level OpenMP Metrics
Start your analysis with understanding the CPU utilization of your analysis target. If you are using the HPC
Performance Characterization viewpoint, focus on the Effective Physical Core Utilization section of the
Summary window that shows the number of used logical and physical cores and estimates the efficiency (in
percent) of this CPU utilization. Poor core utilization is flagged as a performance issue.

Other viewpoints provide the CPU Utilization Histogram that displays the Elapsed time of your application,
broken down by CPU utilization levels. The histogram shows only useful utilization so the CPU cycles that
were spent by the application burning CPU in spin loops (active wait) are not counted. You can adjust sliders
from the default levels if you intentionally use a number of OpenMP working threads less than the number of
available hardware threads.

If the bars are close to Ideal utilization, you might need to look deeper, at algorithm or microarchitecture
tuning opportunities, to find performance improvements. If not, explore the OpenMP Analysis section of the
Summary window for inefficiencies in parallelization of the application:

This section of the Summary window shows the Collection Time as well as the duration of serial (outside of
any parallel region) and parallel portions of the program. If the serial portion is significant, consider options
to minimize serial execution, either by introducing more parallelism or by doing algorithm or
microarchitecture tuning for sections that seem unavoidably serial. For high thread-count machines, serial
sections have a severe negative impact on potential scaling (Amdahl's Law) and should be minimized as
much as possible.

Identify Serial Code
To analyze the serially executed code, expand the Serial Time (outside parallel regions) section of the
Summary window and review the Top Serial Hotspots (outside parallel regions). You can click a
function name to be taken to that function in the Bottom-up window for more detail.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

15

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hpc-performance-characterization-view.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hpc-performance-characterization-view.html

Estimate Potential Gain
To estimate the efficiency of CPU utilization in the parallel part of the code, use the Potential Gain metric.
This metric estimates the difference in the Elapsed time between the actual measurement and an idealized
execution of parallel regions, assuming perfectly balanced threads and zero overhead of the OpenMP runtime
on work arrangement. Use this data to understand the maximum time that you may save by improving
parallel execution.

The Summary window provides a detailed table listing the top five parallel regions with the highest Potential
Gain metric values.

If Potential Gain for a region is significant, you can go deeper and select the link on a region name to
navigate to the Bottom-up window employing the /OpenMP Region/OpenMP Barrier-to-Barrier
Segment/.. dominant grouping that provides detailed analysis of inefficiency metrics like Imbalance by
barriers.

Intel OpenMP runtime from Intel Parallel Studio instruments barriers for the VTune Profiler. VTune Profiler
introduces a notion of barrier-to-barrier OpenMP region segment that spans from a region fork point or
previous barrier to the barrier that defines the segment.

In the example above, there are four barrier-to-barrier segments defined as a user barrier, implicit single
barrier, implicit omp for loop barrier and region join barrier.

For the cases when an OpenMP region contains multiple barriers either implicit with parallel loops or
#pragma single sections, or explicit with user barriers, analyze the impact of a particular construct or a
barrier to inefficiency metrics.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

16

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html#cpu-metrics-reference_OPENMP-POTENTIAL-GAIN

A barrier type is embedded to the segment name, for example: loop, single, reduction, and others. It
also emits additional information for parallel loops with implicit barriers like loop scheduling, chunk size and
min/max/average of the loop iteration counts that is useful to understand imbalance or scheduling overhead
nature. The loop iteration count information is also helpful to identify problems with underutilization of
worker threads with small number of iterations that can be a result of outer loop parallelization. Consider
inner loop parallelization or "collapse" clause to saturate the working threads in this case.

Analyze the Potential Gain column data that shows a breakdown of Potential Gain in the region by
representing the cost (in elapsed time) of the inefficiencies with a normalization by the number of OpenMP
threads. Elapsed time cost helps decide whether you need to invest into addressing a particular type of
inefficiency. VTune Profiler can recognize the following types of inefficiencies:

• Imbalance: threads are finishing their work in different time and waiting on a barrier. If imbalance time
is significant, try dynamic type of scheduling. Intel OpenMP runtime library from Intel Parallel Studio
Composer Edition reports precise imbalance numbers and the metrics do not depend on statistical
accuracy as other inefficiencies that are calculated based on sampling.

• Lock Contention: threads are waiting on contended locks or "ordered" parallel loops. If the time of lock
contention is significant, try to avoid synchronization inside a parallel construct with reduction operations,
thread local storage usage, or less costly atomic operations for synchronization.

• Creation: overhead on a parallel work arrangement. If the time for parallel work arrangement is
significant, try to make parallelism more coarse-grain by moving parallel regions to an outer loop.

• Scheduling: OpenMP runtime scheduler overhead on a parallel work assignment for working threads. If
scheduling time is significant, which often happens for dynamic types of scheduling, you can use a
"dynamic" schedule with a bigger chunk size or "guided" type of schedule.

• Atomics: OpenMP runtime overhead on performing atomic operations.
• Reduction: time spent on reduction operations.

To analyze the source of a performance-critical OpenMP parallel region, double-click the region identifier in
the grid, sorted by the OpenMP Region/.. grouping level. VTune Profiler opens the source view at the
beginning of the selected OpenMP region in the pseudo function created by the Intel compiler.

NOTE
By default, the Intel compiler does not add a source file name to region names, so the unknown string
shows up in the OpenMP parallel region name. To get the source file name in the region name, use the
-parallel-source-info=2 option during compilation.

Limitations
VTune Profiler supports the analysis of parallel OpenMP regions with the following limitations:

• Maximum number of supported lexical parallel regions is 512, which means that no region annotations will
be emitted for regions whose scope is reached after 512 other parallel regions are encountered.

• Regions from nested parallelism are not supported. Only top-level items emit regions.
• VTune Profiler does not support static linkage of OpenMP libraries.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

17

See Also
knob analyze-openmp=true vtune option
vtune option

MPI Code Analysis

Profiling MPI Applications

OpenMP* Imbalance and Scheduling Overhead

Processor Cores Underutilization: OpenMP Serial Time

Custom Data Collection for Performance Analysis (NEW)
Learn how to configure a data collector to inject
custom data into an analysis by Intel® VTune™ Profiler.
Get additional context on the collected data and
insights for an enhanced analysis.

When you collect performance data with VTune Profiler, you can configure a custom data collector to interact
with the collected data. You can then inject custom data once the collection activity has been completed.

In this recipe, we will see how you can do this.

Content expert: Jeffrey Reinemann

• INGREDIENTS
• DIRECTIONS:

1.Understand the Data Collector
2.Run Hotspots Analysis
3.Use the Custom Data File
4.Append Existing Custom Data
5.Display Custom Interval Data

Ingredients
Here are the hardware and software tools you need for this recipe.

• Application:

• Mandelbrot: The recipe uses this sample application. You can use any application of your choice.
• CustomCollector: This batch file is used as a custom data collector. However, you can use any

compiled program or Python script.
• Analysis Tool: VTune Profiler version 2023 or newer - Hotspots Analysis

Understand the Data Collector
The CustomCollector data collector batch file has the following code:

@Echo Off
Echo %AMPLXE_COLLECT_CMD%
if "%AMPLXE_COLLECT_CMD%" == "start" goto start
if "%AMPLXE_COLLECT_CMD%" == "stop" goto stop
Echo Invalid command
Exit 1

:start
Rem Start command in non-blocking mode
Rem echo start my_collector_command_to_start_collection "%AMPLXE_DATA_DIR%"\data_file-hostname-

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

18

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/knob.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/mpi-code-analysis.html
https://community.intel.com/t5/user/viewprofilepage/user-id/109704
https://cdrdv2.intel.com/v1/dl/getContent/784615

%COMPUTERNAME%.csv
Start C:\Source\CustomCollectorWin\Debug\CustomCollectorWin.exe
Start C:\Source\CustomCollectorWin\Debug\CustomCollectorWin.exe 2
Start C:\Source\CustomCollectorWin\Debug\CustomCollectorWin.exe 4
Exit 0

:stop
Echo stop "%AMPLXE_DATA_DIR%\..\log\CustomCollector0PID.txt"
Echo|set /p="taskkill /PID " > "%TEMP%\stop0.bat
type "%AMPLXE_DATA_DIR%\..\log\CustomCollector0PID.txt" >> "%TEMP%"\stop0.bat
Call "%TEMP%"\stop0.bat
Exit 0
Echo stop "%AMPLXE_DATA_DIR%\..\log\CustomCollector2PID.txt"
Echo|set /p="taskkill /PID " > "%TEMP%\stop2.bat
type "%AMPLXE_DATA_DIR%\..\log\CustomCollector2PID.txt" >> "%TEMP%"\stop2.bat
Call "%TEMP%"\stop2.bat
Echo stop "%AMPLXE_DATA_DIR%\..\log\CustomCollector4PID.txt"
Echo|set /p="taskkill /PID " > "%TEMP%\stop4.bat
type "%AMPLXE_DATA_DIR%\..\log\CustomCollector4PID.txt" >> "%TEMP%"\stop4.bat
Call "%TEMP%"\stop4.bat
Exit 0

The collector uses several environment variables including AMPLXE_COLLECT_CMD, a collect command
argument which specifies whether to start, stop, pause, or resume the collection. The batch file implements
the start and stop options only.

Other environment variables include AMPLXE_DATA_DIR, the data directory path name where you write
custom data which will be integrated into the analysis results.

When you run the CustomCollector batch file, multiple instances of the custom data collector execute and
collect different metrics. Each instance provides two custom data variables for a total of six variables from
the three instances.

Run Hotspots Analysis
1. Open VTune Profiler.
2. Click the Configure Analysis button to set up a new analysis.
3. Set these fields:

• In the WHERE pane, select Local Host.
• In the HOW pane, select Hotspots Analysis in the Algorithm group in the Analysis Tree.
• In the WHAT pane, select an application, process ID, or system-wide collection. This example uses

the Mandelbrot application.
• Also in the WHAT pane, expand the Advanced Options section. Use the Custom Collector text

box to navigate to the CustomCollector batch file.
4. Click the Command Line button

and run this analysis from the command line.

When the data collection begins, four output windows display:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

19

• One instance for the Mandelbrot application
• Three instances for the CustomCollector data collector

When the data collection finishes, VTune Profiler calls the custom data collector with the stop command in
AMPLXE_COLLECT_CMD. The collector writes its custom data into the VTune Profiler results directory in
AMPLXE_DATA_DIR.

VTune Profiler then integrates the custom data into the results during the finalization phase of the collection.

Once the results display, switch to the Bottom-up tab to see the custom data on the timeline. In this
example,

• Custom data counters 0,2, and 4 display as Instant Values.
• Custom data counters 1,3, and 5 display as Counter Rate.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

20

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-2/creating-a-csv-file-with-external-data.html#GUID-66A6BCD8-FBB1-4643-B446-AD47B25B4D14
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-2/creating-a-csv-file-with-external-data.html#GUID-66A6BCD8-FBB1-4643-B446-AD47B25B4D14

Use the Custom Data File
Let us now examine the custom data files that were created during our analysis.

Open the folder containing VTune Profiler results. Look in the data subfolder which contains all of the three
custom data files.

The naming convention for custom data files is:

<user-defined string>-hostname-<host name of system under test>.csv
For example,

MyData-hostname-<host name of system under test>.csv
Understand the Custom Data File

The header of the custom data file indicates the name of the metric it captured and the corresponding data
type. For example, the header in the custom data file below indicates that counter 0 is an Instant Value and
counter 1 is a Counter Rate.

Each line of data in the custom file must start with a time stamp to map it with other data collected at that
time.

The following examples explain how you can use the custom data file in different ways:

• Generate a time stamp
• Write discrete data type information

Intel® VTune™ Profiler Performance Analysis Cookbook 1

21

• Format the path name
• Append existing custom data
• Display custom interval data

Generate Time Stamp

This example demonstrates how you can generate a time stamp for each line of data using time and
GetSystemTime calls.

#define UTC_FORMAT "%Y-%m-%d %H:%M:%S"
char* get_utc_time()
{
 SYSTEMTIME system_time;
 static time_t previous_local_time;
 time_t local_time;
 struct tm gm_time;
 int millisec;
 char *time_fmt = NULL;

 time(&local_time);
 GetSystemTime(&system_time);
 millisec = system_time.wMilliseconds;
 if ((millisec == 0) && (local_time == previous_local_time))
 local_time++; // missed second rollover
 gmtime_s(&gm_time, &local_time);
 previous_local_time = local_time;

 time_fmt = (char *) malloc(128);
 if (time_fmt)
 {
 strftime(time_fmt, 128, UTC_FORMAT, &gm_time);
 sprintf_s(time_fmt, 128, "%s.%03d", time_fmt, millisec);
 }

 return time_fmt;
} // get_utc_time

Write Discrete Data Type Information

This example demonstrates how you can write the Instant Value and Counter Rate of a discrete data type to
the custom data file.

// Discrete data format: tsc.[QPC|CLOCK_MONOTONIC_RAW|RDTSC|UTC],CounterName1.COUNT|
INST[,CounterName2.COUNT|INST],[pid],[tid]
#define DISCRETE_FORMAT_1 "%s,%llu,%llu,,\n"
#define DISCRETE_FORMAT_2 "%s,%llu,%llu,%lu,\n"
#define DISCRETE_HEADER "tsc.UTC,Counter%c.COUNT,Counter%c.COUNT,pid,tid\n"
void write_discrete_data(FILE *file_out, char *buffer, uint64_t tsc, uint64_t counter1, uint64_t
counter2, DWORD dPid, DWORD dTid)
{
 char *utc_time = get_utc_time();
 size_t bytes_written = 0;

 if (buffer && file_out && utc_time)
 { // buffer and file_out valid

 if ((dPid == 0) && (dTid == 0))
 sprintf_s(buffer, BUFFER_SIZE, DISCRETE_FORMAT_1, utc_time, counter1, counter2);
 else
 sprintf_s(buffer, BUFFER_SIZE, DISCRETE_FORMAT_2, utc_time, counter1, counter2,

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

22

dPid);

 bytes_written = fwrite(buffer, strlen(buffer), 1, file_out);
 fflush(file_out);
 }

 if (utc_time)
 free(utc_time);
} // write_discrete_data

Format Path Name

This example demonstrates how you can format the full path name to the custom data file (which will be
created for a collection instance) using the environment variables of VTune Profiler.

 if (command)
 _dupenv_s(&command, &length, "AMPLXE_COLLECT_CMD");
 length = BUFFER_SIZE;
 if (datadir)
 _dupenv_s(&datadir, &length, "AMPLXE_DATA_DIR");
 if (filename && hostname)
 { // filename and hostname valid
 length = BUFFER_SIZE;
 _dupenv_s(&hostname, &length, "COMPUTERNAME");

 // log my process id so CustomCollector.bat can stop me
 sprintf_s(filename, BUFFER_SIZE, "%s\\..\\log\\CustomCollector%cPId.txt", datadir,
instance_id);
 printf("Data file: %s\n", filename);
 fopen_s(&file_out, filename, "wb");
 if (file_out)
 { // file_out valid
 sprintf_s(buffer, BUFFER_SIZE, "%u", my_pid);
 fwrite(buffer, strlen(buffer), 1, file_out);

 fclose(file_out);
 file_out = NULL;
 }

 // Note: appending .amr.corp.intel.com is unique to my test environment
 sprintf_s(filename, BUFFER_SIZE, "%s\\MyData%c-hostname-%s.amr.corp.intel.com.csv",
datadir, instance_id, hostname);
 std::cout << filename << std::endl;

 errnum = fopen_s(&file_out, filename, "wb");

Append Existing Custom Data
Suppose you have a custom data collector that runs independent of the VTune Profiler custom collector
interface. If you want to include this data in your analysis results, you must make sure to run the
independent data collector during the VTune Profiler analysis run. VTune Profiler includes only data with time
stamps within its running time frame.

You must also ensure that the custom data file for the independent data collector adheres to the file name
specifications and formatting rules seen earlier.

For example, this custom data file adds counters 6 and 7 to the results.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

23

Once the new custom data file is copied into the data subdirectory of VTune Profiler results,

1. In the VTune Profiler GUI, open the Collection Log tab.
2. Click the Re-resolve button (

) to finalize the data again. This includes the new custom data file that has time stamps in the range of
the collection time of VTune Profiler.

3. After finalization, switch to the Bottom-up tab and observe that counters 6 and 7 display in the data.

Display Custom Interval Data
When you collect custom Interval Data, after finalization of results, this information appears in the Frame
Rate swim lane of the timeline.

In the following example, there are two overlapping custom interval data - MyInterval1 and MyInterval2.
In the pop-up window below, you can see the start time of each interval. Hover your mouse over the timeline
to see all active intervals along with their start times and durations.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

24

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-2/examples-of-csv-format-and-imported-data.html#EXAMPLE_E551C1592E5A4987AB452AA720772D88

The custom interval data file must adhere to the same naming and formatting conventions explained
previously:

• The file name follows the structure <user-defined string>-hostname-<host name of system
under test>.csv.

• The header indicates the interval name, start, and stop times. The header may also include program and
thread IDs.

This example demonstrates how you can write interval data to the custom data file.

// You can mix multiple intervals in the data. Starting one interval stops the previous interval.
// The format for the interval data is name,start_tsc.[QPC|CLOCK_MONOTONIC_RAW|RDTSC|
UTC],end_tsc,[pid],[tid]
#define INTERVAL_FORMAT "%s,%s,%s,,\n"
#define INTERVAL_FORMAT_2 "%s,%s,%s,%lu,\n"
#define INTERVAL_HEADER "name,start_tsc.UTC,end_tsc,pid,tid\n"
void write_interval_data(FILE* file_out, char* buffer, const char* name, char *start_utc, char
*end_utc, DWORD dPid, DWORD dTid)
{

Intel® VTune™ Profiler Performance Analysis Cookbook 1

25

 size_t bytes_written = 0;

 if (buffer && file_out)
 { // buffer and file_out valid
 if ((dPid != 0) || (dTid != 0))
 sprintf_s(buffer, BUFFER_SIZE, INTERVAL_FORMAT_2, name, start_utc, end_utc, dPid);
 else
 sprintf_s(buffer, BUFFER_SIZE, INTERVAL_FORMAT, name, start_utc, end_utc);
 bytes_written = fwrite(buffer, strlen(buffer), 1, file_out);
 fflush(file_out);
 if (bytes_written < 1)
 std::cout << "fwrite() failed\n";
 }
} // write_interval_data

See Also
Import External Data
Create a CSV File with External Data
custom-collector Reference Information

Software Optimization for Intel® GPUs (NEW)
Use Intel® VTune™ Profiler to estimate overhead when
offloading onto an Intel GPU. Analyze the performance
of computing tasks offloaded onto the GPU.

The increasing popularity of heterogeneous computing has led performance-conscious developers to discover
that different types of workloads perform best on different hardware architectures. Intel provides many high-
performance architectures including CPUs, GPUs, and FPGAs. This methodology describes how you use VTune
Profiler to profile and optimize compute-intensive workloads offloaded onto Intel GPUs.

Understand Your Intel GPU
• Employ parallelism: Extracting superior performance from a workload-intensive GPU begins with an

understanding of GPU architecture and functionality. A GPU employs a high level of parallelism with
several smaller processing cores that work together. A GPU is well suited for workloads that can be split
into tasks that run concurrently. Single-core serial performance on a GPU is much slower than on a CPU.
Therefore, applications must take advantage of the massive parallelism available in a GPU.

• Move data intelligently: Using a GPU requires you to move data to and from the GPU, which can create
overhead and impact performance. Marshall data intelligently to take advantage of temporal and spatial
locality in the GPU. Using registers and caches to store data close together is important to get the best
performance.

• Use the offload model: Although your GPU is available to handle the most significant parts of your
workload, your CPU is still vital to perform other workload tasks. Use the GPU in an offload model, where
you offload some portion of your workload onto the GPU(target) device. The GPU functions as an
accelerator for those parts that perform best on the GPU. The CPU(host) executes the rest of the
workload. Optimizing software performance in this context centers on two major tasks:

• Optimal offload onto a GPU
• Optimization for the GPU

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

26

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/external-data-import.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/creating-a-csv-file-with-external-data.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/custom-collector.html

NOTE This methodology focuses on the use of a general-purpose GPU (GPGPU) exclusively for
computation. It covers these aspects of using GPUs in a computation model:

• What to offload
• How to offload
• How to write the GPGPU algorithm
• How to use GPU Offload Analysis in VTune Profiler to analyze GPU offload performance

The methodology does not address the use of Intel GPUs for graphics. For analysis of graphical
applications, use the GPU Compute/Media Hotspots Analysis in VTune Profiler as well as Intel® Graphics
Performance Analyzers (Intel® GPA).

Intel GPU Architecture

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see
GPU Architecture Terminology for Intel® Xe Graphics.

Before we examine the GPU offload model, let us first examine the architecture of an Intel GPU, like the
Gen9 GT2 GPU. This device is integrated into Intel® microarchitecture codenamed Skylake. You can program
this GPU using high level languages like OpenCL* and SYCL*.

The Gen9 GT2 GPU has a single slice with 24 Execution Units (EUs). An Execution Unit is the foundational
building block of GPU architecture.
The Execution Unit (EU) of a Gen9 GT2 GPU

An EU is a combination of simultaneous multi-threading (SMT) and fine-grained interleaved multi-threading
(IMT). EUs are computing processors that drive multiple issue, Single Instruction Multiple Data Arithmetic
Logic Units (SIMD ALUs). These SIMD ALUs are pipelined across multiple threads. SIMD ALUs are useful for
high-throughput floating-point and integer computations. The fine-grain threaded nature of the EUs ensures
continuous streams of instructions that are ready for execution. The IMT also hides the latency of longer
operations like memory scatter/gather, sampler requests, or other system communications.

The thread arbiter dispatches several instructions in each cycle of operation. When these instructions do not
propagate to functional units, there is a stall. The duration of a stall is measured by the number of execution
cycles that passed in that state. This measure helps us estimate the efficiency of EUs. The EU Array Stalled

Intel® VTune™ Profiler Performance Analysis Cookbook 1

27

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-offload-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-compute-media-hotspots-analysis.html
https://www.intel.com/content/www/us/en/developer/tools/graphics-performance-analyzers/overview.html
https://www.intel.com/content/www/us/en/developer/tools/graphics-performance-analyzers/overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/eu-array-stalled.html

metric counts the number of cycles when the EU was stalled but at least a single thread was active. The
stalling could happen when the EU was waiting for data from a memory subsystem. See GPU Metrics
Reference (in the VTune Profiler User Guide) for more information on related GPU metrics.
The Importance of Efficient Scheduling

To use the full computing power of a massively parallel machine, you must provide all EUs in the GPU with
enough calculations to execute. Therefore, EUs have more hardware threads than functional processing units.
Having more hardware threads can cause an oversubscription of instructions that need to be executed, but
this can also help hide stalls due to data that is waiting.

The scheduling of threads in this manner is an expensive operation. To make the scheduling efficient and
cost-effective, it is important to keep all EUs busy as much as possible. Scheduling can be ineffective in these
situations:

• The quantity of calculations is too small. Here, the scheduling overhead may be comparable to the time
spent on completing useful calculations.

• The quantity of calculations is too large. In this case, work distribution between threads can be uneven.
The entire occupancy of all EUs in the GPU will drop.

Use the EU Threads Occupancy metric to detect both of these situations. Low thread occupancy is a clear
indicator of ineffective distribution of workloads between threads.

Another situation that is less common happens when there are no tasks for EUs for a certain time period. The
EUs are then idle, and the idle state can impact occupancy negatively. Use the EU Array Idle metric to
detect this situation.
SIMD Execution with Floating-Point Units

In an EU, the primary computation units are a pair of SIMD floating-point units (FPUs). These FPUs actually
support both floating-point and integer computations. This table describes the SIMD execution capability of
these FPUs.

Data Size Data Type Number of SIMD Operations

16-bit Integer 8

16-bit Floating point 8

32-bit Integer 4

32-bit Floating point 4

The EU IPC Rate metric is a good indicator of the saturation of the FPUs. For example, if two non-stalling
threads saturate the floating-point compute throughput of the machine, the EU IPC Rate metric is 2.
Typically, this metric is below its theoretical maximum value of 2.

In the event that FPUs are saturated, but the data width is low, there is insufficient use of instruction level
parallelism. In this case, look at the SIMD Width metric.

SIMD Width Value Implication

Less than 4 See what is preventing the compiler from performing loop
vectorization.

4 or higher There is successful vectorization of instructions by the
compiler. Removing data dependencies or applying loop
unrolling techniques to the code can increase this value to
16 or 32, which is a good condition for data locality and
cache re-use.

Memory Subsystem

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

28

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-metrics-reference.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-metrics-reference.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/eu-threads-occupancy.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/eu-array-idle.html

The Gen9 GT2 GPU has a unique memory subsystem with a Unified Memory Architecture. It shares its
physical memory with the CPU and employs the zero copy buffer transfer effectively. This feature can speed
up data transfer between CPU and GPU, as illustrated below.

Memory hierarchy of Intel Processor Graphics Gen9 GT2 GPU at the SoC Level

EUs receive data from DRAM/LLC memories. They can take advantage of the reuse of data blocks that are
cached in GPU L3 or the Shared Local Memory (SLM). Due to massive parallelism, when all EUs request data
from memory, they can saturate the bandwidth capabilities of the memory sub-blocks.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

29

Access to the local CPU caches is much faster than access to system memory. In an ideal situation, data
access should happen from the local CPU caches as well. Similarly, the data read by EUs can remain in the L3
GPU cache. If reused, data access from the cache would be much faster than fetching data from main
memory.

In the Gen9 memory architecture, each slice has access to its own L3 cache. Each slice also contains two
sub-slices. Each sub-slice contains:

• A Local Thread Dispatcher
• An instruction cache
• A data port to L3
• Shared Local Memory (SLM)

You can control data locality by one of two methods:

• Particular consequent data access, which helps the hardware that stores the data in L3 cache.
• A special API to allocate local memory that is accessible for a work group and is served in SLM by

hardware.

While access to data in L3 cache is very fast, the cache capacity itself is not very large. Traversing large
arrays can make the cache useless as data may get evicted. The L3 Cache Miss metric indicates the amount
of data access required to fetch data from memory behind GTI. Data blocking techniques can also help with
reducing cache misses. For example, when you keep blocks for data fitted to an SLM, the Local Thread
Dispatcher for a sub-slice can retain the highest level of data locality. You can use VTune Profiler to track SLM
traffic and see information about the amount of data transferred as well as the transfer rate.

GPU Profiling Features in Intel® VTune™ Profiler
This methodology focuses on several key features in VTune Profiler that are tailored to support GPU analysis.
The following workflow highlights these features:

1. Run the GPU Offload Analysis on your application.

• Find out if your application is CPU or GPU bound.
• Define GPU Utilization.
• See if GPU EUs are stalled during execution.
• Identify the computing tasks that were most responsible to keep the GPU busy. These tasks could be

candidates for further analysis of GPU efficiency.
2. Collect a GPU Compute/Media Hotspots profile. Get a list of top computing tasks with metrics on:

• Execution time
• EU efficiency
• Memory stalls

3. Use the Memory Hierarchy Diagram to work on the most inefficient computing tasks.

• Analyze data transfer/bandwidth metrics.
• Identify the memory/cache units that cause execution bottlenecks.
• Make decisions on data access patterns in your algorithm based on GPU microarchitectural

constraints.
4. Run the Instructions Count preset analysis on kernels.

• Verify instruction sets and the selection of SIMD instructions generated by the compiler.
• Leverage special compilation options and pragmas so the compiler generates more efficient

instructions.
5. For large compute kernels, use the Basic Block Latency preset of the GPU Compute/Media Hotspots

analysis.

• Identify the code regions that are responsible for the greatest execution latency.
• Explore the latency metrics against your source code lines through the Source View.

6. Use the Memory Latency preset to find memory access code that created significant execution stalls.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

30

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-offload-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-compute-media-hotspots-analysis.html

• Examine memory access details through assembly instructions in the Assembly View, which
displays latencies against each individual instruction.

• Use known optimization techniques for GPUs to rearrange data access for a more memory-friendly
pattern.

7. Repeat iterations of the GPU Compute/Media Hotspots analysis on your improved algorithm until
you are satisfied with performance metrics.

Optimization Methodology When Offloading to Intel GPU
Heterogeneous applications are normally designed in a manner that the portion to be offloaded onto an
accelerator is already identified. If you do not already know what code portions to offload, use Intel® Offload
Advisor for this purpose as the decision can be a complex task.

This methodology assumes that you have already identified the code to be offloaded onto a GPU. We now
focus on the best way to implement this offload on the host side.
Step 1: Examine Device Utilization

Your optimization methodology should distribute the time spent on algorithm execution by CPU cores and
accelerator EUs effectively. Usage metrics on device utilization (CPU Usage and GPU Usage metrics) can
help us determine this efficiency early on. Ideally, these values are 100% but if there are gaps or delays in
the execution, use VTune Profiler to identify the locations in the application code where they occurred.
Step 2: Define Efficiency of Code Execution on the GPU

Let us look at the matrix sample application. This contains matrix-to-matrix multiplication operations over FP
data with dense matrix C = A B.

For the sake of coding simplicity, A, B and C are square n × n matrices.

NOTE
For the sake of readability and compactness of representation, we apply many simplifications. The
matrix multiplication types of benchmarks are well known, and many computing optimization methods
are developed even for accelerators. We consider the analysis of algorithms instead of their synthesis.

for (size_t i = 0; i < w; i++)
 for (size_t j = 0; j < w; j++) {
 c[i][j] = T{};
 for (size_t k = 0; k < w; k++)
 c[i][j] += a[i][k] * b[k][j];
 }

In this example, we look at a simplified C++ version of the matrix sample. This version has been stripped of
details about kernel submission into a queue. The actual matrix sample is written to SYCL* standards and
compiled with the Intel® oneAPI DPC++/C++ compiler.

Let us identify a portion of this code to offload onto an accelerator. Typically, the outermost look is a good
candidate. However, in this example, the innermost loop could be a compute kernel. Also, the innermost loop
in this snippet may not necessarily be the innermost loop in the sample either. Higher level library calls or
third party functionality could mask an entire structure of computer iteration. Therefore, for the purpose of
explaining this methodology, we choose to offload the innermost loop:

for (size_t k = 0; k < w; k++)
 c[i][j] += a[i][k] * b[k][j];

Step 3: Run GPU Offload Analysis

Intel® VTune™ Profiler Performance Analysis Cookbook 1

31

https://www.intel.com/content/www/us/en/developer/articles/technical/offload-modeling-resources-for-intel-advisor-users.html
https://www.intel.com/content/www/us/en/developer/articles/technical/offload-modeling-resources-for-intel-advisor-users.html

Use the GPU Offload Analysis in VTune Profiler to quickly identify the hottest computing tasks offloaded to a
GPU. You can also clarify CPU activity when submitting these tasks. In the example below, we focus on a
single active computing task. Therefore, we can ignore the CPU here. We use the GPU Offload analysis to
collect information about computing task execution on the GPU.

Once the analysis is complete, the Summary window informs us about measurements of GPU Utilization and
EU Stalls. Following the recommendations here, let us first examine host activity that could be responsible for
low GPU utilization. We switch to the Graphics tab to open the Bottom-up view.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

32

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-offload-analysis.html

Look at the matrixMultiply1 kernel results in the figure above.

In order to get the work completed in a reasonable amount of time, this version of the kernel uses 256X256
dimension matrices. The Instance Count column tells us that the kernel was invoked 65,536 times. Each
instance was so small that the average time of the kernel was rounding off to zero seconds. The spectrum
pattern in the timeline also indicates a rapid kernel invocation rate. In this case, most of the time is spent on
creating small kernels. The Idle column in the EU Array section informs us that the EUs were idle for 92.6%
of the time. Invoking too many short kernels is a key indicator of work inefficiency.

The Work Size section reveals that there was inefficiency in work distribution. Let us now offload the outer
loop.

This action should give better performance by reducing the number of compute kernel instances to one
(matrixMultiply2). The figure below shows a GPU Hotspots analysis for this improved version of the
kernel. This version is also called a Naïve implementation.

GPU Hotspots Analysis for naive implementation of matrix multiply example

Intel® VTune™ Profiler Performance Analysis Cookbook 1

33

In this case, the size of the matrices was increased to 2048 X 2048 and the wall-clock performance was still
more than 10x faster. The EU Threads Occupancy metric is high. This indicates that there is enough work
available for the execution units.

Task time characterized by device operations

When we look at the timeline in the figure above, we observe a single computing task that took nearly 800
ms, versus data transfer that only took 100 ms. This ratio between executing data and transferring data is
more desirable. Further improvements to the algorithm can result in greater improvements to this ratio.

Notice that the compiler generated the full length of SIMD instructions (SIMD Width=32). This arranged data
access that resulted in the EUs being active for 86.8% of the time, as opposed to near zero in the previous
run. This exercise demonstrates the importance of providing enough work within each invocation of a kernel.
Step 4: Run GPU Compute/Media Hotspots Analysis

The naive implementation of the matrix multiplication example is much faster than the initial version. But we
can still expect improvements in performance.

VTune Profiler reported a high value for the EU Threads Occupancy metric (95.7%), which meant that the
work was distributed properly among EUs. But the execution engine is still underutilized with the
matrixMultiply2 kernel. We deduce this from the EU Array Stalled metric, which is only 9.2%.

To investigate limiting factors for a kernel, let us run the GPU Compute/Media Hotspots analysis. This way,
we can see detailed information about kernel execution in a GPU.

Our first step is to identify if the kernel is computed bound or memory bound.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

34

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-compute-media-hotspots-analysis.html

The GPU Hotspots analysis has several predefined profiles or presets. You can use these presets to collect
different metrics related to memory access and computing efficiency. To understand kernel execution better,
we use the Full Compute preset. From the information in this preset, we see that EU FPUs were only active
63.5% of the time by executing the kernel matrixMultiply2.

FPU activity for the compute kernel

Therefore, the kernel was memory bound, not compute bound.

Our next step is to examine the Memory Hierarchy Diagram. This diagram provides data transfer
information between EUs and memory units. The information can help us define optimization steps in the
code of the kernel.

When we select the Overview preset, the Memory Hierarchy Diagram displays values for the bandwidth of
the links between memory units (like GPU L3 Cache, GTI Interface, LLC and DRAM) and EUs, as well as total
data transferred between them.

Kernel data transfer in the GPU memory subsystem

Notice the overall amount of data transferred to EUs (~68 GB) and data brought from LLC/DRAM through the
GTI interface (14 GB).

Intel® VTune™ Profiler Performance Analysis Cookbook 1

35

When you compare these data sizes to the size of each matrix data array (2048x2048x4=16MB), the
transferred amount is enormously high. This condition makes execution ineffective due to access to global
memory. We should address this issue with more efficient data access (a consequent data or unit stride
access in array) and minimal access to the global memory.
Step 5: Additional Kernel Code Optimizations

Fetching data from global memory is a common performance limiting factor for GPUs. This problem is
worsened in the case of discrete GPUs. Here, the PCIe bus introduces more bandwidth and latency
limitations. A common but sub-optimal approach is to increase data locality and reuse. This is done by
blocking matrix areas and completing multiply-add operations within the smaller blocks that fit into a cache
memory that resides closer to execution units. You can implement this optimization by one of two ways:

• Allow the hardware to recognize frequently accessed data and preserve it in a cache automatically.
• Exercise more manual control over access to data blocks by placing the most used data in the Shared

Local Memory.

Use care when implementing the latter as it can result in these conditions:

• Poor management of threads, as SLM access is limited to threads from its slice only.
• Slow data access in case the ratio of data reads/write is below a certain threshold.

NOTE The impact of the read/write ratio on GPU performance can vary with GPU hardware. Therefore
the read/write threshold value is subtle and depends on the GPU hardware. But an increase in the
number of write operations increases the chances of performance slowdown.

One approach to use SLM with the matrix multiplication algorithm is to split the global work set of matrices
into blocks or tiles and perform dot product operations in the tiles separately. This action should decrease the
number of global memory accesses as the entire tile should fit into the SLM area. Although this approach
does not enable optimal access to data arrays, the access is much faster due to achieved data locality.

In the code snippet below, the pseudo code demonstrates the idea of data accesses to tiles in the local index
space.

i, j // global idx
 for (size_t tidx = 0; tidx < TILE_COUNT; tidx++)
 ti, tj // local idx
 ai, aj, bi, bj // global to local idx
 ta[ti, tj] = a[ai, aj]
 tb[ti, tj] = b[ai, aj]

 for (size_t tk = 0; tk < TILE_SIZE; tk++)
 c[i][j] += ta[ti][tk] * tb[tk][tj];
 }

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

36

The implementation of the tiled multiplication significantly redistributes the data flow. An analysis of the
matrixMultiply4 kernel (see Memory Hierarchy diagram below) reveals some observations:
Tiled kernel data transfer in the Shared Local Memory (SLM)

• The data volume coming from LLC via GTI interface is just ~2 GBs, most of which came from L3/SLM.
• The L3 Bandwidth metric (highlighted in the table above) reached 155GB/s, which is more than 70% of

the maximum L3 bandwidth.
• 42% of EUs were still stalled.

From these observations, we can conclude that the algorithm execution is still memory bound, albeit with
much faster cache memory. In total, the kernel now executes almost 5x faster than the naïve implementation
we started with.

Next, let us look at the total time for computing tasks, as shown in the table below.
Timing for the tiled kernel

Intel® VTune™ Profiler Performance Analysis Cookbook 1

37

There are a few ways in which we can enable a faster implementation.

• Organize high level data access in a more optimal way.

Using sub-groups for data distribution, we can leverage sub-slices of the GPU that access their own local
memory.

• Use a low-level optimization for specific GPU architecture and use optimized libraries like
Intel® oneAPI Math Kernel Library (oneMKL).

These steps can help us achieve near maximum performance with the GPU. However, any GPU has its
theoretical limit for performance that can be calculated using some known characteristics.

For example, let us calculate the theoretical minimum time for algorithm execution in the Gen9 GPU. From
the Gen9 GT2 GPU architecture parameters, we know that this GPU contains 24 EUs. Each EU has two
FPUs (SIMD-4). Each FPU can perform two operations (MUL+ADD). With a max core frequency of 1.2
GHz, the maximum FP performance is:

24 * 2 * 4 * 2 = 384 Flop/cycle (32b float)

384 * 1.2 = 460.8 GFLOPS

The number of FP operations of the naïve matrix multiplication implementation is 2*N3, which is
approximately 17.2 GOPS when N=2048.

Theoretically, if we were not limited by data access inefficiency and bandwidth constraints, the algorithm
could be calculated in 17.2 / 460.8 = 0.037 sec or 37 ms. The VTune results revealed that the best time
executed by the kernel was 490 ms, which is over 10x slower than the theoretical calculation time. We
can therefore conclude that there is still room for performance improvement.

Scaling Performance

A highly parallel application, like the matrix multiplication sample, leverages the increased efficiency from the
use of GPU resources. However, using additional compute resources should also increase performance,
provided the scaling is not limited by memory bottlenecks.

In the Gen9 series of GPUs, there are GT3 and GT4 options, which contain 48 EUs and 72 EUs respectively.
However, embedded GPUs have a fundamental limitation in area. This prevents us from adding more EUs for
greater potential scaling, and bigger cache blocks for faster data access. Discrete GPUs are less limited by
area or power constraints. If a system allows integration with a single, external GPU or with multiple GPUs,
we could scale up accelerator performance.

However, remember that between the main CPU, its memory, and the GPU, there will be a communication
interface (like a PCIe bus). This may have its own constrains on bandwidth, latency, and data coherency.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

38

https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/current/intel-oneapi-math-kernel-library-onemkl.html

Let us look at an Intel® Iris® Xe MAX GPU, previously known as a PCIe discrete graphics card with the code
name DG1.

High level view of the Intel® Iris® Xe MAX microarchitecture

An analysis of the same tiled kernel implementation gives us these results:

The tiled matrixMultiply kernel in GPU Hotspots results

The kernel execution is roughly 4x faster.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

39

This is expected, as the Intel® Iris® Xe MAX GPU has 96 EUs against the 24 EUs in the observed Gen9 GPU.
However, we can notice in the table below that the EUs are still stalled 51% of the time during execution.
This is quite likely due to the wait for data from memory (which is well known for general matrix algorithms).
The question is, which one?

EU Array metrics for the tiled matrixMultiply4 kernel

If we switch the mode in the results grid to show the percentage of maximum bandwidth, we observe that
the L3 and GPU memory bandwidth was far from the maximum, so they are not bottlenecks. Let us look at
the Memory Hierarchy Diagram to get a better picture of data transfers.

Memory Hierarchy Diagram with data transfer metrics

Beyond the GTI interface, data comes from the VRAM or main DRAM. As we prepare matrix data on the CPU
side, we know that data for matrix a and matrix b is transferred via PCIe to the GTI. The measured GTI
bandwidth is a rough indication of the data rate required for PCIe interface. The measured data read rate is
38 GB/s at the GTI interface, while PCIe 3.0x16 has a theoretical maximum of only16GB/s one way. A
reasonable conclusion is that we are limited to the PCIe bandwidth. To measure the data traffic on PCIe with
VTune Profiler, we need a server platform, which has PCIe performance counters.

On a server-based setup, the bandwidth on the PCIe is much lower than bus limitations. So, we can conclude
that:

• All data is being fetched from VRAM and the EU stalls. This may be defined by the latency of traveling
data from video memory to EUs.

• Since the data traffic between EUs and L3 is the same as between GTI and the external traffic router, you
can achieve additional performance optimizations using a better reuse of the L3 cache. For example, you
can introduce second level of matrix tiling with blocks size that would fit to the L3 cache of each GPU
slice.

Conclusion
Generally, in heterogeneous applications, once a certain workload is offloaded onto an accelerator, it is
essential to provide enough computing tasks for massively parallel accelerator machines like a GPU.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

40

• Improve the efficiency of the GPU by estimating the data transfer and task scheduling overhead for
offloaded tasks.

• Use the GPU Utilization and GPU Occupancy metrics in the GPU Offload analysis of VTune Profiler to
estimate the inefficiency of using a GPU.

• The performance of a computing task execution may be limited by several microarchitectural factors, like
the lack of Execution Units or presence of bottlenecks in memory subsystems or interfaces. Run the GPU
Compute/Media Hotspots analysis to identify these limitations. Highlight the bottlenecks on the GPU
Memory Hierarchy Diagram along with detailed microarchitecture metrics for every computing task. For
more complicated kernels, use the latency analysis to identify the most critical code inside a kernel.

See Also
The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
Offload with Intel Advisor
VTune Profiler User Guide
Profiling a SYCL* application running on a GPU
Optimize Applications for Intel® GPUs with Intel® VTune™ Profiler
GPU Architecture Terminology for Intel® Xe Graphics
Using the Command-Line Interface to Analyze the Performance of a SYCL* Application running on
a GPU
Intel oneAPI Math Kernel Library

Core Utilization in DPDK Apps
Explore metrics that characterize core utilization in
terms of packet receiving in Data Plane Development
Kit* (DPDK)-based applications.

In data plane applications where you require fast packet processing, the DPDK is supposed to poll a certain
port for incoming packets in an infinite loop, pinned to a certain logical core. Such a polling model of packet
retrieval poses the challenge of measuring effective core utilization. The CPU time on the core (where the
polling loop is running) is always close to 100%, regardless of the many loop cycles when the DPDK runs
idle. So, the CPU time cannot reflect how the core is utilized on the packet retrieval. However, for this polling
model, the core utilization indicator might be Rx Spin Time - % of wasted polling loop cycles. Wasted
Cycles are iterations during which the DPDK does not receive any packets.

Follow this recipe to analyze the efficiency of packet retrieval in a DPDK-based workload.

Content expert: Jeffrey Reinemann

1. INGREDIENTS
2. DIRECTIONS:

a. Run Input and Output analysis
b. Analyze core utilization with the DPDK Rx Spin Time metric
c. Analyze packets retrieval with DPDK Rx Batch Statistics histogram
d. Understand Rx operations and investigate Rx peaks

Ingredients
• Application: A DPDK testpmd application that runs on a single core and performs L2 forwarding. The

application is compiled against DPDK with profiling support for VTune Profiler.
• Tools:

• DPDK with VTune Profiler profiling support enabled: DPDK versions 18.11 (and newer) include
profiling support for VTune Profiler. When using earlier versions, apply the attached patches (available
for versions 17.11, 18.02, and 18.05). To enable profiling on the DPDK side, enable the VTune Profiler
to attach to the DPDK polling cycle. For this, reconfigure and recompile the DPDK (and the target

Intel® VTune™ Profiler Performance Analysis Cookbook 1

41

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/core-utilization-in-dpdk-apps.html
https://www.intel.com/content/www/us/en/developer/articles/technical/offload-modeling-resources-for-intel-advisor-users.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-dpc-application.html
https://www.intel.com/content/www/us/en/developer/articles/technical/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html?cache=false?cache=false
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-gpu-from-cli.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-gpu-from-cli.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/current/intel-oneapi-math-kernel-library-onemkl.html
https://community.intel.com/t5/user/viewprofilepage/user-id/109704

application) with the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS and
CONFIG_RTE_ETHDEV_PROFILE_WITH_VTUNE flags enabled (located in the config/common_base
config file).

• Intel® VTune™ Profiler: Input and Output analysis
• Operating system: Test system that consists of the traffic generator (GEN in the picture below)

providing 64-byte frames and packet receiver (SUT - system under test), connected via 40 GbE link. The
SUT performs L2 forwarding of packets.

• CPU: Intel® Xeon® Platinum 8180 (38.5M Cache, 2.5 GHz, 28 cores)

Run Input and Output Analysis
To run DPDK analysis, select the and enable in the :

1. Open the VTune Profiler GUI.
2. From the Analysis Tree, select Input and Output analysis.
3. Under Select API to profile, select the DPDK option.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

42

You can correlate API-specific metrics, such as DPDK Rx Spin Time, with the hardware events and hardware
event-based metrics. For example, you can see the dependency between DPDK Rx Spin Time and PCIe
bandwidth that can be collected when the Locate MMIO accesses option is enabled.

To run Input and Output analysis with PCIe bandwidth and DPDK metrics from command line, execute the
following command as a root, which enables getting per-device PCIe bandwidth with human-readable names:

vtune-cl -collect io -knob kernel-stack=false -knob dpdk=true -knob mmio=true -knob collect-
memory-bandwidth=false -knob dram-bandwidth-limits=false --target-process=testpmd

Analyze Core Utilization with the DPDK Rx Spin Time Metric
When the data is collected, start your analysis with the Platform tab and explore the DPDK Rx Spin Time
overtime metric that refers to a thread. This metric shows (on a per-thread basis) a portion of
rte_eth_rx_burst(...) function calls that return zero packets, which is identical to the fraction of polling
loop iterations that provide no packets:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

43

NOTE
The result demonstrated in this recipe is synthetic.

On the Platform view above, the CPU Time (brown) for the polling thread is always close to 100%. The
DPDK Rx Spin Time (red) illustrates thread utilization in terms of packet retrieving. Hover the mouse over
the charts to find values at each moment of time in the tooltip.

In this example, the traffic generator was automated to increase the traffic rate every two seconds by 5% of
40 Gbps and collect packet loss data. Overtime data written to a properly formatted *.csv file can be
imported to a VTune Profiler project and visualized on its timeline.

By default, VTune Profiler cannot collect the Packet Rate and Packet Loss metrics displayed in the Global
Counters section above. For this recipe, these metrics were collected separately and manually imported to
the result collected by the VTune Profiler. As an alternative, you can use the custom collector feature in
VTune Profiler to import a csv file with additional metrics. The custom collector is an additional process
executed by VTune Profiler when the collection starts, stops, or pauses. You can use the custom collector to
implement all the system automation and collect additional metrics. This makes the experiment reproducible
and results valid for comparison, which is useful for consequential performance tuning.

At the bottom of the Platform view, you can see how the Inbound PCIe Bandwidth was changing over
time. Since the analysis was run on the Intel microarchitecture code named Skylake with root privileges,
PCIe Bandwidth is broken into PCIe devices with human readable names.

All metrics in the Platform view above are correlated. As the traffic generation rate grows, the Inbound
PCIe Bandwidth increases and DPDK Rx Spin Time goes down. At some point, the test system gets
overloaded and a non-zero Packet Loss value shows up.

NOTE
If a thread processes several Rx Queues, the DPDK Rx Spin Time metric will represent composite
statistics.

Analyze Packets Retrieval with DPDK Rx Batch Statistics Histogram
DPDK uses the rte_eth_rx_burst(...) function to receive batches of packets from the NIC. It can retrieve
any number of packets in the interval (0, MAX_NB_PKTS) , where MAX_NB_PKTS is a constant value (typically,
32). Hence, with the fixed Rx Spin Time, the core may process far different traffic, so Rx Spin Time does
not represent a full picture.

To see summary statistics for packet retrieving and get a full characterization of core utilization on Rx, switch
to the Summary tab and explore the DPDK Rx Batch Statistics histogram:

This histogram represents statistics on receiving batch packets for the selected Port / Rx Queue / TID
grouping. In this example, all the peaks show values multiple of 4. This is not a coincidence and the root
cause investigation requires understanding the background of the packet receiving.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

44

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/external-data-import.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/using-a-custom-collector.html

Understand Rx Operations and Investigate Rx Peaks
To receive packets, the working core communicates with the NIC through the Rx descriptors that are data
structures keeping the information about the packet, such as its address, size, and so on. The Rx descriptors
are joint into ring buffers called Rx Queues. In simple terms, the packet receiving is the race in the ring
buffer, where the NIC fills in the Rx descriptors from the ring buffer Head and working core polls, processes
and frees Rx descriptors coming from the Tail:

When the core frees Rx descriptors, it moves the Tail pointer forward. When the Tail reaches the Head,
rte_eth_rx_burst() can return 0 packets. In the opposite case, when the Head reaches the Tail, there are
no free Rx descriptors in the Rx Queue and packet loss may occur.

To deliver a new packet, the NIC reads the Rx descriptor in the Head of the Rx Queue and transfers the
packet to the memory by the address specified by the core in the descriptor. Then, it has to write back the Rx
descriptor to notify the core on the new packet arrival.

Intel® Ethernet Controller XL710, used in the recipe setup, supports 16 and 32 Byte Rx descriptors. Both are
less than the cache line size, therefore the NIC has the descriptor write back policy denoting that NIC should
coalesce writes by packing Rx descriptors into the integer number of cache lines to save PCIe bandwidth.
Primarily, the XL710 writes back completed Rx descriptors when the following requirements are met:

• 4 x 32 Byte descriptors or 8 x 16 Byte descriptors are completed.
• A descriptor is invalidated in the internal NIC cache.

Refer to the Intel Ethernet Controller X710/ XXV710/XL710 Datasheet for more details.

In this recipe, the system employed 32 Byte Rx descriptors. That is why most peaks of the DPDK Rx Batch
Histogram mark values in multiple of 4.

DPDK allows toggling the Rx descriptor size. These DPDK Rx Batch Histogram diagrams describe the
changes that happen when running testpmd with 32 and 16 Byte Rx descriptors under medium load:

• 32 Byte Rx descriptor: Most of rte_eth_rx_burst() calls receive 4 packets.

• 16 Byte Rx descriptor: Most of rte_eth_rx_burst() calls receive 8 packets.

See Also
PCIe Traffic in DPDK Apps This recipe introduces PCIe Bandwidth metrics used in Intel® VTune™
Profiler to explore the PCIe traffic for a packet forwarding DPDK-based workload.
Use a Custom Collector

Intel® VTune™ Profiler Performance Analysis Cookbook 1

45

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/using-a-custom-collector.html

Create a CSV File with External Data

External Data Import

PCIe Traffic in DPDK Apps
This recipe introduces PCIe Bandwidth metrics used in
Intel® VTune™ Profiler to explore the PCIe traffic for a
packet forwarding DPDK-based workload.

Contact Expert:Jeffrey Reinemann

Data plane applications running on systems with 10/40 GbE NICs usually highly utilize platform I/O
capabilities, in particular, intensively consume the bandwidth of the PCIe link that is an interface between the
CPU and Network Interface Card (NIC). For such workloads, it is critical to effectively utilize the PCIe link by
keeping the balance between packet transfers and control communications. Understanding PCIe transfers
helps locate and fix performance issues.

For detailed methodology of the PCIe performance analysis for DPDK-based workloads, see Benchmarking
and Analysis of Software Data Planes.

In this recipe, you can explore the stages of packet forwarding with DPDK and theoretical estimations for
PCIe bandwidth consumption. Then, you can compare the theoretical estimations with the data collected with
Intel® VTune™ Profiler.

1. INGREDIENTS
2. DIRECTIONS:

a. Understand Inbound/Outbound PCIe Bandwidth metrics.
b. Configure and run Input and Output analysis.
c. Understand PCIe transfers required for packet forwarding.
d. Understand PCIe Traffic optimizations.
e. Estimate PCIe Bandwidth consumption.
f. Compare PCIe Bandwidth vs Packet Rate.

Ingredients
This section lists the hardware and software tools used for the recipe.

• Application: DPDK testpmd app running on one core and performing L2 forwarding. The application is
compiled against DPDK with profiling enabled by Intel® VTune™ Profiler.

• Performance analysis tools:

• Intel® VTune™ Profiler 2024 (or newer): Input and Output analysis.

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• System setup: a traffic generator and a system under test, where the testpmd app performs packet
forwarding and where Intel® VTune™ Profiler collects performance data.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

46

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/creating-a-csv-file-with-external-data.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/external-data-import.html
https://community.intel.com/t5/user/viewprofilepage/user-id/109704
https://fd.io/docs/whitepapers/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/docs/whitepapers/performance_analysis_sw_data_planes_dec21_2017.pdf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

• CPU: Intel® Xeon® Platinum 8180 (38.5M Cache, 2.5 GHz, 28 cores)

Understand Inbound / Outbound PCIe Bandwidth Metrics
PCIe transfers may be initiated by both the PCIe device (for example, NIC) and the CPU. So, Intel® VTune™
Profiler distinguishes PCIe bandwidth metrics for the following bandwidth types:

• Inbound PCIe Bandwidth caused by device transactions targeting the system memory

• Inbound Reads show device reads from the memory
• Inbound Writes show device writes to the memory

• Outbound PCIe Bandwidth caused by CPU transactions targeting device's MMIO space

• Outbound Reads show CPU reads from device's MMIO space
• Outbound Writes show CPU writes to the device's MMIO space

Configure and Run Input and Output Analysis
To collect Inbound and Outbound PCIe Bandwidth data, use the Input and Output analysis.
Run Analysis from GUI:

1. Create a new project in VTune Profiler.
2. In the HOW pane, select Input and Output analysis.
3. In Select platform-level metrics, select Locate MMIO accesses.
4. In Select API to profile, select DPDK.

5. Click the Start button.

Run Analysis from Command Line:

When running this analysis from the command line, use the collect-pcie-bandwidth knob. By default,
this knob is set to true.

The following command starts the collection of PCIe Bandwidth data along with DPDK metrics:

vtune -collect io -knob kernel-stack=false -knob dpdk=true -knob mmio=true -knob collect-memory-
bandwidth=false --target-process my_process

Intel® VTune™ Profiler Performance Analysis Cookbook 1

47

Once the results display in the Intel® VTune™ Profiler GUI, open the Platform tab. Focus on the Inbound and
Outbound PCIe Bandwidth sections.

NOTE
Starting with server platforms based on the Intel microarchitecture code name Skylake, you can
collect PCIe Bandwidth metrics per-device. You must have root privileges.

Understand PCIe Transfers Required for Packet Forwarding
Packet forwarding with DPDK implies receiving a packet (rx_burst DPDK routine) followed by transmitting
the packet (tx_burst). The Core Utilization in DPDK Apps recipe describes details of packet receiving by
means of Rx queue containing Rx descriptors. Packet transmitting with DPDK works similarly to packet
receiving. To transmit packets, a working core employs Tx descriptors - the 16-Byte data structures that
store a packet address, size, and other control information. The buffer of Tx descriptors is allocated by the
core in the contiguous memory and is called Tx queue. Tx queue is handled as a ring buffer and is defined by
its length, head, and tail. Packet transmitting from the Tx queue perspective is very similar to the packet
receiving: the core prepares new Tx descriptors at the Tx queue tail, and the NIC processes them starting
from the head.

For both Rx and Tx queues, the tail pointers are updated by the software to notify the hardware that new
descriptors are available. The tail pointers are stored in the NIC registers that are mapped to the MMIO
space. So, the tail pointers are updated through Outbound Writes (MMIO Writes). MMIO address space is
uncacheable, so Outbound Writes, and especially Outbound Reads, are very expensive transactions and,
therefore, such transfers should be minimized.

For packet forwarding, PCIe transactions go through the following workflow:

1. The core prepares the Rx queue and starts polling the Rx queue tail.
2. The NIC reads an Rx descriptor in the Rx queue head (Inbound Read).
3. The NIC delivers the packet to the address specified in the Rx descriptor (Inbound Write).
4. The NIC writes back the Rx descriptor to notify the core that the new packet arrived (Inbound Write).
5. The core processes the packet.
6. The core frees the Rx descriptor and moves the Rx queue tail pointer (Outbound Write).
7. The core updates the Tx descriptor in the Tx queue tail.
8. The core moves the Tx queue tail pointer (Outbound Write).
9. The NIC reads the Tx descriptor (Inbound Read).

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

48

10. The NIC reads the packet (Inbound Read).
11. The NIC writes back the Tx descriptor to notify the core that the packet is transmitted and the Tx

descriptor can be freed (Inbound Write).

Understand PCIe Traffic Optimizations
To increase the maximum packet rate and reduce the latency, the DPDK uses the following optimizations:

• No Outbound Reads. No expensive Outbound Reads (MMIO Reads) are needed to understand Rx and Tx
queues head position. Instead, the NIC writes back Rx and Tx descriptors to notify software that the head
position moves.

• Decreased Inbound Write Bandwidth related to the Tx descriptors. Tx descriptor write back is
required to notify the core where the Tx queue head is and which Tx descriptors can be reused. In case of
packet receiving, it is critical to write back each Rx descriptor to notify the core about a new arrived
packet as soon as possible. In packet transmitting, there is no need to write back each Tx descriptor. It is
sufficient to notify the core about successful packet transmission periodically (for example, on every 32nd
packet), which would mean that all previous packets are transmitted successfully too. The NIC writes back
the Tx descriptor when the RS (Report Status) bit of the Tx descriptor is set. On the DPDK side, there is a
RS bit threshold; its value defines how frequently the RS bit is set and thus how frequently the NIC writes
back Tx descriptors. This optimization amortizes Inbound Writes related to the Tx descriptors.

• Amortized Outbound Writes. The DPDK performs packet receiving and transmitting in batches, and
application updates tail pointers after a batch of packets has been processed. Some implementations of
rx_burst use the Rx free threshold. This threshold enables setting the number of Rx descriptors
processed before the app updates the Rx queue tail pointer (note that threshold becomes effective only
when it is greater than the batch size). That way, the Outbound Writes are averaged among a number of
packets.

Besides, at the platform level all the transactions are performed at the cache line granularity, so the
hardware always tries to coalesce reads and writes to avoid partial cache line transfers.

Estimate PCIe Bandwidth Consumption
For the packet forwarding case with optimizations described above, you can apply the following equations
estimating PCIe bandwidth consumption at the given packet rate:

Inbound_Write = Pkt_Rate ∙ Rx_Desc_Size + Pkt_Size + Tx_Desc_Size
rs_bit_threshold

Inbound_Read = Pkt_Rate ∙ Rx_Desc_Size + Pkt_Size + Tx_Desc_Size

Outbound_Write = Pkt_Rate ∙ Rx_Tail_Ptr_Size
max rx_f ree_threshold, rx_batch_size

+
Tx_Tail_Ptr_Size
tx_batch_size

Outbound_Read = 0

The equation for Outbound Write Bandwidth above works only when the packets are processed with the
batches of the same size. This formula should be more accurate if packets are transmitted with batches of
multiple sizes.

In the simple forwarding case, the core transmits all the received packets. The testpmd is an application
designed within run-to-completion model, so you can assume that tx_burst operates with the same
batches of packets as rx_burst does. In other words, the Rx Batch Histogram (see the Core Utilization in
DPDK Apps recipe) reflects the statistics of both packet receiving and packet transmitting. Therefore, you can
use the Rx Batch Histogram to estimate Outbound Write Bandwidth in a generic case.

Instead of the Tx batch size consider an "average" Tx batch size:

average_tx_batch_size = ∑ibi
ni
n

=
∑ibi

2Ni
∑ibiNi

Intel® VTune™ Profiler Performance Analysis Cookbook 1

49

https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html#port-config-threshold
https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html#port-config-threshold

where bi is the batch size, Ni - the number of rx_burst calls with batch size bi, ni = biNi – the number of

packets in the ith peak of the Rx Batch Histogram and n = ∑ibiNi is the total number of packets
forwarded. The picture below illustrates this calculation. For this example, the batch histogram has 3 peaks
with batch sizes of 8, 10 and 12, and the calculation provides an average batch size equal to 11.

For simplicity, consider Rx free thresholds greater that maximal Rx batch size. Then, the final equation for
Outbound Write bandwidth is the following:

Outbound_Write = Pkt_Rate ∙ Rx_Tail_Ptr_Size
rx_f ree_threshold

+
Tx_Tail_Ptr_Size

average_tx_batch_size

Compare Estimations vs. Analysis
The charts illustrate a theoretical estimation for PCIe bandwidth and the PCIe bandwidth collected with Intel®
VTune™ Profiler for the testpmd app configured as listed in the table below.

Packet Size, B 64

Rx Descriptor Size, B 32

RS Bit Threshold 32

Rx Free Threshold 32

The fracture in the middle of the Outbound Write dependency looks interesting. This drop is a consequence
of the Batch Histogram modification caused by processing of the increased packet rate. Before this point,
the Batch Histogram has only two peaks - with batch sizes 0 and 4, and at this point a new peak of 8
appears (see the histograms below). According to the equations listed above, this increases an average batch
size and leads to reducing the Outbound Write Bandwidth.

For 10 Mpps:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

50

For 13 Mpps:

In general, theoretical estimations look very close to the data reported by Intel® VTune™ Profiler, though
there are some deviations that may be caused by effects that are not taken into account in equations.

The data plane application used in this recipe is already well-optimized; however, the demonstrated recipe is
a solid starting point for I/O-centric performance analysis of real world application.

See Also
Toggling the 16/32 Byte Rx descriptor for i40e driver
Available thresholds and how to change them in testpmd
Benchmarking and Analysis of Software Data Planes

DPDK Event Device Profiling
Use Intel® VTune™ Profiler to analyze the efficiency of
DPDK Event Device pipeline utilization in your DPDK-
based application and identify issues, such as
inhomogeneous load distribution and worker core
underutilization.

Content Experts: Eugeny Parshutin, Jeffrey Reinemann

Intel® VTune™ Profiler Performance Analysis Cookbook 1

51

http://doc.dpdk.org/guides/nics/i40e.html?highlight=config_rte_librte_i40e_16byte_rx_desc
https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html#port-config-threshold
https://wiki.fd.io/images/3/31/Benchmarking-sw-data-planes-Dec5_2017.pdf
https://community.intel.com/t5/user/viewprofilepage/user-id/109704

The Data Plane Development Kit (DPDK) is a framework that consists of libraries that accelerate packet
processing workloads running on a wide variety of CPU architectures. One of these libraries is the eventdev
library that enables you to improve system load balancing by using an event-based model in your
application. An event-based approach suggests that the work that needs to be done by the system is
presented as separate units called events. One common example of using the event-based programming
model in DPDK is the network packet processing pipeline, where each packet plays the role of an event.

This figure gives an example of an eventdev pipeline configuration:

Here, each block represents the following unit:

• Event Device – device with event scheduling capability, implemented either in hardware or software.
• Queue – logical stage of the processing pipeline that contains events of different flows associated with

scheduling types (atomic, ordered, or parallel).
• Ports – points of contact between cores and the eventdev library that are used to enqueue and dequeue

events to and from eventdev queues.
• Worker Cores – CPU cores that are available to the application to perform work.
• Rx Core – CPU core that receives packets from the NIC.
• Tx Core – CPU core that transmits packets to the NIC.
• NIC – Network Interface Card.

This example demonstrates an Event Device that is configured to manage four atomic stages that are
presented as four event queues:

• queue_0 is dedicated to keep newly arrived packets. Only the Rx core enqueues packets (events) to this
queue.

• queue_1 and queue_2 are dedicated to some type of event processing stage, such as setting
destination address, cryptography processing, or compression. Worker cores perform these tasks and
transfer packets between queues 0, 1, 2, and 3.

• queue_3 is dedicated to keep packets that are ready to be transmitted. Only the Tx core dequeues
packets from this queue.

The dequeue operation is performed using the rte_event_dequeue_burst() routine in an endless loop.
Thus, worker cores continuously poll Event Device ports, looking for a batch of events to be processed. The
batch size depends on overall load and performance of different stages. The maximum batch size is defined
by the workload.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

52

Per-worker dequeue statistics provided by Intel® VTune™ Profiler reveal the load balancing details and enable
you to analyze pipeline configuration efficiency and identify pipeline bottlenecks.

This recipe defines the following steps to analyze the efficiency of the pipeline processing model in DPDK-
based applications:

• Ingredients
• Directions

• Run Input and Output analysis
• Analyze load per stage
• Analyze CPU utilization

Ingredients
This section lists the hardware and software tools used in this performance analysis scenario:

• Application: the DPDK eventdev_pipeline application demonstrates the usage of the eventdev API
and shows how an application can configure a pipeline and assign a set of worker cores to perform event
processing. The application is compiled with DPDK with VTune Profiler support enabled.

• Tools:

• DPDK, compiled with VTune Profiler support enabled. To enable eventdev profiling on DPDK side, you
need to apply a patch and recompile DPDK and the target DPDK application.

Use the following patches:

• For DPDK versions older than 20.11
• For DPDK versions 20.11 and newer

• Intel® VTune™ Profiler (version 2024 or newer): Input and Output analysis

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• System Setup:

• Traffic generator: a system that generates traffic for the system being tested.
• System under test: a system running the eventdev_pipeline application for packet (event)

processing and VTune Profiler for performance data collection.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

53

https://intel.com/content/www/us/en/develop/download/dpdk-event-device-profiling-patch.html
https://intel.com/content/www/us/en/develop/download/profiling-patch-for-dpdk-event-device-20-11-and-up.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

• CPU: Intel® Xeon® Platinum 8168 processor (formerly code named Skylake).
• Operating System: Linux* OS.

Run Input and Output Analysis
To collect DPDK eventdev dequeue statistics, run the Input and Output analysis in VTune Profiler.

Run Analysis from GUI:

1. Create a new project in VTune Profiler.
2. In the HOW pane, select Input and Output analysis
3. In Select API to profile, select DPDK

4. Click the Start button.

Run Analysis from Command Line:

Use this command:

vtune -collect io -knob kernel-stack=false -knob dpdk=true --target-process=eventdev_pipeline

Analyze Load per Stage
To get an overall characterization of DPDK eventdev pipeline utilization, start your investigation with the
Summary tab and explore the DPDK Events Dequeue Statistics histogram:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

54

This histogram represents the statistics for the number of dequeued events for each eventdev port, that is,
for each worker thread that polls the event device. Explore the different areas of the histogram to identify
inhomogeneous load distribution, oversubscribed, or underutilized workers.

If you identify any imbalance in worker thread load distribution, try to reconfigure your pipeline to avoid this
an re-run the analysis.

Analyze CPU Utilization
To understand the CPU utilization for workers performing event dequeue operations, navigate to the
Platform tab and explore the DPDK Event Dequeue Spin Time overtime metric attributed to worker
threads.

The DPDK Event Dequeue Spin Time per-thread metric shows the ratio of empty dequeue cycles, which is
the ratio of rte_event_dequeue_burst() calls that returned zero events with respect to the total number
of dequeue calls. Explore this metric to estimate worker thread load and to decide whether the application
underutilizes cores or needs more resources.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

55

See Also
Cookbook: Core Utilization in DPDK Apps
Cookbook: PCIe Traffic in DPDK Apps
DPDK Event Device library
Introduction to the Data Plane Development Kit (DPDK) Eventdev Library
Benchmarking and Analysis of Software Network Data Planes

Effective Utilization of Intel® Data Direct I/O Technology
This recipe demonstrates how Intel® VTune™ Profiler
reveals the utilization efficiency of the Intel® Data
Direct I/O technology, a hardware feature of Intel®
Xeon® processors.

Traditionally, inbound PCIe transactions target the main memory, and data movement from the I/O device to
the consuming core requires multiple DRAM accesses. For I/O-intensive use cases, such as software data
planes, this scheme becomes inapplicable.

For example, when a 100G NIC is fully utilized with 64B packets and 20B Ethernet overhead, new packet
arrives, on average, every 6.72 nanoseconds. If any component on the packet path takes more than this
small timeframe to process this individual packet, packet loss occurs. For a core running at 3GHz, 6.72
nanoseconds only accounts for 20 clock cycles, while DRAM latency is on average 5-10 times higher. This is
the main bottleneck of the traditional DMA approach.

Intel® DDIO technology is a hardware feature of Intel® Xeon® processors that eliminates this bottleneck by
allowing PCIe devices to perform read and write operations directly to and from the L3 cache (also known as
LLC — last-level cache). This places the incoming data as close to the cores as possible. When the Intel DDIO
technology is properly utilized, core and I/O device interactions can be served by using the L3 cache only,
completely removing the need for DRAM accesses. This creates the following advantages:

• Low inbound read and write latencies that allow for high throughput.
• Reduced DRAM bandwidth and power consumption.

Though Intel® DDIO is a hardware feature that is always enabled and transparent to software, there are
pitfalls that may lead to non-optimal performance.

There are two main software tuning opportunities for optimizing Intel® DDIO utilization:

• Topology configuration: for a system with multiple sockets, it is critical that the I/O device, the core
that interfaces with the I/O device, and the memory are on the same NUMA mode.

• L3 cache management: advanced tuning helps optimize L3 cache usage by keeping the necessary data
available in the L3 cache at the right time.

This recipe demonstrates how to detect inefficiencies in Intel® DDIO technology utilization using the Input
and Output analysis in VTune Profiler.

• Ingredients

Directions:

• Understand the architectural background
• Analyze Intel® DDIO traffic
• Understand typical examples

• Remote socket accesses
• Poor L3 cache management

• Key take-aways

Ingredients
• System: a two-socket 2nd Generation Intel® Xeon® Scalable processor-based system.
• Application: DPDK testpmd application configured to run on a single core and to perform packet

forwarding using one port of one 40G network interface card attached to Socket one.
• Performance Analysis Tool:Intel® VTune™ Profiler 2020 Update 2: Input and Output analysis.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

56

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/core-utilization-in-dpdk-apps.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/pcie-traffic-in-dpdk-apps.html
https://doc.dpdk.org/guides/prog_guide/eventdev.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-data-plane-development-kit-eventdev-library.html
https://wiki.fd.io/images/3/31/Benchmarking-sw-data-planes-Dec5_2017.pdf
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis.html
https://doc.dpdk.org/guides/testpmd_app_ug/
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis.html

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

Understand the Architectural Background
In Intel® Xeon® Scalable processors, the L3 cache is a resource that is shared between all cores and all
Integrated I/O controllers (IIO) within one socket. Data transfers between the L3 cache and the cores are
performed with cacheline granularity (64B). When a PCIe device makes a request to the system memory, IIO
translates this request into one or multiple cache line requests and issues them to the L3 cache on the local
socket. A request to local L3 cache can carry out in these ways:

• Inbound PCIe write request

• Inbound PCIe write L3 hit — ideal scenario — occurs when an address targeted by a write request
is already cached in the local L3. The cache line in the L3 is then overwritten with the new data.

• Inbound PCIe write L3 miss — non-ideal scenario — occurs when an address targeted by the write
request is not cached in the local L3. In this case, a cache line is first evicted from an L3 way dedicated
for I/O data. This could lead to DRAM write-back if the evicted line was in a dirty state. Then, in place
of the evicted line, a new cache line is allocated. If the targeted cache line is cached remotely, cross-
socket accesses through the Intel® Ultra Path Interconnect (Intel® UPI) are required to enforce
coherency rules and to complete the cache line allocation. Finally, the cache line is updated with the
new data.

• Inbound PCIe read request

• Inbound PCIe read L3 hit — ideal scenario — occurs when an address targeted by a read request is
cached in the local L3. The data is read and sent to the PCIe device.

• Inbound PCIe read L3 miss — non-ideal scenario — occurs when an address targeted by a read
request is not cached the local L3. In this case, the data is read from the local DRAM or from the
remote socket's memory subsystem. No local L3 allocation is performed.

For the 1st and 2nd Gen Intel® Xeon® Scalable processors, the Input and Output analysis of VTune Profiler
provides Intel® DDIO utilization efficiency metrics including L3 hit/miss ratios and average latencies of
inbound PCIe reads and writes, and supports data breakdown by groups of PCIe devices. These groups are
defined by M2PCIe units, which are the interfaces between the IIO controller and the mesh.

Analyze Intel DDIO Traffic
Use the Input and Output analysis of VTune Profiler to collect Intel DDIO utilization efficiency metrics.

NOTE
To run the analysis, ensure you are using a 1st or 2nd Gen Intel® Xeon® Scalable processors and that
the sampling driver is loaded. The recommended minimal collection time is 20 seconds.

To run the analysis:

1. In the WHAT pane, select Launch Application and specify the path to the application and any
parameters, or select Attach to Process and specify the PID. Additionally, you can use the
Automatically stop collection after (sec) option to automatically control collection time.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

57

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/utilizing-the-intel-xeon-processor-scalable-family-iio-performance-monitoring-events.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/build-install-sampling-drivers-for-linux-targets.html

2. In the HOW pane, select the Input and Output analysis. Check the Analyze PCIe traffic checkbox
to collect Intel DDIO utilization efficiency metrics.

3. Click the

Start button to run the analysis.

Understand Typical Examples
To understand typical inefficient usages of Intel DDIO technology and the capabilities of VTune Profiler that
help highlight them, run the DPDK testpmd application on a two-socket system equipped with 2nd
Generation Intel® Xeon® Scalable processors. The application is configured to run on a single core and to
perform packet forwarding using one port of a single 40G NIC attached to Socket 1.

The traffic generator injects 64B packets into the system with a packet rate that is much higher than one
core can process. The optimization criterion is the system throughput: the higher throughput the better. For
this configuration, the experiment identifies the single core application throughput.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

58

NOTE
The data shown here must not be treated as a performance report.

As a single baseline for two examples below, use a configuration where a core from Socket 1 performs packet
forwarding. This configuration is called local, since core and PCIe device reside on the same socket:

./testpmd -n 4 -l 24,25 -- -i
testpmd> set fwd mac retry
testpmd> start

Use the mac forwarding mode. In this mode, a core changes the source and the destination Ethernet
addresses of packets, thus the forwarding core accesses packet descriptors and touches each packet.

Run VTune Profiler Input and Output analysis and start the result investigation with the Platform Diagram
section of the Summary window.

The Platform Diagram shows the system topology and indicates an average utilization of hardware resources:
physical cores by computations of the workload being analyzed, DRAM, Intel® UPI and PCIe links. Note that
the metric presented for PCIe devices shows the effective link utilization, calculated as portion of physical
bandwidth consumed on payloads transferring, while the overhead is not considered. For more details, see
the Input and Output analysis section of the User Guide.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

59

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis.html

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

60

In the Summary tab, see the PCIe Traffic Summary section that shows the total inbound and outbound
PCIe read and write traffic as first-level metrics, and Intel DDIO utilization efficiency indicators as second-
level metrics:

• L3 Hit/Miss Ratios represent a portion of inbound requests that hit/miss the L3 cache.
• Average Latency shows the average amount of time the platform spent on handling inbound requests

for a cache line.
• Core/IO Conflicts metric shows the ratio of inbound writes that experience cache line contentions. When

detected, VTune Profiler suggests a possible tuning direction.

To see detailed IO metrics, click any metric in the PCIe Traffic Summary section to switch to the Bottom-
up pane:

To see PCIe metrics, select the Package/M2PCIe grouping in the Grouping drop-down menu. This
grouping breaks down the metrics by sockets and M2PCIe blocks that are named by PCIe devices that they
serve. If M2PCIe manages more than one device, device names are given as a comma-separated list. Hover
over a cell to see all devices.

To see Intel DDIO utilization efficiency metrics, expand the second level by clicking the Expand button on
each column.

Check the Platform tab to see DRAM and Intel UPI bandwidth details.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

61

Remote Socket Accesses
This first experiment demonstrates a non-optimal application topology that results in high DDIO miss rate,
higher DDIO latency, and induced DRAM and Intel® Ultra Path Interconnect (Intel® UPI) traffic. Together, all
these factors limit performance.

This is an example of a non-optimal topology that uses a remote configuration with the forwarding core and
the NIC residing on distinct sockets:

./testpmd -n 4 -l 0,1 -- -i
testpmd> set fwd mac retry
testpmd> start

Now, re-run the analysis in the Attach to Process mode using the graphical interface or the command line:

vtune -collect io --duration 20 --target-process testpmd
The Platform Diagram immediately reveals issues with topology:

• Core utilization on a distinct socket with regard to NIC
• Non-zero DRAM and UPI utilization

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

62

Explore the results:

Forwarding
core ID

Throughput,
Mpps

Inbound PCIe
Read L3 Miss,
%

Average
Inbound PCIe
Read Latency,
ns

Inbound PCIe
Wrie L3 Miss,
%

Average
Inbound PCIe
Write Latency,
ns

25 21.1 0 112 0 135

1 17.1 100 320 100 240

A configuration where the forwarding core and the NIC reside on distinct sockets demonstrates worse
performance with a 100% L3 miss rate and higher latency for inbound PCIe requests.

To understand the implications of high miss rates in the remote case, navigate to the Platform pane of the
analysis result:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

63

VTune Profiler reports high UPI and DRAM bandwidth. To get a holistic view on what is happening on the
system, analyze the configuration from the core perspective by using the Memory Access analysis:

vtune -collect memory-access -knob dram-bandwidth-limits=false --duration 20 --target-process
testpmd

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

64

VTune Profiler reports that, in the remote configuration, CPU cores suffer from remote accesses due to LLC
misses that get resolved by taking the data from the remote L3 cache. Navigate to the Bottom-up pane to
determine which cores, processes, threads, or functions accessed remote LLC:

You can see that all the remote LLC accesses are induced by the testpmd application running on Core 1 from
Socket 0.

Now you can recreate what is happening in the remote configuration. Since there is zero DRAM bandwidth on
Socket 0, all the memory consumed by the application, used for descriptor and packet rings, is allocated on
Socket 1, locally to the NIC. When the forwarding core from Socket 0 accesses descriptors and packets, it

Intel® VTune™ Profiler Performance Analysis Cookbook 1

65

misses LLC on Socket 0 and snoop requests are sent to bring the data from Socket 1, which induces UPI
traffic. If these requests find modified data in the LLC of Socket 1, DRAM write-back occurs, which
contributes to measured DRAM bandwidth.

When the device accesses the same locations again, it misses the L3 cache on Socket 1, because the data
was last used by a core on Socket 0 and remains there. So the memory Directory is accessed to determine
the socket where the address could be cached, which also contributes to the observed DRAM bandwidth. This
time, the snoop requests travel from Socket 1 to Socket 0 to enforce coherency rules and to complete the
I/O request.

As a result, you observe the following values captured by Input and Output and Memory Access analyses of
VTune Profiler:

For
wa
rdi
ng
cor
e
ID

Through
put,
Mpps

Inbound
PCIe
Read L3
Miss %

Average
Inbound
PCIe
Read
Latency,
ns

Inbound
PCIe
Write L3
Miss %

Average
Inbound
PCIe
Write
Latency,
ns

testpmd:
LLC Miss
Count

testpmd:
Remote
Cache
Access
Count

Total
DRAM
bandwid
th
(Socket
1), GB/s

Total
UPI
bandwid
th, GB/s

25 21.1 0 112 0 135 0 0 0 0

1 17.1 100 320 100 240 35M 35M 8 12.6

In addition to lower throughput caused by higher request latencies, suboptimal application topology causes
the system to waste DRAM bandwidth, UPI bandwidth, and platform power.

Poor L3 Cache Management
This second experiment introduces a big variety of non-trivial performance issues, where, even in absence of
remote socket accesses, performance is limited due to non-optimal management of I/O data in the LLC, as
shown by DDIO misses.

To demonstrate an example using DPDK testpmd, disable software-level caching of memory pools (DPDK
Mempool Library) that are used as packet rings. Using this default caching mechanism, a core receives a new
packet, and, for the data destination, uses a “warm” memory pool element, which most likely resides in
hardware caches. Therefore, there are no L3 misses for Inbound PCIe reads and writes, even with packet
ring size going above L3 capacity.

Run testpmd with --mbcache=0 option to disable memory pools software caching:

./testpmd -n 4 -l 24,25 -- -i --mbcache=0
testpmd> set fwd mac retry
testpmd> start

Compare testpmd performance for the initial local configuration and the same configuration, but with
disabled software caching of memory pools:

Mempool
cache
enabled

Throughput,
Mpps

Inbound
PCIe Read L3
Miss %

Average
Inbound
PCIe Read
Latency, ns

Inbound
PCIe Write
L3 Miss %

Average
Inbound
PCIe Write
Latency, ns

Total DRAM
bandwidth
(Socket 1),
GB/s

Yes 21.1 0 112 0 135 0

No 20.2 0 115 54 178 4.7

When the application is running without memory pool caching optimization, a significant portion of inbound
PCIe write requests misses the L3.

To forward one packet, the NIC and the core communicate through the packet descriptor and packet rings.
On the data path, the NIC uses inbound PCIe writes to write a packet and update packet descriptors (for
more details, see the PCIe Traffic in DPDK Apps recipe).

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

66

https://doc.dpdk.org/guides/prog_guide/mempool_lib.html
https://doc.dpdk.org/guides/prog_guide/mempool_lib.html
https://www.intel.com/content/www/us/en/developer/articles/technical/optimize-memory-usage-in-multi-threaded-data-plane-development-kit-dpdk-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/optimize-memory-usage-in-multi-threaded-data-plane-development-kit-dpdk-applications.html

Descriptor rings are always accessed by a core before I/O, so the probability of an I/O L3 miss on descriptor
access is low. But the packet ring is accessed first by the NIC, so all the inbound PCIe write L3 misses are
caused by the NIC writing packets to the packet ring at the Rx stage. At the same time, no inbound PCIe
read L3 misses are observed, because DPDK follows a zero-copy policy for network data, and once the NIC
attempts to take a packet and perform Tx, a packet is already cached.

The conclusions above can easily be made from the experiment statement: with packet ring software caching
disabled, packet ring accesses should suffer from hardware cache misses. However, this recipe demonstrates
how, in a real-life scenario, you can understand what data was accessed by I/O, resulting in a DDIO miss.

The implications of inbound PCIe request L3 misses in this case are the DRAM bandwidth induced by write-
backs from the L3, L3 allocations, and memory Directory accesses.

Key Take-Aways
Intel® DDIO technology enables software to entirely utilize high-speed I/O devices. However, software may
not fully benefit from Intel DDIO due to a suboptimal application topology in NUMA systems and/or poor
management of data in the L3 cache, leading to high L3 access latencies and unnecessary DRAM traffic. The
various analysis types (Input and Output, Memory Access and Microarchitecture Exploration) of VTune
Profiler highlight such inefficiencies, creating a holistic picture from both core and I/O perspectives.

While the problem of a wrong application topology has an obvious solution, developing an efficient L3
utilization scheme may be a non-trivial task. There are several approaches that may help design such a
scheme and increase performance:

• Choose buffer sizes that are less than LLC capacity.
• Recycle buffer elements.
• Use software prefetching of locations used by the device.
• Use L3 partitioning with Intel Cache Allocation Technology (CAT).

NOTE
To discuss this recipe, visit the VTune Profiler developer forum.

See Also
Input and Output Analysis
Intel® Data Direct I/O Technology Brief
PCIe Traffic in DPDK Apps This recipe introduces PCIe Bandwidth metrics used in Intel® VTune™
Profiler to explore the PCIe traffic for a packet forwarding DPDK-based workload.
Intel® Xeon® Processor Scalable Family Technical Overview
Utilizing the Intel® Xeon® Processor Scalable Family IIO Performance Monitoring Events
Intel® Xeon® Processor Scalable Family Uncore Reference Manual
Optimize Memory Usage in Multithreaded Data Plane Development Kit (DPDK) Applications
Benchmarking and Analysis of Software Data Planes Whitepaper
What Every Programmer Should Know About Memory by Ulrich Drepper of Red Hat, Inc.

Compile a Portable Optimized Binary with the Latest Instruction Set
Learn how to compile a binary with the latest
instruction set while maintaining portability.

Content expert: Jeffrey Reinemann

Modern Intel® processors support instruction set extensions like the different versions of Intel® Advanced
Vector Extensions (Intel® AVX):

• AVX

Intel® VTune™ Profiler Performance Analysis Cookbook 1

67

https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/input-and-output-analysis.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/utilizing-the-intel-xeon-processor-scalable-family-iio-performance-monitoring-events.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/developer/articles/technical/optimize-memory-usage-in-multi-threaded-data-plane-development-kit-dpdk-applications.html
https://fd.io/docs/whitepapers/performance_analysis_sw_data_planes_dec21_2017.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

• AVX2
• AVX-512

When you compile your application, consider these options based on the purpose of your application:

• Generic binary: Compile an application for the generic x86 instruction set. The application runs on all
x86 processors, but may not utilize a newer processor to its full potential.

• Native binary: Compile an application for the specific processor. The application utilizes all features of
the target processor but does run on older processors.

• Portable binary: Compile a portable optimized binary with multiple versions of functions. Each version is
targeted for different processors using compiler options and function attributes. The resulting binary has
the performance characteristics of an application compiled for a specific processor (native binary) and can
run on older processors.

This recipe demonstrates how you can compile a portable binary with the performance characteristics of a
native binary, while still maintaining portability of a generic binary. In this recipe, you compile both the
generic and native binaries first to determine if the resulting performance improvement is large enough to
justify the increase in binary size.

This recipe covers the Intel® C++ Compiler Classic and the GNU* Compiler Collection (GCC).

This recipe does not cover:

• Manual dispatching using the CPUID processor instruction
• Processor Targeting compiler options
• The target function attribute

Ingredients
This section lists the systems and tools used in the creation of this recipe:

• Processor: Intel® Core™ code named Skylake i7-6700 CPU @ 3.40GHz
• Operating System: Linux OS (Ubuntu 22.04.3 LTS with kernel version 6.2.0-35-generic)
• Compilers:

• Intel® C++ Compiler Classic 2024.0
• GCC version 11.4.0

• Analysis Tool :Intel® VTune™ Profiler version 2024.0 or newer

Sample Application
Save this code to a source file named fma.c:

// fma.c
#include <stdio.h>
#include <stdlib.h>

void init(float *a, float *b, float *c, int size)
{
 for (int i = 0; i < size; i++)
 {
 a[i] = (float) (i % 10);
 b[i] = a[i] * 1.1f;
 c[i] = a[i] * 1.2f;
 }
}

void my_fma(float *a, float *b, float *c, int size)
{
 for (int i = 0; i < size; i++)
 {
 c[i] += a[i]*b[i];
 }

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

68

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/current/processor-targeting.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Function-Attributes.html#x86-Function-Attributes

}

#define ITERATIONS 10000000
#define SIZE 2048

int main()
{
 float *a = malloc(SIZE*sizeof(float));
 float *b = malloc(SIZE*sizeof(float));
 float *c = malloc(SIZE*sizeof(float));

 for (int i = 0; i < ITERATIONS; i++)
 {
 init(a, b, c, SIZE);
 my_fma(a, b, c, SIZE);
 }
 printf("%f", c[5]); // use the data

 free(a);
 free(b);
 free(c);
 return 0;
}

Compile Generic Optimized Binary
Compile the binary following the recommendations from VTune Profiler User Guide (recommendations for
Windows).

Intel® DPC++/C++ Compiler

Compile the binary with debug information and -O3 optimization level:

icx -g -O3 -debug inline-debug-info fma.c -o fma_generic
GNU Compiler Collection

Compile the binary with debug information and -O2 optimization level:

gcc -g -O2 fma.c -o fma_generic_O2
To check if the code was vectorized, use the HPC Performance Characterization analysis in VTune Profiler:

vtune -c hpc-performance -r fma_generic_O2_hpc ./fma_generic_O2
The output of this command includes information about vectorization:

Vectorization: 0.0% of Packed FP Operations
Instruction Mix
SP FLOPs: 16.4% of uOps
 Packed: 0.0% from SP FP
 128-bit: 0.0% from SP FP
 256-bit: 0.0% from SP FP
 Scalar: 100.0% from SP FP

Open the result in the VTune Profiler GUI:

vtune-gui fma_generic_O2_hpc
Once you open the analysis result, in the Summary tab, see the Top Loops/Functions with FPU Usage
by CPU Time section :

Intel® VTune™ Profiler Performance Analysis Cookbook 1

69

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/compiler-switches-for-perf-analysis-linux-targets.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/compiler-switches-perf-analysis-windows-targets.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/compiler-switches-perf-analysis-windows-targets.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hpc-performance-characterization-analysis.html

The fact that FP Ops: Scalar value equals 100% and that the Vector Instruction Set column is empty
indicates that GCC does not vectorize the code at -O2 optimization level.

Use -O2 -ftree-vectorize or -O3 options to enable vectorization.

Compile the fma_generic binary with -O3 optimization level:

gcc -g -O3 fma.c -o fma_generic
Collect the HPC Performance Characterization analysis data for the generic binary:

vtune -c hpc-performance -r fma_generic_hpc ./fma_generic
The output of this analysis includes the following information:

Vectorization: 100.0% of Packed FP Operations
Instruction Mix
SP FLOPs: 8.3% of uOps
 Packed: 100.0% from SP FP
 128-bit: 100.0% from SP FP
 256-bit: 0.0% from SP FP
 Scalar: 0.0% from SP FP

When you open the analysis result in the VTune Profiler GUI, you can find information about vectorization:

Compile Native Binary
Compile native binary with the Intel® DPC++/C++ Compiler

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

70

The -xHost option instructs the compiler to generate instructions for the highest instruction set available on
the processor performing the compilation. Alternatively, the -x{Arch} option, where {Arch} is the
architecture codename, instructs the compiler to target processor features of a specific architecture.

Compile the fma_native binary with -xHost flag:

icx -g -O3 -debug inline-debug-info -xHost fma.c -o fma_native
Compile native binary with the GNU Compiler Collection

Compile the fma_native binary with -march=native flag:

gcc -g -O3 -march=native fma.c -o fma_native
If your processor supports the AVX-512 instruction set extension, consider experimenting with the mprefer-
vector-width=512 option.

Next, collect HPC data for the native binary:

vtune -c hpc-performance -r fma_native_hpc ./fma_native
The output of this analysis includes the following information:

Vectorization: 100.0% of Packed FP Operations
Instruction Mix
 SP FLOPs: 14.2% of uOps
 Packed: 100.0% from SP FP
 128-bit: 0.0% from SP FP
 256-bit: 100.0% from SP FP
 Scalar: 0.0% from SP FP

When you open the analysis result in the VTune Profiler GUI, you can find information about vectorization:

Compare Generic and Native Binaries
To compare the HPC data collected for the generic and native binaries, run this command:

vtune-gui fma_generic_hpc fma_native_hpc
In the VTune Profiler GUI, switch to the Bottom-Up tab. Set Loop Mode to Functions only.

Switch to the Summary tab and scroll down to the Top Loops/Functions with FPU Usage by CPU Time
section:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

71

Observe the CPU Time and Vector Instruction Set columns.

Consider the performance difference between the generic and the native binary. Decide whether it makes
sense to compile a portable binary with multiple code paths.

NOTE
This sample application was auto-vectorized by the compiler. To investigate vectorization opportunities
in your application in depth, use Intel® Advisor.

Compile Portable Binary
If the comparison between the generic and native binary shows a performance improvement, for example, if
the CPU Time was improved, consider compiling a portable binary.
Compile the portable binary with the Intel® DPC++/C++ Compiler

Use the -ax (/Qax for Windows) option to instruct the compiler to generate multiple feature-specific auto-
dispatch code paths for Intel processors.

Compile the fma_portable binary with the -ax option:

icx -g -O3 -debug inline-debug-info -axCOMMON-AVX512,CORE-AVX2,AVX,SSE4.2,TREMONT,ICELAKE-SERVER
fma.c -o fma_portable

Refer to the -ax option help page for the list of supported architectures.

Compile the portable binary with the GNU Compiler Collection

Compare the results for generic and native binaries. If the CPU Time was improved and an additional
Vector Instruction Set was utilized for a specific function in the native binary result, then add the
target_clones attribute to this function.

If the function calls other functions, consider adding the flatten attribute to force inlining, since the
target_clones attribute is not recursive.

Copy the contents of the fma.c source file to a new file, fma_portable.c, and add the TARGET_CLONE
preprocessor macro:

#define TARGET_CLONES __attribute__((flatten,target_clones("default,sse4.2,avx,"\
 "avx2,avx512f,arch=skylake,arch=tremont,arch=skylake-avx512,"\
 "arch=cascadelake,arch=cooperlake,arch=tigerlake,arch=icelake-server")))

Refer to the x86 Options page of the GCC manual for the list of supported architectures.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

72

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html#gs.20cwbn
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/current/ax-qax.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/current/ax-qax.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html

Multiple versions of a function will increase the binary size. Consider the trade-off between performance
improvement for each target and code size. Collecting and comparing VTune Profiler results enables you to
make data-driven decisions to apply the TARGET_CLONES macro only to the functions that will run faster with
new instructions.

Add the TARGET_CLONES macro before the my_fma function definition and init functions and save the
changes to fma_portable.c:

TARGET_CLONES
void my_fma(float *a, float *b, float *c, const int size)

Compile the fma_portable binary:

gcc -g -O3 fma_portable.c -o fma_portable

Compare Portable and Native Binaries
To compare the performance of portable and optimized binaries, collect the HPC Performance
Characterization data for the fma_portable binary:

vtune -c hpc-performance -r fma_portable_hpc ./fma_portable
The output of this analysis includes the following data:

Vectorization: 100.0% of Packed FP Operations
Instruction Mix
 SP FLOPs: 6.9% of uOps
 Packed: 100.0% from SP FP
 128-bit: 66.7% from SP FP
 256-bit: 33.3% from SP FP
 Scalar: 0.0% from SP FP

Open the comparison in VTune Profiler GUI:

vtune-gui fma_portable_hpc fma_native_hpc

As a result, the portable binary uses the highest instruction set extension available and demonstrates optimal
performance on the target system.

Configuration Recipes
Follow these recipes to configure your system and set
up Intel® VTune™ Profiler or its predecessor, Intel®
VTune™ Amplifier, for performance analysis in
particular code environments.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

73

Profiling High Bandwidth Memory Performance on Intel® Xeon® CPU Max Series (NEW)
Use Intel® VTune™ Profiler to profile memory-bound
workloads in high performance computing (HPC) and
artificial intelligence (AI) applications which utilize
high bandwidth memory (HBM).

As HPC and AI applications grow increasingly complex, these memory-bound workloads are increasingly
challenged by memory bandwidth. High bandwidth memory (HBM) technology in the Intel® Xeon® CPU Max
Series of processors tackles the bandwidth challenge. This recipe describes how you use VTune Profiler to
profile HBM performance in these memory-bound applications.

Content Experts: Vishnu Naikawadi, Min Yeol Lim, and Alexander Antonov

In this recipe, you use VTune Profiler to profile a memory-bound application on a system that has HBM
memory.VTune Profiler displays HBM-specific performance metrics which can help you understand the usage
of HBM memory by the workload. Thus, you can analyze the performance of the workload in the context of
HBM memory.

Memory Modes in HBM

The Intel® Xeon® CPU Max Series of processors offers HBM in three memory modes:

HBM Only HBM Flat Mode HBM Caching Mode

Memory
Configuration

HBM Memory. No
DRAM.

Flat memory regions with
HBM and DRAM

HBM caches DRAM

Workload Capacity 64 GB or less 64 GB or more 64 GB or more

Code Change No code change. Code change may be
necessary to optimize
performance.

No code change.

Usage System boots and
operates with HBM
only.

Provides flexibility for
applications that require
large memory capacity.

Blend of HBM Only and
HBM Flat Mode. Whole
applications may fit in
HBM cache. This mode
blurs the line between
cache and memory.

Switch HBM Modes

When you do not install DRAM, the processor operates in HBM Only mode. In this mode, HBM is the only
memory available to the OS and all applications. The OS may see all of the installed HBM, while applications
can only see what is exposed by the OS.

When you install DRAM, you can select different HBM memory modes by changing the BIOS memory mode
configuration:

1. Open EDKII Menu.
2. In the Socket Configuration option, select Memory Map.
3. Open Volatile Memory.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

74

NOTE The UI path to change the BIOS configuration may vary depending on the BIOS running on your
system.

4. Change the HBM mode:

• To select the HBM Flat mode, select 1LM (or 1-Level Mode). This mode exposes the HBM and DRAM
memories to the software. Each memory is available as a separate address space (NUMA node).

• To select the HBM Cache mode, select 2LM (or 2-Level Mode). In this mode, only the DRAM
address space is visible. HBM functions as a transparent memory-side cache for DRAM.

Depending on your BIOS, additional changes may be necessary. For more information on switching between
memory modes, see the Intel® Xeon® CPU Max Series Configuration and Tuning Guide.

Ingredients
Here are the hardware and software tools you need for this recipe.

• Application: This recipe uses the STREAM benchmark.
• Analysis Tools:

• VTune Profiler (version 2024.0 or newer)
• numactl - Use this application to control NUMA policy for processes or shared memory.

• CPU: 4th Generation of Intel® Xeon® CPU Max Series processors (formerly code-named Sapphire Rapids
HBM)

• Operating System: Linux* OS

System Configuration
This recipe uses a system with:

• 2-socket, 224 logical CPUs with Hyper-Threading
• 16 32GB DRAM DIMMs (8 DIMMs for each socket)
• HBM Flat mode with SNC4 enabled

As shown in the table below, the system used in this recipe has 8 NUMA nodes per socket:

Socket 0 Socket 1

DRAM Nodes 0,1,2,3 Nodes 4,5,6,7

HBM Nodes 8,9,10,11 Nodes 12,13,14,15

Directions
1. Run Memory Access Analysis
2. Analyze Results

Intel® VTune™ Profiler Performance Analysis Cookbook 1

75

https://www.intel.com/content/www/us/en/content-details/769060/intel-xeon-cpu-max-series-configuration-and-tuning-guide.html?DocID=769060
https://github.com/intel/memory-bandwidth-benchmarks
https://linux.die.net/man/8/numactl

Run Memory Access Analysis
In this recipe, you use VTune Profiler to run the Memory Access analysis type on the STREAM benchmark.
You can run the VTune Profiler standalone application on the target system or use a web browser to access
the GUI by running VTune Profiler Server.

This example uses VTune Profiler Server. To set up the server, on your target platform, run this command:

/opt/intel/oneapi/vtune/latest/bin64/vtune-backend --web-port <port_id> --allow-remote-access --
data-directory /home/stream/results --enable-server-profiling

Here:

• --web-port is the HTTP/HTTPS port for the web server UI and data APIs
• --allow-remote-access enables remote access through a web browser
• --data-directory is the root directory to store projects and results
• --enable-server-profiling enables the selection of the hosting server as the profiling target

This command returns a token and a URL. Now you are ready to start the analysis.

This recipe describes how VTune Profiler profiles the STREAM application using only HBM NUMA nodes. For
this specific system configuration, the analysis uses NUMA nodes 8-15.

1. Open the URL returned at the command prompt.
2. Set a password to use VTune Profiler Server.
3. From the Welcome screen, create a new project.
4. In the Configure Analysis window, set these options:

Pane Option Setting

WHERE - VTune Profiler Server

WHAT Target Launch Application

Application Path to the numactl application.

NOTE
Although STREAM is the actual application
that gets profiled, you specify the numactl
tool as the application in order to set NUMA
affinity for the STREAM benchmark. You
provide the benchmark in the Application
parameters field instead.

Application parameters HBM NUMA nodes 8-15

Path to STREAM benchmark

Working directory Path to application directory

HOW Analysis type Memory Access Analysis

5. Click Start to run the analysis.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

76

In this default configuration, VTune Profiler collects HBM bandwidth data in addition to DRAM bandwidth.
Therefore, you do not require additional settings.

NOTE To run the Memory Access analysis from the command line, type:

vtune -collect memory-access --app-working-dir=/home/stream -- /usr/bin/numactl -m “8-15” /
home/stream/stream_app

Intel® VTune™ Profiler Performance Analysis Cookbook 1

77

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/run-memory-access-analysis-command-line.html

Analyze Results
Once data collection is complete and VTune Profiler displays the results, open the Summary window to see
general information about the execution. The information is sorted into several sections.
Elapsed Time

This section contains the following statistics:

• Application execution per pipeline slots or clockticks
• Total Elapsed Time - This includes idle time
• CPU Time - This is the sum of CPU times of all threads and the Paused Time, which indicates the total

time the application was paused (by commands from the GUI, CLI, or user API)
• HBM Bound - This metric estimates how often the CPU was stalled due to High Bandwidth Memory (HBM)

accesses by loads. This metric is measured in CPU cycles or clockticks. Depending on the workload you
choose, this metric may be less accurate in data collections in the HBM Only and HBM Flat modes.

• HBM Bandwidth Bound - This shows the percentage of Elapsed Time that used HBM bandwidth. This
metric is measured in terms of elapsed time.

Platform Diagram

Next, see the Platform Diagram, which presents the following information:

• System topology
• Average DRAM and HBM bandwidths for each package
• Utilization metrics for Intel® Ultra Path Interconnect (Intel® UPI) cross-socket links and physical cores

Suboptimal application topology can cause cross-socket traffic, which in turn can limit the overall
performance of the application.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

78

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/cpu-metrics-reference.html#CLOCKTICKS-VS-PIPELINE-SLOTS-BASED-METRICS
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/analyze-platform-performance.html#TOPOLOGY

Bandwidth Utilization

In this section, observe the bandwidth utilization in different domains. In this example, the system uses
DRAM, UPI, and HBM domains.

NOTE You can see per-socket bandwidth information for DRAM and HBM domains.

To see the overall HBM utilization across the entire system, in the Bandwidth Domain pulldown menu,
select HBM, GB/sec. This information displays in a histogram of bandwidth utilization (GB/sec) vs the
aggregated elapsed time (sec) for each bandwidth utilization group.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

79

In this example, there is a high utilization of HBM with over 1200 GB/sec for the majority of the duration.
This is because the STREAM benchmark is designed to maximize the use of memory bandwidth.

NOTE You can observe the same bandwidth information in the HPC Performance Characterization
analysis and the Input and Output Analysis as well. To do this, make sure to check the Analyze
memory bandwidth option before running those analyses.

Timeline

Finally, switch to the Bottom-up window to observe the timeline. Here, you can examine the following
bandwidths over time:

• DRAM bandwidth (broken down per channel)
• HBM bandwidth (broken down per package)
• Intel® UPI links (broken down per link)

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

80

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hpc-performance-characterization-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hpc-performance-characterization-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/input-and-output-analysis.html

Use this information to identify potential issues like misconfiguration which can lead to unnecessary UPI or
DRAM bandwidth.

Hover your mouse on the graph to analyze specific parts and see the bandwidth at the selected instant of
time.

In the Grouping pane, select the Bandwidth Domain / Bandwidth Utilization / Type / Function / Call
Stack grouping. Use this grouping to identify functions with high utilization in the HBM bandwidth domain.

To further optimize the performance of your application, run these analyses:

• Memory Access analysis
• Input and Output analysis

Follow these analysis procedures to identify other performance issues.

This recipe describes how you measure performance when running the STREAM application in HBM Flat
mode. To compare performance in the HBM Caching and HBM Only modes, switch the HBM mode and
repeat the performance analysis. Find the mode with the shortest elapsed time. You can also compare DRAM
and HBM bandwidths to look for higher overall bandwidth.

See Also
Enabling High-Bandwidth Memory for HPC and AI Applications for Next Gen Intel® Xeon®

Processors
Intel® Xeon® CPU Max Series Configuration and Tuning Guide
HBM Benchmarks
Memory Bandwidth Benchmarks

Profiling Windows* Applications for Hybrid CPU Platforms (NEW)
Use this recipe to profile and view hybrid CPU
utilization data for Windows-based applications.

A combination of performance cores (P-Cores) and efficient cores (E-Cores) empowers hybrid CPUs to tackle
the processing demands of modern workloads, including computer games. Fine tuning your applications
enables you to take full advantage of the processing capability of hybrid CPUs, especially if you are using the
12th Generation Intel® Core™ processor.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

81

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/memory-access-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/input-and-output-analysis.html
https://community.intel.com/t5/Blogs/Products-and-Solutions/HPC/Enabling-High-Bandwidth-Memory-for-HPC-and-AI-Applications-for/post/1335100
https://community.intel.com/t5/Blogs/Products-and-Solutions/HPC/Enabling-High-Bandwidth-Memory-for-HPC-and-AI-Applications-for/post/1335100
https://www.intel.com/content/www/us/en/content-details/769060/intel-xeon-cpu-max-series-configuration-and-tuning-guide.html?DocID=769060
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/supercomputing-22/
https://github.com/intel/memory-bandwidth-benchmarks

This recipe describes how you use VTune Profiler to profile and visualize performance data for Windows*
applications that run on hybrid CPUs. This recipe highlights two examples with the asteroids_d3d12
executable in the HybridDetect sample. For a description of this sample, see the Game Dev Guide for 12th
Gen Intel® Core™ Processor.

Content expert: Jennifer DiMatteo

Ingredients
• Application: asteroids_d3d12 executable in the HybridDetect sample
• Tools:

• Intel® VTune™ Profiler version 2023 - Hotspots Analysis (using Hardware Event-based Sampling)
• Microsoft* Visual Studio - For versions compatible with Intel® VTune™ Profiler, see Intel® VTune™ Profiler

System Requirements.
• CPU/GPU: Intel® Core™ i7-12700H
• Operating system: Windows* 11 Enterprise

Directions
1. Build the Sample
2. Run Hotspots Analysis
3. Review Results
4. Adjust Scheduler Value and Repeat Analysis

Build the Sample in Microsoft* Visual Studio
1. Open the HybridDetect sample in Microsoft* Visual Studio.
2. Build the sample.

Run Hotspots Analysis
This procedure describes how you run the hotspots analysis in hardware event-based sampling mode using
the standalone version of VTune Profiler. If you are using VTune Profiler integrated into Microsoft Visual
Studio, in order to run hardware event-based sampling analysis, you must run Visual Studio as an
administrator.

1. Open Intel® VTune™ Profiler and click New Project on the Welcome screen.
2. Specify a project name and a location for your project.
3. Click Create Project.
4. In the WHERE pane of the Configure Analysis window, select Local Host.
5. In the WHAT pane,

• Fill in the Application field with the path to the asteroids_d3d12 executable.
• In the Application parameters field, enter -scheduler 0. This parameter ensures that each of

the render and update tasks run on individual threads.
• In the Advanced section, select Automatically stop collection after to 30 seconds. Also select

Analyze child processes.
6. In the HOW pane, select the Hotspots analysis type and enable Hardware Event-Based

Sampling.
7. Click Start to run the analysis.

The sample shows that the frame rate is variable at 103 frames per second (fps).

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

82

https://www.intel.com/content/www/us/en/developer/articles/guide/12th-gen-intel-core-processor-gamedev-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/12th-gen-intel-core-processor-gamedev-guide.html
https://community.intel.com/t5/user/viewprofilepage/user-id/42000
https://github.com/GameTechDev/HybridDetect
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html

Review Results
After the data collection runs for about 30 seconds, Intel® VTune™ Profiler terminates the application and data
collection. Finalizing the results may take a few minutes as Intel® VTune™ Profiler finds and resolves debug
symbols.

Once results have been finalized, the Summary tab displays information about:

• Elapsed time
• Top hotspots
• Top tasks
• Additional insights and guidance

Intel® VTune™ Profiler Performance Analysis Cookbook 1

83

In this example, the top task is DrawString with a high clock cycles per instruction (CPI) rate of 1.729. This
means that the execution of instructions is slower than optimal. The thread count is eight, but actual
parallelism in the executable is very low. You can infer this detail from the Additional Insights section in
the upper right corner. The application is executing instructions very slowly and only on a single CPU.

Next, look at the Bottom-up window.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

84

Customize Results by Core Type

To see how the application uses P-Cores and E-Cores, create a custom grouping. Click the tool icon next to
the Grouping pulldown menu and group results by Function/Core Type/Logical Core.

Next, expand the RenderSubset function. You can see that this function ran on two logical P-Cores.

In this manner, you see from the timeline that the entire application used only two P-Cores and hardly any E-
Cores. This implies that any execution that happened on E-Cores was too minimal for Intel® VTune™ Profiler
to collect and use the data confidently.

Adjust Scheduler Value and Repeat Analysis
Repeat the hotspots analysis, but this time, set Application parameters to -scheduler 1. This setting
ensures that the number of render tasks is equal to the number of P-Cores. Also, there are eight update
tasks which now run independent of the render tasks.

Once you repeat the analysis, the application shows that 12 tasks are running. The average frame rate is 119
fps.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

85

When the data collection completes, Intel® VTune™ Profiler finalizes results. The Summary window opens
with this information:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

86

The parallelism is now much higher. Instead of using one logical CPU, the application used over 12 CPUs.

This time, the top function is the TaskScheduler. The total thread count is 27. At 0.35, the CPI rate is much
lower now. This may be because the scheduler had a very low CPI rate and accounted for most of the CPU
time.

It is important to ensure that the render performance has actually improved, so that the results are not
skewed by overhead. The Bottom-up window shows that the CPI rate of the render function improved.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

87

However, the render function ran almost 20 million instructions this time, compared to 4.5 million
instructions the previous time. This work was split almost evenly between P-Cores and E-Cores, although P-
Cores ran the instructions 2x faster. Again, the timeline shows the overall utilization of cores.

The HybridDetect sample has several configurations which you can use to understand how to control CPU
utilization on a hybrid platform. This recipe uses the default pre-compiler macros available in the sample.
These macros give you control over the render and update threads, but they let the Intel Thread Detector
determine the core type to be used.

As an additional exercise, force the render tasks to run on P-Cores and update tasks to run on E-Cores. To do
this, enable the ENABLE_RUNON macro in HybridDetect.h. See how this change affects performance.

See Also
Hybrid CPU Analysis
Hotspots Analysis for CPU Usage Issues

Game Dev Guide for 12th Gen Intel® Core™ Processor
Game Tuning with Intel

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

88

https://github.com/GameTechDev/HybridDetect
HTTPS://WWW.INTEL.COM/CONTENT/WWW/US/EN/DOCS/VTUNE-PROFILER/USER-GUIDE/CURRENT/HYBRID-CPU-ANALYSIS.HTML
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/basic-hotspots-analysis.html
https://www.intel.com/content/www/us/en/developer/articles/guide/12th-gen-intel-core-processor-gamedev-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/game-tuning-with-intel.html

Viewing Analysis Results on a Web Browser (NEW)
Use techniques in this recipe to view analysis results
from Intel® VTune™ Profiler in a web browser,
particularly on systems where you cannot install
VTune Profiler to run the analyses.

Typically, you install VTune Profiler on a host machine and use it to profile an application target on the same
machine. Sometimes the host and target operating systems may be different. Depending on the specific
operating environment, you may not be able to open the VTune Profiler GUI on the host machine, with access
limited to the command line only. If you use a macOS* system, you cannot run VTune Profiler for data
collection or viewing, as the platform is not supported. When you are unable to use the VTune Profiler user
interface, you can open analysis results in a web browser instead.

Use a web browser to view analysis results when:

• You need easy access. Multiple users across multiple systems can access the results.
• You need to manage a single repository. When you have a large volume of results, save them on a system

with sufficient storage without having to copy the results to local systems.
• You want to manage fewer versions of VTune Profiler. You use a single viewer and avoid mismatches

between the versions of VTune Profiler used for data collection and viewing.
• You want to improve the finalization of results. For better resolution of symbols, store the debug versions

of binaries and sources in a single location.
• You want to view results without relying on the VTune Profiler UI. See analysis results on a Linux server

without having to install VTune Profiler.

Content expert: Jennifer DiMatteo

Ingredients
• Application: matrix sample available with the installation of VTune Profiler
• Tools: Intel® VTune™ Profiler version 2023 or newer
• Browser: Google Chrome*
• Operating system: Windows* 11 Enterprise, Ubuntu 22.04

Directions
1. Configure Your System for Intel® VTune™ Profiler Web Server
2. Start Intel® VTune™ Profiler Web Server
3. Run a Collection

Configure Your System for Intel® VTune™ Profiler Web Server
To use Intel® VTune™ Profiler web server, choose a system that has:

• Plenty of storage. A single Intel® VTune™ Profiler result can be over 1 GB in size.
• An open web port for user access. You specify this port for use when you run Intel® VTune™ Profiler from

the command line.

Additionally, when you profile remote systems, ensure these details:

• Ensure that the system you use to run the web server has the same operating system as the target
system(s) used for data collection. These should be Linux or Windows machines. This is necessary for
proper SSH communication between the server and the target. If you copy results manually into the
server result directory, you can use results from any OS.

• Enable SSH communication between the web server and the target(s).

Start Intel® VTune™ Profiler Web Server
This example uses an installation of Intel® VTune™ Profiler on a Linux system.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

89

https://community.intel.com/t5/user/viewprofilepage/user-id/42000

1. Install Intel® VTune™ Profiler as root or administrator with default configurations. If you install on a
Linux OS, you may encounter warnings about missing GUI libraries. You can ignore these warnings as
the libraries are not required to run the web server.

2. Select a user who can run the web server. The credentials of this user are used to run the data
collection, including the availability of hardware profiling and access to the target process. For example,
to use the hardware driver of Intel® VTune™ Profiler, the user must have group access. The default
group is vtune. For more information about using the hardware driver, see Sampling Drivers.

3. Start the Intel® VTune™ Profiler web server. Use the vtune-backend command. Configure these
options:

Option Purpose

web-port This port must be accessible by remote connections. If
this port is not specified, Intel® VTune™ Profiler chooses
a random port that is available.

data-directory Intel® VTune™ Profiler searches for results in this
directory. By default, this is in the home directory of
the user who started the web service. If you provide a
custom directory, ensure that the user starting the web
service has access to the custom directory.

enable-server-profiling This option enables the web service to profile the
server on which it runs.

allow-remote-access Use this option to enable browser access from systems
other than localhost.

Use these commands:

• Linux OS:

$ vtune-backend –web-port=8080 –data-directory=/mnt/vtune-results/ --enable-server-profiling –
allow-remote-access &

• Windows OS:

C:\Program Files (x86)\Intel\oneAPI\vtune\latest\bin64\vtune-backend --web-port=55012 --allow-
remote-access --enable-server-profiling

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

90

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/sep-driver.html

When the web service begins, a URL displays which you can paste into your local browser. If this is the first
time you are starting web service on the system, the URL contains a one-time token you use to set a security
passphrase.

NOTE This procedure does not enable an official TLS certificate. When you connect to the server
through a web browser, you may see warnings.

Run a Collection
The installation package of Intel® VTune™ Profiler includes a matrix multiply sample with results. If you
use the default data directory, these results display in the user interface on the browser.

You can run a data collection in these ways:

Method Notes

Run a collection on the web server. Use the default settings in the WHERE pane.

Configure a remote system. You must install the collection agent on the target. You
can do this manually or automatically. For more
information, see Deploy the Intel® VTune™ Profiler Agent .

Intel® VTune™ Profiler Performance Analysis Cookbook 1

91

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/web-server-ui.html#SECTION_A776AEBFD14D459EB8A4EB9806EFF56A

Method Notes

Run a collection on the target and copy results over. Install Intel® VTune™ Profiler manually on the target OS.
Run a data collection and then copy the results into the
data directory of the server. This method is useful if
remote collection is not possible due to SSH or permission
issues. You can also use this method to view results
without needing to run a new data collection.

This example demonstrates the first method to run a Hotspots analysis on the matrix sample on the web
server. For this purpose, create a new project (called new_test) so you can see how results are structured
on the server:

Once results have been collected, they are available in the new_test data directory:

When you collect or open Intel® VTune™ Profiler results this way, you do not install or copy anything onto your
local system. Intel® VTune™ Profiler and the collected results exist only on the remote devcloud system.

See Also
Install Intel® VTune™ Profiler Server
Intel® VTune™ Profiler Web Server Interface

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

92

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/install-web-server.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/web-server-ui.html

Profiling Machine Learning Applications (NEW)
Learn how to use Intel® VTune™ Profiler to profile
Machine Learning (ML) workloads.

In our increasingly digital world powered by software and web-based applications, Machine Learning (ML)
applications have become extremely popular. The ML community uses several Deep Learning (DL)
frameworks like Tensorflow*, PyTorch*, and Keras* to solve real world problems.

However, understanding computational and memory bottlenecks in DL code like Python or C++ is challenging
and often requires significant effort due to the presence of hierarchical layers and non-linear functions.
Frameworks like Tensorflow* and PyTorch* provide native tools and APIs that enable the collection and
analysis of performance metrics during different stages of Deep Learning Model development. But the scope
of these profiling APIs and tools is quite limited. They do not provide deep insight at the hardware level to
help you optimize different operators and functions in the Deep Learning models.

In this recipe, learn how you can use VTune Profiler to profile a Python workload and improve data collection
with additional APIs.

Content Expert: Rupak Roy

• INGREDIENTS
• DIRECTIONS:

1.Run VTune Profiler on a Python Application
2. Include Intel® Instrumentation and Tracing Technology (ITT)-Python APIs
3.Run Hotspots and Microarchitecture Exploration Analyses
4.Add PyTorch* ITT APIs (for PyTorch Framework only)
5.Run Hotspots Analysis with PyTorch ITT APIs

Ingredients
Here are the hardware and software tools you need for this recipe.

• Application: This recipe uses the TensorFlow_HelloWorld.py and
Intel_Extension_For_PyTorch_Hello_World.py applications. Both of these code samples are
implementations of a simple neural network with a convolution layer, a normalization layer, and a ReLU
layer which can be trained and evaluated.

• Analysis Tool: User-mode sampling and tracing collection with VTune Profiler (version 2022 or newer)

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• CPU: 11th Gen Intel® Core(TM) i7-1165G7 @ 2.80GHz
• Operating System: Ubuntu Server 20.04.5 LTS

Intel® VTune™ Profiler Performance Analysis Cookbook 1

93

https://community.intel.com/t5/user/viewprofilepage/user-id/183427
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Getting-Started-Samples/IntelTensorFlow_GettingStarted
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Getting-Started-Samples/Intel_Extension_For_PyTorch_GettingStarted
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Run VTune Profiler on a Python Application
Let us start by running a Hotspots analysis on the Intel_Extension_For_PyTorch_Hello_World.py ML
application, without any change to the code. This analysis is a good starting point to identify the most time-
consuming regions in the code.

In the command line, type:

vtune -collect hotspots -knob sampling-mode=sw -knob enable-stack-collection=true -source-search-
dir=path_to_src -search-dir /usr/bin/python3 -result-dir vtune_hotspots_results -- python3
Intel_Extension_For_PyTorch_Hello_World.py

Once the analysis completes, see the most active functions in the code by examining the Top Hotspots
section in the Summary window.

In this case, we see that the sched_yield function consumes considerable CPU time. Excessive calls to this
function can cause unnecessary context switches and result in a degradation of application performance.

Next, let us look at the top tasks in the application:

Here we can see that the convolution task consumes the most processing time for this code.

While you can dig deeper by switching to the Bottom-up window, it may be challenging to isolate the most
interesting regions for optimization. This is particularly true for larger applications because there may be a lot
of model operators and functions in every layer of the code. Therefore, we will now add Intel®
Instrumentation and Tracing Technology (ITT) APIs to generate results that are easier to interpret.

Include ITT-Python APIs
Let us now add Python* bindings available in ITT-Python to the Intel® Instrumentation and Tracing
Technology (ITT) APIs used by VTune Profiler. These bindings include user task labels to control data
collection and some user task APIs (that can create and destroy task instances).

ITT-Python uses three types of APIs:

• Domain APIs

• domain_create(name)

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

94

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/basic-hotspots-analysis.html
https://github.com/NERSC/itt-python

• Task APIs

• task_begin(domain, name)
• task_end(domain)

• Anomaly Detection APIs

• itt_pt_region_create(name)
• itt_pt_region_begin(region)
• itt_pt_region_end(region)

The following example from TensorFlow_HelloWorld.py calls the Domain and Task APIs in ITT-Python:

itt.resume()
domain = itt.domain_create("Example.Domain.Global")
itt.task_begin(domain, "CreateTrainer")
for epoch in range(0, EPOCHNUM):
 for step in range(0, BS_TRAIN):
 x_batch = x_data[step*N:(step+1)*N, :, :, :]
 y_batch = y_data[step*N:(step+1)*N, :, :, :]
 s.run(train, feed_dict={x: x_batch, y: y_batch})
 '''Compute and print loss. We pass Tensors containing the predicted and true values of y,
and the loss function returns a Tensor containing the loss.'''
 print(epoch, s.run(loss,feed_dict={x: x_batch, y: y_batch}))
itt.task_end(domain)
itt.pause()

Here is the sequence of operations:

1. Use itt.resume() API to resume the profiling just before the loop begins to execute.
2. Create an ITT domain (like Example.Domain.Global) for a majority of the ITT API calls.
3. Use the itt.task.begin() API to start the task. Label the task as CreateTrainer. This label appears

in profiling results.
4. Use itt.task() API to end the task.
5. Use itt.pause() API to pause data collection.

Run Hotspots and Microarchitecture Exploration Analyses
Once you have modified your code, run the Hotspots analysis on the modified code.

vtune -collect hotspots -start-paused -knob enable-stack-collection=true -knob sampling-mode=sw
-search-dir=/usr/bin/python3 -source-search-dir=path_to_src -result-dir vtune_data -- python3
TensorFlow_HelloWorld.py

This command uses the -start-paused parameter to profile only those code regions marked by ITT-Python
APIs. Let us look at the results of the new Hotspots analysis. The Top Hotspots section displays hotspots in
the code regions marked by ITT-Python APIs.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

95

https://github.com/oneapi-src/oneAPI-samples/blob/master/AI-and-Analytics/Getting-Started-Samples/IntelTensorFlow_GettingStarted/TensorFlow_HelloWorld.py

Examine the most time-consuming ML primitives in the target code region. Focus on these primitives first to
improve optimization. Using the ITT-APIs helps you identify those hotspots quickly which are more pertinent
to ML primitives.

Next, look at the top tasks targeted by the ITT-Python APIs. Since you can use these APIs to limit profiling
results to specific code regions, the ITT logical tasks in this section display information including:

• CPU time

• Effective time
• Spin time
• Overhead time

• CPU utilization time
• Source code line level analysis

The source line level profiling of the ML code reveals the source line breakdown of CPU time. In this example,
the code spends 10.2% of the total execution time to train the model.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

96

To obtain a deeper understanding of application performance, let us now run the Microarchitecture
Exploration analysis. In the command window, type:

vtune -collect uarch-exploration -knob collect-memory-bandwidth=true -source-search-
dir=path_to_src -search-dir /usr/bin/python3 -result-dir vtune_data_tf_uarch -- python3
TensorFlow_HelloWorld.py

Once the analysis completes, the Bottom-up window displays detailed profiling information for the tasks
marked with ITT-Python APIs. We can see that the CreateTrainer task is front-end bound, which means
that the front end is not supplying enough operations to the back end. Also, there is a high percentage of
heavy-weight operations (those which need more than 2 µops).

To focus your analysis on a smaller block of code, right click on one of the CreateTrainer tasks and enable
filtering.

Add PyTorch* ITT APIs (for PyTorch Framework only)
Just like ITT-Python APIs, you can also use PyTorch* ITT APIs with VTune Profiler. Use PyTorch ITT APIs to
label the time span of individual PyTorch operators and get detailed analysis results for customized code
regions. PyTorch 1.13 provides these versions of torch.profiler.itt APIs for use with VTune Profiler:

• is_available()
• mark(msg)

Intel® VTune™ Profiler Performance Analysis Cookbook 1

97

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://pytorch.org/docs/stable/profiler.html#intel-instrumentation-and-tracing-technology-apis

• range_push(msg)
• range_pop()
Let us see how these APIs are used in a code snippet from Intel_Extension_For_PyTorch_Hello_World.py.

itt.resume()
with torch.autograd.profiler.emit_itt():
 torch.profiler.itt.range_push('training')
 model.train()
 for batch_index, (data, y_ans) in enumerate(trainLoader):
 data = data.to(memory_format=torch.channels_last)
 optim.zero_grad()
 y = model(data)
 loss = crite(y, y_ans)
 loss.backward()
 optim.step()
 torch.profiler.itt.range_pop()
itt.pause()

The above example features this sequence of operations:

1. Use the itt.resume() API to resume the profiling just before the loop begins to execute.
2. Use the torch.autograd.profiler.emit_itt() API for a specific code region to be profiled.
3. Use the range_push() API to push a range onto a stack of nested range spans. Mark it with a message

('training').
4. Insert the code region of interest.
5. Use the range_pop() API to pop a range from the stack of nested range spans.

Run Hotspots Analysis with PyTorch ITT APIs
Let us now run the Hotspots analysis for the code modified with PyTorch ITT APIs. In the command window,
type:

vtune -collect hotspots -start-paused -knob enable-stack-collection=true -knob sampling-mode=sw -
search-dir=/usr/bin/python3 -source-search-dir=path_to_src -result-dir
vtune_data_torch_profiler_comb -- python3 Intel_Extension_For_PyTorch_Hello_World.py

Here are the top hotspots in our code region of interest:

In the Top Tasks section of the Summary, we see the training task which was labeled using the ITT-API.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

98

HTTPS://GITHUB.COM/ONEAPI-SRC/ONEAPI-SAMPLES/BLOB/MASTER/AI-AND-ANALYTICS/GETTING-STARTED-SAMPLES/INTEL_EXTENSION_FOR_PYTORCH_GETTINGSTARTED/INTEL_EXTENSION_FOR_PYTORCH_HELLO_WORLD.PY

When we examine the source line profiling of the PyTorch code, we see that the code spends 10.7% of the
total execution time in backpropagation.

Switch to the Platform window to see the timeline for the training task, which was marked using PyTorch
ITT APIs.

In the timeline, the main thread is python3(TID:125983) and it contains several smaller threads. Operator
names that start with aten::batch_norm, aten::native_batch_norm, aten::batch_norm_i are model
operators.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

99

From the Platform window, you can glean these details:

• CPU usage (for a specific time period) for every individual thread
• Start time
• Duration of user tasks and oneDNN primitives(Convolution, Reorder)
• Source lines for each task and primitive. Once the source file for a task/primitive is compiled with debug

information, click on the task/primitive to see the source lines.
• Profiling results grouped by iteration number (when multiple iterations are available)

See Also
Intel® Optimization for TensorFlow*
Intel® Optimization for PyTorch*

Profiling Single-Node Kubernetes* Applications (NEW)
Learn how to use Intel® VTune™ Profiler to profile
Kubernetes* applications deployed in single-node
environments.

Kubernetes* applications are popularly deployed in multi-node environments, where aspects like scalability
and durability are important advantages. However there are other advantages when you deploy Kubernetes
applications in single-node environments. You can expect a better experience in terms of deployment and
management of containerized workloads, in addition to standard containerization features. You can use
VTune Profiler to profile Kubernetes* applications in single-node environments and Kubernetes pods with
multiple containers running simultaneously.

Follow this recipe to configure a single Kubernetes node and use VTune Profiler to analyze one or more pods
running Docker* containers. This recipe employs the Java* code analysis capabilities of VTune Profiler.

• INGREDIENTS
• DIRECTIONS:

1.Configure a Kubernetes Pod
2.Run Hardware Event-Based Hotspots Analysis with VTune Profiler and Target in the Same Pod
3.Run Hotspots Analysis in User-Mode Sampling on a Pod Target
4.Run Profile System Analysis for Pods with Multiple Containers

Ingredients
Here are the hardware and software tools you need for this recipe:

• Application:

• MatrixMultiplication - This is a Java application used as a demo. It is not available for download.
• vtunedemo_fork - This is a native application is used as a demo. It is not available for download.

• Tools: Intel VTune Profiler 2023 (or newer) - Hotspots analysis with Hardware Event-Based Sampling.

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Container Orchestration System: Kubernetes

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

100

https://www.intel.com/content/www/us/en/developer/tools/oneapi/optimization-for-tensorflow.html#gs.v4v4k0
https://www.intel.com/content/www/us/en/developer/tools/oneapi/optimization-for-pytorch.html#gs.v4v8hv
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/basic-hotspots-analysis.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

• Operating system: Ubuntu* 22.04 based on Linux* kernel version 5.15 or newer
• CPU: Intel® microarchitecture code named Skylake or newer

Configure a Kubernetes Pod
Prerequisite: Install a Kubernetes pod. Follow instructions at http://kubernetes.io.

Once you have a Kubernetes pod ready,

1. Modify the YAML configuration file for the pod. This example uses pod-test as the pod name and
test.yaml for the configuration file.

apiVersion: v1
kind: Pod
metadata:
 name: pod-test
 labels:
 app: pod-test
spec:
 containers:
 - name: pod-test-1

2. Enable a shared path between the host machine and the pod.

spec:
 volumes:
 - name: shared-path
 hostPath:
 path: /tmp/shared_path
 type: Directory
 containers:
 - name: pod-test-1
 volumeMounts:
 - name: shared-path
 mountPath: /tmp/test_application

where:

• /tmp/shared_path is a directory located on the host side
• /tmp/test_application is a path located inside the pod

3. Configure the security context for the container. Enable privileged mode when profiling running pods.
Type:

spec:
 containers:
 securityContext:
 privileged: true

In order to profile the system with workloads running in pods, you must give access to the host PID
namespace:

spec:
 hostPID: true

4. Apply the Kubernetes pod configuration file:

host> kubectl apply -f test.yaml

Run Hardware Event-Based Hotspots Analysis with VTune Profiler and Target in the Same Pod
In this procedure, let us run VTune Profiler and the workload in the same Kubernetes pod. We will then
analyze the collected results on the host machine.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

101

http://kubernetes.io

Prerequisite: Install VTune Profilersampling drivers for Linux targets or enable driverless collection.

1. Enable a shared path with VTune Profiler and the results directory between the node and the pod.

spec:
 volumes:
 - name: vtune-path
 hostPath:
 path: /opt/intel/oneapi/vtune
 type: Directory
 - name: vtune-results-path
 hostPath:
 path: /opt/vtune_results
 type: Directory
 containers:
 - name: pod-test-1
 volumeMounts:
 - name: vtune-path
 mountPath: /vtune
 - name: vtune-results-path
 mountPath: /tmp/vtune_results

where:

• /opt/intel/oneapi/vtune is the path to the installation directory (on the host) for VTune Profiler
• /vtune is a VTune Profiler path located inside the pod
• /opt/vtune_results is a writable location for VTune Profiler results on the host
• /tmp/vtune_results is a path to VTune Profiler results in the pod

2. Run Hotspots analysis in Launch Application mode. Use analyze_mod path in the results directory.

pod> cd /vtune/latest
pod> source vtune-vars.sh
pod> vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true --app-
working-dir=/var/local/jdk-19.0.2/bin -result-dir=/tmp/vtune_results/analyze_pod/r@@@{at} --
duration 30 -- /var/local/jdk-19.0.2/bin/java -cp /tmp/test_application/java_tests/
MatrixMultip_32bit/ MatrixMultiplication

NOTE You can run User-mode and Hardware Event-based Hotspots analysis in both Launch
Application and Attach to Process modes within the pod.

3. When the data collection completes, open the GUI on the VTune Profiler host machine.

host> vtune-gui
4. Create a project for the collected results. Let us call it analyze_pod.
5. Open the collected results. Click on the icon highlighted here:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

102

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/build-install-sampling-drivers-for-linux-targets.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

6. Review the results in the Summary window of the Hotspots Analysis.

Run Hotspots Analysis in User-Mode Sampling on a Pod Target
Use VTune Profiler on the host machine to run a Hotspots analysis on a target in a Kubernetes pod.

1. Start VTune Profiler Server on the host machine. Type:

host> cd /opt/intel/oneapi/vtune/latest
host> source vtune-vars.sh
host> vtune-backend --allow-remote-access --web-port=50777 --enable-server-profiling &

where:

• --allow-remote-access enables remote access
• --web-port=50777 is the HTTP/HTTPS port for web UI and data APIs
• --enable-server-profiling enables the user to select the hosting server as the profiling target
• & runs the command in the background

Intel® VTune™ Profiler Performance Analysis Cookbook 1

103

The vtune-backend command returns a URL which you can open outside the container. For example:

Serving GUI at https://10.45.176.150:50777/?one-time-token=0ee4ec13b6c33fe416b49fcb273d43ac
2. Run the native application in the pod.

pod> /tmp/test_application/native_app
pod> ./vtunedemo_fork -nonstop -nt 80

3. Run vtune-backend and open the URL you receive.
4. Create a project, for example kubernetes_pod.
5. To analyze the application running within the pod, run the Hotspots analysis in User-mode or Hardware

Event-based Sampling mode. However, you must first configure the analysis to attach to the process.
Specify the binaries and symbols of the application for Function level and Source level analysis of
collected data:

NOTE The file locations must be from the host.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

104

Once the analysis completes, VTune Profiler displays results in the Summary window.

6. In the Top Hotspots section, we see that the test_if function of the target application consumed the
most CPU time. Click on this function and switch to the Bottom-up window. See the stack flow for this
hotspot.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

105

Profiling Considerations

• You can only profile native C/C++ applications.
• You cannot profile applications that are instrumented with Intel® Instrumentation and Tracing Technology

(ITT) APIs/JIT APIs and are running inside the container.

Run Profile System Analysis for Pods with Multiple Containers
Let us now run VTune Profiler on the host machine to profile a system with a Kubernetes pod that contains
multiple containers.

Prerequisites:

• Install VTune Profilersampling drivers for Linux targets or enable driverless collection.
• To profile multiple containers inside a pod, each container must contain privileged:true in the

securityContext section.

1. Start VTune Profiler Server on the host machine.

host> cd /opt/intel/oneapi/vtune/latest
host> source vtune-vars.sh
host> vtune-backend --allow-remote-access --web-port=50777 --enable-server-profiling &

where:

• --allow-remote-access enables remote access
• --web-port=50777 sets the HTTP/HTTPS port for web UI and data APIs
• --enable-server-profiling enables the user to select the hosting server as the profiling target
• & runs the command in the background

2. Run vtune-backend. This command returns a URL which you can open outside the container. For
example:

Serving GUI at https://10.45.176.150:50777/?one-time-token=0ee4ec13b6c33fe416b49fcb273d43ac
Open the URL you receive.

3. On the host machine, start the Profile System analysis. Specify the binaries and symbols of the
application for Function and Source level analysis of collected data.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

106

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/build-install-sampling-drivers-for-linux-targets.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE The file locations must be from the host.

4. Inside the containers, run native applications.
5. Once the analysis completes, see results in the Summary tab.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

107

6. In the Top Hotspots section, click on the test_if function and switch to the Bottom-up window. See
the stack flow for this hotspot.

7. To see performance data for the containers of the individual pod, select the Container Name/
Process/Function/Thread/Call Stack grouping from the pull down menu. Identify containers by the
docker:k8s prefix.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

108

8. Double click on the test_if function to do a source level analysis for this function.

Profiling Considerations:

• You can only profile native C/C++ applications.
• You cannot profile applications instrumented with ITT/JIT API.

See Also
Profiling Docker* Containers

Intel® VTune™ Profiler Performance Analysis Cookbook 1

109

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-in-docker-container.html

Analyzing Hot Code Paths Using Flame Graphs (NEW)
Follow this recipe to understand how you can use
Flame Graphs to detect hot spots and hot code paths
in Java workloads.

Content Experts: Dmitry Kolosov, Elena Nuzhnova

A flame graph is a visual representation of the stacks and stack frames in your application. The graph plots
all of the functions in your application on the X-axis and displays the stack depth on the Y-axis. Functions are
stacked in order of ancestry, with parent functions directly below child functions. The width of a function
displayed in the graph is an indication of the amount of time it engaged the CPU. Therefore, the hottest
functions in your application occupy the widest portions on the flame graph.

You can use flame graphs when you run the hotspots analysis with stacks on any of these workloads:

• C++
• FORTRAN
• Java
• .NET
• Python

This recipe uses a Java application as an example. Typically, a poor selection of parameters (either sub-
optimal or incorrect) for the Java Virtual Machine (JVM) can result in slow application performance. The
slowdown is not always obvious to analyze or explain. When you visualize the application stacks in a flame
graph, you may find it easier to identify hot paths for the application and its mixed stacks (Java and built-in).

NOTE If you are interested in С++ optimization, you may want to see the Improving Hotspot
Observability in a C++ Application Using Flame Graphs recipe. It demonstrates how the Flame Graph
can help in a scenario where the bottleneck is obscured by an unclear hot path and long template
function names.

• INGREDIENTS
• DIRECTIONS:

1.Create a Baseline
2.Run Hotspots Analysis
3.Analyze Hotspots Information
4. Identify Hot Code Paths in the Flame Graph
5.Change JVM Options

Ingredients
Here are the hardware and software tools we use in this recipe:

• Application: SPECjbb2015® Benchmark. This benchmark is relevant to anyone who is interested in Java
server performance including:

• JVM vendors
• Hardware developers
• Java application developers
• Researchers and members of the academic community

• OpenJDK11. This application is the open source reference implementation of the Java SE Platform (version
11) as specified by JSR384 in the Java Community Process.

• Performance Analysis Tools: Hotspots Analysis in Intel® VTune™ Profiler (version 2021.7 or newer)
• Operating System: Ubuntu* 18.04.1 LTS
• CPU: Intel® Xeon® Gold 6252 processor architecture codenamed Cascade Lake

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

110

https://community.intel.com/t5/user/viewprofilepage/user-id/80733
https://community.intel.com/t5/user/viewprofilepage/user-id/117987
https://www.spec.org/jbb2015/
https://jdk.java.net/11/
https://openjdk.java.net/projects/jdk/11/spec

Create a Baseline
1. For the purpose of this recipe, let us first shorten the runtime of SPECjbb2015. Change these properties

in the config/specjbb2015.props file:

specjbb.input.number_customers=1
specjbb.input.number_products=1

2. In accordance with popular optimization practices and guidance, start optimizing the application with -
XX:+UseParallelOldGC and -XX:-UseAdaptiveSizePolicy JVM options.

3. Make sure to tune these parameters for optimal performance of your Java application:

• Garbage Collection (GC) Algorithm - When you enable the UseParallelOldGC option, you can
collect old and young generation collections in parallel. Garbage collection can then work more
efficiently because you have reduced the overall full GC pause. If throughput is your goal, specify -
XX:+UseParallelOldGC.

• Heap Tuning - By default, JVMs adapt their heap based on runtime heuristics. To achieve pause,
throughput, and footprint goals, the GC can resize heap generations based on GC statistics. In some
cases, to increase throughput, you may want to disable this option and set the heap size manually.
Use the heap as a performance baseline for further optimizations.

java -XX:-UseAdaptiveSizePolicy -XX:+UseParallelOldGC -jar specjbb2015.jar –m COMPOSITE

Run Hotspots Analysis
1. Run VTune Profiler (version 2021.7 or newer).
2. In the Welcome screen, click Configure Analysis.
3. In the WHERE pane, select Local Host.
4. In the WHAT pane, enter these values:

• Application:java
• Application parameters: -XX:-UseAdaptiveSizePolicy -XX:+UseParallelOldGC -jar

specjbb2015.jar -m COMPOSITE
5. In the HOW pane, open the Analysis Tree and select Hotspots analysis in the Algorithm group.
6. Select Hardware Event-Based Sampling mode and check the Collect stacks option.
7. Click the Start button to run the analysis.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

111

VTune Profiler profiles the Java application and collects data. Once this process completes, VTune Profiler
finalizes the collected results and resolves symbol information.

Analyze Hot Spots Information
Start your analysis in the Summary window, where you can see high level statistics on the execution of your
application. Focus on the Elapsed Time and Top Hotspots sections.

In this example, we see that the elapsed time for SPECjbb2015 was around 375 seconds.

The top five hotspots in the summary are in JVM functions. No Java/Application functions appear in this list.

Look at the Bottom-up window next to continue searching for hotspots.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

112

Although the Bottom-up window displays more hotspots in the JVM, we need a deeper analysis to explain the
slowdown of the Java application. This would require an expansion of bunches of parent functions for every
hotspot in the table above.

Let us now look at the flame graph for this data, where we can observe all application stacks at once and
possibly identify hot code paths.

Identify Hot Code Paths in the Flame Graph
Switch to the Flame Graph window.

A Flame Graph is a visual representation of the stacks and stack frames in your application. Every box in the
graph represents a stack frame with the complete function name. The horizontal axis shows the stack profile
population, sorted alphabetically. The vertical axis shows the stack depth, starting from zero at the bottom.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

113

https://www.brendangregg.com/flamegraphs.html

The flame graph does not display data over time. The width of each box in the graph indicates the
percentage of the function CPU time to total CPU time. The total function time includes processing times of
the function and all of its children (callees).

The Flame Graph window contains a Call Stacks view, which displays the hottest stack when selected in the
flame graph. You can also observe other stacks by selecting a function or drill down to its source code.
Types of Functions in a Flame Graph

The flame graph uses a color scheme to display these types of functions:

Function Type Description

User A function from the application module of the user.

System A function from the System or Kernel module

Synchronization A synchronization function from the Threading
Library (like OpenMP Barrier)

Overhead An overhead function from the Threading library
(like OpenMP Fork or OpenMP Dispatcher)

Follow these techniques as you examine the information displayed in the flame graph.

• Start optimizing from the bottommost function and work your way up. Focus on hot functions that are
wide on the flame graph.

• In this example, the flame graph displays stacks and frames that are only from the JVM. Therefore almost
all of the CPU time was spent in the JVM.

• Consequently, the CPU time spent on the application was significantly low. Application stacks or frames
are not even visible in the flame graph.

• The hottest code path is clone --> start_thread --> thread_native_entry -->
GCTaskThread::run --> StealMarkingTask::do_it --> and so on.

• Pay attention to the GCTaskThread::run function/frame, which runs Java Garbage Collector tasks.
• When you hover over GCTaskThread::run function/frame, you can see in the details at the bottom that

93.3% of CPU Time was spent on the function and its callees.

Therefore, a lot of CPU Time was spent in the Java Garbage Collector.

Change JVM Options
The -XX:-UseAdaptiveSizePolicy JVM option may not allow the application to adapt to the size of the
JVM heap. The default values used for the run may also be insufficient. Let us now change the size of the
JVM heap to decrease the executing time of the Garbage Collector (GC).

The -Xms and -Xmx options are used to set the operating range of the JVM where it can resize the heap. If
the two values are the same, the heap size remains constant. It is good practice to refer to the JVM logs
before you set values for these options.

Let us change the -Xms and -Xmx JVM options for the application to 2GB and 4GB respectively. We will then
collect a new profile:

1. Click the Configure Analysis button in the Welcome screen of VTune Profiler.
2. In the WHERE pane, select Local Host.
3. In the WHAT pane, set Application to java.
4. Change application parameters. Use -Xms2g -Xmx4g -XX:-UseAdaptiveSizePolicy -

XX:+UseParallelOldGC -jar specjbb2015.jar -m COMPOSITE.
5. Click Start to run the analysis.

Once the data collection completes, check the Elapsed Time and Top Hotspots in the Summary window.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

114

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/viewing-stacks.html

• We can observe a 6x reduction in Elapsed Time from ~375 s to ~54s.
• The Top Hotspots section also displays a new list of functions (including the GenerateReceipts task)

with shorter CPU times.

Switch to the Flame Graph window to identify new hot code paths.

The flame graph shows a hot code path that includes the JVM GCTaskThread.

However, this hot code path uses only 30.6% of CPU Time compared to 93.3% on the previous run.
Next Steps

• You may want to focus on new hot code paths that proceed in this direction:

• JVM Compile::Compile —> ...
• JVM Interpreter —> org::spec::jbb::sm::ReceiptBuilder
• org::spec::jbb::sm::ReceiptBuilder —> ...

• Review your JVM options to identify more opportunities for optimization.
• If you want to optimize the JVM next, a good starting point is to focus on the Microarchitecture Usage

metric and follow recommendations in the Insights section of the Summary window:

• Apply Threading to increase parallelism n your application.
• Run the Microarchitecture Exploration analysis to examine the efficiency of application runs on the

hardware used.

See Also
Window: Flame Graph
Hotspots View

Intel® VTune™ Profiler Performance Analysis Cookbook 1

115

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/window-flame-graph.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hotspots-view.html

An explanation of Flame Graphs

Improving Hotspot Observability in a C++ Application Using Flame Graphs
See how the Flame Graph feature of Intel® VTune™
Profiler can help in a scenario where the true hotspot
is obscured behind template functions and long
function names.

Content experts: Dmitry Kolosov, Roman Khatko

The Flame Graph is a feature of the Hotspots analysis of Intel® VTune Profiler that visualizes application
execution paths in an intuitive visual form.

In some cases, finding a hotspot using the Top Hotspots section of the Summary tab or the Bottom-up
window is difficult. Some examples are:

• Applications with flat hotspots, or multiple hotspots with CPU Time spread evenly across many hotspots.
• Applications with nonactionable hotspots:

• Library function calls (STL, Boost, MKL, …) are on the top of stacks, and the caller is not easily
findable.

• Template functions with long and complicated names.

In such cases, the Flame Graph helps identify true hotspots and hot code paths by providing greater
observability for all application stacks. This increase in observability can save time and effort when analyzing
applications with complex stacks.

This feature supports workloads written in all languages that are supported by the Hotspots analysis,
including—but not limited to:

• C++
• FORTRAN
• Java
• .NET
• Python

This recipe demonstrates how the Flame Graph can help identify hot paths in your code more easily,
especially in cases where the real hotspot is obscured, or there are multiple hotspots.

NOTE If you are interested in Java optimization, you may want to see the Analyzing Hot Code Paths
Using Flame Graphs recipe. It demonstrates how the Flame Graph can help detect a sub-optimal JVM
configuration that results in loss of performance.

• Ingredients
• Directions

• Configure Project and Build Sample
• Establish Performance Baseline
• Analyze Hotspots Result with Summary and Bottom-up Windows
• Identify Hot Code Paths on the Flame Graph
• Analyze Second Implementation
• Analyze Third Implementation
• Analyze Fourth Implementation
• Summary

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario:

• Application: C++ STL/Boost* based sample.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

116

https://www.brendangregg.com/flamegraphs.html
https://community.intel.com/t5/user/viewprofilepage/user-id/83799
https://community.intel.com/t5/user/viewprofilepage/user-id/80733

Boost is a set of libraries for C++ that supports tasks and structures such as linear algebra,
pseudorandom number generation, multithreading, and more.

In this example, Boost 1.77.0 for Windows* is used (download sources or binaries).
• Performance analysis tool: Intel® VTune™ Profiler 2021.9—Hotspots analysis
• Operating system: Microsoft Windows Server* 2016
• IDE: Microsoft Visual Studio* 2017
• CPU: Intel® Xeon® E5-2695 v3 (formerly codenamed Haswell)

Configure Project and Build Sample
As a first step, we will build and analyze the sample application below to establish a performance baseline.

The sample code below splits random-generated long text (100 million words) by words in a service thread.
It contains four implementations that handle the task differently:

Implementation Uses Function Based On

1 splitByWordsBoost boost::split
2 splitByWordsStdString std::string::find and

std::string::substr
3 splitByWordsStdStringView std::string_view::find and

std::string_view::substr and
std::vector of string_view

4 splitByWordsStdStringView pre-allocated output vector

Each implementation is selectable by a command-line parameter. Over the course of this recipe, we will
switch between different implementations to analyze how the performance changes.

#include <iostream>
#include <vector>
#include <chrono>
#include <thread>
#include <string_view>

#include <boost/algorithm/string.hpp>

using namespace std::chrono;

void generateRandomText(std::string& text, const size_t words, const size_t symbolsInWord)
{
 for (size_t i = 0; i < words; i++)
 {
 for (size_t j = 0; j < symbolsInWord; j++)
 {
 text += 'a' + i % 26;
 }
 text += ' ';
 }
}

void splitByWordsBoost(const std::string& text, std::vector<std::string>& splitWords)
{
 boost::split(splitWords, text, boost::is_any_of(" "));
}

void splitByWordsStdString(const std::string& text, std::vector<std::string>& splitWords)
{
 const char delimiter = ' ';

Intel® VTune™ Profiler Performance Analysis Cookbook 1

117

https://boostorg.jfrog.io/ui/native/main/release/1.77.0/source/
https://sourceforge.net/projects/boost/files/boost-binaries/1.77.0/

 size_t start, end = 0;
 while ((start = text.find_first_not_of(delimiter, end)) != std::string::npos) {
 end = text.find(delimiter, start);
 splitWords.push_back(text.substr(start, end - start));
 }
}

void splitByWordsStdStringView(const std::string& text, std::vector<std::string_view>&
splitWords)
{
 const char delimiter = ' ';
 size_t start, end = 0;
 std::string_view textView(text);
 while ((start = textView.find_first_not_of(delimiter, end)) != std::string::npos) {
 end = textView.find(delimiter, start);
 splitWords.emplace_back(textView.substr(start, end - start));
 }
}

int main(int argc, char** argv)
{
 int splitMode = 0;
 const char* msg = "splitByWordsBoost";
 if (argc > 1)
 {
 switch (*argv[1])
 {
 case '2': splitMode = 1; msg = "splitByWordsStdString"; break;
 case '3': splitMode = 2; msg = "splitByWordsStdStringView"; break;
 case '4': splitMode = 3; msg = "splitByWordsStdStringView(pre-allocated vector)"; break;
 }
 }

 const size_t numOfWords = 100000000, symbolsInWord = 10;
 std::string text;
 text.reserve(numOfWords * (symbolsInWord+1));

 std::cout << "Generating random text: ";
 auto start = high_resolution_clock::now();
 generateRandomText(text, numOfWords, symbolsInWord);
 auto stop = high_resolution_clock::now();
 std::cout << duration_cast<duration<float>>(stop - start).count() << " seconds" << std::endl;

 std::vector<std::string> splitWords;
 std::vector<std::string_view> splitWordsView;
 if (splitMode == 3) splitWordsView.reserve(numOfWords);

 std::cout << msg << " function: ";
 std::thread thread;
 start = high_resolution_clock::now();
 switch (splitMode)
 {
 case 0: thread = std::thread(splitByWordsBoost, std::ref(text), std::ref(splitWords)); break;
 case 1: thread = std::thread(splitByWordsStdString, std::ref(text), std::ref(splitWords));
break;
 case 2:
 case 3: thread = std::thread(splitByWordsStdStringView, std::ref(text),
std::ref(splitWordsView)); break;

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

118

 }
 thread.join();
 stop = high_resolution_clock::now();

 std::cout << duration_cast<duration<float>>(stop - start).count() << " seconds" << std::endl;
 auto splitWordsSize = splitMode >= 2 ? splitWordsView.size() : splitWords.size();
 std::cout << "Split words: " << splitWordsSize << std::endl;
}

The code can be copied over to a newly created C++ project, such as Console App or Empty Project in
Visual Studio 2017, or any newer Visual Studio version with C++17 support.

Since the sample depends on the Boost library, additional configuration steps are required.

NOTE Make sure that the Configuration is set to Release and the Platform is set to x64 when
editing project properties or compiling the application.

Follow these steps to set up the project in Visual Studio:

1. Right-click on the project node in the Solution Explorer and select Properties.
2. In the Project Property Pages window, make sure the Configuration drop-down is set to Release

and Platform is set to x64.
3. In the VC++ Directories page, add the root Boost directory to Include Directories.
4. In the VC++ Directories page, add the Boost libraries directory to Library Directories.

The default directory is:

<boost-root-directory>\libs
5. In the C/C++ > Language page, make sure the C++ Language Standard option is set to ISO C+

+17 Standard (/std:c++17).

The configuration is now ready.

NOTE The sample code can be built and tuned on Linux if the Boost library is installed and a compiler
that supports C++17 is available. Use this command to build the sample on Linux:

g++ -Wall -O2 -g -pthread -std=c++17 -l <path-to-boost-dir> ConsoleApplication1.cpp -o
ConsoleApplication1

Build the project in the Release x64 configuration. Once compiled, different implementations of the
algorithm can be selected by using the <option> parameter:

>ConsoleApplication1.exe <option>
where <option> is: 1, 2, 3, or 4.

The application defaults to 1 if no arguments are given, so as a first step, run the application without
parameters:

>ConsoleApplication1.exe

Establish Performance Baseline
For the next step, run the Hotspots analysis of VTune Profiler with the application using the first
implementation—the one that is based on the boost::split function. The result of this analysis will become
our performance baseline, against which we will compare future optimizations.

Run VTune Profiler and start your analysis:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

119

1. Click the New Project button on the toolbar and specify a name for the new project, such as
split_string.

2. Click Create Project.

The Configure Analysis window opens.
3. On the WHERE pane, select the Local Host target system.
4. On the WHAT pane, select the Launch Application mode.
5. In the Application textbox, provide the path to the built application binary.
6. On the HOW pane, select the Hotspots analysis.
7. Click Start to run the analysis.

VTune Profiler launches the application and collects all necessary data before finalizing the result.

On the system specified in the Ingredients section, the total application working time is about 17 seconds.

Analyze Hotspots Result with Summary and Bottom-up Windows
Start your investigation with the Summary window that shows high-level information on application
performance.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

120

Focus on the Elapsed Time value and the Top Hotspots section that contains the list of hottest functions,
in decreasing order.

The Elapsed Time of the sample application is about 17 seconds.

The Top Hotspots are:

std::vector template 46.4% of CPU Time

boost::algorithm::detail::token_finderF
template

23.7% of CPU Time

main function 14.9% of CPU Time

boost::algorithm::split_iterator template 8.4% of CPU Time

Note that the splitByWordsBoost or boost::split functions are not on the list. Since the Top Hotspots
list only contains template functions and the main function, it does not make sense to start optimizations
with the functions highlighted on the Summary window. The real hotspot is likely obscured by the template
functions.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

121

Try finding the hotspot in the Bottom-up window. Switch to the Bottom-up window to observe more
hotspots related to splitByWordsBoost and boost::split functions that are the focus of our attention.

The Bottom-up window shows more functions and/or hotspots, but the splitByWordsBoost and
boost::split functions are not at the top of the list. The target function and its relationship to the
identified hotspots is not obvious.

If you expand the callers of the std::vector and boost::algorithm::split, the splitByWordsBoost
function can only be found on the 3rd-4th levels and takes 7.954 seconds—46.4% of CPU Time—out of the
total 17.328 seconds of Elapsed Time.

In such cases—when the hotspot is obscured by the template functions it calls—it may be more productive to
use the Flame Graph to eliminate any unnecessary guesswork and effort related to figuring out the relations
between hot functions.

Open the Flame Graph window to observe all application stacks, frames, and hot code paths.

Identify Hot Code Paths on the Flame Graph
A Flame Graph is a visual representation of the stacks and stack frames in your application. Each box in the
graph represents a stack frame with the complete function name. The horizontal axis shows the stack profile
population, sorted alphabetically. The vertical axis is the stack depth, starting from zero at the bottom.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

122

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/user-interface-reference/window-flame-graph.html

Note that the Flame Graph is not a timeline, so it does not display data over time. The width of each box in
the graph is proportional to the amount of CPU Time taken by this function out of the total CPU Time. The
total function time includes processing times of the function and all its children (callees).

NOTE For more information and background on Flame Graphs in general, see the Flame Graphs article
by Flame Graph inventor Brendan Gregg.

Start optimizing from the bottom functions and move up. Pay attention to the hot (wide) functions first.

In case of this application, note that the Flame Graph provides perfect observability and presents a clear hot
code path. Here, the path passes through the splitByWordsBoost and the boost::algorigthm::split
functions, and arrives at std::vector and boost template frames at the top. The splitByWordsBoost
function and its callees take 13.992 seconds (81.7%) of all CPU Time.

The Flame Graph works in conjunction with the Timeline pane and the Filter toolbar, which enables you to
filter data by time region, process, thread, etc. The Timeline pane shows two application threads: main and
service. The splitByWordsBoost function works in the service thread, so it makes sense to filter data by
service thread via the Filter By Thread drop-down to make the Flame Graph view cleaner. In this case, the
service thread is the thread func@0x18001ca70 (TID:22200).

Intel® VTune™ Profiler Performance Analysis Cookbook 1

123

https://www.brendangregg.com/flamegraphs.html

The Call Stacks pane on the right responds to selection/zoom on the Flame Graph and shows stacks with
frames passing through a selected function. Hover over and click the splitByWordsBoost function in the
Call Stacks pane to drill down to Source/Assembly view. The source view shows an obvious hotspot on
the boost::split function.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

124

This implementation could use some optimization. However, we cannot optimize the library function
boost::algorithm::split. Therefore, we will try our own implementation of the split function based on
std::string::find.

Analyze Second Implementation
To analyze the code with the second implementation of the splitter function, open the Configure Analysis
dialog and add 2 to the Application Parameters field. This enables the second implementation inside the
application.

Click Start to run the analysis.

Once the analysis is done, pay attention to the Elapsed Time value and the Top Hotspots section of the
Summary window.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

125

The Elapsed Time was decreased from roughly 17 seconds to roughly 12 seconds. The Top Hotspots
section shows a new list of functions, including the application function splitByWordsStdString.

The top hotspot is the std::vector<> template with vector re-allocation (_Emplace_reallocate) and the
std::string object constructor. These template functions are showing up as hotspots since our
splitByWordsStdString function performs other operations that are expensive in terms of overhead: it
constructs new std::string objects and often re-allocates the buffer for our output vector.

Switch to the Flame Graph window to get the full picture of the application stacks.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

126

A clear hot path is passing through the splitByWordsStdString function, with the std::vector template
frame at the top. The splitByWordsStdString function and its callees take 8.702 seconds (73.6%) of all
CPU Time vs 13.992 seconds (81.7%) of the previous implementation. A large portion of CPU Time is still
spent on vector re-allocation and string creation.

Therefore, let us try one more implementation based on std::string_view of the C++17 standard, which
offers the benefits of the std::string interface without the cost of constructing an std::string object.
The output vector will contain std::string_view objects.

Analyze Third Implementation
To analyze the code with the third implementation of the splitter function, open the Configure Analysis
dialog and add 3 to the Application Parameters field. This enables the second implementation inside the
application.

Click Start to run the analysis.

Once the analysis is done, pay attention to the Elapsed Time value and the Top Hotspots section of the
Summary window.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

127

Once again, the Elapsed Time of the application was decreased from roughly 12 seconds to roughly 6.5
seconds.

The Top Hotspots section shows a new list of functions, including the application function
splitByWordsStdStringView. The top hotspot is the main function, which poses no interest in terms of
optimization. The second hotspot is the std::vector<> template with vector re-allocation
(_Emplace_reallocate).

The splitByWordsStdStingView function adds split words to the vector of string_view objects,
bypassing many std::string object creations. This has increased the split function performance
significantly.

Switch to the Flame Graph window to get the full picture of the application stacks.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

128

A clear hot path is passing through the splitByWordsStdStringView function, with the std::vector
template frame at the top. The splitByWordsStdStringView function and its callees take 3.618 seconds
(57.6%) of total CPU Time, compared to 8.702 seconds (73.6%) of the previous run.

Let us try the final implementation of the splitter function based on std::string_vew, this time using pre-
allocation of the output vector by using the std::vector<>::reserve method. If we can roughly estimate
the amount of data that is going into our vector, we might as well pre-allocate some buffer space to avoid
most of the re-allocations.

Analyze Fourth Implementation
To analyze the code with the fourth implementation of the splitter function, open the Configure Analysis
dialog and add 4 to the Application Parameters field. This enables the second implementation inside the
application.

Click Start to run the analysis.

Once the analysis is done, pay attention to the Elapsed Time value and the Top Hotspots section of the
Summary window.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

129

Once again, the Elapsed Time was decreased from 6.421 to 4.252 seconds. There are no STL template
functions among the Top Hotspots.

Switch to the Flame Graph window to get the full picture of the application stacks.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

130

The hottest code path is passing through the main function now. The splitByWordsStdStringView
function and its callees take 1.487 seconds (35.8%) of CPU Time, compared to 3.618 seconds (57.6%) from
the previous run.

Summary
Considering the current gains in performance, optimization activities are stopped.

At each step of the iterative optimization process, the Flame Graph helped by being a visual guide into the
stack profiles of our application. In real projects, finding hotspots may not be as easy as looking at the Top
Hotspots section, and the Flame Graph can help uncover the hot paths that require optimization with less
time and effort.

Here is how the optimizations progressed with each iteration:

Iteration Elapsed Time, s Split Function CPU Time, s

1 17.328 13.992

2 12.016 8.702

3 6.421 3.618

4 4.252 1.484

Total - 13.076 - 12.508

We started with the first implementation that used the built-in boost::split function of the Boost library.
Not satisfied with the performance, and being unable to change the function, we switched to our own
implementation that uses std::string.

On second implementation, we discovered that the std::string implementation could also use some
improvement. The third implementation used std::string_view to avoid constant std::string object
creations and copying of string buffers, which improved performance. Finally, we opted to pre-allocate some
space to our output vector to bypass frequent re-allocation operations.

All these optimizations enabled our application to perform the same amount of work in roughly 4 seconds,
compared to roughly 17 seconds at the start.

Analyzing Hot Code Paths Using Flame Graphs (NEW) Follow this recipe to understand how you
can use Flame Graphs to detect hot spots and hot code paths in Java workloads.
Window: Flame Graph
User Guide: Hotspots Analysis
Flame Graphs Article by Brendan Gregg

Measuring Performance Impact of NUMA in Multi-Processor Systems
Use this recipe to measure the performance impact of
non-uniform memory access (NUMA) in multi-
processor systems. This recipe uses the Intel® VTune™
Profiler-Platform Profiler application.

Content expert: Jeffrey Reinemann

Non-uniform memory access (NUMA) is a computer memory design where the time for memory access
depends on the location of memory relative to the processor. In NUMA, processor cores can access local
memory (where the memory connected to the processor) faster than non-local memory (where the is
memory connected to another processor or shared between processors).

This figure illustrates the design of a two-processor NUMA system.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

131

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/user-interface-reference/window-flame-graph.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/algorithm-group/basic-hotspots-analysis.html
https://www.brendangregg.com/flamegraphs.html

Software that frequently accesses non-local (or remote) memory can suffer a measurable negative
performance impact when compared to software that primarily accesses local memory. In this recipe, we look
at measuring the negative performance impact of a NUMA system.

• INGREDIENTS
• DIRECTIONS:

1.Run Platform analysis
2. Identify NUMA issues
3.Set thread CPU affinity to fix NUMA issues
4.Verify NUMA optimizations

Ingredients
This section lists the hardware and software tools used in this scenario.

• Application: The sample application used in this recipe is not available for download.
• Tool: Intel® VTune™ Profiler-Platform Profiler

Run Platform Analysis
Intel® VTune™ Profiler-Platform Profiler consists of a data collector (run from the command line) and a server
implementing a RESTful interface to a time series database. To collect and view platform profiler metrics, you
must:

1. Collect data using the data collector on the command line.
2. Import and view results in the Platform Profiler server.

Collect Data

1. Set up the environment for Platform Profiler collector. Run vpp-collect-vars.

In a Linux* environment, run this command:

source /opt/intel/oneapi/vtune/latest/vpp/collect/vpp-collect-vars.sh
In a Windows* environment, run this command:

C:\Program Files (x86)\Intel\oneAPI\vtune\latest\vpp\collector\vpp-collect-vars.cmd
2. Start data collection. Run this command:

vpp-collect start -c 'optional comment about data collection'

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

132

3. If you want to insert marks in the data timeline, run:

vpp-collect mark 'optional comment about workload transition'
4. Stop data collection. Run this command:

vpp-collect stop
After data collection completes, Platform Profiler compresses the results into a .tgz (Linux) or .zip
(Windows) file whose name contains the name of the target system and a date/time stamp.
View Results

You view results in the Platform Profiler server. Follow these steps:

1. Set up the environment for Platform Profiler server. Run vpp-server-vars.

In a Linux environment, run this command:

source /opt/intel/oneapi/vtune/latest/vpp/server/vpp-server-vars.sh
In a Windows environment, run this command:

C:\Program Files (x86)\Intel\oneAPI\vtune\latest\vpp\server\vpp-server-vars.cmd

NOTE When setting up the environment for the first time, make sure you have root/administrator
access privileges.

2. Create the virtual Python* environment for Platform Profiler server. Run:

vpp-server config
3. Start the Platform Profiler server. Run this command:

vpp-server start
4. If necessary, specify the location of the database (for results) and a passphrase for access.
5. Open a web browser to the address and port number of the server instance of Intel® VTune™ Profiler-

Platform Profiler (e.g., localhost:6543)

6. Enter the database access password.
7. Import the Platform Profiler collector results file. In the View Results tab, click the Upload button.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

133

After the import completes, Platform Profiler displays information in three key areas:

• The Platform configuration diagram
• An interactive time line
• Detailed performance data charts

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

134

Identify NUMA Issues
1. Start your analysis of NUMA issues by selecting Overview in the Select View pulldown menu. In the

system configuration overview, you can see that a NUMA system typically has multiple processor
sockets, each of which has memory controllers. This diagram is an example of a platform diagram for a
two-socket system.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

135

In the case of the sample application used here. the performance is mostly bound by memory access.
There are a high number of memory accesses that are targeted to remote memory.

2. See the Non-Uniform Memory Access Analysis graph to compare local vs. remote memory accesses
over time. A high percentage of remote accesses indicates a NUMA related performance issue.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

136

3. Observe the Throughput Metrics section. In this sample application, there are frequent spikes in
cross-socket (UPI) traffic. These spikes correspond to remote memory accesses.

4. Switch to the Memory view to see additional information about memory accesses for each processor
socket. In this sample application, both sockets initiate remote memory accesses.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

137

Latencies in memory accesses spike when the remote memory is accessed. These spikes indicate an
opportunity for performance improvement.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

138

5. Switch to the UPI view to see the cross-socket traffic transmitted by each socket.

Set Thread CPU Affinity to Fix NUMA Issues
The sample application used in this recipe does not assign (or pin) software threads to specific sockets and
cores. The absence of this assignment causes the operating system to periodically schedule threads on
processor cores located in different sockets. In other words, the application is not 'NUMA-aware'. This
condition results in frequent accesses to remote memory, which in turn result in high cross-socket traffic and
higher memory access latencies.

One way to reduce remote memory accesses and cross-socket traffic is to assign the affinity of the processes
which execute on the same memory ranges, to processor cores in the same socket. This assignment helps to
maintain memory access locality. The programming guide for your operating system may recommend other
approaches to reduce cross-socket traffic on NUMA systems.

Verify NUMA Optimizations
Once you have completed NUMA optimizations, run the Platform Profiler data collection again on the
optimized code and import the results into the Platform Profiler server. The next graph shows memory
accesses after assigning affinity to cores in socket 0.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

139

In the sample used here, the results show that almost all memory accesses are now local accesses. Most
cross-socket traffic spikes were eliminated.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

140

The Memory view shows that both sockets are mostly accessing local memory.

Setting thread CPU affinity and completing optimizations helped reduce memory access latencies significantly
because more memory requests were directed to local memory. Observe in the Memory view that the scale
of the DRAM Write Queue Latency graph changed from micro-seconds to nanoseconds.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

141

The UPI view also shows much lower cross-socket traffic.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

142

NOTE
You can discuss this recipe in the Analyzers community forum.

See Also
Platform Analysis

Profiling Games built with Unity* (NEW)
Use this recipe to profile a game built with the Unity
game engine. See how you can run Intel® VTune™
Profiler within the Unity environment to profile your
game.

Often, the most important factor that affects the performance of a game is the frame rate. This is the speed
with which the GPU renders game graphics. However, the CPU can also impact game performance in several
ways:

• Slow transfer of data to the GPU
• Slow or unnecessary operations
• Poor parallelism

Intel® VTune™ Profiler Performance Analysis Cookbook 1

143

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/platform-analysis.html

With games that use the Unity engine, much of the optimization takes place in the Unity editor. Therefore, it
is critical to understand the performance of Unity-defined tasks. The 2019.2 and newer versions of Unity
have the Intel® VTune™ Profiler Instrumentation and Tracing Technology (ITT) API built into the Unity editor.
This recipe demonstrates how you can run VTune Profiler to highlight Unity tasks in the editor.

• INGREDIENTS
• DIRECTIONS:

1.Build the Game in the Unity Editor
2.Configure Intel® VTune™ Profiler and Run Hotspots Analysis
3.Review Results

Ingredients
Here are the hardware and software requirements for this performance recipe.

• Application: Unity 2022.1.16. The sample game in this version of Unity uses the free asset 3D Game
Kit.

• Tools: Intel® VTune™ Profiler version 2022 - Hotspots Analysis (using User-Mode Sampling)

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• CPU/GPU: Intel® Core™ i7-8665U CPU @ 1.90GHz with integrated GPU
• Operating system: Windows* 10 Enterprise

Build the Game in the Unity Editor
1. Open the game in the Unity editor.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

144

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/api-support/instrumentation-and-tracing-technology-apis.html
https://assetstore.unity.com/packages/templates/tutorials/3d-game-kit-115747
https://assetstore.unity.com/packages/templates/tutorials/3d-game-kit-115747
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

2. Build the game. Make sure to select the Copy PDB Files and Development Build options.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

145

Configure Intel® VTune™ Profiler and Run Hotspots Analysis
1. Open Intel® VTune™ Profiler and click New Project on the Welcome screen.
2. Specify a project name and a location for your project.
3. Click Create Project.
4. In the Configure Analysis window, set these options:

• In the WHERE pane, select Local Host.
• In the Application field of the WHAT pane, enter the path to the game executable.
• In the Application parameters field, enter -profiler-enable-vtune-markers.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

146

5. (Optional) If you want to skip profiling the start/loading phase of the game,

• In the WHAT pane, open the Advanced section.
• Set Automatically resume collection after to the number of seconds that Intel® VTune™ Profiler

should wait for profiling to begin.

6. In the HOW pane, select the Hotspots analysis type and enable user-mode sampling.
7. Click Start to run the analysis.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

147

NOTE If you set the Automatically resume collection after option in step 5, only the Start
Paused button (

) is available.

Review Results
After the data collection runs for about 30 seconds, click Stop to exit the game and finalize the VTune
results. This process may take a few minutes as Intel® VTune™ Profiler finds and resolves debug symbols.

Once results have been finalized, the Summary tab displays information about:

• Elapsed time
• Top hotspots
• Top Unity tasks
• Additional insights and guidance

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

148

The Frame Rate Histogram shows the frequency at which frames executed during the collection.

In this example, most frames executed between 13-14 frames per second (FPS). This is much slower than
the recommended minimum of 30 FPS.

Switch to the Bottom-up window to see a list of functions. The default sorting is by descending order of CPU
time.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

149

Change the grouping from Function / Call Stack to Task Domain / Task Type / Function / Call Stack
to focus on Unity tasks which were identified by the Intel® VTune™ Profiler Instrumentation and Tracing
Technology API (ITT API).

The collection was started in a paused state, and this is indicated in the timeline view as Intel® VTune™
Profiler was still actively running.

Select the time period when collection starts at 60 seconds and zoom in.

In this example, the frame rate is low and there is considerable spin time. In general, a game should not
consume a high percentage of the CPU capacity of the system. If the worker threads have low parallelism,
they may be adding too much overhead.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

150

In one of the RunThreadWrapper threads, all of the CPU time is spin or overhead. Reducing the number of
threads can improve performance here.

For additional insights into hotspots, open the Flame Graph view to see a graphical representation of call
stacks from the top down.

See Also
Analyzing Hot Code Paths Using Flame Graphs Follow this recipe to understand how you can use
Flame Graphs to detect hot spots and hot code paths in Java workloads.
Hotspots Analysis for CPU Usage Issues

Intel® VTune™ Profiler Performance Analysis Cookbook 1

151

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/algorithm-group/basic-hotspots-analysis.html

Boost CPU Performance with Intel® VTune™ Profiler
Game Tuning with Intel

Profiling Games built with Unreal Engine* (NEW)
Use this recipe to profile a game built with Unreal
Engine. See how you can run Intel® VTune™ Profiler
within the Unreal Engine environment to profile your
game.

Often, the most important factor that affects the performance of a game is the frame rate. This is the speed
with which the GPU renders game graphics. However, the CPU can also impact game performance in several
ways:

• Slow transfer of data to the GPU
• Slow or unnecessary operations
• Poor parallelism

With games that use the Unreal Engine (UE), much of the optimization takes place in the Unreal editor.
Therefore, it is critical to understand the performance of Unreal Engine-defined tasks. The 4.19 and newer
versions of Unreal Engine have the Intel® VTune™ Profiler Instrumentation and Tracing Technology (ITT) API
built into the Unreal editor. This recipe demonstrates how you can run VTune Profiler to highlight UE tasks in
the editor.

• INGREDIENTS
• DIRECTIONS:

1.Build the Game in the Unreal Editor
2.Configure Intel® VTune™ Profiler and Run Hotspots Analysis
3.Review Results

Ingredients
Here are the hardware and software requirements for this performance recipe.

• Application: Unreal Engine 4.25.4. The sample game in this version of Unreal Engine is the Action
RPG tutorial.

• Tools: Intel® VTune™ Profiler version 2022 - Hotspots Analysis (using User-Mode Sampling)

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• CPU/GPU: 11th Generation Intel® Core™ i7-1165G7 CPU @ 2.80GHz with Intel® Iris® Xe MAX Graphics
• Operating system: Windows* 11 Enterprise

Build the Game in the Unreal Editor
1. Open the game in the Unreal editor.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

152

https://devmesh.intel.com/projects/boost-cpu-performance-with-intel-vtune-profiler
https://www.intel.com/content/www/us/en/developer/articles/guide/game-tuning-with-intel.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/api-support/instrumentation-and-tracing-technology-apis.html
https://docs.unrealengine.com/4.27/en-US/Resources/SampleGames/ARPG/
https://docs.unrealengine.com/4.27/en-US/Resources/SampleGames/ARPG/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

2. Build the game. Make sure to select the Development Build Configuration and Include Debug Files
options.

Configure Intel® VTune™ Profiler and Run Hotspots Analysis
1. Open Intel® VTune™ Profiler and click New Project on the Welcome screen.
2. Specify a project name and a location for your project.
3. Click Create Project.
4. In the Configure Analysis window, set these options:

• In the WHERE pane, select Local Host.
• In the Application field of the WHAT pane, enter the path to the game executable.
• In the Application parameters field, enter -VTune.

5. (Optional) If you want to skip profiling the start/loading phase of the game,

• In the WHAT pane, open the Advanced section.
• Set
• Under Limit collected data by, set a value in seconds for Time from collection end, sec. This is

the duration (in seconds) before the end of the collection for which Intel® VTune™ Profiler should
retain the results. The data collected earlier than this time gets discarded.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

153

6. In the HOW pane, select the Hotspots analysis type and enable user-mode sampling.
7. Click Start to run the analysis.

NOTE If you set the Automatically resume collection after option in step 5, only the Start
Paused button (

) is available.

Review Results
When the data collection stops, Intel® VTune™ Profiler finalizes the results. This process may take a few
minutes as Intel® VTune™ Profiler finds and resolves debug symbols.

Once results have been finalized, the Summary tab displays information about:

• Elapsed time

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

154

• Top hotspots
• Top Unreal Engine tasks
• Additional insights and guidance

Switch to the Bottom-up window to see a list of functions. The default sorting is by descending order of CPU
time.

Change the grouping from Function / Call Stack to Task Domain / Task Type / Function / Call Stack
to focus on Unreal Engine tasks which were identified by the Intel® VTune™ Profiler Instrumentation and
Tracing Technology API (ITT API).

In this example, there is considerable spin time in the Render and Game threads. Also, nearly half of the
overall CPU utilization was spent spinning, or waiting for a resource to return.

The CPU utilization histogram (in the Summary tab) tells us something important. Although this game was
running over 100 threads, for the majority of the run, this game only utilized a single CPU or was mostly idle.

From here, you can try to identify whether the high amount of spin is affecting performance negatively. You
can also examine how to make use of more CPU capability. Generally games are not expected to consume
the full amount of hardware resources, but there is room on this system for more parallelism.

For additional insights into hotspots, open the Flame Graph view to see a graphical representation of call
stacks from the top down.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

155

See Also
Analyzing Hot Code Paths Using Flame Graphs

Hotspots Analysis for CPU Usage Issues

Boost CPU Performance with Intel® VTune™ Profiler

Game Tuning with Intel

Profiling Java Applications as a Remote User (NEW)
Use a wrapper script with Intel® VTune™ Profiler to
profile Java applications as a remote user.

Normally, if you want to use VTune Profiler to profile a Java process that is in execution, you run a hardware-
based sampling analysis and selecting Attach to Process as the target type. In Linux* environments, VTune
Profiler uses the Linux perf tool to collect sampling data. For this purpose, you must run VTune Profiler as the
same user who is running the Java process. This is because, if you run the Java process as a another user
(even as root), the collector cannot attach to the Java process. However, in many cases, there is an arbitrary
account that runs these applications, thus making it challenging to run them as a remote user.

In this recipe, we will see how you can use a wrapper script to run VTune Profiler and profile Java
applications as a remote user.

• INGREDIENTS
• DIRECTIONS:

1.Create the Java Application on the Remote Target
2.Run the Java Application as a Remote User
3.Configure VTune Profiler on the Local Machine for Remote Collection
4.Create the Wrapper Script to Run VTune Collector
5.Run Hotspots Analysis with Hardware Event-Based Sampling and Stack Collection
6.Review Analysis Results

Ingredients
Here are the hardware and software tools you need for this recipe.

• Application: Pi. This Java application is used as a demo and is not available for download. The
application uses a Monte Carlo algorithm to estimate the value of Pi with multiple threads.

• Analysis Tool: VTune Profiler version 2022 or newer - Hotspots Analysis using Hardware Event-Based
Sampling (with Collect Stacks enabled)

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

156

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/algorithm-group/basic-hotspots-analysis.html
https://devmesh.intel.com/projects/boost-cpu-performance-with-intel-vtune-profiler
https://www.intel.com/content/www/us/en/developer/articles/guide/game-tuning-with-intel.html

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Java Development Kit (JDK) version: OpenJDK 11.0.8 or newer
• Local Operating System: Windows* 10 Enterprise
• Remote Operating System/Amazon Machine Image (AMI): Ubuntu Server 20.04 LTS (HVM)
• Remote CPU/Instance Type: AWS EC2 c5.9xlarge (Intel® microarchitecture code named Skylake with

36 logical CPUs)

Create the Java Application on the Remote Target
Prerequisite: Ensure that you have installed the JDK.

1. Create the Java file. In this example, we add an infinite loop around the body of main (while(true))
to simulate a long-running process:

Pi.java
2. Compile the Java file with symbols:

$ javac -g Pi.java

Run the Java Application as a Remote User
Start the Java application as a user other than the SSH user. In this example, the default user for the AWS
instance is Ubuntu, so we create a new user (named intel) to run the application.

$ sudo adduser intel
$ su intel
$ java -Xcomp -Djava.library.path=native_lib/ia32 -cp ./ Pi

Verify that user intel is running the java process. Also note the ID of the process:

$ top

Configure VTune Profiler on the Local Machine for Remote Collection
1. Open the VTune Profiler GUI on your local machine.
2. In the WHERE pane, select Remote Linux (SSH).
3. Configure the SSH destination for the target system with a user different from the one running the Java

application. In this example, the SSH user is Ubuntu.
4. Deploy the VTune Profiler target package.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

157

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

5. In the WHAT pane, select Attach to Process.
6. Enter the process ID for the Java application.

Create the Wrapper Script to Run VTune Collector
1. Use a text editor to create a file named vtune_wrapper.sh.
2. Populate the wrapper file with this text:

#!/bin/bash
echo "Target result dir: $VTUNE_RESULT_DIR"
chmod -R o+w $VTUNE_TEMP_DIR
chmod -R o+w $VTUNE_RESULT_DIR
sudo -A -u intel "$@"
sudo -A chown -R ubuntu $VTUNE_RESULT_DIR

3. In the WHAT pane, under the Advanced section, scroll to the Wrapper script text box.
4. Select vtune_wrapper.sh.
5. In the text box, place the cursor at the end of the last line and hit Enter to add a line feed. This helps to

ensure that the script is recognized by the collection.

6. In the Advanced section, scroll up and locate the option marked Automatically stop collection after
(sec). Enable this option and set a value of 30 to stop the collection after 30 seconds.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

158

Run Hotspots Analysis with Hardware Event-Based Sampling and Stack Collection
1. In the HOW pane, select Hotspots analysis type in the Algorithm group.
2. Enable Hardware Event-Based Sampling.
3. Enable the Collect stacks option and set the Stack size to 4096.

4. Click Start to run the analysis.

Review Analysis Results
When the collection completes, the Summary tab displays CPU performance information along with a list of
hotspots found in the application. You can ignore warnings in the Collection Log about locating debugging
information.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

159

See Also
Profiling JavaScript* Code in Node.js* This recipe provides configuration steps to rebuild
Node.js* and run a performance analysis of your JavaScript code using Intel® VTune™ Profiler. This
analysis includes mixed-mode call stacks that contain JS frames and native frames.
Hotspots Analysis for CPU Usage Issues
Analyzing Hot Code Paths Using Flame Graphs Follow this recipe to understand how you can use
Flame Graphs to detect hot spots and hot code paths in Java workloads.

Profiling JavaScript* Code in Node.js*
This recipe provides configuration steps to rebuild
Node.js* and run a performance analysis of your
JavaScript code using Intel® VTune™ Profiler. This
analysis includes mixed-mode call stacks that contain
JS frames and native frames.

Content Expert: Alexey Kireev

• INGREDIENTS
• DIRECTIONS:

1.Enable Support for VTune Profiler in Node.js
2.Profile JavaScript code running in Node.js

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: sample.js. This application is used as a demo. It is not available for download.
• JavaScript environment: Node.js version 20.4.0 with Chrome* V8 version11.3.244.8
• Performance analysis tools:Intel® VTune™ Profiler version 2023.1 - Advanced Hotspots analysis with

User-Mode Sampling

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

160

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/algorithm-group/basic-hotspots-analysis.html
https://community.intel.com/t5/user/viewprofilepage/user-id/152588

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Operating system: Windows* 10

Enable Support for VTune Profiler in Node.js
1. Download the most recent node.js sources.
2. Run the vcbuild.bat script from the root node-v20.4.0 folder:

vcbuild.bat enable-vtune
This script builds Node.js with support for VTune Profiler to profile JavaScript code.

Profile JavaScript Code Running in Node.js
This recipe uses a sample JavaScript application:

function say(word) {
console.log("Calculating ...");
var res = 1;
for (var i = 0; i < 40000; i++) {
 for (var j = 0; j < 40000; j++) {
 res = (res + i * res - j)/ 2;
 }
}
console.log("Done.");
console.log(word);
}

function execute(someFunction, value) {
 someFunction(value);
}

execute(say, "Hello from Node.js!");

To profile this application with VTune Profiler:

1. Run VTune Profiler from the command line:

vtune-gui.exe
2. Click the New Project icon in the toolbar to create a new project.
3. In the Launch Application section,

• Specify node.exe in the Application field
• Set sample.js in the Application parameters field.
• To translate frames interpreted by JavaScript, set --interpreted-frames-native-stack as an

option in the Application parameters field.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

161

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

4. In the Analysis Type pane, select the Hotspots analysis type.
5. Click Start to run the analysis.

Once the analysis finishes, see results in the Summary window. We can see that the say function took the
most CPU time to execute. Click on this function and switch to the Bottom-up view. See the stack flow for
the hotspot:

Doubleclick on the say function to run a source level analysis.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

162

Analyzing CPU and FPGA (Intel® Arria® 10 GX) Interaction
This recipe instructs you how to configure your
platform to analyze an interaction of your CPU and
FPGA, using Intel® Arria 10 GX FPGA as an example.

• INGREDIENTS
• DIRECTIONS:

1.Configure the Intel® Arria® 10 GX FPGA and Intel® FPGA SDK for OpenCL™
2.Build the Sample Application and Flash to the FPGA
3.Run CPU/FPGA Interaction Analysis
4. Interpret Results

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: Matrix Multiplication OpenCL™ application. The Matrix Multiplication sample application is
available for download from the Intel® FPGA SDK for OpenCL™ website

• Tools: Intel® FPGA SDK for OpenCL™, Intel® VTune™ Amplifier 2019 or higher

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

163

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

• Operating System: CentOS* 7, Red Hat* Enterprise Linux 7 or higher
• CPU: Intel® server platform code named Skylake
• FPGA: Intel® Arria® 10 GX

Configure the Intel® Arria® 10 GX FPGA and Intel® FPGA SDK for OpenCL™
1. On your Intel Arria 10 GX FPGA, set up the DIP switches and connect the power and USB cables. See

detailed instructions.
2. Download Intel® FPGA SDK for OpenCL™ (includes CodeBuilder, Quartus Prime software and

devices) from FPGA Software Download Center.
3. Run the setup_pro.sh file to install the SDK.
4. Run source init_opencl.sh to set the appropriate environment variables.
5. Run aocl version to verify the installation. The output should look similar to the following:

aocl 17.1.0.240 (Intel(R) FPGA SDK for OpenCL(TM), Version 17.1.0 Build 240, Copyright (C) 2017
Intel Corporation)

6. Run aocl install to install the FPGA board.
7. Run aocl diagnose to verify the hardware installation. The output should look similar to the following:

Device Name:
acl0

Package Pat:
/home/tce/intelFPGA_pro/17.1/hld/board/a10_ref

Vendor: Intel(R) Corporation

Phys Dev Name Status Information

acla10_ref0 Passed Arria 10 Reference Platform (acla10_ref0)
 PCIe dev_id = 2494, bus:slot.func = 44:00.00, Gen3 x4
 FPGA temperature = 44.3555 degrees C.

DIAGNOSTIC_PASSED

Build the Sample Application and Flash to the FPGA
1. Run make with the default makefile to build the host executable. The executable output filename is

host.
2. Build the binary for the FPGA using the following command:

aoc -v -board=a10gx device/matrix_mult.cl -o bin/ matrix_mult.aocx
3. Set up the USB driver to flash.

a. Run the following command:

sudo vim /etc/udev/rules.d/51-usbblaster.rules
b. Add the following lines:

usb blaster
SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6001",
MODE="0666", NAME="bus/usb/$env{BUSNUM}/$env{DEVNUM}", RUN+="/bin/chmod 0666 %c"
SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6002",
MODE="0666", NAME="bus/usb/$env{BUSNUM}/$env{DEVNUM}", RUN+="/bin/chmod 0666 %c"
SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6003",
MODE="0666", NAME="bus/usb/$env{BUSNUM}/$env{DEVNUM}", RUN+="/bin/chmod 0666 %c"
SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6010",

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

164

https://www.intel.com/content/www/us/en/programmable/documentation/tgy1490191698959.html
http://fpgasoftware.intel.com/opencl/

MODE="0666", NAME="bus/usb/$env{BUSNUM}/$env{DEVNUM}", RUN+="/bin/chmod 0666 %c"
SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", ATTRS{idVendor}=="09fb", ATTRS{idProduct}=="6810",
MODE="0666", NAME="bus/usb/$env{BUSNUM}/$env{DEVNUM}", RUN+="/bin/chmod 0666 %c"

4. Lower the JTAG clock speed to 6 MHz using the following command:

jtagconfig --setparam 1 JtagClock 6M
5. Flash the binary to the FPGA using the following command:

aocl flash acl0 ./bin/matrix_mult.aocx
6. Reboot the host system with the FPGA.

Run CPU/FPGA Interaction Analysis
1. Launch the VTune Amplifier. For example:

/opt/intel/vtune_amplifier_2019/bin64/amplxe-gui
2. Create a project for your analysis, for example: hello_world_opencl.
3. Click Configure Analysis to start a new analysis.
4. Set up the CPU/FPGA Interaction analysis.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

165

a. In the WHERE pane, select Local Host.
b. In the WHAT pane, select Launch Application and browse to the hello world application.

Typically the application can be found under <sample app>/bin/host.
c. In the HOW pane, select CPU/FPGA Interaction from the available analysis types.

5. Click Start to begin the analysis.

Interpret Results
After data collection completes, the results are finalized and shown in the CPU/FPGA Interaction
viewpoint. Start with the Summary tab to view the FPGA top compute tasks and well as the top tasks and
hotspots for the CPU.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

166

Switch to the Bottom-up tab to review the work size of a compute task and data transfer throughput. Use
the timeline pane to review the FPGA utilization for compute and transfer.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

167

Use the Platform tab to check the computing queue for the FPGA and host application. You can also find the
start time and duration of each transfer and synchronization.

See Also
CPU/FPGA Interaction Analysis
Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

Profiling a .NET* Core Application
Profile .NET Core dynamic code with Intel® VTune™
Profiler. Locate performance hot spots in your code
and optimize as needed.

Content expert: Jennifer DiMatteo

• INGREDIENTS
• DIRECTIONS:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

168

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/cpu-fpga-interaction-analysis.html
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html
https://community.intel.com/t5/user/viewprofilepage/user-id/42000

1.Prepare your application for analysis
2.Run Hotspots analysis
3. Identify hotspots in the managed code
4.Optimize the code with loop interchange
5.Verify the optimization

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: A sample C# application that adds all the elements of an integer List. The application in this
recipe is used for demonstration only and it is not available for download.

• Tools:

• Intel VTune Profiler 2023 or newer
• .NET Core 7.0 SDK

• Operating system: Microsoft* Windows* 11
• CPU: Intel microarchitecture code named Alder Lake

Prepare Your Application for Analysis
1. Open a new command window for the .NET environment variables to take effect. Make sure that you

have installed .NET Core 7.0:

dotnet --version
2. Create a new listadd directory for the application:

mkdir C:\listadd
> cd C:\listadd

3. Enter dotnet new console to create a new skeleton project with the following structure:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

169

https://dotnet.microsoft.com/download

4. Replace the contents of Program.cs in the listadd folder with C# code that adds the elements of an
integer List:

using System;
using System.Linq;
using System.Collections.Generic;

namespace listadd
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Starting calculation...");
 List<int> numbers = Enumerable.Range(1,10000).ToList();
 for (int i =0; i < 100000; i ++)
 {
 ListAdd(numbers);
 }

 Console.WriteLine("Calculation complete");
 }

 static int ListAdd(List<int> candidateList)
 {
 int result = 0;
 foreach (int item in candidateList)
 {
 result += item;
 }

 return result;
 }
 }
}

5. Create listadd.dll in the C:\listadd\bin\x64\Release\net7.0 folder:

dotnet build -c Release
6. Run the sample application:

dotnet C:\listadd\bin\x64\Release\net7.0\listadd.dll

Run Hotspots Analysis
1. Run Intel VTune Profiler with administrator privileges.
2. Click the

New Project button on the toolbar. Specify a name for the new project, for example: dotnet.
3. In the Analysis Target window, select local host and Launch Application target type from the left

pane.
4. In the Launch Application pane, specify the application to analyze:

• Application: C:\Program Files\dotnet\dotnet.exe
• Application parameters: C:\listadd\bin\x64\Release\net7.0\listadd.dll

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

170

NOTE
The location of dotnet.exe depends on your environment. Use the where dotnet command to find
this location.

5. In the How pane, select Hotspots analysis. Make sure to enable Hardware Event-Based Sampling
and Collect Stacks options.

6. Click Start to run the analysis.

Identify Hot Spots in the Managed Code
When the collected analysis result opens, switch to the Bottom-up tab. Set the data grouping level to
Process/Module/Function/Thread/Call Stack:

Expand dotnet.exe > listadd.dll and notice that the listadd::Program::ListAdd function occupied
most of the CPU Time:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

171

Doubleclick this hot spot function to open the source view. To view the source and disassembly code side by
side, click the Assembly toggle button on the toolbar:

Use the statistics per source line/assembly instruction to identify the most time-consuming code snippets
(line 24 in the example above) and work on optimizations.

Optimize the Code with Loop Interchange
Intel VTune Profiler highlights the following code line as performance-critical:

foreach (int item in candidateList)
For optimization, consider using the for loop statement. Replace the contents of Program.cs with this C#
code:

using System;
using System.Linq;
using System.Collections.Generic;

namespace listadd

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

172

{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Starting calculation...");
 List<int> numbers = Enumerable.Range(1,10000).ToList();
 for (int i =0; i < 100000; i ++)
 {
 ListAdd(numbers);
 }

 Console.WriteLine("Calculation complete");
 }

 static int ListAdd(List<int> candidateList)
 {
 int result = 0;
 for (int i = 0; i < candidateList.Count; i++)
 {
 result += candidateList[i];
 }

 return result;
 }
 }
}

Verify the Optimization
To verify the optimization for the updated code, repeat the Hotspots analysis.

Prior to optimization, the sample application took 511.004 ms of CPU time:

After optimization, the application ran for 430.477s, which is a 16% reduction in time over the original:

Discuss this recipe in the Analyzers community forum

NOTE

See Also
.NET Code Analysis

Intel® VTune™ Profiler Performance Analysis Cookbook 1

173

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/net-code-analysis.html

Profiling Applications in Amazon Web Services* (AWS) EC2 Instances
This recipe helps you set up a virtual machine (VM)
instance in AWS to profile application performance
with Intel® VTune™ Profiler.

Content Expert: Jennifer Dimatteo

• INGREDIENTS
• DIRECTIONS:

1.Create and configure a virtual machine instance.
2.Configure the instance for profiling.
3.Run Hotspots analysis.

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: Use any application of your choice.
• Tools: Intel® VTune™ Profiler version 2023 - Hotspots analysis

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

Before You Begin
• Understand the system requirements to install VTune Profiler on your machine. Your system must have at

least 4 GB of RAM and 10 GB of free disk space.
• Review the functionality of VTune Profiler available for different types of AWS instances.
• Ensure that the AWS instance can support a connection over SSH (port 22).
• The storage size for the root volume should be at least 10 GB for data collection and results.

Create and Configure a Virtual Machine Instance
Set up a virtual machine by following instructions on the AWS site.

Configure the Instance for Profiling
Prepare the target instance for profiling. by setting /proc/sys/kernel/yama/ptrace_scope to 0:

• For User-Mode sampling collections, set /proc/sys/kernel/yama/ptrace_scope to 0:

echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope
• For Hardware Event-Based sampling collections, set /proc/sys/kernel/perf_event_paranoid to 0:

echo 0 | sudo tee /proc/sys/kernel/perf_event_paranoid
For more information on driverless profiling, see Profiling Hardware without Intel Sampling Drivers.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

174

https://community.intel.com/t5/user/viewprofilepage/user-id/42000
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-vtune-amplifier-functionality-on-aws-instances.html
https://aws.amazon.com/

Run Hotspots Analysis
Run a Hotspots analysis using one of these methods:

• Use SSH to run a remote collection from VTune Profiler installed locally
• Run VTune Profiler directly from the AWS instance
• Run VTune Profiler as a web service on the AWS instance

Use SSH to run a remote collection from VTune Profiler installed locally:

1. (Optional) If you have a .pem key for your AWS instance, complete these steps:

a. In your user home directory, create or open the config file:

<user home>\.ssh\config
b. Add these lines to the config file:

Host *.compute.amazonaws.com
User <instance user>
IdentityFile <path-to>\key.pem

c. If you are using a VPN where a proxy is required, include these lines:

LocalForward 4022 c009:22
ProxyCommand "<net connect utility>" -x proxy-server.com:1080 %h %p

2. Create a project in Intel® VTune™ Profiler.
3. In the WHERE pane of the Configure Analysis window, select Remote Linux(SSH).
4. Locate the public IPv4 DNS address for your instance:

5. In the SSH destination field, enter <instance user>@<public IPv4 DNS for instance>.

Intel® VTune™ Profiler attempts to connect to the remote system to determine if the binaries necessary
for data collection have been installed.

If you updated the config file in step 1, Intel® VTune™ Profiler uses that configuration and key to
connect.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

175

Otherwise, you should be prompted to enter a password. Intel® VTune™ Profiler then creates its own
SSH key and stores it in <user home>/.ssh. The SSH key is then copied to the authorized_keys file
of the instance.

6. If you see a message that the product cannot be found on the target system, click Deploy to install.
7. In the WHAT pane, specify the location of your application and its working directory.
8. In the HOW pane, select Hotspots analysis with User-Mode Sampling collection.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

176

9. Click

to start the collection.

Once the analysis completes, Intel® VTune™ Profiler copies the results to your local system for analysis.

Run VTune Profiler directly from the AWS instance:

1. Install VTune Profiler by following instructions in the Installation Guide.
2. Run VTune Profiler. For example:

sudo <vtune_install_dir>/vtune_profiler/bin64/vtune-gui
3. Create a project.
4. In the Configure Analysis window,

• In the WHERE pane, select Local Host.
• In the WHAT pane, specify the location of your application and its working directory.
• In the HOW pane, select a preferred collection mode for the Hotspots analysis. For example, select

Hardware Event-Based Sampling.
5. Click

to start the collection.

The analysis result opens in the Hotspots by CPU Utilization viewpoint.

Run VTune Profiler as a Web Service on the AWS Instance:

1. Install VTune Profiler by following instructions in the Installation Guide.
2. Run the VTune Profiler Web Service:

<vtune_install_dir>/latest/bin64/vtune-backend –-allow-remote-access –-enable-server-profiling –-
web-port=8080

The vtune-backend command returns a URL with the private IP for the instance as well as a one-time
token.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

177

https://www.intel.com/content/www/us/en/developer/articles/guide/install-intel-parallel-studio-xe-on-amazon-web-services-aws.html#inpage-nav-4
https://www.intel.com/content/www/us/en/developer/articles/guide/install-intel-parallel-studio-xe-on-amazon-web-services-aws.html#inpage-nav-4

3. Replace the private IP with the public IP or DNS for the instance. For example, https://
172.29.129.54:8080/?one-time-token=b8cafc89721e781161aba4ddcef5a718 becomes
https://18.236.194.236:8080/?one-time-token=b8cafc89721e781161aba4ddcef5a718.

4. Copy the URL into your browser.

NOTE The browser may display a warning indicating that the URL might be unsafe. This is because the
web service is using a self-signed certificate instead of an officially signed certificate.

5. Create a passphrase at the prompt and proceed to the VTune GUI.

6. Select Add new remote target.
7. In the Configure Analysis window,

• In the WHERE pane, select Local Host.
• In the WHAT pane, specify the location of your application and its working directory.
• In the HOW pane, select a preferred collection mode for the Hotspots analysis. For example, select

Hardware Event-Based Sampling.
8. Click

to start the collection.

The analysis result opens in the Hotspots by CPU Utilization viewpoint.

See Also
Targets in Virtualized Environments

Analyze Performance

Configure SSH Access for Remote Collection

Enabling Performance Profiling in GitLab* CI
This recipe helps you integrate Intel® VTune™ Profiler
into your GitLab* CI pipeline to profile your builds on-
the-fly.

This recipe demonstrates how you can enable unattended, automated profiling of your builds by including
VTune Profiler into your GitLab Continuous Integration pipeline, and how to make access to the latest
performance analysis data more convenient by using a static HTML feature of VTune Profiler.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

178

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/on-virtual-machine.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/analyze-performance.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/configuring-ssh-access-for-remote-collection.html

NOTE
See more integration examples for different Intel software products and CI systems in the oneapi-ci
GitHub* repository.

This approach offers the following advantages:

• Automatic performance analysis: If a performance regression was introduced into the build, setting up
a test environment and collecting performance results manually can be monotonous and consumes
valuable time of the engineers. Integration of VTune Profiler into the testing stage of your GitLab CI
pipeline allows you to automatically collect performance data in a predetermined environment and to
upload the results automatically as an artifact.

This eliminates manual work and lets you focus on determining the cause of the regression by making the
performance results data readily available once the build is complete.

• Customized configuration: The Command-Line Interface (CLI) capabilities of VTune Profiler allow for
great flexibility in terms of CI integration. Using the CLI of VTune Profiler, you can set up a customized
process that suits your team, for example, by selecting the necessary analysis types and parameters.

Some examples of possible configurations are:

• Automatically run a basic Hotspots analysis for each build
• Profile a new build only when a performance regression was detected at the load testing stage of your

build system and collect performance data for all the necessary analysis types
• HTML analysis reports: VTune Profiler offers a command line option that generates a static HTML page

with the summary for the collected result. This allows you to view the HTML page using your browser and
to determine whether additional analysis is needed. Optionally, you can host these HTML reports as GitLab
Pages for convenience.

• INGREDIENTS
• DIRECTIONS:

1. Install GitLab Runner.
2.Configure automatic data collection.
3.Configure an automatic upload of your results as artifacts.
4.View the results data.
5.(Optional) Resolve newly introduced issues.

INGREDIENTS
This section lists the software tools used for the performance analysis scenario.

• Infrastructure: GitLab repository with a pre-configured GitLab CI pipeline, which includes:

• Makefile for your project
• Pre-populated .gitlab-ci.yml file
• GitLab Runner with VTune Profiler installed

• Tools: Intel® VTune™ Profiler 2020

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

179

https://github.com/oneapi-src/oneapi-ci
https://github.com/oneapi-src/oneapi-ci
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/command-line-interface.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/basic-hotspots-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/format.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Install GitLab Runner
If you do not have a configured GitLab Runner, to install and configure the GitLab Runner software package,
follow the instructions provided in the official GitLab documentation available at https://docs.gitlab.com/
runner/#install-gitlab-runner.

After installing GitLab Runner, install VTune Profiler using your preferred method. For instructions and
available installation methods, see the VTune Profiler Install Guide.

NOTE

• Make sure to set /proc/sys/kernel/perf_event_paranoid to 0 to allow hardware event-based
sampling collection without root privileges. For more information on profiling without Intel sampling
drivers or root privileges, see the Profiling Hardware Without Intel Sampling Drivers Cookbook
recipe.

• The performance analysis result may vary depending on the Runner selection and the individual
machine running the analysis.

Configure Automatic Data Collection
Add the vtune command calls and the artifact handling commands to your GitLab pipeline. For example, you
can add the following command to your .gitlab-ci.yml file:

vtune -collect hotspots ./<your_application>
This command launches the application specified by the last command option and collects Hotspots analysis
data. It also stores the results data in a separate directory.

You can upload any combination of VTune Profiler results and summary HTML pages. For example, you can
upload the full analysis result and the static HTML summary page for a quick overview of the performance of
your application.

To generate a static HTML page, include the following command:

vtune -report summary -format=html > hotspots_summary.html
To upload the full VTune Profiler result as an artifact, it is necessary to package the result directory with your
tool of choice. For example, to package the result data with tar:

tar -c r00* > vtune_result.tar

NOTE

• Using the vtune command, you can specify any options and select any analysis types that are valid
for your environment. For more information on how to run an analysis from the command line, see
the Run Command Line Analysis page of the online User Guide.

• The graphical user interface of VTune Profiler offers a Command Line Configuration Generation
feature, which allows you to conveniently pre-configure an analysis in the GUI and to instantly
generate and copy a command that includes all the options and parameters that are necessary for
your preferred analysis configuration. You can use this feature to quickly generate a command for
later use.

For more information on manually creating a vtune command, see the Command Line Interface chapter of
the online User Guide.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

180

https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/linux.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/basic-hotspots-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/format.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/running-command-line-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/generating-command-line-configuration-from-gui.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/generating-command-line-configuration-from-gui.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/command-line-interface.html

NOTE
You may encounter limitations regarding the type of analysis you can run in a certain environment. For
example, the Microarchitecture Exploration analysis type is not available under certain virtual machine
hypervisors.

Configure an Automatic Upload of your Results as Artifacts
Add the files that you wish to upload to the artifacts/paths: section of your .gitlab-ci.yml file. For
example, to upload both the HTML summary and a .tar file with the result directory:

artifacts:
 paths:
 - <relative-path-to-project>/vtune_result.tar
 - <relative-path-to-project>/hotspots_summary.html

NOTE
Make sure to upload your result as a GitLab artifact. Otherwise, the results are still saved on the
machine running VTune Profiler, but you will have to retrieve them manually.

View the Results Data
Once a build is complete, you can use the GitLab web interface to quickly access the analysis summary page.
To do this:

1. On GitLab, navigate to the Pipelines page.

2. From this page, you can either download the entire artifact bundle, or browse to the HTML page
separately and determine whether downloading the precollected result is necessary based on the
summary.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

181

To download the HTML page separately:

1. Navigate to the pipeline stage report page and click Browse.

2. Navigate to the location of the HTML page and download it.

3. Open the summary HTML in your browser of choice and determine whether additional analysis is
needed.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

182

To view the results data using the graphical user interface of VTune Profiler:

1. Extract the results files from the .tar archives.
2. Launch the VTune Profiler GUI.
3. Click the

Open Result button and browse to the result file. The result data will open in a new tab.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

183

(Optional) Resolve Newly Introduced Issues
If you detect a performance regression, you can use other analysis types offered by VTune Profiler to help
you identify and resolve the issues.

NOTE
To discuss this recipe, visit the VTune Profiler developer forum.

See Also
VTune Profiler Command Line Interface

VTune Profiler CLI Reference

Command Line Configuration Generation Feature

Configuring a Hyper-V* Virtual Machine for Hardware-Based Hotspots Analysis
This recipe helps you set up a Virtual Machine instance
in the Hyper-V environment for hardware performance
profiling with Intel® VTune™ Profiler.

Content Expert: Alexey Kireev

• INGREDIENTS
• DIRECTIONS:

1.Configure a Hyper-V host.
2.Create and configure a Virtual Machine.
3.Configure the Virtual Machine for the hardware analysis.
4.Run Hotspots analysis (Hardware Event-Based Sampling mode).

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Tools:

• Intel® VTune™ Profiler (or any release of the Intel® VTune™ Amplifier 2019)

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• A third-party virtual machine manager (VMM) may also be required.
• CPU: Intel® Xeon® processor that supports Intel® Virtualization Technology (Intel® VT)

You can also use any Intel microarchitecture with performance monitoring hardware, such as:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

184

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/command-line-interface.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/command-line-interface-reference.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/generating-command-line-configuration-from-gui.html
https://community.intel.com/t5/user/viewprofilepage/user-id/152588
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Intel
Microarchitecture
code name

PMU
Version

PEBS LBR IPT PT2GPA

Kaby Lake 4 Yes Yes Yes No

Ice Lake 4 Yes Yes Yes Yes

Cascade Lake 4 Yes Yes Yes No

Gemini Lake 4 Yes Yes Yes No

Skylake 4 Yes Yes No No

Haswell 3 Yes Yes No No

Broadwell 3 Yes Yes No No

• Operating system: Microsoft* Windows Server 2019 or Windows 10 Version 1809 (October 2018
Update) or later

• BIOS with Intel VT support

NOTE Hyper-V may impose additional requirements described in the Enable Intel Performance
Monitoring Hardware in a Hyper-V virtual machine
article.

Configure a Hyper-V Host
1. Enable the Intel VT in the BIOS setup on your server:

a. Access the system BIOS by pressing F2 during the system power-on self test (POST).
b. Click Advanced > Processor Configuration.
c. Select Intel® Virtualization Technology and change to Enabled.
d. Do an AC power cycle for changes to take effect.

2. Go to Control Panel > Programs > Programs and Features and click Turn Windows features on
or off on the left pane.

The Windows Features dialog box opens.
3. Expand the Hyper-V feature and select all the check boxes:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

185

https://ark.intel.com/content/www/us/en/ark/products/codename/82879/kaby-lake.html
https://ark.intel.com/content/www/us/en/ark/products/codename/74979/ice-lake.html
https://ark.intel.com/content/www/us/en/ark/products/codename/124664/cascade-lake.html
https://ark.intel.com/content/www/us/en/ark/products/codename/83915/gemini-lake.html
https://ark.intel.com/content/www/us/en/ark/products/codename/37572/skylake.html
https://ark.intel.com/content/www/us/en/ark/products/codename/42174/haswell.html
https://ark.intel.com/content/www/us/en/ark/products/codename/38530/broadwell.html
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/performance-monitoring-hardware
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/performance-monitoring-hardware

4. Click OK and proceed with the installation.

When the installation is complete, click Restart now.

Create and Configure a Virtual Machine
On your Hyper-V host (further, host), run Hyper-V Manager from the Start menu to create and configure a
new VM (further, VM):

1. From the Actions panel, click New and select Virtual Machine... :

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

186

2. In the New Virtual Machine Wizard, specify all necessary parameters for the new machine (CPU
configuration, Memory, Network, Hard Disk, and others).

Recommended system requirements for the VTune Profiler are 4 GB RAM and at least 10 GB free disk
space.

3. Configure your installation source. For example, you can use local installation .iso image:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

187

4. Start the newly created VM and proceed with the OS installation process.

Configure the Virtual Machine for the Hardware Analysis
Prepare a target system instance for profiling by exposing PMU/PEBS/LBR to the VM:

1. Turn off the newly created VM and launch your host Windows PowerShell as an Administrator from the
Start menu.

2. In the PowerShell, configure your VM to expose PMU, PEBS, LBR to the VM as follows:

Set-VMProcessor -VMName your_vm_name -Perfmon pmu,pebs,lbr

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

188

3. Turn on your VM.

NOTE For additional guidance, see the Enable Intel Performance Monitoring Hardware in a Hyper-V
virtual machine article.

Run Hotspots Analysis
Run the VTune Profiler directly from the VM:

1. Install the VTune Profiler on the VM.
2. Run the VTune Profiler from Start menu.
3. Create a project.

The Configure Analysis window opens.
4. On the WHERE pane, select Local Host.
5. On the WHAT pane, specify the location of your application and its working directory.
6. On the HOW pane, select the Hardware Event-Based Sampling collection mode for the Hotspots

analysis.

If you succeed with exposing PMU/PEBS/LBR, your analysis configuration pane will show no error
messages and you will be able to perform the analysis.

7. Click

Start to run the analysis.

The analysis result opens in the default Hotspots by CPU Utilization viewpoint.

NOTE
You may perform the Hotspots analysis in multiple VMs running simultaneously.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

189

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/performance-monitoring-hardware
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/performance-monitoring-hardware

See Also
Profile Targets in the Hyper-V* Environment

Enable Intel Performance Monitoring Hardware in a Hyper-V virtual machine

Hardware Event-based Sampling Collection

Profiling an Application for Performance Anomalies (NEW)
This recipe describes how you can use the Anomaly
Detection analysis type in Intel® VTune™ Profiler to
identify performance anomalies that could result from
several factors. The recipe also includes some
suggestions to help you fix these anomalies.

A performance anomaly is a sporadic issue that can cause irreparable loss when ignored. There can be
several types of performance anomalies that can cause unwanted behavior including:

• Slow/skipped video frames
• Failure in tracking images
• Unexpectedly long financial transactions
• Long processing times for network packets
• Lost network packets

While these behaviors are not visible to traditional sampling-based methods, you can use the Anomaly
Detection analysis type to locate them instead. Use this analysis to examine anomalies caused by:.

• Deviations in control flow
• Thread context switches
• Unexpected kernel activity (like interrupts or page faults)
• Drops in CPU frequency

Anomaly Detection is based on Intel® Processor Trace (Intel PT) technology. It provides granular information
from the processor at the nanosecond level.

• INGREDIENTS
• DIRECTIONS:

1.Prepare Application for Analysis
2.Run Anomaly Detection
3. Identify Anomalies
4.Select Anomaly for Investigation
5. Investigate Kernel Activity Anomaly
6. Investigate Control Flow Deviation Anomaly

Ingredients
Here are the minimum hardware and software requirements for this performance analysis.

• Application: Use a sample application of your choice.
• Microarchitecture: Intel® Xeon® processor code named Skylake or newer.
• Tools: Anomaly Detection Analysis, available in Intel® VTune™ Profiler version 2021 or newer.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

190

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/profiling-on-hyper-v.html
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/performance-monitoring-hardware
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hw-event-based-sampling-collection.html

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Operating system:

• Linux* OS, Fedora 31(Workstation edition) - 64 bit version
• Windows* 10 OS

Requirements for Intel® PT

• Operating system: Any version of Windows* OS or Linux* OS
• Microarchitecture: Intel processor code named Skylake or newer

Prepare Application for Analysis
Typically in software performance analysis, you collect massive sets of data. Since performance anomalies
are rare and short-lived, they take up only a fraction of these data sets and thus can go easily unnoticed. A
better approach is to focus the analysis on a specific code region. You can do this with the Intel®
Instrumentation and Tracing Technology (ITT) API.

Prepare your application by selecting a code region:

1. Go to the directory that contains the sample application.
2. Register a name for the code region you want to profile.

__itt_pt_region region=__itt_pt_region_create("region of interest");
3. In the sample, find a loop that performs operations which are susceptible to anomalies. Use begin and

end functions to mark iterations of that loop. For example:

double process(std::vector<double> &cache)
{
 double res=0;
 for (size_t i=0; i<ITERATIONS; i++)
 {
 __itt_mark_pt_region_begin(region);
 res+=calculate(i, cache);
 __itt_mark_pt_region_end(region);
 }
return res;
}

Run Anomaly Detection
1. On the Welcome screen, click Configure Analysis.
2. In the Analysis Tree, select the Anomaly Detection analysis type in the Algorithm group.
3. In the WHAT pane, specify your application and any relevant application parameters.
4. In the HOW pane, specify these parameters to define the volume of data collected for the analysis.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

191

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://github.com/intel/ittapi
https://github.com/intel/ittapi

Parameter Description Range Recommended Value

Maximum number of
code regions for
detailed analysis

Specify the maximum
number of code region
instances for your
application that should be
loaded with details
simultaneously for result
analysis.

10-5000 For faster loading of details,
pick a value not more than
1000.

Maximum duration
of code regions
for detailed
analysis

Specify the maximum
duration of analysis time
(ms) to be spent on each
instance of a code region.
Instances that require
longer duration are either
ignored or not loaded.

0.001-1000 Any value under 1000 ms. You
may also want to consider
some options to limit data
collection as a large volume of
data can impact processing
efficiency adversely.

5. Click the Start button to run the analysis.

Identify Anomalies
1. Once the analysis completes, switch to the Summary window. Take a look at the Code Region of

Interest Duration Histogram.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

192

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/limiting-data-collection.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/limiting-data-collection.html

2. Where performance was slow, move the sliders in the histogram to expose performance outliers.
3. Switch to the Bottom-up window.
4. In the Grouping table, load details for slow code regions of interest.

1.Expand the view to display Fast and Slow regions.
2.Right click on the Slow region in the table.
3.In the pop-up menu, select Load Intel Processor Data by Selection.

Select Anomaly for Investigation
Once you load data, switch to the Intel Processor Trace Details view. Examine the information collected for
slow code regions.

In this example, the metrics for Inactive and Wait Times were zero, which indicates that there were no
context switches.

The non-zero kernel time give us a clue about unexpected kernel activity.

From the Code Region of Interest Duration Histogram, we identified two slow code regions of interest.
Let us start our investigation with code region instance 10001 which has a significant value for Kernel CPU
time.

Investigate Kernel Activity Anomaly
The first anomaly lies in region 10001.

Let us look at the execution details for every code region. In the table, expand the node for a region and
check the list of functions that were executed in it.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

193

In this example, the Kernel/Inactive Waits element is at the top of the function list. Since the Linux kernel
employs dynamic code modification, it is not possible to fully reconstruct the kernel control flow using static
analysis of kernel binaries. This node aggregates all performance data for kernel activity that happened while
executing this particular code region of interest.

Since kernel binaries are not processed, it is not possible to reconstruct control flow metrics like Call Count,
Iteration Count, or Instructions Retired. While Call Count and Iteration Count are zero, Instructions
Retired shows the number of entries to the kernel.

The stack for this node contains a full sequence of function calls, including kernel entry points. This explains
why the application transfers control to the kernel.

The call stacks for the Kernel/Inactive Waits element grow from the call to the push_back method of
std::vector from the calculate method. Open the function in the Source view by double clicking on it.

A close examination reveals the cause of the anomaly.

Problem The calculation ran out of the internal software cache size and added a new element into the
cache.

Solution Increase the size of the software cache.

Investigate Control Flow Deviation Anomaly
Next, let us look at a different type of anomaly that we observe in the histogram. In this case, the
Instruction Retired metric is unusually high.

This indicates a deviation in control flow during the execution of that code region. When we expand the node
in the grid to see the functions executed, upon first glance, nothing looks abnormal.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

194

Let us load the details for fast and slow iterations together so we can compare them.

Although the list of executed functions is the same, the anomalous instance ran more loop iterations of the
calculate function.

Let us open the calculate function in the Source view for both fast and slow instances .

In the fast instance, the isValid condition is satisfied and a data element is in the cache.

In the slow instance, the isValid condition is not satisfied and it fails to validate a data element in the
cache. The else clause goes into effect and this results in additional calculations.

Problem There were additional calculations that happened in slower iterations in the absence of a
valid data element in the cache.

Solution Update the cached data or modify caching algorithms before starting the calculations.

NOTE
Discuss this recipe in the VTune Profiler developer forum.

See Also
Anomaly Detection Analysis
Anomaly Detection View

Intel® VTune™ Profiler Performance Analysis Cookbook 1

195

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/anomaly-detection-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/anomaly-detection-view.html

Profiling an OpenMP* Offload Application running on a GPU
Use this recipe to build and compile an OpenMP*
application offloaded onto an Intel GPU. The recipe
also describes how to use Intel® VTune™ Profiler to run
analyses with GPU capabilities (HPC Performance
Characterization, GPU Offload, and GPU Compute/
Media Hotspots) on the OpenMP application and
examine results.

Content expert: Cory Levels

• INGREDIENTS
• DIRECTIONS:

1.Build and Compile an OpenMP Offload Application
2.Run HPC Performance Characterization Analysis on the OpenMP Offload Application
3.Analyze HPC Performance Characterization Data
4.Run GPU Offload Analysis on the OpenMP Offload Application
5.Analyze GPU Offload Analysis Data
6.Run GPU Compute/Media Hotspots Analysis
7.Analyze Your Compute Task

Ingredients
Here are the minimum hardware and software requirements for this performance analysis.

• Application: iso3dfd_omp_offload OpenMP Offload sample. This sample application is available as part
of the code sample package for Intel® oneAPI toolkits.

• Compiler: To profile a SYCL* application, you need the Intel® oneAPI DPC++/C++ Compiler that is
available with the Intel® oneAPI Base Toolkit.

• Tools: Intel® VTune™ Profiler

• HPC Performance Characterization analysis
• GPU Offload analysis
• GPU Compute/Media Hotspots analysis

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Microarchitecture:

• Intel Processor Graphics Gen 9 or newer
• Operating system:

• Linux* OS, kernel version 4.14 or newer
• Windows* 10 OS

• System Configuration:

• Linux* OS: Follow instructions in Configure Your CPU or GPU System (Linux)

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

196

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2B/StructuredGrids/iso3dfd_omp_offload
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2B/StructuredGrids/iso3dfd_omp_offload
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.1daizs
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#base-kit
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://www.intel.com/content/www/us/en/docs/oneapi-base-toolkit/get-started-guide-linux/current/before-you-begin.html

• Windows*: Follow instructions in Configure Your CPU or GPU System (Windows)

Build and Compile the OpenMP Offload Application
On Linux OS:

1. Set oneAPI environment variables. Run setvars.h. You can find this script here: . /opt/intel/
oneapi/setvars.sh

2. Go to the sample directory.

cd <sample_dir>/DirectProgramming/C++/StructuredGrids/iso3dfd_omp_offload
3. Compile the OpenMP Offload application:

mkdir build;
cd build;
cmake -DVERIFY_RESULTS=0 -DCMAKE_CXX_FLAGS="-g -mllvm -parallel-source-info=2" ..
make -j

This generates an src/iso3dfd executable.

To delete the program, type:

make clean
This removes the executable and object files that were created by the make command.

On Windows OS:

1. Set oneAPI environment variables. Run setvars.bat. You can find this script here: C:\Program
Files (x86)\Intel\ oneAPI \setvars.bat.

2. Open the sample directory:

cd <sample_dir>/ DirectProgramming/C++/StructuredGrids/iso3dfd_omp_offload
3. Compile the OpenMP Offload application:

mkdir build
cd build
icx /Zi -mllvm -parallel-source-info=2 /std:c++17 /EHsc /Qiopenmp /I../include\ /Qopenmp-
targets:spir64 /DUSE_BASELINE /DEBUG ..\src\iso3dfd.cpp ..\src\iso3dfd_verify.cpp ..\src
\utils.cpp

Run HPC Performance Characterization Analysis on the OpenMP Offload Application
To get a high-level summary of the performance of the OpenMP Offload application, run the HPC Performance
Characterization analysis. This analysis type can help you understand how your application utilizes the CPU,
GPU, and available memory. You can also see the extent to which your code is vectorized.

For OpenMP offload applications, the HPC Performance Characterization analysis shows you the hardware
metrics associated with each of your OpenMP offload regions.

Prerequisites: Prepare the system to run a GPU analysis. See Set Up System for GPU Analysis.

1. Open VTune Profiler and click on New Project to create a project.
2. On the welcome page, click on Configure Analysis to set up your analysis.
3. Select these settings for your analysis.

• In the WHERE pane, select Local Host.
• In the WHAT pane, select Launch Application and specify the iso3dfd_omp_offload binary as

the application to profile.
• In the HOW pane, select the HPC Performance Characterization analysis type from the

Parallelism group in the Analysis Tree.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

197

https://www.intel.com/content/www/us/en/docs/oneapi-base-toolkit/get-started-guide-windows/current/before-you-begin.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html

4. Click the Start button to run the analysis.

Run Analysis from Command Line:

To run the HPC Performance Characterization analysis form the command line:

• On Linux OS:

1.Set VTune Profiler environment variables by exporting the script:

export <install_dir>/vtune-vars.sh
2.Run the HPC Performance Characterization analysis:

vtune -collect hpc-performance -- src/iso3dfd 256 256 256 16 8 64 100
• On Windows OS:

1.Set VTune Profiler environment variables by running the batch file:

<install_dir>\vtune-vars.bat
2.Run the HPC Performance Characterization analysis:

vtune -collect hpc-performance -- iso3dfd.exe 256 256 256 16 8 64 100

Analyze HPC Performance Characterization Data
Start your analysis by examining the Summary pane. Look at the Effective Physical Core Utilization (or
Effective Logical Core Utilization) and GPU Stack Utilization sections to see highlighted issues, if any.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

198

In the GPU Stack Utilization section, look at the top OpenMP offload regions sorted by offload time spent in
those regions. You can see GPU utilization in each of these offload regions.

If you compiled your application with the full set of debug information, the names of the regions will contain
their source locations. This includes:

• Name of the function
• Name of the source file
• Line number

Generate a Summary Report From the Command Line

To generate a summary report from the command line, type:

vtune -report summary -r <result>
In this example, the offload activity is classified almost entirely as Compute activity. Also, a single offload
region consumed the majority of offload time. Click on its name to switch to the Bottom-Up view. Examine
the grouping table with OpenMP offload region durations, region instance counts, and metrics for GPU and
CPU.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

199

Hover over the region markers at the top of the timeline view. You can see the name and duration of each
offload region and offload operation within that region. The GPU metrics in the timeline help you understand
how every instance of an offload region behaves over time.

Generate a Hotspots Report Grouped by Offload Region From the Command Line

To generate a Hotspots report (grouped by offload region) from the command line, type:

vtune -report hotspots -group-by=offload-region -r <result>

These details establish that GPU activity played an important role in the performance of this application.
Next, let us run the GPU Offload Analysis to learn more.

Run GPU Offload Analysis on the OpenMP Offload Application
Prerequisites: If you have not already done so, prepare the system to run a GPU analysis. See Set Up
System for GPU Analysis.

1. On the Analysis Tree, in the Accelerators group, select the GPU Offload analysis type .
2. Select these settings for your analysis:

3. Click the Start button to run the analysis.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

200

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html

Run Analysis from Command Line:

To run the GPU Offload analysis form the command line:

• On Linux OS, type:

vtune -collect gpu-offload – src/iso3dfd 256 256 256 16 8 64 100
• On Windows OS, type:

 vtune -collect gpu-offload - iso3dfd.exe 256 256 256 16 8 64 100

Analyze GPU Offload Analysis Data
Start your analysis with the GPU Offload viewpoint.

In the Summary window, see statistics on CPU and GPU resource usage. Use this data to determine if your
application is:

• GPU-bound
• CPU-bound
• Utilizing the compute resources of your system inefficiently

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see
GPU Architecture Terminology for Intel® Xe Graphics.

In this example, the application should use the GPU for intensive computation. However, the result summary
informs that GPU usage is actually low.

Switch to the Platform window. Here, you can see basic CPU and GPU metrics that help analyze GPU usage
on a software queue. This data is correlated with CPU usage on the timeline.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

201

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

The information in the Platform window can help you make some inferences.

GPU Bound Applications CPU Bound Applications

The GPU is busy for a majority of the profiling time. The CPU is busy for a majority of the profiling time.

There are small idle gaps between busy intervals. There are large idle gaps between busy intervals.

The GPU software queue is rarely reduced to zero.

NOTE
Most applications may not present obvious situations as described here. A detailed analysis is
important to understand all dependencies. For example, GPU engines that are responsible for video
processing and rendering are loaded in turns. In this case, they are used in a serial manner. When the
application code runs on the CPU, this can cause an ineffective scheduling on the GPU. The behavior
can mislead you to interpret the application to be GPU bound.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

202

Identify the GPU execution phase based on the computing task reference and GPU Utilization metrics.
Then, you can define the overhead for creating the task and placing it into a queue.

To investigate a computing task, switch to the Graphics window to examine the type of work (rendering or
computation) running on the GPU per thread. Select the Computing Task grouping and use the table to
study the performance characterization of your task.

Generate a Hotspots Report Grouped by Computing Task From the Command Line

To generate a Hotspots report (grouped by computing task) from the command line, type:

vtune -report hotspots -group-by=computing-task -r <result>
Use the README file in the sample to profile other implementations of iso3dfd_omp_offload code.

In the next section, continue your investigation with the GPU Compute/Media Hotspots analysis.

Run GPU Compute/Media Hotspots Analysis on the OpenMP Offload Application
Prerequisites: If you have not already done so, prepare the system to run a GPU analysis. See Set Up
System for GPU Analysis.

To run the analysis:

1. In the Accelerators group, select the GPU Compute/Media Hotspots analysis type.
2. Configure analysis options as described in the previous section.
3. Click the Start button to run the analysis.

Run Analysis from Command Line

To run the analysis from the command line:

• On Linux OS:

vtune -collect gpu-hotspots - src/iso3dfd 256 256 256 16 8 64 100

Intel® VTune™ Profiler Performance Analysis Cookbook 1

203

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-compute-media-hotspots-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html

• On Windows OS:

vtune -collect gpu-hotspots - iso3dfd.exe 256 256 256 16 8 64 100

Analyze Your Compute Task
The default analysis configuration invokes the Characterization profile with the Overview metric set. In
addition to individual compute task characterization that is available through the GPU Offload analysis,
VTune Profiler provides memory bandwidth metrics that are categorized by different levels of GPU memory
hierarchy.

For a visual representation of the memory hierarchy, see the Memory Hierarchy Diagram. This diagram
reflects the microarchitecture of the current GPU and shows memory bandwidth metrics. Use the diagram to
understand the data traffic between memory units and execution units. You can also identify potential
bottlenecks that cause EU stalls.

You can also analyze compute tasks at the source code level. For example, you can count GPU clock cycles
spent on a particular task or due to memory latency. Use the Source Analysis option for this purpose.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

204

Run Memory Latency Source Analysis from Command Line

To run the analysis with the Memory Latency Source Analysis option from the command line:

• On Linux OS:

 vtune -collect gpu-hotspots -knob profiling-mode=source-analysis -knob source-analysis=mem-
latency -r iso_ghs_src-analysis_mem - ./src/iso3dfd 256 256 256 16 8 64 100

In the source view, examine the Average Latency Cycles for the offload kernel.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

205

Generate a Hotspots Report With Source for a Computing Task From the Command Line

To generate a Hotspots report (with source for a computing task) from the command line, type:

vtune -report hotspots -source-object 'computing-task=Iso3dfdIterationompoffloading:50' -group-
by=gpu-source-line -r <result>

Run Basic Block Latency Source Analysis from Command Line

To run the analysis with the Basic Blocks Latency Source Analysis option from the command line:

• On Linux OS:

vtune -collect gpu-hotspots -knob profiling-mode=source-analysis -knob source-analysis=mem-
latency -r iso_ghs_src-analysis – ./src/iso3dfd 256 256 256 16 8 64 100

In the source view, examine the Average Latency Cycles for the offload kernel.

Discuss this recipe in the VTune Profiler developer forum.

See Also
Optimize applications for Intel® GPUs with Intel® VTune Profiler
GPU Architecture Terminology for Intel® Xe Graphics
HPC Performance Characterization Analysis

GPU Offload Analysis

GPU Compute/Media Hotspots Analysis

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

206

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/developer/articles/technical/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hpc-performance-characterization-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-offload-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-compute-media-hotspots-analysis.html

Profiling a SYCL* Application running on a GPU
Learn how to use Intel® VTune™ Profiler to analyze a
SYCL application that has been offloaded onto a GPU.

Content expert: Cory Levels

• INGREDIENTS
• DIRECTIONS:

1.Build and Compile a SYCL Application
2.Run GPU Offload Analysis on a SYCL Application
3.Analyze Collected Data
4.Run GPU Compute/Media Hotspots Analysis
5.Analyze Your Compute Task

Ingredients
Here are the minimum hardware and software requirements for this performance analysis.

• Application: matrix_multiply_vtune. This sample application is available as part of the code sample
package for Intel® oneAPI toolkits.

• Compiler: To profile a SYCL application, you need the Intel® oneAPI DPC++/C++ Compiler that is
available with Intel oneAPI toolkits.

• Tools: Intel® VTune™ Profiler - GPU Offload and GPU Compute/Media Hotspots Analyses.
• Microarchitecture:

• Intel Processor Graphics Gen 9 or newer
• Intel microarchitectures code named Kaby Lake, Coffee Lake, or Ice Lake

• Operating system:

• Linux* OS, kernel version 4.14 or newer.
• Windows* 10 OS.

• Graphical User Interface for Linux:

• GTK+ (2.10 or higher. ideally, use 2.18 or higher)
• Pango (1.14 or higher)
• X.Org (1.0 or higher, ideally use 1.7 or higher)

Build and Compile a SYCL Application
On Linux OS:

1. Go to the sample directory.

cd <sample_dir>/VtuneProfiler/matrix_multiply_vtune
2. The multiply.cpp file in the src directory contains several versions of matrix multiplication. Select a

version by editing the corresponding #define MULTIPLY line in multiply.hpp.
3. Compile your sample application:

cmake .
make

This generates a matrix.dpcpp -fsycl executable.

To delete the program, type:

make clean
This removes the executable and object files that were created by the make command.

On Windows OS:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

207

https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/VTuneProfiler/matrix_multiply_vtune
https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/VTuneProfiler/matrix_multiply_vtune
https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/VTuneProfiler/matrix_multiply_vtune
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.20fsep

1. Open the sample directory:

<sample_dir>\VtuneProfiler\matrix_multiply_vtune
2. In this directory, open a Visual Studio* project file named matrix_multiply.sln
3. The multiply.cpp file contains several versions of matrix multiplication. Select a version by editing

the corresponding #define MULTIPLY line in multiply.hpp
4. Build the entire project with a Release configuration.

This generates an executable called matrix_multiply.exe.

Run GPU Offload Analysis on a SYCL Application
Prerequisites: Prepare the system to run a GPU analysis. See Set Up System for GPU Analysis.

1. Launch VTune Profiler and click New Project from the Welcome page.

The Create a Project dialog box opens.
2. Specify a project name and a location for your project and click Create Project.

The Configure Analysis window opens.
3. Make sure the Local Host is selected in the WHERE pane.
4. In the WHAT pane, make sure the Launch Application target is selected and specify the

matrix_multiply binary as an Application to profile.
5. In the HOW pane, select GPU Offload analysis type from the Accelerators group.

This is the least intrusive analysis for applications running on platforms with Intel Graphics as well as on
other third-party GPUs supported by VTune Profiler.

6. Click the Start button to launch the analysis.

Run Analysis from Command Line:

To run the analysis from the command line:

• On Linux OS:

1.Set VTune Profiler environment variables by exporting the script:

export <install_dir>/env/vars.sh
2.Run the analysis:

vtune -collect gpu-offload - ./matrix.dpcpp -fsycl
• On Windows OS:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

208

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html

1.Set VTune Profiler environment variables by running the batch file:

export <install_dir>\env\vars.bat
2.Run the analysis command:

vtune.exe -collect gpu-offload -- matrix_multiply.exe

Analyze Collected Data
Start your analysis with the GPU Offload viewpoint. In the Summary window, see statistics on CPU and
GPU resource usage to determine if your application is GPU-bound, CPU-bound, or not effectively utilizing the
compute capabilities of the system. In this example, the application should use the GPU for intensive
computation. However, the result summary informs that GPU usage is actually low.

Switch to the Platform window. Here, you can see basic CPU and GPU metrics that help analyze GPU usage
on a software queue. This data is correlated with CPU usage on the timeline. The information in the
Platform window can help you make some inferences.

GPU Bound Applications CPU Bound Applications

The GPU is busy for a majority of the profiling time. The CPU is busy for a majority of the profiling time.

There are small idle gaps between busy intervals. There are large idle gaps between busy intervals.

The GPU software queue is rarely reduced to zero.

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see
GPU Architecture Terminology for Intel® Xe Graphics.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

209

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

NOTE
Most applications may not present obvious situations as described above. A detailed analysis is
important to understand all dependencies. For example, GPU engines that are responsible for video
processing and rendering are loaded in turns. In this case, they are used in a serial manner. When the
application code runs on the CPU, this can cause an ineffective scheduling on the GPU. The behavior
can mislead you to interpret the application to be GPU bound.

Identify the GPU execution phase based on the computing task reference and GPU Utilization metrics.
Then, you can define the overhead for creating the task and placing it into a queue.

To investigate a computing task, switch to the Graphics window to examine the type of work (rendering or
computation) running on the GPU per thread. Select the Computing Task grouping and use the table to
study the performance characterization of your task.

To further analyze your computing task, run the GPU Compute/Media Hotspots analysis type.

Use the README file in the sample to profile other implementations of multiply.cpp.

Run GPU Compute/Media Hotspots Analysis
Prerequisites: If you have not already done so, prepare the system to run a GPU analysis. See Set Up
System for GPU Analysis.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

210

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html

To run the analysis:

1. In the Accelerators group, select the GPU Compute/Media Hotspots analysis type.
2. Configure analysis options as described in the previous section.
3. Click the Start button to run the analysis.

Run Analysis from Command Line

To run the analysis from the command line:

• On Linux OS:

vtune -collect gpu-hotspots – ./matrix.dpcpp -fsycl
• On Windows OS:

vtune.exe -collect gpu-hotspots -- matrix_multiply.exe

Analyze Your Compute Task
The default analysis configuration invokes the Characterization profile with the Overview metric set. In
addition to individual compute task characterization that is available through the GPU Offload analysis,
VTune Profiler provides memory bandwidth metrics that are categorized by different levels of GPU memory
hierarchy.

For a visual representation of the memory hierarchy, see the Memory Hierarchy Diagram. This diagram
reflects the microarchitecture of the current GPU and shows memory bandwidth metrics. Use the diagram to
understand the data traffic between memory units and execution units. You can also identify potential
bottlenecks that cause EU stalls. For example, in the diagram below, you see that the L3 bandwidth and
stalled EUs have both been flagged as potential issues to investigate.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

211

You can also analyze compute tasks at the source code level. For example, to count GPU clock cycles spent
on a particular task or due to memory latency, use the Source Analysis option.

Discuss this recipe in the VTune Profiler developer forum.

See Also
Optimize applications for Intel® GPUs with Intel® VTune Profiler
Optimize Your GPU Application with Intel oneAPI Base Toolkit
GPU Architecture Terminology for Intel® Xe Graphics
GPU Offload Analysis

GPU Compute/Media Hotspots Analysis

Profiling an FPGA-driven SYCL* Application
Use this recipe to profile an FPGA-driven SYCL
application. The recipe features the AOCL Profiler
integrated in the CPU/FPGA Interaction (preview)
analysis type in Intel® VTune™ Profiler.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

212

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/developer/articles/technical/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/gpu-optimization-workflow.html#gs.20g4bg
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-offload-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-compute-media-hotspots-analysis.html

• INGREDIENTS
• DIRECTIONS:

1. Install and Configure the Toolkit
2.Build the Sample Application
3.Run CPU/FPGA Interaction Analysis
4.Analyze Results

Ingredients
Here are the minimum hardware and software requirements for this performance recipe.

• Application: crr. This sample FPGA design is available in the repository for Intel® oneAPI DPC++
Compiler samples.

• Compiler: To profile a SYCL application, you need the dpcpp compiler that is available with Intel® oneAPI
toolkits.

• Tools:

• Intel® oneAPI Base Toolkit for Linux*
• Intel® FPGA Add-on for oneAPI Base Toolkit
• Intel® VTune™ Profiler - CPU/FPGA Interaction (preview) Analysis

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Operating system: Linux* OS (Ubuntu* 18.04)
• CPU: Intel server platform code-named Cascade Lake
• FPGA: Intel® Programmable Acceleration Card (Intel® PAC) with Intel® Arria® 10 GX FPGA or Intel® Stratix

10 GX FPGA PAC board for SYCL (with installable add-on)

Install and Configure the Toolkit
1. Plug the Intel PAC card into the PCIe slot on the machine.
2. Download and install Intel oneAPI Base Toolkit for Linux. Select all default options and either the online

or offline installer.
3. Download Intel FPGA Add-on for oneAPI Base Toolkit.
4. Unzip the FPGA add-on package and run setup.sh. Select all default options.
5. Set up the oneAPI environment.

source <oneAPI-install-dir>/setvars.sh
6. Install the FPGA board.

aocl install
7. Run the diagnose command to ensure that all diagnostics pass.

aocl diagnose

Intel® VTune™ Profiler Performance Analysis Cookbook 1

213

https://github.com/intel/BaseKit-code-samples
https://github.com/intel/BaseKit-code-samples
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#gs.1a3ggy
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#gs.1a3ggy
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html#gs.1a3hbl
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html#gs.1a3jno
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Build the Sample Application
1. Download code samples from the repository for Intel oneAPI DPC++ Compiler samples.

git clone https://github.com/intel/BaseKit-code-samples.git
2. Open the crr sample folder.

cd BaseKit-code-samples/FPGAExampleDesigns/crr
3. Open the src/CMakeLists.txt file.
4. Locate the line of code that lists hardware flags. It should start with set(HARDWARE_LINK_FLAGS.
5. Add -Xsprofile to the set of flags.
6. Go back to the main directory for the sample. Create a new folder called build and open it.

mkdir build
cd build

7. Compile the sample.

cmake ..
make fpga

This process can take several hours. Once it has finished, you should have an executable file called
crr.fpga.

You can now run crr.fpga on FPGA hardware.

Run CPU/FPGA Interaction Analysis
1. Open Intel® VTune™ Profiler and click New Project on the Welcome screen.

The Create a Project dialog box opens.
2. Specify a project name, a location for your project, and click Create Project.

The Configure Analysis window opens.
3. In the WHERE pane, select Local Host.
4. In the WHAT pane, select Launch Application as the target.

• In the Application field, specify the path to the crr.fpga executable.
• In the Application parameters field, enter ordered_inputs.csv.

5. In the HOW pane, select CPU/FPGA Interaction (preview) from the Platform Analysis group.
6. In the analysis settings, select AOCL Profiler for the FPGA profiling data source.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

214

https://github.com/intel/BaseKit-code-samples

7. Click Start at the bottom to run the analysis.

Analyze Results
Once data collection completes, you can see the finalized results in the CPU/FPGA Interaction viewpoint.
Start with the Summary window to view these details:

• FPGA top compute tasks
• Top tasks and hotspots for the CPU

Intel® VTune™ Profiler Performance Analysis Cookbook 1

215

Switch to the Bottom-up window to see detailed information at the kernel level including:

• Stalls
• Occupancy
• Data transfer size
• Average bandwidth for transferred data

Use the timeline view to see these details about kernel instances:

• Start/end times
• Overtime stalls
• Occupancy
• Bandwidth metrics

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

216

In the Bottom-up window, right-click on a kernel and select View Source from context menu.

This opens the Source View, where you can see metrics for specific kernel source lines.

See Also
CPU/FPGA Interaction Analysis

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

Profiling Hardware Without Intel Sampling Drivers
Use this collection of recipes to set up Linux* Perf*-
based performance profiling with Intel® VTune™ Profiler
in the driverless mode. Understand benefits and
identify workarounds for possible limitations.

Content expert: Jeffrey Reinemann , Alexey Bayduraev

Intel processors provide performance monitoring unit (PMU) events that you can employ to analyze how
effectively your code utilizes hardware resources. VTune Profiler can collect and analyze PMU events for
microarchitecture analysis types like:

• HPC Performance Characterization
• Memory Access
• Microarchitecture Exploration

If your analysis requires a smaller sampling interval, you can also configure the Hotspots and Threading
analysis types to use the PMU event-based sampling instead of the default user-mode sampling.

For PMU event-based analysis, VTune Profiler uses Intel sampling drivers that require administrative
privileges to install them on a target system. If you do not have administrative privileges or your
environment does not allow third-party drivers to be injected to the systems, VTune Profiler cannot access
PMU events via Intel sampling drivers and determine hardware performance bottlenecks. For those cases,
VTune Profiler has adopted hardware performance monitoring capabilities through a built-in Linux Perf
performance monitoring system.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

217

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/cpu-fpga-interaction-analysis.html
https://www.intel.com/content/www/us/en/docs/programmable/683521/22-4/eol.html
https://community.intel.com/t5/user/viewprofilepage/user-id/109704
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/sep-driver.html

VTune Profiler enables the hardware event-based sampling analysis in the Perf driverless mode when these
conditions are met:

• Intel sampling drivers cannot be installed (for example, if installed without root privileges).
• Collection with stacks is selected with a non-zero (unlimited) stack size and the requirements for

driverless collection are satisfied.
• The option to use driverless collection is enabled and the requirements for driverless collection are

satisfied.

VTune Profiler extends driverless support for Linux Perf. This provides the profiling functionality, a collection
overhead, and a trace size competitive with the solution based on using Intel sampling driver. However,
VTune Profiler capabilities in the driverless mode depend on your Linux OS configuration. There may be some
limitations. The examples in this recipe describe those limitations.

NOTE

• To enable the Perf driverless collection to match all the hardware profiling functionality provided
with Intel drivers, you must have administrative privileges to configure the system options
described below.

• To check the collector type used for the analysis (Perf or Intel sampling driver (SEP)), see the
Collection and Platform Info section of the Summary window.

• INGREDIENTS:

VTune Profiler - Run in driverless mode after meeting these prerequirements.

• Core and uncore events. All hardware event-based collections in VTune Profiler use core PMU events.
Some of them such as Memory Access and IO analysis types require access to uncore events that
enable collecting metrics like DRAM bandwidth, QPI/UPI bandwidth, PCI bandwidth, and others.

• Perf for Linux kernel 2.6.32 and higher. PMU events are exposed by Linux kernel
through /sys/bus/event_source/devices/cpu and /sys/bus/event_source/devices/uncore_*
directories. Empty directory content may indicate that the system configuration does not support PMU
event collection. In this case, either update the OS or install the Intel sampling driver.

NOTE In hybrid architectures with performance cores (P-Cores) and efficient cores (E-Cores), P-Core
events are exposed through /sys/bus/event_source/devices/cpu_core. E-Core events are
exposed through /sys/bus/event_source/devices/cpu_atom.

• /proc/sys/kernel/perf_event_paranoid value is equal to or less than 1.

NOTE When you run the Microarchitecture Exploration analysis on Intel® microarchitecture codenamed
Skylake (or Skylake server), you must use Linux kernel version 4.3 or newer because front end event
collection is necessary for this purpose. To verify if your system can support this analysis, see if the
frontend file located in /sys/devices/cpu/format/frontend.

• RECIPES FOR LIMITATIONS:

• Enable system wide or user process profiling
• Enable core and uncore event collection
• Enable multi-process profiling
• Profile a large number of PMU events on multi-core systems
• Enable stack sampling
• Collect context switches
• Resolve symbols for kernel functions
• Avoid resource contention with the NMI Watchdog

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

218

• Reduce collection overhead
• Enable using driverless mode when required
• Enable profiling capabilities for the group

NOTE Run the vtune-self-checker.sh script provided with VTune Profiler to validate product
capabilities on your analysis system. The script runs a representative set of analysis types on a stable
benchmark and informs you on limitations the VTune Profiler encountered on the system. The
recommendations in the diagnostics can help you configure your system properly for the driverless
Perf collection or help you install the Intel sampling driver if the system configuration cannot help. To
run the script, enter:

<vtune_install_dir>/bin64/vtune-self-checker.sh

Enable System Wide or User Process Profiling
Analysis types: All analyses

Concepts: System-wide analysis collects performance information about all processes running on the
system, including system services and so on.

Driverless mode limitations: Additional configuration is required to enable system-wide or user process
profiling.

To enable system-wide analysis in the driverless mode:

1. Configure a VTune Profiler project and from the WHAT pane select either the Profile System target or
the Launch Application target with the Analyze system-wide option enabled.

2. Check the /proc/sys/kernel/perf_event_paranoid file value with the following command:

cat /proc/sys/kernel/perf_event_paranoid
If the value is less than 1, VTune Profiler can proceed with the system-wide collection.

3. If the perf_event_paranoid value is equal to 1 (which limits the collection to user processes only) or
more than 1 (which prevents VTune Profiler from using the Perf driverless mode), set the
perf_event_paranoid value to 0 for the system-wide collection:

echo 0 > /proc/sys/kernel/perf_event_paranoid

NOTE
In some environments, perf_event_paranoid is regulated by the security policy. For more
information about Linux Perf security requirements, see https://www.kernel.org/doc/html/latest/
admin-guide/perf-security.html.

Intel sampling driver limitations: By default, the Intel sampling driver supports system-wide collection.
But if it is built and loaded with the --per-user option, the collection will be limited to user processes only.

Enable Core and Uncore Event Collection
Analysis types: Memory Access, HPC Performance Characterization, and other analysis types based on
uncore events

Core events can be collected both system wide and per user processes. To collect uncore events in the Perf
driverless mode, enable system-wide analysis.

Driverless mode limitations:

• Memory Access analysis requires access to uncore events and will not run without ability to collect them.
Other analysis types, like HPC Performance Characterization, will run but miss metrics based on uncore
events such as DRAM Bandwidth, OPA Interconnect Bandwidth, and Packet Rate.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

219

https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html

• Uncore collection in the driverless mode is not supported on Intel Atom® processors.

To collect uncore events in the driverless mode:

Set the perf_event_paranoid value to 0 to enable system-wide performance monitoring, which is a
prerequisite for the uncore event collection.

Intel sampling driver limitations: None

Enable Multi-Process Profiling
Analysis types: all

By default, the Linux kernel limits the size of the memory available for capturing performance data by 518Kb.
To know the current value, enter:

cat /proc/sys/kernel/perf_event_mlock_kb
Driverless mode limitations: For some parallel applications (for example, MPI applications with multiple
ranks per node) in the user process collection mode on multi-core systems (>64 logical cores), the limit of
518Kb tends to be reached and the data collection will not be available.

To enable multi-process profiling on a multi-core system:

Set the perf_event_paranoid value to 0 to enable system-wide performance monitoring.

Intel sampling driver limitations: none. Any number of processes with default settings can be profiled.

Profile a Large Number of PMU Events on Multi-Core Systems
Analysis types: Microarchitecture Exploration

Driverless mode limitations: Linux Perf allocates file descriptors for every configured PMU event on each
CPU. So, on a multi-core system with a long events list used by such analyses as Microarchitecture
Exploration, this limit is easily reachable and can prevent the collection in the driverless mode.

To support profiling a large number of PMU events in the driverless mode:

1. Check the limit of opened files:

ulimit -n
2. If required, increase the limit in the /etc/security/limits.conf file. To do this, you must have

administrator privilege. Increase the limit by adding or changing these lines (particular numbers are
chosen as examples):

* soft nofile 65535
* hard nofile 65535

3. If you increased the limit in step 2, log out of the shell or close it and reopen a secure shell connection.
Log back in.

NOTE With administrator privilege, you can set the limit for a specific user. The change should be
visible when the user logs in again.

For more information on using the limits.conf file, see http://man7.org/linux/man-pages/man5/
limits.conf.5.html.

Intel sampling driver limitations: None.

Enable Stack Sampling
Analysis types: Hotspots (Hardware Event-Based Sampling mode), Threading (Hardware Event-Based
Sampling and Stack Stitching mode), HPC Performance Characterization (Collect stacks option enabled),
GPU Compute/Media Hotspots (Collect stacks option enabled).

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

220

http://man7.org/linux/man-pages/man5/limits.conf.5.html
http://man7.org/linux/man-pages/man5/limits.conf.5.html

Driverless mode limitations:

• Default 1024 byte stack size may not be enough for a full stack unwinding if a function intensively
allocates data on the stack. This may lead to [Skipped stack frame(s)] displayed in the collected
data.

• Linux kernel versions older than 3.7 support only frame-pointer (FP) based stack unwinding. This means
that VTune Profiler can provide no stacks for binaries built without frame-pointer (-fomit-frame-
pointer compiler option), as well as no Glibc stacks since Glibc is built without frame-pointers.

To avoid issues with stack unwinding in the driverless mode:

Increase the stack size. For example:

vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true -knob stack-
size=2048 <application>

Otherwise, switch to the Intel sampling driver and set the Stack size option to 0 (unlimited value).

NOTE
Stack sampling collection with the Intel sampling driver depends on the kernel implementation. The
collection requires an update for a new kernel version, which may bring additional product
maintenance cost. To reduce this cost, VTune Profiler uses the driverless mode for all analysis types
with stacks collection enabled, even when the Intel sampling driver is loaded. If you need to switch to
the Intel sampling driver for stack sampling collection, do one of the following:

• Create a custom analysis type and disable the Enable driverless collection option
• Use the corresponding command line configuration

vtune -collect-with runsa -knob enable-driverless-collection=false -knob event-
config=<event-list> <application>

Intel sampling driver limitations: No limitation for the stack unwinding since the Intel sampling driver
uses a different algorithm of call stack collection. The driver may require an update if your kernel version is
newer than the latest kernel version supported by VTune Profiler.

Collect Context Switches
Analysis types: Threading

Concepts: Context switch collection helps expose metrics based on thread Inactive Wait time resulted from
either synchronization or thread preemption.

Driverless mode limitations: Linux Perf collects context switches from kernel version 4.3 and higher.
Identification of the context switch reason (synchronization or preemption) is available from kernel version
4.17. For older kernel versions, VTune Profiler switches the collection to the Intel sampling driver if it is
available on the system.

Intel sampling driver limitations: none.

Resolve Symbols for Kernel Functions
Analysis types: All

Driverless mode limitations: Additional manual configuration of the kptr_restrict file is required.

To associate performance data with kernel function names:

Set the kptr_restrict configuration file value to 0 as a system administrator:

echo 0 > /proc/sys/kernel/kptr_restrict
Setting the value to 1 limits the file name resolution to user-level modules.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

221

Intel sampling driver limitations: None. The Intel driver resolves kernel symbols if the /boot/
System.map-<kernel_version> file is accessible for reading or /proc/sys/kernel/kptr_restrict is set
to 0.

Avoid Resource Contention with the NMI Watchdog
Analysis types: all

Driverless mode limitations: NMI watchdog (a hard lockup detector) utilizes one CPU performance counter
register that becomes unavailable for Linux Perf. This can increase the number of multiplexing groups and, as
a result, impact the accuracy of statistical sampling data.

To improve the accuracy of analysis runs with long events lists in the driverless mode:

Disable the NMI watchdog, using administrative privileges:

echo 0 > /proc/sys/kernel/nmi_watchdog
When the driverless Perf collection is complete, you can re-enable the NMI watchdog (using the
administrative privileges):

echo 1 > /proc/sys/kernel/nmi_watchdog
Intel sampling driver limitations: none. Intel driver automatically stops the NMI watchdog for the
collection time to avoid this problem with data accuracy.

Reduce Collection Overhead
Analysis types: all

Driverless mode limitations: Linux Perf collection may incur an overhead on CPU intensive applications,
since it fully loads all CPUs.

To reduce the collection overhead in the driverless mode:

• To reduce the trace size for stack sampling collections, the VTune Profiler uses a Linux Perf trace
compression, which may introduce an additional overhead. To avoid this, disable the trace compression
with the -run-pass-thru option:

vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true -run-pass-
thru=--perf-compression=0 <application>

This can reduce collector overhead in rare cases, but the trace size increases dramatically.
• In some real-time and telecom applications, the default per-CPU trace collection mode can cause

collection overhead. To overcome this, disable the per-CPU trace collection mode with the -run-pass-
thru option:

vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true -run-pass-
thru=--perf-threads=none <application>

• Set the limit of CPU time consumption by Linux Perf collector. For example, for a 10% limit, use the
following command (with administrative privileges):

echo 10 > /proc/sys/kernel/perf_cpu_time_max_percent
This can drop the sampling frequency and statistical accuracy to reach the limit.

Intel sampling driver limitations: none.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

222

Enable Using Driverless Mode When Required
VTune Profiler uses the Intel sampling driver if it is loaded in all cases except for the stack sampling
collection. To make the VTune Profiler use the driverless Perf mode for sampling without stacks, create a
custom analysis type and select the Enable driverless collection option in the GUI, or set the command
line knob value to enable-driverless-collection=true as follows:

vtune -collect-with runsa -knob enable-driverless-collection=true -knob event-config=<event-
list> <application>

The option is available starting with the VTune Amplifier 2019 Update 4.

Enable Profiling Capabilities for the Group
Driverless mode limitations: Setting the perf_event_paranoid option to a lower value could be
inappropriate as this option applies to all users. Instead, you could set Linux capabilities to a specific user
group and binary.

To enable capabilities for perf tool:

NOTE
The required capabilities cannot be assigned for a file system mounted with the nosuid option, or if
the file system does not support extended file attributes.

• For Linux kernel versions older than 5.8, use CAP_SYS_ADMIN. To set up this configuration, run the
vtune-set-perf-caps.sh script with this parameter:

vtune-set-perf-caps.sh -v cap_sys_admin
• For Linux kernel versions 5.8 and newer, use CAP_PERFMON. To set up this configuration, run the vtune-

set-perf-caps.sh script with this parameter:

vtune-set-perf-caps.sh -v cap_perfmon
Alternatively, you can set up this configuration manually:

1.Create a vtune group for privileged amplxe-perf users.
2.Assign the vtune group to the Perf tool executable.
3.Restrict access to the executable to only those users who are in the vtune group.

cp amplxe-perf amplxe-perf-priv
groupadd vtune
chgrp vtune amplxe-perf-priv
chmod o-rwx amplxe-perf-priv

4.Assign the required capabilities to the Perf tool executable.

setcap -v "cap_perfmon,cap_sys_ptrace,cap_syslog=ep" amplxe-perf-priv
getcap amplxe-perf-priv
amplxe-perf-priv = cap_sys_ptrace,cap_syslog,cap_perfmon+ep

If the installed libcap does not support cap_perfmon, use 38 instead:

setcap "38,cap_sys_ptrace,cap_syslog=ep" amplxe-perf-priv
getcap amplxe-perf-priv
amplxe-perf-priv = cap_sys_ptrace,cap_syslog,38+ep

For more information on Linux capabilities, see https://man7.org/linux/man-pages/man7/capabilities.7.html.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

223

https://man7.org/linux/man-pages/man7/capabilities.7.html

For more information on perf_event access control, see https://www.kernel.org/doc/html/latest/admin-
guide/perf-security.html

See Also
Sampling Drivers

Hardware Event-based Sampling Collection with Stacks

Enable Linux* Kernel Analysis

Profiling MPI Applications
This recipe uses Intel VTune Profiler to identify
imbalances and communications issues in MPI enabled
applications, allowing you to improve the application
performance.

• INGREDIENTS
• DIRECTIONS:

1.Build Application
2.Establish Overall Performance Characteristics
3.Configure and Run the HPC Performance Characterization Analysis
4.Analyze Results using the VTune Profiler GUI
5.[Optional] Generate a Command Line from the VTune Profiler GUI
6.[Optional] Analyze Results with a Command Line Report
7.[Optional] Selective Code Area Profiling

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: heart_demo sample application, available from GitHub* at https://github.com/
CardiacDemo/Cardiac_demo.git

• Tools:

• Intel® C++ Compiler
• Intel® MPI Library 2019
• Intel VTune Profiler 2019 or newer
• Intel VTune Profiler - Application Performance Snapshot

NOTE

• Get a free download of the Intel MPI Library from https://www.intel.com/content/www/us/en/
developer/tools/oneapi/mpi-library.html.

• Download the latest version of VTune Profiler from the product download page.

• Operating system: Linux*
• CPU: Intel® Xeon® Platinum 8168 Processor (formerly code named Skylake)
• Network Fabric: Intel® Omni-Path Architecture (Intel® OPA)

Build Application
Build your application with debug symbols so Intel VTune Profiler can correlate performance data with your
source code and assembly.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

224

https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/sep-driver.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hw-event-based-sampling-collection-with-stacks.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/enabling-linux-kernel-analysis.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

1. Clone the application GitHub repository to your local system:

git clone https://github.com/CardiacDemo/Cardiac_demo.git
2. Set up the Intel C++ Compiler and Intel MPI Library environment:

source <compiler_install_dir>/bin/compilervars.sh intel64
source <mpi_install_dir>/bin/mpivars.sh

3. In the root level of the sample package, create a build directory and change to that directory:

mkdir build
cd build

4. Build the application using the following command:

mpiicpc ../heart_demo.cpp ../luo_rudy_1991.cpp ../rcm.cpp ../mesh.cpp -g -o heart_demo -O3 -std=c
++11 -qopenmp -parallel-source-info=2

The executable heart_demo should be present in the current directory.

Establish Overall Performance Characteristics
The recommended application tuning workflow using Intel software tools starts with obtaining a snapshot of
your application performance and then focusing on the problematic areas using the most appropriate tool.
VTune Profiler's Application Performance Snapshot provides overall performance characteristics of an
application using a simple interface and a low overhead implementation. Use Application Performance
Snapshot to gain an understanding of the general properties of your application before moving on to
investigate specific issues in detail.

Let's obtain a performance snapshot on a set of dual socket nodes using the Intel® Xeon® Scalable processor
(code named Skylake). This example uses Intel® Xeon® Platinum 8168 Processor with 24 cores per socket
and configures the run to have 4 MPI ranks per node and 12 threads per rank. Modify the specific rank and
thread counts in this example to match your own system specification.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

225

Use the following command line on an interactive session or a batch script to obtain a performance snapshot
on four nodes:

export OMP_NUM_THREADS=12
mpirun -np 16 -ppn 4 aps ./heart_demo -m ../mesh_mid -s ../setup_mid.txt -t 100

Once the analysis is complete, a directory named aps_result_YYYYMMDD is generated with the profiling
data, where YYYY the year, MM the month, and DD the day of the collection. Run the following command to
produce a single page HTML snapshot of the results:

aps --report ./aps_result_20190125
The aps_report_YYYYMMDD_<stamp>.html file is created in your working directory, where the <stamp>
number is used to prevent overwriting existing reports. The report contains information on overall
performance, including MPI and OpenMP* imbalance, memory footprint and bandwidth utilization, and
floating point throughput. A note at the top of the report highlights the main areas of concern for the
application.

The snapshot indicates that overall this application is bound by MPI communication, but that it also suffers
from memory and vectorization issues. The MPI Time section provides additional details, such as MPI
imbalance and the top MPI function calls used. From the additional information it seems that the code uses
mainly point to point communication and that the imbalance is moderate.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

226

This snapshot result points to complex issues in the code. To continue investigating the performance issues
and isolate the problems, use the HPC Performance Characterization analysis feature of VTune Profiler.

Configure and Run the HPC Performance Characterization Analysis
Most clusters are setup with login and compute nodes. Typically a user connects to a login node and uses a
scheduler to submit a job to the compute nodes, where it executes. In a cluster environment, the most
practical way of running VTune Profiler to profile an MPI application is to use the command line for data
collection and the GUI for performance analysis once the job has completed.

Reporting on MPI-related metrics is simple from the command line. In general, the simplest way to execute
in a distributed environment is by building a command as follows:
<mpi launcher> [options] amplxe-cl [options] -r <results dir> -- <application>
[arguments]

Intel® VTune™ Profiler Performance Analysis Cookbook 1

227

NOTE

• The command can be used in an interactive session or included in a batch submission script.
• The results directory specification is required for MPI applications.
• Add -trace-mpi if you are not using the Intel MPI Library.

Follow these steps to run the HPC Performance Characterization analysis from the command line:

1. Prepare your environment by sourcing the relevant VTune Profiler files. For a default installation using
the bash shell, use the following command:

source /opt/intel/vtune_Profiler/amplxe-vars.sh
2. Collect data for the heart_demo application using the hpc-performance analysis. The application uses

both OpenMP and MPI and will be executed using the configuration described earlier, with 16 MPI ranks
over a total of 4 compute nodes using the Intel MPI Library. This example is run on Intel® Xeon®
Platinum 8168 Processors and uses 12 OpenMP threads per MPI rank:

export OMP_NUM_THREADS=12
mpirun -np 16 -ppn 4 amplxe-cl -collect hpc-performance –r vtune_mpi -- ./heart_demo -m ../
mesh_mid -s ../setup_mid.txt -t 100

The analysis begins and generates four output directories using the following naming convention:
vtune_mpi.<node host name>.

NOTE
You can select specific MPI ranks to be profiled while running others simultaneously, but without
collecting profiling data. For details, see Selective MPI Rank Profiling.

Analyze Results using the Intel VTune Profiler GUI
The Intel VTune Profiler graphical interface provides a much richer and more interactive experience than the
command line for analyzing the collected performance data. Start by running the following command to open
one of the results in the VTune Profiler user interface:

amplxe-gui ./vtune_mpi.node_1

NOTE
To display the Intel VTune Profiler GUI, an X11 manager running on the local system or a VNC session
connected to the system is required. Each system is different, so consult with your local administrator
for a recommended method.

The result opens in Intel VTune Profiler and shows the Summary window, which provides an overview of the
application performance. Because heart_demo is an MPI parallel application, the Summary window shows
MPI Imbalance information and details regarding the MPI rank in the execution critical path in addition to the
usual metrics.

• MPI Imbalance is an average MPI busy wait time by all ranks on the node. The value indicates how
much time could be saved if balance was ideal.

• MPI Rank on the Critical Path is the rank with minimal busy wait time.
• MPI Busy Wait Time and Top Serial Hotspots are shown for the rank in the critical path. This is a

good way to identify severe deficiencies in scalability since they typically correlate with high imbalance or
busy wait metrics. Significant MPI Busy Wait Time for the rank on the critical path in a multi-node run
might mean that the outlier rank is on a different node.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

228

https://www.intel.com/content/www/us/en/developer/articles/technical/using-intel-advisor-and-vtune-amplifier-with-mpi.html

In our example, there is some imbalance and also a significant amount of time spent in serial regions of the
code (not shown in the figure).

While profiles may be collected across nodes, the only way to view all MPI data is to load each node result
independently. For detailed MPI traces, use Intel® Trace Analyzer and Collector.

In Intel VTune Profiler 2019 (and newer versions), the Summary window contains histograms of Intel®
Omni-Path Architecture (Intel® OPA) fabric utilization. The metrics show bandwidth and packet rate and
indicate what percentage of the execution time the code was bound by high bandwidth or packet rate
utilization. Intel VTune Profiler reports that the heart_demo application spends no time being bandwidth or
packet rate bound, but the histogram shows a maximum bandwidth utilization of 1.8 GB/s that is close to the
average. This hints to continuous, but inefficient, use of MPI communications.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

229

https://www.intel.com/content/www/us/en/developer/tools/oneapi/trace-analyzer.html#gs.0rm7eq

Switch to the Bottom-up tab to get more details. Set the Grouping to have Process at the top level to get
the following view:

Since this code uses both MPI and OpenMP, the Bottom-up window shows metrics related to both runtimes
besides the usual CPU and memory data. In our example, the MPI Busy Wait Time metric is shown in red for
the MPI rank furthest from the critical path, which also shows the largest OpenMP potential gain. This hints
that threading improvements could help performance.

Review the execution timeline for several metrics at the bottom of the Bottom-up window, including DDR
and MCDRAM bandwidth, as well as CPU time and Intel OPA utilization. The interconnect bandwidth timeline
for this code shows continuous utilization at a moderate bandwidth (the scale is in GB/s). This could be due
to regular MPI exchanges with small messages, which is a common mistake in distribute computing.

Of more interest is the detailed execution time per thread and the breakdown of Effective Time, Spin and
Overhead Time, and MPI Busy Wait Times. The default view uses the Super Tiny settings to show all
processes and threads together in a visual map of performance.

In this case you should see that there is little effective time in most of the threads (green) and that the
amount of MPI overhead is also small (yellow). This points to potential issues in the threading
implementation.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

230

To investigate this in more detail, right-click on the grey area to the left of the graph to select the Rich view
for the band height. Then, to the right of the graph, group results by Process/Thread so the roles of each
MPI Rank and each thread are seen more clearly. By using this grouping, the top bar for each process shows
the average result for all children threads and, below that average, each thread is listed with its own thread
number and process ID.

In our example, the master thread clearly takes care of all MPI communication for each MPI rank, which is
common in hybrid applications. A significant amount of time is spent in MPI communication (yellow) in the
first ten seconds of the execution, likely to set up the problem and distribute data. After that there is regular
MPI communication, which matches the results observed in the Bandwidth Utilization timeline and the
Summary report.

What is noticeable is the high amount of spin and overhead (shown in red by default), which indicates issues
with the way threading was implemented in the application. At the top of the Bottom-up window, group the
data by OpenMP Region / Thread / Function / Call Stack, and apply the filter at the bottom of the
window to show Functions only. By expanding the tree, you can see that the function init_send_bufs is only
called by thread 0 and is responsible for the low performance observed. Double clicking in the line brings up
the source code viewer. Inspecting the code shows that there is a simple way to parallelize the outer loop in
the function and fix this particular problem.

Generate a Command Line from the Intel VTune Profiler GUI (optional)
A little known, but useful feature of Intel VTune Profiler is the ability to configure an analysis using the GUI
and then save the exact command line corresponding to it, so it can be used directly from the command line.
This is convenient for heavily customized profiles or for quickly building a complex command.

1. Launch VTune Profiler and click New Project or open an existing project.
2. Click Configure Analysis.
3. On the Where pane, select Arbitrary Host (not connected) and specify the hardware platform.

4. On the What pane:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

231

a. Specify the application and set the parameters and working directory.
b. Select the Use MPI launcher option and provide information related to the MPI run.
c. [Optional] Choose particular ranks to profile.

5. On the How pane, change the default Hotspots analysis to HPC Performance Characterization and
customize the available options.

6. Click the

Command Line button at the bottom of the window. A pop-up window opens with the exact text
corresponding to the command line you should use to perform the customize analysis you just
configured on the GUI. Additional MPI options can be added to complete the command.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

232

NOTE
For Intel MPI, the command line is generated in terms of -gtool option, which allows to significantly
simplify selective rank profiling syntax.

Analyze Results with a Command Line Report (optional)
Intel VTune Profiler provides informative command line text reports. For example, to obtain a summary
report, run the following command:

amplxe-cl -report summary -r ./results_dir
A summary of the results prints to the screen. Options to save the output directly to file and in other formats
(csv, xml, html) are available, among many others. For details on the full command line options, type
amplxe-cl -help in the command line or see Intel® VTune™ Profiler Command Line Interface.

Selective Code Area Profiling (optional)
By default, Intel VTune Profiler collects performance statistics for the whole application, but since version
2019 Update 3, it also provides the ability to control data collection for MPI applications. This has the
advantage of generating smaller result files, which are faster to process, and to focus attention completely on
a region of interest

The region selection process is done using the standard MPI_Pcontrol function. Call MPI_Pcontrol(0) to
pause data collection and call MPI_Pcontrol(1) to resume it again. The API can be used together with the
command line option -start-paused to exclude the application initialization phase. In this case, a
MPI_Pcontrol(1) call should follow right after initialization to resume data collection. This method of
controlling collection requires no changes in the application building process, unlike using ITT API calls, which
require linking of a static ITT API library.

Additional Resources
• Intel Advisor Cookbook: Optimize Vectorization Aspects of a Real-Time 3D Cardiac Electrophysiology

Simulation
• VTune Profiler Installation Guide for Linux
• Using Intel® Advisor and VTune Profiler with MPI
• Tutorial: Analyzing an OpenMP and MPI Application

NOTE
Discuss this recipe in the developer forum

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Profiling Docker* Containers
Intel® VTune™ Profiler allows you to profile applications
running in Docker* containers, including profiling
multiple containers simultaneously. This recipe guides
you through the configuration of a Docker container
and describes ways to use VTune Profiler to analyze

Intel® VTune™ Profiler Performance Analysis Cookbook 1

233

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/command-line-interface.html
https://www.intel.com/content/www/us/en/docs/advisor/cookbook/current/optimize-vectorization-aspects-of-cardiac-demo.html
https://www.intel.com/content/www/us/en/docs/advisor/cookbook/current/optimize-vectorization-aspects-of-cardiac-demo.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-install-guide/top/linux.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-intel-advisor-and-vtune-amplifier-with-mpi.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/2020/overview.html
https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

one or multiple concurrently running containers. This
recipe also utilizes the Java* Code Analysis capabilities
of VTune Profiler.

• INGREDIENTS
• DIRECTIONS:

1. Install and configure a Docker* Container
2.Run Hotspots Analysis with Hardware Event-Based Sampling for Target in Container
3.Analyze Data Collected for Target in Container
4.Run Hardware Event-Based Hotspots Analysis With VTune Profiler and Target Running in Same

Container
5.Run Profile System Analysis for Host Target From Container

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: MatrixMultiplication. This Java application is used as a demo and is not available for
download.

• Tools: Intel VTune Profiler 2021.2.0 - Hotspots analysis with Hardware Event-Based Sampling.

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Linux container runtime: docker.io.
• Operating system: Ubuntu* 20.04 based on Linux* kernel version 5.4 or newer.
• CPU: Intel® microarchitecture code named Skylake or newer

Install and Configure a Docker* Container
Prerequisites:

• Install a Docker container. See official Docker documentation available at https://docs.docker.com/install/
linux/docker-ce/ubuntu/.

• Check if your user is in the docker group. Otherwise, use sudo for the docker.

1. Pull a docker image that you want to use.

host> docker pull ubuntu:latest
2. Run the container. Keep it running using the -t and -d options.

host> docker run -td ubuntu:latest
3. To analyze Docker containers with VTune Profiler using User-Mode Sampling or Memory Consumption

analyses, make sure to enable ptrace support.

host> docker run --cap-add CAP_SYS_PTRACE --name=test_container -td ubuntu:latest
4. If you want to analyze Docker containers with VTune Profiler using Hardware Event-Based Sampling

analysis, enable the CAP_SYS_ADMIN capability.

host> docker run --cap-add CAP_SYS_ADMIN --name=test_container_0 -td ubuntu:latest

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

234

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/basic-hotspots-analysis.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

You can also launch the container in the privileged mode.

host> docker run –-privileged --name=test_container_0 -td ubuntu:latest
5. Copy your Java application with the Java Virtual Machine (JVM) to the docker instance that is running.

host> docker cp openjdk-16_linux-x64_bin.tar.gz test_container_0:/var/local
host> docker cp MatrixMultiplication.java test_container_0:/var/local

6. Use the container name to get bash into this container in the background mode.

host> docker exec -it test_container_0 /bin/bash
7. Extract the jdk archive.

Run Hotspots Analysis with Hardware Event-Based Sampling for Target in Container
In this procedure, we run VTune Profiler on the host machine to profile a target in a docker container.

1. Run the Java application in the container.

container> cd /var/local
container> /var/local/jdk-16/bin/java -cp . MatrixMultiplication 2000 2000 2000 2000

2. On the host, run a system-wide analysis by starting the Profile System analysis:

host> cd /home/user/intel/oneapi/vtune/latest
host> source vtune-vars.sh
host> vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true -knob
stack-size=4096 --duration 60

NOTE You can also profile your application when it is running in a Docker container, using the Attach
to Process target type.

host> vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true -
knob stack-size=4096 –target-process java

However, you cannot profile applications running in the container that are instrumented with ITT/JIT
API.

Analyze Data Collected for Target in Container
1. When the data collection is complete, start the VTune Profiler GUI.

host> vtune-gui
2. Create a project for the collected results, say docker_java.
3. Open the collected results.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

235

4. Review the results in the Summary tab of the Hotspots analysis.

We infer from the Top Hotspots section that the multiply function of the target application consumed
the most CPU time.

5. Click on the multiply function in the list to switch to the Bottom-up tab. View the stack flow for this
hotspot function.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

236

6. Double click on the hottest function in the table to identify the hotspot source code line for that
function. You can then analyze the metric data collected for this line.

7. To view performance data for individual docker containers, select the Container Name/Process/
Function/Thread/Call Stack grouping from the pull down menu. Identify containers by the docker
prefix.

8. To view the performance data for system binaries that are running inside a container, select the
Module/Function/Call Stack grouping. Locate the entries with the docker prefix in the Module Path
column.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

237

In this grouping mode, you can also view performance data for host system binaries and containerized
system binaries simultaneously.

Run Hardware Event-Based Hotspots Analysis With VTune Profiler and Target Running in Same
Container
1. Pull the docker image of oneapi-basekit.

host> docker pull intel/oneapi-basekit
2. Run the docker container with CAP_SYS_ADMIN capability to enable profiling from the container.

host> docker run -dt --name=my_oneapi_container --cap-add CAP_SYS_ADMIN intel/oneapi-basekit
3. Once the collection is complete, do one of the following: you can either or .

• Copy and view the collected data outside the container. Exit this procedure.
• Use VTune Profiler Server opened in the same container. Go to step 4.

4. Use VTune Profiler Server to view collected data.

a. Publish a port outside the container by using --publish.

host> docker run -dt --name=my_oneapi_container --cap-add CAP_SYS_ADMIN --publish 7788:7788
intel/oneapi-basekit

where

--publish 7788:7788 maps TCP port 7788 in the container to port 7788 on the host.
b. Start VTune Profiler Server inside the container.

my_oneapi_container> vtune-backend --allow-remote-ui --web-port=7788 --enable- server-
profiling &

where

--allow-remote-ui allows remote UI clients.

--web-port=7788 is the HTTP/HTTPS port for web UI and data APIs.

--enable-server-profiling allows users to select the hosting server as the profiling target.

& runs the command in the background.

The vtune-backend command returns a URL that you can open outside the container. For
example,

Serving GUI at https://b06036cef42c:7788?one-time-token=4db58f1ad7225e4dccca60573e4c1fd2
Serving GUI at https://172.17.0.8:7788?one-time-token=4db58f1ad7225e4dccca60573e4c1fd2

c. On the host machine, open the URL reported by vtune-backend in a browser.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

238

d. Change the port on the container (used by vtune-backend) to the port you specified when
creating the container.

NOTE The IP address in this output is the IP address of the container. You can access this address only
from the host where the container is running. To access VTune Profiler Server from outside the host,
use the IP address or hostname of the external host.

e. Create a project, say vtune_in_docker.
f. Copy your Java application to the host folder in the container or mount application.

host> docker cp openjdk-16_linux-x64_bin.tar.gz my_oneapi_container:/var/local/
host> docker cp MatrixMultiplication.java my_oneapi_container:/var/local/

g. You can run User-mode and Hardware Event-based Hotspots analysis in both Launch and Attach
to Process modes within the container. For example, start the Hardware Event-based Hotspots
analysis in Launch mode.

h. Once the analysis finishes, view results in the Summary tab.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

239

Run Profile System Analysis for Host Target From Container
1. Start a docker container with --pid=host and --cap-add CAP_SYS_ADMIN options to collect data and

with mounted host folders. Specify the binaries and symbols of the application for Function and Source
level analysis of collected data.

host> docker run -dt --name=my_oneapi_container -v /host_path:/container_path --pid=host --cap-
add CAP_SYS_ADMIN --publish 7788:7788 intel/oneapi-basekit

where:

-v /host_path:/container_path mounts the host path "/host_path" inside the container path "/
container_path".

--pid=host sets the PID namespace of the host inside the container.

--publish 7788:7788 maps the TCP port 7788 in the container to port 7788 on the host.
2. To analyze the collected data, do one of the following:

• Copy and view the collected data outside the container and on a different system. Exit this
procedure.

• Use VTune Profiler Server opened in the same container. Go to step 3.
3. To view results in VTune Profiler Server, start the server inside the container.

my_oneapi_container> vtune-backend --allow-remote-ui --web-port=7788 --enable-server-profiling &
where

--allow-remote-ui allows remote UI clients

--web-port=7788 sets the HTTP/HTTPS port for web UI and data APIs

--enable-server-profiling allows users to select the hosting server as the profiling target

& runs the command in the background

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

240

The vtune-backend command returns a URL that you can open outside the container. For example,

Serving GUI at https://b06036cef42c:7788?one-time-token=4db58f1ad7225e4dccca60573e4c1fd2
Serving GUI at https://172.17.0.8:7788?one-time-token=4db58f1ad7225e4dccca60573e4c1fd2

4. On the host machine, use a browser to open the URL reported by vtune-backend. Change the port of
the container used by vtune-backend to the port you specified when creating the container.

NOTE The IP address in this output is the IP address of the container. You can access it only from the
host where the container is running. To access vtune-server from outside of the host, use IP address
or hostname of the external host.

5. Create a project, say vtune_in_docker.
6. In the container, run Hardware Event-based Hotspots in the Profile System mode.

7. Specify the locations of source and binaries to enable source-level and function-level analysis.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

241

8. Start a command line collection from the container by specifying binary and search directories with the
-search-dir and -source-search-dir options . To access the results from the GUI, point -result-
dir to the current location of the VTune project.

my_oneapi_container> vtune -collect hotspots -knob sampling-mode=hw -knob stack-size=4096 --
duration 30 -result-dir=/root/intel/vtune/projects/vtune_in_docker/r@@@{at} -search-dir /
container_path -source-search-dir /container_path

NOTE Use the Attach to Process mode to profile your application running in a docker container.

my_oneapi_container> docker exec my_oneapi_container vtune -collect hotspots -knob
sampling-mode=hw -result-dir=/root/intel/vtune/projects/vtune_in_docker/r@@@{at} -search-
dir /container_path -source-search-dir /container_path -target-process matrix

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

242

9. Once the analysis completes, see results in the Summary tab.

The Top Hotspots section of the Summary view shows that the multiply function of the target
application consumed the most CPU time.

10. Click the multiply function in the list and switch to the Bottom-up tab.

11. Double click on the test_if function to examine the source level analysis for this function.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

243

NOTE You can have source-level analyses for native applications that run simultaneously in multiple
containers, if all of these containers have the same mounted host folder with the binaries.

Profiling Considerations:

• You can only profile C/C++ applications.
• You cannot profile applications instrumented with ITT/JIT API.

NOTE
Discuss this recipe in the Analyzers developer forum.

See Also
Java* Code Analysis

Profiling Container Targets

Profiling a Remote Target Through a Proxy Server (NEW)
This recipe describes how to run Intel® VTune™ Profiler
through a proxy server to profile remote targets.

When you need to profile remote target systems, follow this recipe to run Intel® VTune™ Profiler through a
proxy server. The recipe describes host configurations for Windows or Linux* systems.

• INGREDIENTS
• DIRECTIONS:

• Windows Host Configuration
• Linux Host Configuration

Ingredients
This section lists the software used for the performance analysis scenario.

• Operating system: Windows, Linux, or macOS systems
• Tools:Intel® VTune™ Profiler

Windows Host Configuration
Prerequisites:

If you do not already have RSA private/public keys for passwordless SSH access, follow this procedure to
generate them using the internal Intel® VTune™ Profiler generator.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

244

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/java-code-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/profiling-container-targets.html

1. Create a python script called generator.py. In this script, replace USER with your username and
HOSTNAME with the name of your target machine.

import sys
import pythonhelpers1.genhelpers as genhelpers
if len(sys.argv) < 2:
 print("Usage: amplxe-python generator.py USER@HOSTNAME")
 sys.exit(1)
private_key = "id_rsa_vtune_" + str(sys.argv[1])
genhelpers.ssh_keygen(private_key, private_key + '.pub')

2. In a command window, run this command:

VTUNE_INSTALL_DIR\bin64\amplxe-python generator.py USER@HOSTNAME
The private and public keys should get created in the current directory.
Run Intel® VTune™ Profiler on Windows Host through Proxy Server

1. Copy these keys to the %USERPROFILE%\.ssh directory on the host system:

• id_rsa_vtune_USER@HOSTNAME
• id_rsa_vtune_USER@HOSTNAME.pub

2. Add the content of the public key to ~/.ssh/authorized_keys on the target system and ~ - USER
home directory.

3. Install the Ncat third-party utility on the Windows host for remote connection through a proxy server.
You can download this from https://nmap.org/ncat.

4. Create %USERPROFILE%\.ssh\config with these lines:

Host HOSTNAME
 ProxyCommand 'PATH\TO\NCAT\ncat.exe' --proxy-type <TYPE> --proxy <PROXYADDR[:PORT]> %h %p

Here,

• TYPE refers to the type of proxy server.
• PROXYADDR refers to the address of the proxy server.
• PORT refers to the port number.

5. Fix permissions for the config and private key.

icacls %USERPROFILE%\.ssh\id_rsa_vtune_USER@HOSTNAME /inheritance:r
icacls %USERPROFILE%\.ssh\id_rsa_vtune_USER@HOSTNAME /grant:r "%USERNAME%":"(R)"
icacls %USERPROFILE%\.ssh\config /inheritance:r
icacls %USERPROFILE%\.ssh\config /grant:r "%USERNAME%":"(R)"

6. Check the connection by calling the uname command.

VTUNE_INSTALL_DIR\bin64\ssh.exe -i "%USERPROFILE%\.ssh\id_rsa_vtune_USER@HOSTNAME" USER@HOSTNAME
uname

You are now ready to run Intel® VTune™ Profiler on the Windows host to profile the remote target.

Linux/macOS Host Configuration
Prerequisites: If you do not already have RSA private/public keys for passwordless SSH access, generate
them using an empty passphrase :

host> ssh-keygen -t rsa
Run Intel® VTune™ Profiler on Linux Host through Proxy Server

Intel® VTune™ Profiler Performance Analysis Cookbook 1

245

https://nmap.org/ncat

1. Add the content of the public key to ~/.ssh/authorized_keys on the target system, ~ - USER home
directory. Replace USER with your username.

2. If you do not already have it on the host machine, download and install Ncat or Netcat third-party
utilities on the host for remote connection through proxy. You can download them from:

• https://nc110.sourceforge.io/
• https://nmap.org/ncat

3. Create ~/.ssh/config with these lines. The nc option depends on your version.

Host HOSTNAME
 ProxyCommand nc -X <TYPE> –x <PROXYADDR[:PORT]> %h %p

or

Host HOSTNAME
 ProxyCommand nc --proxy-type <TYPE> --proxy <PROXYADDR[:PORT]> %h %p

where:

• HOSTNAME refers to the name of the target machine.
• TYPE refers to the type of proxy server.
• PROXYADDR refers to the address of the proxy server.
• PORT refers to the port number.

4. Check the connection by calling the uname command.

ssh USER@HOSTNAME uname
You are now ready to run Intel® VTune™ Profiler on the Linux host to profile the remote target.

See Also
Set up Linux System for Remote Analysis

Configure SSH Access for Remote Collection

Profiling in a Singularity* Container
This recipe guides you through the configuration of a
Singularity container for the Intel® VTune™ Profiler
analysis to identify hotspots in an application running
in the isolated container environment.

• INGREDIENTS
• DIRECTIONS:

1. Install and configure a Singularity* container
2.Run performance analysis inside the container

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: MatrixMultiplication
This Java* application is used as a demo and not available for download.

• Tools: Intel VTune Profiler

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

246

https://nc110.sourceforge.io/
https://nmap.org/ncat
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/linux-system-setup-for-remote-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/configuring-ssh-access-for-remote-collection.html

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Linux container runtime: singularity
• Operating system: Ubuntu* 16.04
• CPU: Intel® microarchitecture code named Skylake with 8 logical CPUs

Install and Configure a Singularity* Container
1. Install the Singularity software (for example, version 2.4.5):

host> VERSION=2.4.5
host> wget https://github.com/singularityware/singularity/releases/download/$VERSION/singularity-
$VERSION.tar.gz
host> tar xvf singularity-$VERSION.tar.gz
host> cd singularity-$VERSION
host>./configure --prefix=/usr/local
host> make
host> sudo make install

NOTE
For detailed installation instructions, see https://singularity.lbl.gov/install-linux.

2. Create a Singularity container, for example, using the Docker Hub:

host> singularity build ubuntu.img docker://ubuntu:latest
Docker image path: index.docker.io/library/ubuntu:latest
Cache folder set to /root/.singularity/docker
Importing: base Singularity environment
Importing: /root/.singularity/docker/
sha256:d3938036b19cfa369e1081a6776b07b54be9612bc4c8fed7f139370c8142b79f.tar.gz
Importing: /root/.singularity/docker/
sha256:a9b30c108bda615dc10e402f62d712f413214ea92c7ec4354cd1cc0f3450bc58.tar.gz
Importing: /root/.singularity/docker/
sha256:67de21feec183fcd009a5eddc4de8c346ee0f4369a20047f1a302a90716fc741.tar.gz
Importing: /root/.singularity/docker/
sha256:817da545be2ba4bac8f6b4da584bca0fb4844938ecc462b9feab1001b5df7405.tar.gz
Importing: /root/.singularity/docker/
sha256:d967c497ce230b63996a7b1fc6ec95b741aea9348118d3328c676f13be789fa7.tar.gz
Importing: /root/.singularity/metadata/
sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
Building Singularity image...
Singularity container built: ubuntu.img
Cleaning up...

NOTE
Make sure the ubuntu.img file is created in the current directory.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

247

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

3. Run the container.

Singularity allows you to map directories on your host system to directories within your container. This
enables read and write data on the host system with ease. For example, if you have a host folder /tmp/
vtune with the VTune Profiler and a Java application, you need to run the container and map /tmp/
vtune to /local/vtune within the container.

host> singularity shell --bind /tmp/vtune:/local/vtune ./ubuntu.img
Singularity: Invoking an interactive shell within container...
Singularity ubuntu.img:~>

Run Analysis inside the Container
From the Singularity container, launch the command line interface of the VTune Profiler, amplxe-cl, and run
an analysis for your Java application. For example, to run Advanced Hotspots analysis for the
MatrixMultiplication application, enter:

Singularity ubuntu.img:~> cd /local/vtune/matrix/
Singularity ubuntu.img:/local/vtune/matrix> /local/vtune/bin64/vtune -collect advanced-hotspots
-- /local/vtune/jdk9.0.1-x64/bin/java -cp . MatrixMultiplication 2000 2000 2000 2000

NOTE

• To profile a target application running in the Singularity container, make sure to launch the VTune
Profiler from the same container. Running the VTune Profiler outside the container for Singularity
profiling is not supported.

• Advanced Hotspots analysis was integrated into the generic Hotspots analysis starting with VTune
Amplifier 2019, and is available via the Hardware Event-based Sampling collection mode.

When the analysis result is collected, you may open it with the GUI version of the VTune Profiler installed on
the host system and follow a traditional analysis flow starting with the Summary window that provides an
overview of the application performance:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

248

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/basic-hotspots-analysis.html

NOTE
If you need to re-finalize an analysis result outside the Singularity container (for example, in the GUI
version of the VTune Profiler installed on the host system), make sure all binary and source files
required for module resolution are accessible outside the container.

See Also
Java* Code Analysis

Intel® VTune™ Profiler Performance Analysis Cookbook 1

249

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/java-code-analysis.html

Profiling Linux*, Android*, and QNX* System Boot Time
This recipe illustrates how you integrate performance
analysis with Intel® VTune™ Profiler into the boot flow
of Linux, Android, and QNX operating systems. Use
this analysis to improve boot order inspection by
identifying activities that execute very slowly on CPU
cores during the OS boot.

Content Expert: Jeffrey Reinemann

When profiling boot time, you inject the performance data collection command of Intel® VTune™ Profiler into
the early stage of the OS boot (either configured via an init script or using a particular service). For optimum
results, follow these guidelines:

• Place the data collector binary files of Intel® VTune™ Profiler in the earliest available file directory.
• For Linux and Android OS data collector writes to the file system, the output file name must use the

earliest available writable directory.
• For Linux and Android OS, the data collection command of Intel® VTune™ Profiler depends on file system

availability. For QNX OS, the command depends on network availability.

NOTE While this approach is suitable to address several problems during OS boot time, it cannot cover
the entire boot process. For example, the kernel decompression stage and file system mount stages
are not covered.

• INGREDIENTS
• DIRECTIONS:

1.Profile target system boot time:

• Linux system via systemd
• QNX system
• Android system

2. Import the Result to a VTune Profiler Project.
3.Analyze process execution.

Ingredients
This section lists the software you need for the performance analysis scenario.

• Operating system:

• Linux with the systemd system initialization type. Root access is enabled.
• QNX

• Tools:

• QNX* Momentics* Tool Suite
• QNX 7.0 SDK
• Intel® VTune™ Profiler version 2023 (or newer)

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

250

https://community.intel.com/t5/user/viewprofilepage/user-id/109704

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

Profile Linux System Boot Time via systemd
Prerequisites:

• Install Intel® VTune™ Profiler on your target Linux system.
• Check the type of system initialization. To confirm the system is using systemd, enter:

systemctl | grep "\-\.mount"
If systemd is used, you can expect the following output:

-.mount loaded active mounted /
To profile Linux system boot time:

1. Create a /boot_profile file and configure it to run a hardware analysis (Hotspots, I/O Analysis, and
others) with Intel® VTune™ Profiler.

For example, to execute the Hotspots analysis system-wide for 30 seconds using a low sampling
interval for higher data precision, use:

#!/bin/bash
/opt/intel/oneapi/vtune/latest/bin64/vtune -c hotspots -knob sampling-mode=hw -knob sampling-
interval=0.1 -d 30 -finalization-mode=none -r /tmp/boot_profile &

NOTE

• Make sure the path in the file correctly specifies the Intel® VTune™ Profiler installation directory. By
default, the installation directory on Linux is /opt/intel/oneapi/vtune/<version>.

• The path to the boot_profile script can be any local path available at early boot stages, for
example: /tmp.

2. Change the permission for the data collection startup script:

chmod 755 /boot_profile
3. Create a /etc/systemd/system/vtune_boot.service file with the following content:

[Unit]
Description=VTune Profiler boot profile service

[Service]
Type=forking
ExecStart=/boot_profile

[Install]
WantedBy=multi-user.target

Intel® VTune™ Profiler Performance Analysis Cookbook 1

251

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/overview.html

4. Enable the service:

systemctl enable vtune_boot
5. Reboot your system to start a Intel® VTune™ Profiler data collection during the OS boot process.

When the data collection is completed, you can find the result directory in /tmp/boot_profile. This
directory is created under the root user. If you need to open a result under a regular user, change the folder
permissions:

sudo chmod -R a+w /tmp/boot_profile
Additional commands:

• To disable the service:

systemctl disable vtune_boot
• To analyze Intel® VTune™ Profiler collector output during the OS boot process in case of any failures:

sudo journalctl -u vtune_boot

Profile Android System Boot Time
Prerequisites:

1. Install Intel® VTune™ Profiler on your host system.
2. Run the lsmod command on the target Android system to make sure Intel sampling drivers are

available.

If the drivers (pax.ko, sep5.ko, socperf3.ko) are not present, you can either continue with
driverless approach and skip the subsequent steps or you can build and sign the drivers as follows:

a. Run the following command on your host system:

<vtune-install-dir>/target/<android-version-arch>/sepdk/build-driver
b. When prompted, specify the path to the GCC* compiler and Android kernel source directory used

to build the target system.

For example, the kernel source directory is <android-source-dir>/out/target/product/
<name>/obj/kernel, and the compiler directory is <android-source-dir>/prebuilts/gcc/
linux-x86/x86/x86_64-linux-android-<version>/bin/x86_64-linux-android-gcc.

Successfully built drivers are located in the following directories:

• <vtune-install-dir>/target/<android-version-arch>/sepdk/pax/pax.ko
• <vtune-install-dir>/target/<android-version-arch>/sepdk/sep5.ko
• <vtune-install-dir>/target/<android-version-arch>/sepdk/src/socperf/src/

socperf.ko
c. Sign the drivers as follows:

$KERNEL_DIR/scripts/sign-file $(CONFIG_MODULE_SIG_HASH)
$KERNEL_DIR/$(CONFIG_MODULE_SIG_KEY)
$KERNEL_DIR/certs/signing_key.x509 <driver_file_name.ko>

where <driver_file_name.ko> is the name of the driver you sign. You have to sign each driver
separately.

Use the kernel config file from KERNEL_DIR to get values for CONFIG_MODULE_SIG_HASH and
CONFIG_MODULE_SIG_KEY parameters.

To profile Android system boot time:

1. Install the Intel® VTune™ Profiler target collector.

a. Boot the target system in a normal manner.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

252

b. Run the Intel® VTune™ Profiler GUI and create a new project.
c. Configure a new analysis. In the WHERE field, select Android Device (ADB) as the connection

type. Select the target device in the ADB destination field. From this point onwards, Intel® VTune™
Profiler should automatically upload the target collector to the target system.

2. Copy the target collector to the earliest available file system location (for example, to /vendor):

adb shell cp -rf /data/data/com.intel.vtune/perfrun /vendor/vtune
3. If Intel sampling drivers are available, copy pax.ko, sep5.ko, and socperf3.ko drivers to /vendor/

vtune.
4. Choose the earliest available writable location as the destination directory for the collected traces. For

example, choose /data/vtune and create an executable script (/vendor/vtune/vtune.sh) with this
content, using either Intel sampling drivers or driver-less mode:

Driver mode Driver-less mode

#!/bin/sh
rm -rf /data/vtune
mkdir /data/vtune 0777
/system/bin/insmod /vendor/vtune/pax.ko
/system/bin/insmod /vendor/vtune/
socperf3.ko
/system/bin/insmod /vendor/vtune/sep5.ko
LD_LIBRARY_PATH=/vendor/vtune/perfrun/
lib64
SEP_BASE_DIR=/vendor/vtune/perfrun/lib64 /
vendor/vtune/perfrun/bin64/sep -
start -d 10 -out /data/vtune/
android_boot.tb7

#!/bin/sh rm -rf /data/vtune
mkdir /data/vtune 0777
echo 0 >
/proc/sys/kernel/perf_event_paranoid
echo 0 >
/proc/sys/kernel/kptr_restrict
/vendor/vtune/perfrun/bin64/amplxe-perf
record
-a -o /data/vtune/android_boot.data --
sleep 10

This should start the Hotspots collection for 10 seconds.
5. Add this section to init.rc on the target. Consider using post-fs or any other trigger depending on the

actual boot flow:

on fs
 start vtune
service vtune /vendor/vtune/vtune.sh
 user root
 group root
 seclabel u:r:init:s0
 oneshot
 disabled

NOTE If you have a read-only file system, consider changing these files on the host and building your
Android system from the source code.

6. Optionally, depending on the OS configuration, add these lines to the /system/sepolicy/private/
file_contexts file:

/system/bin/toolbox u:object_r:toolbox_exec:s0
+ /system/bin/insmod u:object_r:toolbox_exec:s0
+ /system/bin/sep u:object_r:toolbox_exec:s0
+ /system/bin/sh u:object_r:toolbox_exec:s0

NOTE Make sure your Android device is booted in the permissive mode.

7. Reboot the target Android system and wait until data is collected.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

253

8. Copy the /data/vtune/android_boot.tb7 file to the host system for further analysis.

Profile QNX System Boot Time
Prerequisites:

• Install QNX* Momentics* Tool Suite on your host.
• Install QNX 7.0 SDK.
• Import a BSP to your QNX Momentics workspace via File > Import > QNX > QNX Source Package

and BSP.
• Install VTune Profiler on your host system.

To profile QNX system boot time:

1. Copy the target profiling agent (sep binary) from <vtune-install-dir>/target/qnx_x86_64 to
<qnx-sdk-path>\qnx700\target\qnx7\x86_64\usr\bin.

2. Modify a *.build file of your QNX image.

a. Find a string /usr/bin/gzip=gzip and add /usr/bin/sep=sep after it.
b. Find a startup script section and add sep -p1 &.

[+script] startup-script = {
...
 # NOTE: Temporary enable for UART devices on OCP bridge
 # will be able to removed once ABL is fixed
 ocp_init -d 0:24:0 0x200=0xffff04b5 0x204=7
 ocp_init -d 0:24:1 0x200=0xffff04b5 0x204=7
 ocp_init -d 0:24:2 0x200=0xffff04b5 0x204=7 # console
 ocp_init -d 0:24:3 0x200=0xffff04b5 0x204=7
 # the sep run before this could move system to unstable
 # state and crash it
 sep -p1 -d 10 &

The sep target profiling agent options are:

• -p<mode> configures the collection mode:

0 sets regular default mode. The profiling agent waits for the connection from the host over
TCP/IP.

1 enables the agent to start a preconfigured collection without stacks. Collected samples are
stored in the target memory. To transfer the data to the host, TCP/IP connection is required.

2 enables the agent to start a preconfigured collection with sample call stacks. Collected
samples are stored in the target memory. To transfer the data to the host, TCP/IP connection is
required.

• -d <sec> sets the maximum duration of a collection (in seconds). The collection stops after
the specified time or when the memory buffer is full.

• -s <sec> defers the start of a collection by the specified time.
• -b <size_ratio> sets the collection buffer size (1 ^ size_ratio bytes); for a single CPU core,

for example, specify -b 23 for 8Mb buffer size. The agent uses a double-buffer schema for
switching buffers so that the amount of target memory consumption per a CPU core would be
16Mb. In case of 4 CPU cores, the overall memory consumption by the agent would be 64Mb.
The default value is 19 (0.5Mb).

3. Rebuild and flash QNX image.
4. Reboot your system to start a data collection with Intel® VTune™ Profiler during OS boot process.
5. Propagate the collection results to the host.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

254

https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/overview.html

In the preconfigured collection mode (-p1 or -p2), the target agent profiles the workload for the
specified duration inside the memory buffer and switches to the listening mode sending a message like
this: 'sep5_0: Waiting for control connection from host on port XXXX...' to console. After this, you can
launch the sep utility on the host to copy the collected data from the target over the network. Make
sure the host command line options you use correspond to the target agent options. For example, for
the -p1 mode, the host command looks like this:

<vtune-install-dir>/bin64/sep -start -target-ip <target-system-ip-address> -target-port 9321 -
out /tmp/qnx_boot.tb7

For the -p2 mode:

<vtune-install-dir>/bin64/sep -start -target-ip <target-system-ip-address> -target-port 9321 -
lbr call_stack -out /tmp/qnx_boot.tb7

Import the Result to an Intel® VTune™ Profiler Project
1. Launch the Intel® VTune™ Profiler standalone GUI on the host system to pick up proper binary files

during result finalization.

For example, to launch Intel® VTune™ Profiler on Windows OS, enter:

<vtune-install-dir>\bin64\amplxe-gui.exe
2. Create a new VTune Profiler project and configure binary/symbol search directories to include paths for

the debug files of the kernel and/or drivers.

On a Linux host, you can change the kptr_restrict value to 0 to enable resolving kernel function names.
3. Import your result to the project:

• To import a Linux result, use the Import a result into the current project option.

• To import a result from Android or QNX, use the Import raw trace data option. Click the browse
button to select the required *.tb7 file:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

255

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-project.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/search-directories.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/enabling-linux-kernel-analysis.html

When the *.tb7 file is imported and the result is finalized, switch to the Hotspots by CPU
Utilization viewpoint:

Analyze Process Execution
Open the result and switch to the Bottom-up tab to identify the processes which occupied the most CPU
resources:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

256

Next, let us analyze the sequence of execution of processes/services.

1. Switch to the Platform tab.
2. Change the Timeline grouping to Process/Thread.
3. Right-click to open the context menu.
4. Sort the rows by Row Start Time.
5. Select Ascending order for the display.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

257

6. Analyze a process execution order:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

258

See Also
QNX Targets

Import Results and Traces into the Intel® VTune™ Profiler GUI

Using Intel® VTune™ Profiler Server with Visual Studio Code and Intel® DevCloud for
oneAPI (NEW)
This recipe demonstrates how you use Intel® VTune™
Profiler as a web server when you develop and tune
performance on a remote development machine. For a
remote machine, the recipe uses a compute node at
Intel® DevCloud for oneAPI.

Content expert: Jennifer DiMatteo

• INGREDIENTS
• DIRECTIONS:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

259

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/qnx-targets.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/importing-results-to-gui.html
https://community.intel.com/t5/user/viewprofilepage/user-id/42000

• Setup Overview
• Option 1: Use Intel® VTune™ Profiler Server for Remote Development with Visual Studio Code
• Option 2: Use Intel® VTune™ Profiler Server on a Remote System via SSH Terminal
• Finish Setup
• Usage Considerations

Ingredients
• Access to Intel® DevCloud for oneAPI
• Visual Studio (VS) Code
• Intel® VTune™ Profiler (available on Intel® DevCloud for oneAPI

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

Setup Overview
With v2021.1.1 and newer versions, you can run Intel® VTune™ Profiler as a server and access it remotely
using a web browser. This setup is useful when you develop applications on a remote system.

• You can run Intel® VTune™ Profiler on the system where you do development, so it has direct access to the
binaries, debug info, and source files.

• Intel® VTune™ Profiler also stores the collected traces and processed data on the same system so you do
not have to transfer this heavy data to your client system for analysis.

• You do not need to install anything on your client system. You only need a web browser to access the
Intel® VTune™ Profiler GUI.

The following figure illustrates this setup:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

260

https://devcloud.intel.com/oneapi/
https://code.visualstudio.com/
https://devcloud.intel.com/oneapi/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Option 1: Use Intel® VTune™ Profiler Server for Remote Development with Visual Studio Code
1. Log into Intel® DevCloud for oneAPI.
2. Set up the VS Code connection. When you complete this procedure, you should get local VS Code

connected to a compute node in the DevCloud.
3. Run Intel® VTune™ Profiler server on the compute node from the VS Code terminal:

vtune-backend --enable-server-profiling
4. Open the URL displayed by Intel® VTune™ Profiler server in the VS Code terminal. This starts the Intel®

VTune™ Profiler GUI in your web browser.
5. Finish the setup.

Option 2. Use Intel® VTune™ Profiler Server on a Remote System via SSH Terminal
In this case, you must manually set up SSH tunneling. To simplify this procedure, run Intel® VTune™ Profiler
on a specific port (55001 in this example). You can select a different port if 55001 is busy.

1. Log into Intel® DevCloud for oneAPI.
2. Follow the instructions for Windows or Linux / MacOS systems and set up an SSH connection into the

DevCloud.
3. Log into the DevCloud login node:

ssh devcloud
4. Reserve a DevCloud compute node:

qsub -I

Intel® VTune™ Profiler Performance Analysis Cookbook 1

261

https://devcloud.intel.com/oneapi/
https://devcloud.intel.com/oneapi/documentation/connect-with-vscode/
https://devcloud.intel.com/oneapi/
https://devcloud.intel.com/oneapi/documentation/connect-with-ssh-windows-cygwin/
https://devcloud.intel.com/oneapi/documentation/connect-with-ssh-linux-macos/

NOTE Do not close the terminal after this step, as the action will release your compute node.

5. Open a new terminal.
6. Log into the DevCloud node again, this time with SSH Port forwarding enabled:

ssh -L 127.0.0.1:55001:127.0.0.1:55001 devcloud
7. Establish an SSH connection from the login node to the compute node with one more SSH tunnel:

ssh -L 127.0.0.1:55001:127.0.0.1:55001 s000-n000
Replace s000-n000 with your compute node name.

8. Start Intel® VTune™ Profiler server on the compute node:

vtune-backend --web-port=55001 --enable-server-profiling
9. Open the Intel® VTune™ Profiler GUI. Use your web browser to open the URL displayed by the Intel®

VTune™ Profiler server.
10. Finish the setup.

Finish Setup
To complete the setup:

1. Accept the Intel® VTune™ Profiler server certificate.

NOTE
When you open the Intel® VTune™ Profiler GUI, your web browser may prompt you about the Intel®
VTune™ Profiler server self-signed certificate. You can proceed safely without installing the certificate
because the SSH tunnel provides protection from Man-in-the-Middle (MitM) attacks. For more
information on transport security, see Set Up Transport Security.

2. Set the passphrase.

When you run Intel® VTune™ Profiler server for the first time, the URL that it displays should contain a
one-time-token. When you open this URL on a browser, Intel® VTune™ Profiler server prompts you to set
a passphrase. Other users cannot access your Intel® VTune™ Profiler server without the passphrase. The
hash of the passphrase is persisted on the server. Also, your browser stores a secure HTTP cookie so
that you do not need to enter the passphrase each time you open the VTune GUI. Once you set the
passphrase, the Intel® VTune™ Profiler welcome screen opens.

3. Create a project.
4. Configure an analysis. Your remote machine (running the Intel® VTune™ Profiler server) is selected as

the target system by default since you ran the server with --enable-server-profiling option.
5. Set the target application path and any command-line arguments. For more information, see Set Up

Analysis Target.
6. Run the analysis.

Usage Considerations
• The setup described in Option 1 relies on the functionality of the VS Code Remote - SSH extension to

watch port numbers used by processes that are started through the VS Code terminal. The Remote - SSH
extension automatically forwards these ports through the SSH tunnel. This action is controlled by the
remote.autoForwardPorts setting, which is enabled by default.

• You can use the --enable-remote-profiling command-line option to enable the system that hosts
VTune server as the performance profiling target. This option is disabled by default for security because
running a VTune analysis involves launching a target application, which is an arbitrary command line. If
multiple users have access to a single instance of VTune server, they would get access to execute arbitrary

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

262

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-transport-security.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-analysis-target.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-analysis-target.html
https://code.visualstudio.com/docs/remote/ssh

code on behalf of the user account that runs the Intel® VTune™ Profiler server. Enable --enable-remote-
profiling only when VTune server is intended for a single user and you do not share the passphrase
used to access the server.

• Use the --web-port=PORT command-line option to run Intel® VTune™ Profiler server on a specific port.
Otherwise, Intel® VTune™ Profiler may run on any arbitrary port available on the system. If the specific
port is already in use, increase the number until a free port is available.

• Intel® VTune™ Profiler server displays this warning in the output:

warn: Server access is limited to localhost only. To enable remote access restart with
 --allow-remote-ui.

Because this procedure uses SSH port forwarding, you do not need to enable --allow-remote-ui.
Incoming connections to the Intel® VTune™ Profiler server come from the SSH server and they are
localhost connections. If you enable --allow-remote-ui, Intel® VTune™ Profiler server builds a URL with
the real network card IP address or FQDN name, which may not be accessible from your client machine.

• By default, Intel® VTune™ Profiler server stores profiling results in your home directory. Use the --data-
directory command-line argument to specify a different data directory. You can also use this argument
to open pre-collected Intel® VTune™ Profiler results in Intel® VTune™ Profiler server. Intel® VTune™ Profiler
can locate its results in any child folders.

See Also
Intel® VTune™ Profiler Web Server Interface

Intel® VTune™ Profiler Server Usage Models

Intel® DevCloud
Run a Profiling Analysis with Intel® VTune™ Profiler

Using Intel® VTune™ Profiler Server in HPC Clusters
This recipe demonstrates the usage of Intel® VTune™
Profiler server in High Performance Computing (HPC)
clusters for interactive performance profiling or
accessing performance data for scheduled jobs.

Typically, nodes in HPC clusters do not have any GUI context. This can cause inconveniences when using
VTune Profiler for performance analysis. Users in HPC clusters either have to rely on command-line reports or
have to the transfer the result files out of the cluster to view them on other machines using the desktop
VTune Profiler GUI.

This recipe aims to eliminate these inconveniences by offering a better workflow. Starting with VTune Profiler
version 2021.1.1, you can launch VTune Profiler as a server inside the HPC cluster and view the results
remotely with the full-featured GUI, requiring nothing more than a machine that can run a modern web
browser.

Intel® DevCloud for oneAPI is used as an example in this recipe, but this workflow is valid for any other HPC
cluster or similar environment.

Content experts: Stas Neverov

• Ingredients
• Directions

• Setup Overview
• Interactive Performance Profiling with VTune Profiler Server
• Serving Profiling Results for Scheduled Jobs
• Usage Considerations

Ingredients
Here are the environment and software tools that you need:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

263

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/install-web-server.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/web-server-ui.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/analyze-performance.html
https://community.intel.com/t5/user/viewprofilepage/user-id/101667

• Access to Intel DevCloud for oneAPI
• Intel VTune Profiler—pre-installed on most HPC clusters, including Intel DevCloud for oneAPI.

Setup Overview
After you complete this setup, you will be able to:

• Book a compute node in an HPC cluster for interactive use, launch VTune Profiler server, and use the
VTune Profiler web GUI on your laptop to configure analysis and view the collected data.

• Schedule your job in an HPC cluster, wrap it with VTune Profiler command-line data collection, return
when the job is complete and run the VTune Profiler server to view collected results in a web browser on
your laptop.

For both cases, you do not need to install anything on your client system. You only need a web browser to
access the VTune Profiler GUI.

Interactive Performance Profiling with VTune Profiler Server
In this scenario, you run VTune Profiler server on a compute node inside an HPC cluster and access the
VTune Profiler GUI via a web browser on your laptop. This usage model is somewhat similar to using VTune
Profiler desktop GUI via VNC, but it is easier to set up and provides a better user experience.

This figure illustrates the setup for this scenario:

Follow these steps to enable this workflow:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

264

https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

1. Log into Intel DevCloud for oneAPI.
2. Set up an SSH connection into the Intel DevCloud by following the instructions:

• for Windows
• for Linux and macOS

3. Log into the Intel DevCloud login node:

ssh devcloud
4. Reserve an Intel DevCloud compute node in interactive mode:

qsub -I
5. Run VTune Profiler server:

vtune-backend --enable-server-profiling --data-directory=~/intel/vtune/projects
VTune Profiler server outputs a string like this:

Serving GUI at https://127.0.0.1:42277?one-time-token=456e20b6dcaad209ea2157744c1dc6c5
Take note of the port number, compute node name, and the URL. You will need this information for the
next steps.

NOTE The port number—42277 in the sample output—is a random port out of those available on the
compute node. Port number 42277 is used here as an example. It will be different when you start
VTune Profiler server.

6. Open a new terminal window. Do not close the first terminal, as this will stop the VTune Profiler server
and will release the compute node.

7. Log into the DevCloud login node again, this time with SSH port forwarding enabled:

ssh -L 127.0.0.1:42277:127.0.0.1:42277 devcloud

NOTE Replace port 42277 with the actual port printed out in step 5.

8. Establish an SSH connection from the login node to the compute node with one more SSH tunnel:

ssh -L 127.0.0.1:42277:127.0.0.1:42277 s000-n000

NOTE Replace s000-n000 with the compute node name on which VTune Profiler server was started on
step 5; replace port number 42277 with the actual port number from step 5.

9. Open the VTune Profiler web GUI on your laptop. To do this, paste the URL printed out by VTune Profiler
server in step 5 into a web browser on your laptop.

10. Accept the VTune Profiler server certificate.

When you open the VTune Profiler GUI, your web browser will prompt you about the VTune Profiler
server self-signed certificate. You can proceed safely without installing the certificate, because the SSH
tunnel provides protection from Man-in-the-Middle (MitM) attacks. For more information on transport
security, see the Set Up Transport Security topic.

11. Set the passphrase.

When you run VTune Profiler server for the first time, the URL that it prints should contain a one-time-
token. When you open this URL in a browser, VTune Profiler server prompts you to set a passphrase.
Other users cannot access your VTune Profiler server without the passphrase. The hash of the
passphrase is persisted on the server in your user home directory. Also, your browser stores a secure
HTTP cookie, so that you do not need to enter the passphrase each time you open the VTune Profiler
web GUI.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

265

https://devcloud.intel.com/oneapi/
https://devcloud.intel.com/oneapi/documentation/connect-with-ssh-windows-cygwin/
https://devcloud.intel.com/oneapi/documentation/connect-with-ssh-linux-macos/
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/installation/install-web-server/set-up-transport-security.html

Once you set the passphrase, the VTune Profiler Welcome screen opens.
12. Create a new project and configure an analysis using VTune Profiler web GUI:

a. Click the New Project... button on the Welcome screen.
b. Enter the project name in the prompt dialog.

VTune Profiler automatically opens the Configure Analysis dialog.

Your compute node that is running the VTune Profiler server is selected as the target system by
default.

c. Set the target application path and any command-line arguments. See Set Up Analysis Target for
details.

13. Click the Start button to run the analysis.

Once the analysis completes, VTune Profiler opens the Summary tab of the analysis result.

Serving Profiling Results for Scheduled Jobs
In this scenario, you collect performance data for scheduled jobs using the VTune Profiler command-line
interface, and then serve these results by running VTune Profiler server inside the cluster. You can then
access the results on your laptop via a web browser.

This figure illustrates the setup for this scenario:

Follow these steps to enable this workflow:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

266

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target.html

1. Log into Intel DevCloud for oneAPI.
2. Set up an SSH connection into the DevCloud by following the instructions:

• for Windows
• for Linux and macOS

3. Log into the DevCloud login node:

ssh devcloud
4. Create a script to wrap a job with VTune Profiler data collection:

echo vtune -collect hotspots \
 -r ~/intel/vtune/projects/demo/matrix/hotspots01 \
 -- /opt/intel/oneapi/vtune/latest/samples/en/C++/matrix/matrix \
 > ~/run_with_vtune.sh

The -r ~/intel/vtune/projects/demo/matrix/hotspots01 option defines where the collected
VTune Profiler result will be stored. You can change this location, but, when you start VTune Profiler
server at a later step, it should point to some parent folder of this location, e.g. ~/intel/vtune/
projects.

NOTE

• We assume that the user home directory is network mounted, and thus shared between all
compute nodes.

• Some HPC clusters could have an additional network mounted space that you could use to store
VTune Profiler results. This might be a good idea since VTune Profiler results are typically large in
size and your user home directory space is likely limited.

• You can replace the sample /opt/intel/oneapi/vtune/latest/samples/en/C++/matrix/
matrix with your own application.

5. Schedule a job using the script created in step 4:

qsub ./run_with_vtune.sh
6. Wait for the job to complete.

The sample matrix application will take about a minute to complete. Your real-life HPC jobs could take
hours to complete. You do not need to wait for the job to complete and can resume this flow the next
day—your VTune Profiler results will be waiting for you in the specified location.

7. Reserve a DevCloud compute node in interactive mode:

qsub -I
8. Run VTune Profiler server:

vtune-backend --data-directory=~/intel/vtune/projects
The --data-directory=~/intel/vtune/projects should refer to some parent folder of the result
folder that you specified in step 4.

VTune Profiler server outputs a string like this:

Serving GUI at https://127.0.0.1:42277?one-time-token=456e20b6dcaad209ea2157744c1dc6c5
Take note of the port number, compute node name, and the URL. You will need this information for the
next steps.

NOTE The port number—42277 in the sample output—is a random port out of those available on the
compute node. Port number 42277 is used here as an example. It will be different when you start
VTune Profiler server.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

267

https://devcloud.intel.com/oneapi/
https://devcloud.intel.com/oneapi/documentation/connect-with-ssh-windows-cygwin/
https://devcloud.intel.com/oneapi/documentation/connect-with-ssh-linux-macos/

9. Open a new terminal window. Do not close the first terminal, as this will stop the VTune Profiler server
and will release the compute node.

10. Log into the DevCloud login node again, this time with SSH port forwarding enabled:

ssh -L 127.0.0.1:42277:127.0.0.1:42277 devcloud

NOTE Replace port number 42277 with the actual port number from step 8.

11. Establish an SSH connection from the login node to the compute node with one more SSH tunnel:

ssh -L 127.0.0.1:42277:127.0.0.1:42277 s000-n000

NOTE Replace s000-n000 with the compute node name on which VTune Profiler server was started on
step 8; replace port number 42277 with the actual port number from step 8.

12. Open the VTune Profiler GUI on your laptop. To do this, paste the URL printed out by VTune Profiler
server in step 8 into a web browser on your laptop.

13. Accept the VTune Profiler server certificate.

When you open the VTune Profiler GUI, your web browser will prompt you about the VTune Profiler
server self-signed certificate. You can proceed safely without installing the certificate, because the SSH
tunnel provides protection from Man-in-the-Middle (MitM) attacks. For more information on transport
security, see the Set Up Transport Security topic.

14. Set the passphrase.

When you run VTune Profiler server for the first time, the URL that it prints should contain a one-time-
token. When you open this URL in a browser, VTune Profiler server prompts you to set a passphrase.
Other users cannot access your VTune Profiler server without the passphrase. The hash of the
passphrase is persisted on the server in your user home directory. Also, your browser stores a secure
HTTP cookie, so that you do not need to enter the passphrase each time you open the VTune Profiler
GUI.

Once you set the passphrase, the VTune Profiler Welcome screen opens.
15. Open the analysis result for the scheduled job.

You should see a demo/matrix/hotspots01 result in the Project Navigator panel. Double-click this
result to open it.

Usage Considerations
• You can use the --enable-server-profiling command-line option to enable the system that hosts the

VTune Profiler server as the performance profiling target. This option is disabled by default for security
reasons, since running an analysis with VTune Profiler involves launching a target application with an
arbitrary command line. If multiple users have access to a single instance of VTune Profiler server, they
would be able to execute arbitrary code on behalf of the user account that runs the VTune Profiler server.
Enable the --enable-server-profiling option only when VTune Profiler server is intended for a single
user and you do not share the passphrase to access the server.

• Use the --web-port=PORT command-line option to run VTune Profiler server on a specific port.
Otherwise, VTune Profiler server will run on an arbitrary port available on the system.

• VTune Profiler server displays this warning in the output:

warn: Server access is limited to localhost only. To enable remote access restart
with --allow-remote-access.
Because the usage models described above use SSH port forwarding, you do not need to enable --
allow-remote-access. Incoming connections to the VTune Profiler server come from the SSH server,
and thus are essentially localhost connections.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

268

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/installation/install-web-server/set-up-transport-security.html

If you enable the --allow-remote-access option, VTune Profiler server builds a URL with the real
network card IP address or FQDN name, which may not be accessible from your client machine.

• By default, VTune Profiler server stores profiling results in your home directory. Use the --data-
directory command-line argument to specify a different data directory. You can also use this argument
to open pre-collected VTune Profiler results in VTune Profiler server. VTune Profiler can locate its results in
any child folders.

See Also
Web Server Interface
VTune Profiler Server Usage Models
Intel® DevCloud for oneAPI
Run Analysis with VTune Profiler
VTune Profiler Command Line Interface

Using the Command-Line Interface to Analyze the Performance of a SYCL* Application
running on a GPU (NEW)
This recipe illustrates how you use the command-line
interface (CLI) in Intel® VTune™ Profiler to analyze the
performance of a SYCL application offloaded on an
Intel GPU. The recipe also describes how you can
customize your report with collected data.

Intel® VTune™ Profiler provides a command line interface (the vtune tool) for remote analysis, scripted
commands, and performance regression checks to monitor software performance over time. The vtune
command line interface (CLI) provides an extensive set of options with which you can perform almost every
task that is possible through the GUI. You can initiate analysis via the command line (running it as a
background task or on a remote system) and then view the result or generate a report.

This recipe explores how you can use the CLI efficiently to generate reports on hotspots for these purposes:

• Explore hotspots on the CPU/GPU side by running gpu-offload and gpu-hotspots analyses.
• View the hottest GPU computing tasks annotated with:

• Execution time
• Data transfers
• Working group sizes
• SIMD width
• Average GPU hardware metrics

• Generate Source/Assembly code views to analyze instructions that possibly contributed to performance
issues.

Here are the ingredients and instructions you need to explore efficient CLI use for GPU performance analysis.

• INGREDIENTS
• DIRECTIONS:

1.Build and Compile a SYCL Application
2.Ensure Prerequisites for GPU Analyses
3.Run GPU Offload Analysis
4.Run GPU Compute/Media Hotspots Analysis

Ingredients
Here are the minimum hardware and software requirements for this performance analysis.

• Application: matrix_multiply_vtune. This sample application is available as part of the code sample
package for Intel® oneAPI toolkits.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

269

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/launch/web-server-ui.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/installation/install-web-server.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/command-line-interface.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/VTuneProfiler/matrix_multiply_vtune
https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/VTuneProfiler/matrix_multiply_vtune
https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/VTuneProfiler/matrix_multiply_vtune

• Compiler: To compile a SYCL application, you need the Intel® oneAPI DPC++/C++ Compiler (icpx -
fsycl) that is available with the Intel® oneAPI Base Toolkit.

• Tools: Intel® VTune™ Profiler 2021 - GPU Offload and GPU Compute/Media Hotspots Analyses.

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Microarchitecture:

• Intel® Iris® Pro Graphics 580
• Intel microarchitecture codenamed Skylake S

• Operating system:

• Ubuntu 20.04 LTS

Build and Compile the SYCL Application
1. Go to the sample directory.

cd <sample_dir>/VtuneProfiler/matrix_multiply_vtune
2. The multiply.cpp file in the src directory contains several versions of matrix multiplication. Select a

version by editing the corresponding #define MULTIPLY line in multiply.hpp.
3. Compile your sample application:

cmake . && make
This command generates a matrix.icpx -fsycl executable.

To delete the program, type:

make clean
This command removes the executable and object files that were created by the make command.

Ensure Prerequisites for GPU Analyses
Complete these steps before you run the GPU Offload Analysis or the GPU Compute/Media Hotspots
Analysis.

1. Prepare the system to run a GPU analysis. See Set Up System for GPU Analysis.
2. Set up environment variables for Intel software tools:

source $ONEAPI_ROOT/setvars.sh

Run GPU Offload Analysis on the SYCL Application
Use the GPU Offload Analysis as a starting point to identify if an application is CPU or GPU bound. Explore
GPU offload efficiency through data transfer analysis and find performance-critical kernels for further analysis
and optimization.
Run GPU Offload Analysis

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

270

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.20d7f3
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#base-kit
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.1d8zcj
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/gpu-offload-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-compute-media-hotspots-analysis.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/set-up-system-for-gpu-analysis.html

In the CLI, type:

vtune -collect gpu-offload -r ./result_gpu-offload -- ./matrix.icpx -fsycl
By default, VTune Profiler generates a summary report after collecting data. This report includes information
on the following fields:

• Elapsed time
• GPU utilization information
• Information about the hottest computing tasks
• Recommendations

To see the summary report, type:

vtune -report summary -r ./result_gpu-offload
If you do not need to see the summary report immediately after data collection, change this setting with the
-no-summary option:

vtune -collect gpu-offload -no-summary -r ./result_gpu-offload -- ./matrix.icpx -fsycl

Intel® VTune™ Profiler Performance Analysis Cookbook 1

271

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see
GPU Architecture Terminology for Intel® Xe Graphics.

Generate Additional Reports to View Collected Data

• CPU Hotspots Report

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

272

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

This report displays a list of executed functions with CPU Time metrics, module names, source file paths
and other parameters. The report also lists the hottest program units, starting with the most
performance-critical unit. Use the -column, -filter, and -limit options to sort data into a tabular
view:

vtune -report hotspots -r ./result_gpu-offload

• CPU Hotspots Report Filtered by Module and Grouped by Function

Use the -filter option to focus on a specific part of report like a particular module. You can then use -
group-by option to group results in a specific sequence.

vtune -report hotspots -r ./result_gpu-offload -group-by=function -filter module=matrix.icpx -
fsycl -q

You can group the generated data in several ways like function name, module, source file path, or
computing task.

To see available groupings for a specific result, type:

vtune -report hotspots -r ./result_gpu-offload -group-by=?
• CPU Hotspots Report Sorted by Order

Use the sort-desc and sort-asc options to sort specific information about hotspots in descending or
ascending order. You can specify an order for up to three columns.

vtune -report hotspots -r result_gpu-offload -group-by module -sort-desc="CPU Time:Execution" -q

Here is another example:

vtune -report hotspots -r result_gpu-offload -group-by module -sort-asc="CPU Time:Idle" -q

Intel® VTune™ Profiler Performance Analysis Cookbook 1

273

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/filter.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/group-by.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/group-by.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/group-by.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/sort-desc.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/sort-asc.html

To see available columns for a specific result, type:

vtune -report hotspots -r ./result_gpu-offload -column=?
The report data can contain such columns as CPU Time:Self, Module, and Source File.

• Report of Top 'n' Time-Intensive Program Modules

Use the limit option to see information about the top 'n' hotspots. For example, to understand details
about the top five time-intensive program modules in your application, type:

vtune -report hotspots -r result_gpu-offload -group-by module -sort-desc="CPU Time" -limit=5 -q

• Hotspots Report Grouped by Computing Task (offloaded on GPU) with Transfer Columns

This command displays hotspots information grouped by GPU computing task and also lists details about
transfer sizes and transfer times between CPU and GPU:

vtune -report hotspots -r ./result_gpu-offload -group-by=computing-task -column=Transfer -q
The report contains data transfers that are attributed to the respective computing task.

• Hotspots Report Grouped by GPU Offload Computing Task and Time Columns

This command displays hotspots information grouped by offload computing tasks and also lists details
about transfer times between CPU and GPU:

vtune -report hotspots -r ./result_gpu-offload -group-by=computing-task-offload -column='Time' -q

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

274

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/column.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/limit.html

Run GPU Compute/Media Hotspots Analysis
Our next step is to run the GPU Compute/Media Hotspots analysis. This analysis can help us to further
explore performance improvements for the GPU-bound application or its stages.
Run GPU Compute/Media Hotspots Analysis

In the CLI, type this command to run the analysis:

vtune -collect gpu-hotspots -r ./result_gpu-hotspots -- ./matrix.icpx -fsycl
To see the summary report, type:

vtune -report summary -r ./result_gpu-hotspots

Intel® VTune™ Profiler Performance Analysis Cookbook 1

275

Generate Report to View Computing Tasks with L3 Metrics

Use this command to generate a report that lists only L3 metrics for computing tasks:

vtune -report hotspots -r result_gpu-hotspots -group-by=computing-task -column='L3' -q

Run GPU Compute/Media Hotspots Analysis with Dynamic Instruction Count and SIMD Utilization

Run the GPU Compute/Media Hotspots Analysis in the Characterization mode to collect data on dynamic
instruction count and SIMD utilization:

vtune -collect gpu-hotspots -knob characterization-mode=instruction-count -r ./result_gpu-
hotspots_inst-count -- ./matrix.icpx -fsycl

Generate Reports to View Source and Assembly Metrics

• Source Code for Specific Computing Tasks

Use this command to get the source code for a specific computing task:

vtune -report hotspots -r result_gpu-hotspots_inst-count -source-object computing-
task="Matrix1_1<float>" -group-by=gpu-source-line -column="Source","GPU Instructions
Executed:Int32 & SP Float" -q

• Assembly Code for Specific Computing Tasks

Use this command to get the assembly code for a specific computing task:

vtune -report hotspots -r result_gpu-hotspots_inst-count -source-object computing-
task="Matrix1_1<float>" -group-by=address -limit=5 -q

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

276

• Save Report as CSV File

Use the -report-output option to save the generated report as a file. To specify the generation of
a .csv report, use -format and -csv-delimiter options:

vtune -report hotspots -r result_gpu-hotspots_inst-count -source-object computing-
task="Matrix1_1<float>" -group-by=address -limit=5 -report-output=result.csv -format=csv -csv-
delimiter=comma -q

Run Custom Analysis with GPU Programming API Statistics
To get a focused analysis of timing and statistics related to GPU compute kernels, follow the GPU Compute/
Media Hotspots analysis with a custom analysis that collects GPU Programming API statistics.

The kernel data available through this collection is similar to the data you collect when running the
CLIntercept tool (with DevicePerformanceTiming option enabled) and with the nvprof tool in Summary
mode.
Collect GPU Programming API Statistics

In the command line, type:

vtune -collect-with runss -knob collect-programming-api=true -no-summary -r ./result_gpu-
programming-api -- ./matrix.icpx -fsycl

Generate Report to View Timing and Statistics for GPU Compute Kernels

This command generates a report that lists timings and instance count for computing tasks. The data is
sorted by Total Time in descending order.

vtune -report hotspots -group-by=source-computing-task -column="Total Time,Average Time,Instance
Count" -sort-desc="Total Time" -r ./result_gpu-programming-api/ -q

NOTE
Discuss this recipe in the VTune Profiler developer forum.

See Also
Optimize applications for Intel® GPUs with Intel® VTune Profiler
Optimize Your GPU Application with Intel oneAPI Base Toolkit

Intel® VTune™ Profiler Performance Analysis Cookbook 1

277

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/report-output.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/format.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/csv-delimiter.html
https://github.com/intel/opencl-intercept-layer/blob/master/docs/controls.md#deviceperformancetiming-bool
https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/developer/articles/technical/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/gpu-optimization-workflow.html#gs.1d9hzc

GPU Architecture Terminology for Intel® Xe Graphics
GPU Offload Analysis

GPU Offload Analysis from the Command Line
GPU Compute/Media Hotspots Analysis

GPU Compute/Media Hotspots Analysis from the Command Line

Tuning Recipes
These recipes explore typical application performance
problems that you can detect with Intel® VTune™
Profiler or its predecessor, Intel® VTune™ Amplifier.
Use the guidance in these recipes to optimize
performance.

Cache-Related Latency Issues in Segmented Cache Environment
This recipe demonstrates how to use Cache Allocation
Technology (CAT) to handle cache-related latency
issues (cache misses) when you split a cache between
cores.

• INGREDIENTS
• DIRECTIONS:

1.Run Memory Access analysis
2.Locate Cache Misses
3.Use CAT to Reorganize Cache Segments Between Cores

Ingredients
These are the hardware and software tools you need for this performance scenario:

• Application:

A real-time application (RTA) with an allocated buffer that fits into Last Level Cache (LLC). The RTA reads
from this buffer continuously.

RTAs are programs that function within a time frame specified by the user as immediate or current. Real-
time programs must guarantee a response within specified time constraints, also known as "deadlines".
There can be several reasons for missing a deadline:

• Preemptions
• Interrupts
• An unexpected latency in the critical code execution

A Real-Time Operating System (RTOS) provides effective solutions to isolate an application to avoid its
preemptions and interrupts. However, latency can still result from CPU Microarchitecture issues, like a CPU
cache miss penalty. Here is an example of an RTA:

struct timespec sleep_timeout =
 (struct timespec) { .tv_sec = 0, .tv_nsec = 10000000 };
...
buffer=malloc(128*1024);
...
run_workload(buffer,128*1024);
void run_workload(void *start_addr,size_t size) {

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

278

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-offload-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-offload-command-line-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/gpu-compute-media-hotspots-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/run-gpu-hotspots-analysis-command-line.html

unsigned long long i,j;
for (i=0;i<1000;i++)
{
 nanosleep(&sleep_timeout,NULL);
 for (j=0;j<size;j+=32)
 {
 asm volatile("mov(%0,%1,1),%%eax"
 :
 :"r" (start_addr),"r"(i)
 :"%eax","memory");
 }
}
}

• 'Noisy Neighbors' Application: A stress-ng tool to load and stress a cache.
• Tools: Intel® VTune™ Profiler - Memory Access Analysis. Set AMPLXE_EXPERIMENTAL=cat to enable the

Cache Availability (preview) feature.

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Operating system: Linux* OS
• Hardware: Intel Atom® Processor E3900 Series (code named Apollo Lake) Leaf Hill with L2 CAT

capabilities enabled.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

279

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Run Memory Access Analysis
When you run an RTA in a 'noisy neighbors' environment and notice performance degradation, run Memory
Access analysis to investigate microarchitecture issues like CPU cache miss penalties.

In the following examples, the RTA is pinned on Core 3 while noisy neighbors are pinned on Core 2.

stress-ng -C 10 --cache-level 2 --taskset 2 --aggressive -v --metrics-brief
Both cores belong to Module 1 and share the L2 LLC.

1. Set AMPLXE_EXPERIMENTAL=cat to enable the Cache Availability (preview) feature.
2. Open the Intel® VTune™ Profiler GUI.
3. Create a new project. The Create a Project dialog box opens.
4. Specify a project name, a location for your project, and click Create Project. The Configure Analysis

window opens.
5. In the WHERE pane, select Remote Linux(SSH) as the target system for the analysis.
6. Set up a passwordless connection to the Linux target.
7. In the WHAT pane, select Launch Application and specify your target application for analysis.
8. In the HOW pane, click the analysis header and select Memory Access analysis from the Analysis

Tree.
9. Set Analyze cache allocation to catch cache segment usage by cores.
10. Click the Start button to launch the analysis.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

280

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/configuring-ssh-access-for-remote-collection.html

Locate Cache Misses
Once Intel® VTune™ Profiler completes the analysis, see the Collection and Platform Info section in the
Summary pane. Here, you can see information about CPU support for L2 and L3 Cache Allocation
Technology (CAT). In this example, the hardware allows for a split manipulation on LLC (L2 cache).

Next, switch to the Bottom-Up pane. Select Module / Function / Call Stack grouping and check the LLC
Miss Count value for the cache_sample module.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

281

This is a high number of cache misses. However, there are zero cache misses in the absence of noisy
neighbors.

Now, open the Platform pane. Group results by Logical Core/Thread and select the L2 Cache
Availability checkbox.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

282

The timeline informs us that the L2 Cache Availability is 100%. This means that all segments of L2 cache
were available for the entire lifetime of the target application on cpu_2. However, noisy neighbors from
cpu_3 also shared the L2 cache for the entire lifetime (100%). This is an important factor responsible for the
enormous amount of cache misses in the cache_sample module.

You can use CAT to split cache segments between cores so that each core has a segment for exclusive use.

Use CAT to Reorganize Cache Segments Between Cores
Split the cache to give a segment to the RTA and the rest to noisy neighbors. With CAT, you can program
software to control the amount of cache used by a thread, application, virtual machine, or container. You can
isolate cache segments and thereby address concerns of sharing resources. You can do this in two ways:

• Configure the MSRs directly. See Section 17.19 of the Intel® 64 and IA-32 Architectures Software
Developer's Manual (Volume 3B).

• Use Resource Control (resctrl) - A kernel interface for CPU Resource Allocation.

In this example, we use Resource Control to assign:

• 1 cache segment to cpu_3.
• 7 cache segments to cpu_2.

#set '00000001' Capacity Bit Mask for CORE 3
mkdir /sys/fs/resctrl/clos0
echo 8 > /sys/fs/resctrl/clos0/cpus
echo 'L2:1=1' > /sys/fs/resctrl/clos0/schemata
#set '11111110' CBM for rest CORE
echo 'L2:1=fe' > /sys/fs/resctrl/schemata

Run Memory Access analysis again. Once the collection completes, see the Bottom-Up pane.

A small fraction of the cache (12.5%) is available exclusively. However, the count of cache misses has not
improved significantly.

Let us devote more cache to the application and try the analysis again. Increase the cache allocation to 50%
or 4 segments.

#set '00001111' Capacity Bit Mask for CORE 3
mkdir /sys/fs/resctrl/clos0
echo 8 > /sys/fs/resctrl/clos0/cpus

Intel® VTune™ Profiler Performance Analysis Cookbook 1

283

https://intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://github.com/intel/intel-cmt-cat/wiki/resctrl

echo 'L2:1=f' > /sys/fs/resctrl/clos0/schemata
#set '11110000' CBM for rest CORE
echo 'L2:1=f0' > /sys/fs/resctrl/schemata

With increased cache allocation, the Bottom-Up pane shows that the count of cache misses has reduced
significantly. But this comes at a price since we have now dedicated one half of the entire available cache for
the application exclusively.

It is possible that the exit is in the use of Pseudo-Locking technique. Pseudo-locking helps to protect data
eviction from the cache by other processes that attempt to use the same cache. The RTA can allocate critical
data to a special segment of the cache and protect it from use by another thread, process, or core. While the
segment is hidden, we still have access to data in the segment.

#Create the pseudo-locked region with 1 cache segment
mkdir /sys/fs/resctrl/demolock
echo pseudo-locksetup > /sys/fs/resctrl/demolock/mode
echo 'L2:1=0X1' > /sys/fs/resctrl/demolock/schemata
cat /sys/fs/resctrl/demolock/mode
pseudo-locked
struct timespec sleep_timeout =
 (struct timespec) { .tv_sec = 0, .tv_nsec = 10000000 };
...
/* buffer=malloc(128*1024); */
open("/dev/pseudo_lock/demolock",0_RDWR);
buffer=mmap(0,128*1024,PROT_READ|PROT_WRITE,MAP_SHARED,dev_fd,0);
...
run_workload(buffer,128*1024);
void run_workload(void *start_addr,size_t size) {
unsigned long long i,j;
for (i=0;i<1000;i++)
{
 nanosleep(&sleep_timeout,NULL);
 for (j=0;j<size;j+=32)
 {
 asm volatile("mov(%0,%1,1),%%eax"
 :
 :"r" (start_addr),"r"(i)
 :"%eax","memory");

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

284

 }
}
}

Run the analysis again. Open the Bottom-Up pane to see results.

Locking just a single segment on the system helped to resolve all of the cache misses.

Cache Allocation Technology is very useful in real-time environments or workloads where a small latency
(caused by memory accesses) is critical, irrespective of its size. As described in this recipe, allocate cache
segments in iterative runs until you observe zero cache misses.

NOTE
Discuss this recipe in the Analyzers developer forum.

See Also
Microarchitecture Exploration Analysis

Memory Access Analysis

Introduction to Cache Allocation Technology (CAT)

False Sharing
This recipe explores profiling a memory-bound
linear_regression application using the General
Exploration and Memory Access analyses of the Intel®
VTune™ Amplifier.

• INGREDIENTS
• DIRECTIONS:

1.Run General Exploration analysis
2. Identify a bottleneck
3.Find a contended data structure
4.Fix the false sharing issue

NOTE
General Exploration analysis is renamed to Microarchitecture Exploration analysis starting with Intel
VTune Amplifier 2019.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

285

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/memory-access-analysis.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application:linear_regression. The linear_regression.tgz sample package is available with the
product in the <install-dir>/samples/en/C++ directory and at https://github.com/kozyraki/phoenix/
tree/master/sample_apps/linear_regression.

• Performance analysis tools:

• Intel VTune Amplifier 2018: General Exploration, Memory Access analysis

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Operating system: Linux*, Ubuntu* 16.04 64-bit
• CPU: Intel® Core™ i7-6700K processor

Run General Exploration Analysis
To have a high-level understanding of potential performance bottlenecks for the sample, start with the
General Exploration analysis provided by the VTune Amplifier:

1. Click the New Project button on the toolbar and specify a name for the new project, for example:
linear_regression.

2. In the Analysis Target window, select the local host target system type for the host-based analysis.
3. Select the Launch Application target type and specify an application for analysis on the right.
4. Click the Choose Analysis button on the right, select Microarchitecture Analysis > General

Exploration and click Start.

VTune Amplifier launches the application, collects data, finalizes the data collection result resolving
symbol information, which is required for successful source analysis.

Identify a Bottleneck
Start with the Summary view that provides application-level statistics per hardware metrics.

Typically, for performance analysis you are recommended to create a baseline to measure your future
optimizations. In this case, consider the application Elapsed Time as your baseline:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

286

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

A brief analysis of the summary metrics shows that the application is mostly bound by contested memory
accesses.

Find a Contended Data Structure
High value for the Contested Accesses metric prompts you to dig deeper and run the Memory Access
analysis with the Analyze dynamic memory objects option enabled. This analysis helps you find out an
access to what data structure caused contention issues:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

287

From the Summary view, you see that a memory allocation data object in file stddefines.h at line 52
introduced the highest latency to the application execution. The size of the allocation is quite small - only 512
bytes, so it should fit fully into the L1 cache. For more details, click this object in the table to switch to the
Bottom-up view:

The average access latency to this object is 59 cycles, which is a very high value for the memory size that is
expected to reside in the L1 cache. This can be the source for the contested accesses performance problem.

Expand the stddefines.h:52 (512B) memory object in the grid to view the allocation stack. Double-click
the allocation stack to go deeper to the Source view that highlights the line where the object is allocated:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

288

Where lreg_args is:

typedef struct
{
 pthread_t tid;
 POINT_T *points;
 int num_elems;
 long long SX;
 long long SY;
 long long SXX;
 long long SYY;
 long long SXY;
} lreg_args;

Threads code accessing the lreg_args array looks like this:

// ADD Up RESULTS
for (i = 0; i < args->num_elems; i++)
{
 //Compute SX, SY, SYY, SXX, SXY
 args->SX += args->points[i].x;
 args->SXX += args->points[i].x*args->points[i].x;
 args->SY += args->points[i].y;
 args->SYY += args->points[i].y*args->points[i].y;
 args->SXY += args->points[i].x*args->points[i].y;
}

Each thread is independently accessing its element in the array, which looks like false sharing.

The size of the lreg_args structure in the sample is 64 bytes, which matches the cacheline size. But when
you allocate an array of these structures, there is no guarantee that this array will be aligned with 64 bytes.
As a result, array elements may cross cacheline boundaries, which triggers an unintended contention issue -
false sharing.

Fix False Sharing Issue
To fix this false sharing problem, switch to an _mm_malloc function, which is used to allocate memory with
64 bytes alignment:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

289

Re-compiling and re-running the application analysis with VTune Profiler provides the following result:

The Elapsed time is now 0.5 seconds, which is a significant improvement from original 3 seconds. The
Memory Bound bottleneck went away. The false sharing performance issue is successfully fixed.

NOTE
To discuss this recipe, visit the developer forum.

See Also
Microarchitecture Exploration Analysis

Memory Access Analysis

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

290

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/memory-access-analysis.html

Top-down Microarchitecture Analysis Method

Frequent DRAM Accesses
This recipe explores profiling a memory-bound matrix
application using the Microarchitecture Exploration and
Memory Access analyses of the Intel® VTune™ Profiler
to understand the cause of the frequent DRAM
accesses.

• INGREDIENTS
• DIRECTIONS:

1.Create a baseline
2.Run Microarchitecture Exploration analysis
3. Identify hardware hotspots
4.Run Memory Access analysis
5. Identify hot memory accesses
6.Apply loop interchange for optimization

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: matrix multiplication sample that multiplies 2 matrices of 2048x2048 size, matrix
elements have the double type. The matrix sample package is available with the product in the
<install-dir>/samples/en/C++ directory and from the Intel Developer Zone at GitHub repository.

• Performance analysis tools:

• Intel® VTune™ Profiler version 2019 or newer: Microarchitecture Exploration (formerly, General
Exploration), Memory Access analysis

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Operating system: Linux*, Ubuntu* 16.04 64-bit
• CPU: Intel® Core™ i7-6700K processor

Create a Baseline
The initial version of the sample code provides a naïve multiplication algorithm with the following code for the
main kernel:

void multiply1(int msize, int tidx, int numt, TYPE a[][NUM], TYPE v[][NUM], TYPE c[][NUM], TYPE
t[][NUM])
{
 int i,j,k;

 // Naive implementation

Intel® VTune™ Profiler Performance Analysis Cookbook 1

291

https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/VTuneProfiler
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

 for(i=tidx; i<msize; i=i+numt) {
 for(j=0; j<msize; j++) {
 for(k=0; k<msize; k++) {
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 }
 }
 }
}

Running the compiled application takes about 22 seconds. This is a performance baseline that could be used
for further optimizations.

Run Microarchitecture Exploration Analysis
To have a high-level understanding of potential performance bottlenecks for the sample, start with the
Microarchitecture Exploration analysis provided by Intel® VTune™ Profiler:

1. Click the

New Project button on the toolbar and specify a name for the new project, for example: matrix.
2. In the Configure Analysis window, select the Local Host target system type on the WHERE pane.
3. On the WHAT pane, select the Launch Application target type and specify an application for analysis.
4. On the HOW pane, click the browse button and select Microarchitecture Exploration analysis from

the Microarchitecture group.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

292

5. Click the

Start button.

VTune Profiler launches the application, collects data, finalizes the data collection result resolving
symbol information, which is required for successful source analysis.

Identify Hardware Hotspots
Microarchitecture Exploration helps you see dominant performance bottlenecks in your code. Start your
analysis with the µPipe representation in the Summary view that displays CPU microarchitecture efficiency
and CPU pipeline stalls for the analyzed application. According to the µPipe below, the output pipe flow is
very narrow, which means that the Retiring metric value needs to be increased to improve application
performance. The primary obstacle in the pipe is the Memory Bound metric value:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

293

From the metric tree on the left, you see that performance is mostly bound by access to the DRAM.

When you switch to the Bottom-up view, you see that the application has one big hotspot function
multiply1:

Double-clicking this function opens the Source view that highlights the most performance-critical code line:

Almost all the time was spent in source line #51 that operates over three arrays - a, b, and c.

Run Memory Access Analysis
To find out an access to what array was the most expensive, run the Memory Access analysis with the
Analyze dynamic memory objects option enabled:

Identify Hot Memory Accesses
The Summary window for the Memory Access analysis result shows the top memory objects as follows:

Click the first hotspot object matrix.c:121 in the list to switch to the Bottom-up view and then double-click
this object highlighted in the grid to open the Source view and see the line allocating this memory object:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

294

You see the allocation for the buf2 variable that is assigned to addr2, which is in its turn assigned to array
b. So, you may conclude that the problematic array is b. Click the

Open Source File Editor button on the toolbar and have a look at the code again:

void multiply1(int msize, int tidx, int numt, TYPE a[][NUM], TYPE v[][NUM], TYPE c[][NUM], TYPE
t[][NUM])
{
 int i,j,k;

 // Naive implementation
 for(i=tidx; i<msize; i=i+numt) {
 for(j=0; j<msize; j++) {
 for(k=0; k<msize; k++) {
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 }
 }
 }
}

You see now the root cause of the problem: the innermost cycle iterates over array b in an inefficient way.
On each iteration it jumps over big chunks of memory.

Apply Loop Interchange for Optimization
Apply the loop interchange algorithm to j and k as follows:

for(i=tidx; i<msize; i=i+numt) {
 for(k=0; k<msize; k++) {
 for(j=0; j<msize; j++) {
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 }
 }
}

Compiling and running the new code will result in 1.3-second runtime, which is a significant 20x
improvement over original 26 seconds.

What's Next
Re-run the Microarchitecture Exploration analysis on the optimized matrix code. The µPipe diagram shows a
significant increase of the Retiring metric value, from 10.06% to 63.28%:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

295

You can focus on other flagged metrics to identify further areas for improvement, for example: poor port
utilization.

See Also
Microarchitecture Exploration Analysis for Hardware Issues

Memory Access Analysis

Top-down Microarchitecture Analysis Method Use this recipe to know how an application is
utilizing available hardware resources and how to make it take advantage of CPU
microarchitectures. One way to obtain this knowledge is by using on-chip Performance Monitoring
Units (PMUs).

Poor Port Utilization
Profile a core-bound matrix application using the
Microarchitecture Exploration analysis in Intel® VTune™
Profiler. Understand the cause for poor port utilization
and use Intel® Advisor to benefit from compiler
vectorization.

Content expert: Jeffrey Reinemann

• INGREDIENTS
• DIRECTIONS:

1.Create baseline
2.Run Microarchitecture Exploration analysis
3. Identify a cause for poor port utilization
4.Explore options for vectorization
5.Compile with the latest instruction set

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: The matrix multiplication sample that multiplies 2 matrices of 2048x2048 size, matrix
elements have the double type. Find the matrix sample package in the VTune Profiler package in the
<install-dir>/samples/en/C++ directory or download it from the GitHub samples repository.

• Performance analysis tools:

• Intel VTune Profiler-Microarchitecture Exploration analysis
• Intel Advisor-Vectorization analysis

• Operating system: Linux*, Ubuntu 22.04.2 LTS
• CPU: Intel® Core™ i7-6700K processor code named SkyLake (6th generation)

Create Baseline
Optimize the initial version of the matrix code with a naïve multiplication algorithm. See the Frequent DRAM
Accesses recipe), the execution time has reduced from 22 seconds to 1.3 seconds. This is a new performance
baseline for further optimizations.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

296

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/memory-access-analysis.html
https://community.intel.com/t5/user/viewprofilepage/user-id/109704
https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/VTuneProfiler/matrix_multiply_vtune
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://www.intel.com/content/www/us/en/docs/advisor/get-started-guide/current/overview.html

Run Microarchitecture Exploration Analysis
Next, run the Microarchitecture Exploration analysis to get a high-level understanding of potential
performance bottlenecks in the sample application:

1. Click the

New Project button on the toolbar and specify a name for the new project, for example: matrix.
2. In the Configure Analysis window, make these selections:

• In the WHERE pane, select the Local Host target system type.
• In the WHAT pane, select the Launch Application target type and specify an application for

analysis.
• In the HOW pane, select the Microarchitecture Exploration analysis type.

NOTE For short duration workloads(~under 5 seconds) like the optimized version of the matrix
application, you may get more accurate values by reducing the sampling interval to 0.5 seconds.

3. Click Start to run the analysis.

Once VTune Profiler collects data and finalizes results (after resolving symbol information for successful
source analysis), you are ready to examine the causes for poor port utilization.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

297

Understand Poor Port Utilization
Start with the Summary view that shows high-level statistics for the application performance per hardware
metrics:

You see that the dominant bottleneck has moved to Core Bound > Port Utilization. More than 3 execution
ports were utilized simultaneously for the majority of the time. The Vector Capacity Usage metric value is
also flagged as critical, which means that the code was either not vectorized or vectorized poorly. To confirm
this, switch to the Assembly view of the kernel as follows:

1. Click the Vector Capacity Usage (FPU) metric to switch to the Bottom-up view sorted by this metric.
2. Double-click the hot multiply1 function to open its Source view.
3. Click the Assembly button on the toolbar to view the disassembly code:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

298

You see that scalar instructions are used. The code is not vectorized.

Explore Options for Vectorization
To understand what prevents the code from being vectorized, use the Vectorization Advisor tool in Intel®
Advisor.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

299

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html#gs.1d744w
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html#gs.1d744w

In the graphic, we see that the loop was not vectorized due to assumed dependencies. For further details,
mark the loop and run the Dependencies analysis in Intel Advisor:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

300

The Dependencies report informs us that there are no actual dependencies found. There is a
recommendation to use #pragma to make the compiler ignore the assumed dependencies:

With the #pragma added, the matrix code looks as follows:

void multiply2_vec(inte msize, int tidx, int numt, TYPE a[][NUM],
 TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM]
{
 int i,j,k;

 for(i=tidx; i<msize; i=i+numt) {
 for(k=0; k<msize; k++) {
#pragma ivdep
 for(j=0; j<msize; j++) {
 c[i][j] = c[i][j] + a[i][j] * b[i][j];
 }
 }
 }
}

Compiling and running the updated code results in 0.7 second speed-up in the execution time.

Compile with the Latest Instruction Set
Repeat the Microarchitecture Exploration analysis in VTune Profiler on the updated code to see the following
result:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

301

The Vector Capacity Usage has improved but is still only 50% and has been flagged. Look into the
Assembly view once again:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

302

Here, we see that the code uses SSE instructions while the CPU in this use case supports the AVX2
instruction set.

To apply it, re-compile the code with the -xCORE-AVX2 option and run the Microarchitecture Exploration
analysis once more.

For the recompiled code, the execution time has dropped to 0.6 seconds. Repeat the Microarchitecture
Exploration analysis to verify the optimization. The Vector Capacity Usage metric value is now 100%:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

303

See Also
Microarchitecture Exploration Analysis for Hardware Issues

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

304

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html

Top-down Microarchitecture Analysis Method

Page Faults
Identify and measure the impact of page faults on
application performance. Use Microarchitecture
Exploration, System Overview, and Memory
Consumption analyses in Intel® VTune™ Profiler.

Content Expert: Jeffrey Reinemann

A page fault occurs when a running program accesses a memory page that is not currently mapped to the
virtual address space of a process. The Memory-Management Unit (MMU) handles mapping. The MMU uses a
Translation Lookaside Buffer (TLB) as a cache to reduce the time taken to access a memory location. When a
TLB miss occurs, the page may be accessible to the process but not just actually mapped. Alternatively, the
page content may need to be loaded from the storage device issuing a page fault exception. While page
faults are a common mechanism for handling virtual memory, their impact on the performance of your
application can be significant due to a variety of ways to increase the page size.

• INGREDIENTS
• DIRECTIONS:

1. Identify TLB issues with Microarchitecture Exploration analysis.
2.Trace kernel activity with System Overview analysis.
3.Calculate the amount of allocated memory with Memory Consumption analysis.
4.Reduce page faults with huge pages.

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: matrix application available in the product directory (<install-dir>/samples/en/C++).
For this recipe,

1.Change the size of matrices. In src/multiply.h, modify the NUM value from 2048 to 8192.
2.Rebuild the matrix application. Run make from the /linux directory.

• Performance analysis tools: Intel® VTune™ Profiler - Microarchitecture Exploration, System Overview,
and Memory Consumption analysis types

• Operating System: Ubuntu* 22.04.1 LTS 64-bit

Identify TLB Issues with Microarchitecture Exploration Analysis
Assess the usage of hardware resources by your application. Run the Microarchitecture Exploration analysis:

1. Open Intel® VTune™ Profiler. By default, the sample (matrix) project opens as the current project.
Make sure this project is configured to launch the matrix application with NUM=8192 in src/
multiply.h. Otherwise, create a new project for the updated application.

2. On the Welcome page, click Configure Analysis.
3. In the HOW pane, select Microarchitecture Exploration from the Microarchitecture analysis group.
4. Click the

Start button to run the analysis.

When the analysis completes, Intel® VTune™ Profiler finalizes results and opens the Summary window with
application-level statistics.

Explore the Back-End Bound issues caused by TLB misses:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

305

https://community.intel.com/t5/user/viewprofilepage/user-id/109704

The DTLB Overhead metric estimates the performance penalty paid for missing TLB. Most of the overhead
is attributed to the Load STLB Hit metric, counting first-level (DTLB) misses that hit the second-level TLB
(STLB).

There is a small value of the Load STLB Miss metric representing a fraction of cycles performing a hardware
page walk. Know that these metrics do not account for the overall time spent within page fault exceptions.
While the Microarchitecture Exploration analysis helps you diagnose TLB-related issues, you still need to
estimate an impact of page fault exceptions on the application elapsed time.

Trace Kernel Activity with System Overview Analysis
A page fault triggers an interrupt caught by the Linux kernel. To measure the exact CPU time spent within
the Linux kernel, you need an analysis that is more granular. The System Overview analysis in the
Hardware Tracing mode uses Intel® Processor Trace technology to capture all the retired branch
instructions on CPU cores. In particular, this analysis enables accurate tracing of all the kernel activities
including interrupts:

Even with the Launch Application target configuration, this analysis performs a system-wide data
collection.

Due to a significant amount of branch instructions, this analysis collects a lot of raw data. You can run the
analysis from the command line and limit the scope of data collection scope to the first 3 seconds. Before you
run the analysis from the command-line, make sure to set up environment variables by running this script
from the product installation directory: source env/vars.sh.

Next, run the analysis:

vtune -collect system-overview -knob collecting-mode=hw-tracing -d 3 -r matrix-so ./matrix
Open the result in the VTune Profiler GUI:

vtune-gui ./matrix-so
When the result opens, switch to the Platform tab and filter the collected data by the matrix process using
the filter bar drop-down menu:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

306

In the Timeline pane, you can see that most of the CPU time is spent within the matrix module executing
the multiply function. This function is not executed continuously. In a few milliseconds, the multiply
function is interrupted, and the heaviest interrupts are caused by page faults:

The grid view helps you discover that overall time spent by the sample application within the Linux kernel is
6.1%, where 439K kernel entries occurred just within the first 3 seconds of the application execution. To
resolve this, consider using huge pages.

Calculate the Amount of Allocated Memory with Memory Consumption Analysis
To switch to huge pages, define the number of pages you need.

To find this number, calculate the amount of memory allocated by the application. For simple applications like
matrix, you can inspect the source code. For more complex applications, run the Memory Consumption
analysis to find the exact allocated memory size or identify objects that should use huge pages.

1. Click Configure Analysis to open your matrix project configuration.
2. In the HOW pane, select Memory Consumption from the Hotspots analysis group.
3. Change the Minimal dynamic memory object size to track option value to 1.
4. Click the

Start button to run the analysis.

Once Intel® VTune™ Profiler completes data collection, the results are finalized and displayed in the
Summary window with application-level statistics.

5. Click the Bottom-up tab. In the Allocation Size column, right-click and select Show Data As >
Counts for a bytes representation:

6. Right-click the grid again and choose Select All (alternatively, press Ctrl-A) to see the total allocation
size.

The application allocates 2147557472 bytes:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

307

Reduce Page Faults with Huge Pages
By default, a page size is 4Kb. With huge pages, the default page size is 2Mb and it can be increased up to
1Gb. To switch to huge pages, use libhugetlbfs.

First, calculate the number of 2Mb pages you need. The sample matrix allocates 2147557472 bytes. This
means that you need 2147557472 / 2097152 = 1025 pages of 2Mb (using top rounding).

To switch to huge pages:

1. Configure the number of pages:

sudo hugeadm --pool-pages-min 2Mb:1025
2. Create a matrix.sh script with this content:

#!/bin/bash
LD_PRELOAD=libhugetlbfs.so HUGETLB_MORECORE=yes ./matrix

3. Set the executable mode for the script:

chmod u+x ./matrix.sh
4. Repeat the System Overview analysis.

vtune -collect system-overview -knob collecting-mode=hw-tracing -d 3 -r matrix-so-hp ./matrix.sh
5. Open the result in the Intel® VTune™ Profiler GUI:

vtune-gui ./matrix-so-hp
The Platform view shows a 3.3% reduction of kernel CPU time and 8.1x reduction on kernel-mode entries:

The elapsed time of the matrix application with huge pages is reduced from 106.4s to 100.5s, which is
around 5% of an overall elapsed time improvement without requiring any code change.

See Also
Microarchitecture Exploration Analysis for Hardware Issues
System Overview Analysis
Memory Consumption Analysis

Instruction Cache Misses
Profile an application bound on the front-end and
reduce ICache misses using the Microarchitecture
Exploration analysis with the PGO option.

Content Expert: Jeffrey Reinemann

• INGREDIENTS
• DIRECTIONS:

1.Run Microarchitecture Exploration analysis
2. Identify Hardware Hotspots
3.Compile Your Code Again with Profile Guided Optimization
4.Verify Optimization

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

308

https://github.com/libhugetlbfs/libhugetlbfs/
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/system-overview-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/memory-consumption-analysis.html
https://community.intel.com/t5/user/viewprofilepage/user-id/109704

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: A test sample based on the sqlite database. The application is used as a demo and not
available for download.

• Tools:

• Intel® VTune™ Profiler version 2018 or newer - Microarchitecture Exploration analysis
• Intel® DPC++/C++ Compiler

• CPU: Intel® microarchitecture code named Skylake

Run Microarchitecture Exploration Analysis
Get an overall assessment of potential performance bottlenecks in the application. Run the
Microarchitecture Exploration analysis:

1. In the Intel® VTune™ Profiler UI, click the

New Project button on the toolbar. Specify a name for the new project, for example: sqlite.
2. In the Analysis Target window, select the local host target system type for the host-based analysis.
3. Select the Launch Application target type and specify an application for analysis.
4. In the Analysis Tree, select Microarchitecture > Microarchitecture Exploration.
5. Click Start.

Intel® VTune™ Profiler launches the application and collects data. When the collection completes, Intel®
VTune™ Profiler finalizes the result and resolves symbol information. This is necessary for proper source
analysis.

Identify Hardware Hotspots
The Microarchitecture Exploration analysis helps you identify dominant performance bottlenecks in your code.
Start your analysis with the Summary view. Here, you see application-level statistics for each hardware
metric. Focus on the performance issues that have been flagged:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

309

In this example, the sample application is front-end bound (29.3% of Pipeline Slots) with the instruction
cache misses as a dominant bottleneck (7.1% of Clockticks).

Next, locate the issue in the code by switching to the Bottom-up window. Click the

Customize Grouping button, next to the Grouping toolbar. Create a new custom grouping called Module/
Source File:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

310

When we apply the new grouping to the collected results, we see that sqlite3.c file is the main hotspot
which takes the most CPU cycles to execute:

The ICache Misses metric displays the highest value for the sqlite3.c file:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

311

Compile Your Code Again with Profile Guided Optimization
Use the Intel® DPC++/C++ Compiler to apply Profile Guided Optimization (PGO) to the sqlite library:

1. Compile your code once again with the /Qprof-gen option.
2. Run the benchmark.
3. Again, compile your code with the /Qprof-use option.

For more information on PGO, see the Profile-Guided Optimizations Overview.

Verify Optimization
Repeat the Microarchitecture Exploration analysis on the optimized code. The new result shows 30.3 seconds
of Elapsed time, which is almost 4% better than the original 31.5 seconds:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

312

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/current/profile-guided-optimization-pgo.html

The number of clockticks stalled due to ICache Misses for the sqlite library has also reduced to 6.4% from
9.3%:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

313

See Also
Microarchitecture Exploration Analysis for Hardware Issues

Top-down Microarchitecture Analysis Method

Inefficient Synchronization
This recipe shows how to locate inefficient
synchronization in your code by running the Advanced
Hotspots analysis of the Intel® VTune™ Amplifier with
the stack collection enabled.

• INGREDIENTS
• DIRECTIONS:

1.Run the Advanced Hotspots analysis with stacks
2.Locate synchronization on the timeline
3.Analyze an Average Wait metric
4.Analyze synchronization context switches

NOTE
Advanced Hotspots analysis was integrated into the generic Hotspots analysis starting with Intel VTune
Amplifier 2019, and is available via the Hardware Event-Based Sampling collection mode.

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: sample.exe using OpenMP* runtime. The application is used as a demo and not available for
download.

• Performance analysis tools: Intel VTune Amplifier 2017: Advanced Hotspots analysis

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

314

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/general-exploration-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/basic-hotspots-analysis.html

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Operating system: Microsoft* Windows* 8
• CPU: Intel® microarchitecture code named Skylake

Run the Advanced Hotspots Analysis with Stacks
Launch the VTune Amplifier and configure your project for analysis:

1. Click the

New Project button on the toolbar and specify a name for the new project, for example: sqlite.
2. In the Analysis Target window, select the local host target system type for the host-based analysis.
3. Select the Launch Application target type and specify an application for analysis on the right.
4. Click the Choose Analysis button on the right, select Algorithm Analysis > Advanced Hotspots

and select the Hotspots and stacks option.
5. Click Start.

VTune Amplifier launches the application, collects data, finalizes the data collection result resolving
symbol information, which is required for successful source analysis.

Locate Synchronization on the Timeline
Open the data collected during the analysis in the Hardware Events viewpoint:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

315

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Select the User/system functions call stack mode to display both user and system functions in
the Call Stack pane.

In the Call Stack pane, select the Synchronization Context Switch Count type from the drop-
down menu to see a call stack for the synchronization context switch selected in the Timeline
pane.

Locate a frequent synchronization on the timeline and hover over a context switch to view details in
the tooltip. For example, in the Advanced Hotspots result above, the NtDelayExecution thread
has the largest number of context switches caused by synchronization. When you select a context
switch on the timeline, the Call Stack pane is updated to show a call sequence at which a
preceding thread execution quantum was interrupted.

Analyze an Average Wait Metric
Click the (change) link to open the Hotspots viewpoint:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

316

Analyze the Wait Rate metric data, that is average wait time (in milliseconds) per synchronization
context switch. This metric helps you identify ineffective frequent synchronizations as well as power
consumption issues.

VTune Profiler interprets low Wait Rate metric values (under 1ms) as performance issues and
highlights them in pink. These values may signal an increased contention between threads and
inefficient use of system API.

Identify a synchronization stack with short Wait time and high CPU time (half the time of all system
calls) and double-click it to explore the source code of the hotspot function.

Analyze Synchronization Context Switches
Click the (change) link to open to the Hardware Events viewpoint. By default, the Event Count grid is
sorted by the Clockticks event. Identify the hottest functions that took the most CPU time (in clockticks) to
execute and had the most frequent synchronization.

In this sample OpenMP* application, the VTune Amplifier identifies the InterpolateN function as a primary
computation hotspot called from an OpenMP region. You can also see a major contention on the
WaitForSingleObject inside the OpenMP runtime that results in ~ 30% of performance loss (Clockticks of
the wait function / Clockticks of the hotspot function).

Intel® VTune™ Profiler Performance Analysis Cookbook 1

317

Double-click the InterpolateN function to view the source code and identify a cause of ineffective
synchronization.

for(i = 0; i < block_no; i++)
{
 #pragma omp parallel for
 for(j = 0; j < lines_in_block; j++)
 {
 /// do processing
 } /// implicit barrier causing contention and overhead
}

Code analysis for the sample application discovers excessive OpenMP barriers added to process a picture by
blocks of lines and parallelize each block separately. To resolve this issue, use the nowait clause or apply
parallel_for to the entire picture and use dynamic work scheduling.

For the optimized result, the relative cost of contention on Sleep() is low (26,997).

Using a single parallel_for and dynamic work scheduling for the WaitForSingleObject function helped
decrease the contention and negative performance impact down to ~1%.

The second optimized result also discovers another highly contended function Sleep() (Synchronization
Context Switches metric equal to 26,997). But if you check its execution time, it is within 2% of the top
hotspot (not shown), which makes it less important. But this function may become an issue when running
the application on a greater number of processors.

NOTE
The initial (pre-optimized) sample data collection session represented above was taken on a limited
time interval. The optimized version represents a full application run.

See Also
Hardware Event-based Sampling Collection with Stacks

Inefficient TCP/IP Synchronization
This recipe shows how to locate inefficient TCP/IP
synchronization in your code by running the Locks and
Waits analysis of the Intel® VTune™ Amplifier with the
task collection enabled.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

318

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hw-event-based-sampling-collection-with-stacks.html

• INGREDIENTS
• DIRECTIONS:

1.Run Locks and Waits analysis
2.Locate synchronization delays on the timeline
3.Detect send/receive buffer size with ITT API counters
4. Identify the cause of inefficient TCP/IP synchronization

NOTE
Locks and Waits analysis was renamed to Threading analysis starting with Intel VTune Amplifier 2019.

Ingredients
• Application: client and server applications with TCP socket communications
• Performance analysis tools: Intel VTune Amplifier 2018 > Locks and Waits analysis

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Client operating system: Microsoft* Windows* Server 2016
• Server operating system: Linux*

Run Locks and Waits Analysis
If you see your client application take much time to warm up, consider running the Locks and Waits analysis
to explore wait statistics per synchronisation object:

1. Click the New Project toolbar button to create a new project, for example: tcpip_delays.
2. In the Analysis Target window, select the local host target system type for the host-based analysis.
3. Select the Launch Application target type and specify an application for analysis on the right.
4. Click the Choose Analysis button on the right, select Algorithm Analysis > Locks and Waits.
5. Click Start.

VTune Amplifier launches the application, collects data and finalizes the data collection result resolving
symbol information, which is required for successful source analysis.

Locate Synchronization Delays on the Timeline
Open the collected result and click the Bottom-up tab to view performance details per synchronization
object. On the Timeline pane, you see multiple synchronization delays when the test application starts
executing. To identify synchronization objects causing these startup delays, drag-and-drop to select the first
9 seconds and use the Filter In by Selection option from the context menu:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

319

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Use the Process menu on the filter bar to filter in by the host communication process:

Now, for this selected time frame, select the Socket synchronization object that generated the highest
number of waits and use the Filter In by Selection menu option to filter in the data:

To investigate Wait time for the Socket synchronization object, focus on the timeline:

If you click the

Zoom In button, you can see two types of socket waits: fast and slow. Most of the slow sockets waits are
about 200 ms, while fast waits last about 937 usec:

To understand the cause of fast and slow waits, wrap all send/receive calls by ITT counters to calculate
send/receive bytes.

Detect send/receive Buffer Size with ITT API Counters
To use Instrumentation and Tracing Technology (ITT) APIs for tracing send/receive calls:

1. Configure your system to be able to reach the API headers and libraries.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

320

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/configuring-your-build-system.html

2. Include the ITT API header to your source file and link the <vtune-install-dir>\[lib64 or
lib32]\libittnotify.lib static library to your application.

3. Wrap send/receive calls with ITT counters:

#include <ittnotify.h>

__itt_domain* g_domain =__itt_domain_createA("com.intel.vtune.tests.userapi_counters");
__itt_counter g_sendCounter = __itt_counter_create_typedA("send_header", g_domain->nameA,
__itt_metadata_s32);
__itt_counter g_sendCounterArgs = __itt_counter_create_typedA("send_args", g_domain->nameA,
__itt_metadata_s32);
__itt_counter g_recieveCounter = __itt_counter_create_typedA("recieve_header", g_domain->nameA,
__itt_metadata_s32);
__itt_counter g_recieveCounterCtrl = __itt_counter_create_typedA("recieve_ctrl", g_domain-
>nameA, __itt_metadata_s32);
__itt_counter g_incDecCounter = __itt_counter_createA("inc_dec_counter", g_domain->nameA);

.....

 sent_bytes = send(...);
 __itt_counter_set_value(g_sendCounter, &sent_bytes);
.....
 sent_bytes = send(...);
 __itt_counter_set_value(g_sendCounterArgs, &sent_bytes);
.....
 while(data_transferred < header_size)) {
 if ((data_size = recv(...) < 0) {

 }
 __itt_counter_set_value(g_recieveCounter, &data_transferred);
.....

 while(data_transferred < data_size) {
 if ((data_size = recv(...) < 0) {

 }
 }
 }
 __itt_counter_set_value(g_recieveCounterCtrl, &data_transferred);

Recompile your application and re-run the Locks and Waits analysis with the Analyze user tasks, events,
and counters option enabled:

Identify the Cause of Inefficient TCP/IP Synchronization
You see that for the new result, the VTune Amplifier added the Global Counters section to the Timeline
pane that shows the distribution of the send/receive calls collected via ITT API. When you mouse over
waits on the threads and counter values, you see that small instant values of the counters correspond to the
long (slow) waits:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

321

And fairly high counter values correspond to the short (fast) waits:

Profiling of communication waits on the remote target provides a symmetric picture: when you receive a
small-size buffer, you have a long wait; and when you receive a sufficient buffer, you have a fast wait.

In this recipe, you see a communication command channel. Most of the commands have a small size, which
results in a significant count of long waits.

The cause of the issue is the tcp ack delay mechanism that adds waits for small buffers.

If you decrease an input (setsockopt (…, SO_RCVBUF, ..,)) buffer on the server side, you can get more than
5x startup time speed-up (from dozens to a couple seconds):

See Also
Instrumentation Tracing Technology APIs

OS Thread Migration
Identify OS thread migration on the NUMA
architecture with the Hotspots analysis in Intel®
VTune™ Profiler.

Complex operating systems use a scheduler to assign application threads to processor cores. These threads
are called software threads. The scheduler may choose the placement of the application threads on the
physical cores depending on a number of different factors such as system state or system policies.

A software thread can execute on a core for some period of time before it gets swapped out to wait. Several
reasons can cause a software thread to wait. Getting blocked for I/O is one factor. If available, another
software thread may be given a chance to execute on this core. When the original software thread is
available to execute once again, the scheduler may migrate the thread over to another core to ensure timely
execution.

This poses a problem to newer computing architectures as this software thread migration disassociates the
thread from data that has already been fetched into the caches, resulting in longer data access latencies.
This problem is further amplified in Non-Uniform Memory Access (NUMA) architectures, where each
processor has its own local memory module that it can access directly with a distinct performance advantage.
In a NUMA architecture, when a software thread is migrated to another core, the data stored in the local
memory of the first core becomes remote and memory access times increase significantly. Hence, thread
migration can hurt performance.

Follow this recipe to see if thread migration occurs in your application.

Content Expert: Jeffrey Reinemann

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

322

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/instrumentation-and-tracing-technology-apis.html
https://community.intel.com/t5/user/viewprofilepage/user-id/109704

1. INGREDIENTS
2. DIRECTIONS:

a. Run Hotspots Analysis with Hardware Event-Based Sampling.
b. Identify thread migration.
c. Correct thread migration.

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: Sample OpenMP* application. The application is used as a demo and not available for
download.

• Performance analysis tools: Intel® VTune™ Profiler version 2018 or newer - Hotspots analysis
• Operating system: Linux*, Ubuntu* 22.04 64-bit
• CPU: Intel® Core™ i7-6700K processor

Run Hotspots Analysis with Hardware Event-Based Sampling
1. In the Intel® VTune™ Profiler UI, select Hotspots Analysis from the Analysis Tree.
2. Configure the analysis. Select a sample application.
3. Select Hardware Event-Based Sampling mode with a CPU sampling interval of 1 ms.
4. Run the analysis.

Identify Thread Migration
Once the analysis completes, the Summary window opens with a list of top hotspots in your application.

Examine this list and then switch to the Bottom-up window.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

323

Follow these steps:

Select the Core/Thread/Function/Call Stack grouping.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

324

Expand core nodes to see the number of software threads. The number of software threads should
be less than or equal to the total number of hardware threads which are supported by the CPU. Also,
the software threads should be equally distributed across the cores. If you see a higher count of
software threads under any core in your result, there is a thread migration occurring in your
application. In this example, there are 12 OpenMP* worker threads in place of 2 threads. This
example uses an Intel® Xeon® processor which supports Intel® Hyper-Threading Technology. In
core_8, we see that thread migration is happening.

Next, analyze thread migration in the Timeline pane. Select the Thread/Logical Core grouping.

Expand the thread nodes to see the number of CPUs where this thread was executed. Analyze thread
execution over time. In this example, OpenMP thread #0 was executing on cpu_23 and then
migrated to cpu_47.

To run this analysis from the command line, type:

vtune -group-by thread,cpuid -report hotspots -r /temp/test/omp -s "Logical Core" -q | less

Thread Logical Core CPU Time:Self
------------------------------ ----------- -------------
OMP Worker Thread #5 (0x3d86) cpu_0 0.004
matmul-intel64 (0x3d52) cpu_1 0.013
OMP Worker Thread #15 (0x3d90) cpu_10 2.418
matmul-intel64 (0x3d52) cpu_10 2.023
OMP Worker Thread #8 (0x3d89) cpu_10 0.687
OMP Worker Thread #13 (0x3d8e) cpu_10 0.097
OMP Worker Thread #6 (0x3d87) cpu_10 0.065
OMP Worker Thread #4 (0x3d85) cpu_10 0.059
OMP Worker Thread #1 (0x3d82) cpu_10 0.048
OMP Worker Thread #9 (0x3d8a) cpu_10 0.034
OMP Worker Thread #11 (0x3d8c) cpu_10 0.009

Similarly, you can notice the large number of OpenMP worker threads running on cpu_10.

Correct Thread Migration
You can correct the effects of thread migration by setting the thread affinity. Thread affinity refers to the
action of restricting the execution of certain threads to a subset of the physical processing units in a
multiprocessor computer.

To set thread affinity for your OpenMP application, use the Intel® runtime library which can bind OpenMP
threads to physical processing units. You can also use one of these environment variables:

• OMP_PROC_BIND
• OMP_PLACES
• Intel runtime specific KMP_AFFINITY

See Also
OpenMP* Code Analysis

OpenMP* Imbalance and Scheduling Overhead
Follow this recipe to detect and fix frequent parallel
bottlenecks of OpenMP programs, such as imbalance
on barriers and scheduling overhead.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

325

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/openmp-analysis-from-the-command-line.html

A barrier is a synchronization point when execution is allowed after all threads in the thread team have
arrived. If the execution work is irregular and the chunks of work are equally and statically distributed by
worker threads, then the threads that already arrived at the barrier have to now wait for the remaining
threads. This is wasted time. When the aggregated wait time on a barrier is normalized by the number of
threads in the team, you get the elapsed time that the application can reduce, if the imbalance is eliminated.

One way to eliminate the imbalance on a barrier is to use dynamic scheduling to have chunks of work
distributed dynamically between threads. However, following this method with fine-grain chunks can worsen
the situation due to scheduling overhead. This recipe describes how you can address OpenMP load imbalance
and scheduling overhead problems.

Content Expert: Rupak Roy

• INGREDIENTS
• DIRECTIONS:

1.Create a baseline
2.Run HPC Performance Characterization analysis
3. Identify OpenMP imbalance
4.Apply dynamic scheduling
5. Identify OpenMP scheduling overhead
6.Apply dynamic scheduling with a chunk parameter

Ingredients
This section lists the hardware and software tools you may need for this recipe.

• Application: The sample application used in this recipe calculates prime numbers in a particular range.
The main loop is parallelized with the OpenMP parallel for construct.

• Compiler: Intel® oneAPI DPC++/C++ Compiler version 2023.1 or newer. An appropriate version of the
Intel Compiler is necessary to have instrumentation inside the Intel OpenMP runtime library, which Intel®
VTune™ Profiler uses for analysis. The parallel-source-info=2 compiler option provides source file
information in the OpenMP region names, which helps to identify them.

• Performance analysis tools:

• VTune Profiler version 2023.1 or newer: HPC Performance Characterization analysis
• Operating system: Linux*, CentOS Stream release 8
• CPU: Intel® Xeon® Gold 6148 CPU @ 2.40GHz

Create a Baseline
The initial version of the sample code uses the OpenMP parallel for pragma for the loop by numbers, with
the default scheduling that implies static (line 21):

#include <stdio.h>
#include <omp.h>

#define NUM 100000000

int isprime(int x)
{
 for(int y = 2; y * y <= x; y++)
 {
 if(x % y == 0)
 return 0;
 }

 return 1;
}

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

326

https://community.intel.com/t5/user/viewprofilepage/user-id/183427

int main()
{
 int sum = 0;

#pragma omp parallel for reduction (+:sum)
 for(int i = 2; i <= NUM ; i++)
 {
 sum += isprime (i);
 }

 printf("Number of primes numbers: %d", sum);

 return 0;
}

Running the compiled application in this case takes about 3.9 seconds. This is a performance baseline that
we will use for further optimizations.

Run HPC Performance Characterization Analysis
To get a high-level understanding of potential performance bottlenecks for the sample, start with the HPC
Performance Characterization analysis:

1. Click the

New Project button on the toolbar and specify a name for the new project, for example: primes.
2. Click Create Project.

The Configure Analysis window opens.
3. On the WHERE pane, select the Local Host target system type.
4. On the WHAT pane, select the Launch Application target type and specify an application for analysis.

For example:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

327

5. In the HOW pane, in the Analysis Tree, select HPC Performance Characterization in the
Parallelism group.

6. Click the

Start button.

VTune Profiler runs the application, collects data, and finalizes the data collection result (resolving symbol
information which is required for successful source analysis).

Identify OpenMP Imbalance
When the HPC Performance Characterization analysis completes, the Summary window shows
important HPC metrics that help understand performance bottlenecks like CPU utilization (parallelism),
memory access efficiency, and vectorization. For applications that run with the Intel OpenMP runtime, you
can benefit from special OpenMP efficiency metrics that help identify issues with threading parallelism.

Start your analysis by reviewing application-level statistics in the VTune Profiler. If the Effective Physical
Core Utilization metric (on some systems just CPU Utilization) is flagged, a performance problem exists
that you should investigate.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

328

In the Parallel Region Time section, see the OpenMP Potential Gain metric. Use this to estimate the
maximum potential gain that you can get by eliminating parallel inefficiencies. In the sample application, the
potential gain is 1.880s (equal to 26.5% of the application runtime). This metric is flagged in the example, so
it may be worthwhile to explore the breakdown by parallel constructs.

In the sample application, there is one parallel construct provided in the Top OpenMP Regions section.
Click the region name in the table to explore more details in the Bottom-up view. To see the breakdown by
inefficiencies, expand the OpenMP Potential Gain column in the Bottom-up grid. This data helps you
understand why the processor time was spent on the OpenMP runtime rather than the sample application.
You can also understand how it impacts the elapsed time:

The hot region in the grid row has a value highlighted for the Imbalance metric. Hover your mouse over this
value to see a recommendatiion to try dynamic scheduling to eliminate the imbalance. If you have more than
one barrier in a region, you must expand the region node by barrier-to-barrier segments and identify a
performance-critical barrier:

In this sample, there is a loop barrier with critical imbalance and a parallel region join barrier that is not
classified by VTune Profiler as a bottleneck.

NOTE
To better visualize the imbalance during the application run, see the Timeline view. The green sections
indicate useful work while the black sections show code segments where time was wasted.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

329

Apply Dynamic Scheduling
The imbalance could be caused by static work distribution and assigning large numbers to particular threads
while some of the threads processed their chunks with small numbers quickly and wasted the time on the
barrier. To eliminate this imbalance, apply dynamic scheduling with the default parameters:

 int sum = 0;

#pragma omp parallel for schedule(dynamic) reduction (+:sum)
 for(int i = 2; i <= NUM ; i++)
 {
 sum += isprime (i);
 }

Recompile the application and compare the execution time versus the original performance baseline to verify
your optimization.

Identify OpenMP Scheduling Overhead
Running the modified sample application does not result in any speedup but we can see that the execution
time has increased to 5.3 seconds. This is a possible side effect of applying dynamic scheduling with fine-
grain chunks of work. To get more insights on possible bottlenecks, repeat the HPC Performance
Characterization analysis on the modified code to see the reasons for performance degradation.

After repeating the analysis, open the Bottom-up view:

We can observe that the Imbalance Overhead has come down to zero. However, the Scheduling overhead
has jumped to 0.05s. This is caused by the default behavior of the scheduler that assigns one loop iteration
per worker thread. Dynamic Scheduling has additional scheduling overhead because threads turn back to the
scheduler very frequently during runtime, thus creating a bottleneck. If the scheduling time is significant, try
using chunks of coarse-grain work.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

330

Apply Dynamic Scheduling with a Chunk Parameter
Use the chunk parameter 20 for the schedule clause as follows:

#pragma omp parallel for schedule(dynamic,20) reduction (+:sum)
 for(int i = 2; i <= NUM ; i++)
 {
 sum += isprime (i);
 }

After compiling the application again, the elapsed runtime was 5.647 seconds. The physical core utilization
improved from 55% to 66%. The Summary view shows the Parallel Region Time as 89.4%:

The Bottom-up view shows a good density of useful work (highlighted in green) on the timeline:

Dynamic scheduling may cause code execution that is not cache-friendly. This is because frequent
assignments of new chunks of work to a thread can prevent the thread from reusing the cache effectively.
So, a well-balanced optimized application with effective CPU utilization can run slower than an imbalanced
one with static scheduling. If you observe this behavior, see the Memory Bound section of the HPC
Performance Characterization view for more information.

NOTE
You can discuss this recipe in the Analyzers developer forum.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

331

https://community.intel.com/t5/Analyzers/bd-p/analyzers

See Also
OpenMP* Code Analysis Method

HPC Performance Characterization Analysis
Potential Gain
Tutorial: Analyzing an OpenMP* and MPI Application
Processor Cores Underutilization: OpenMP* Serial Time

Processor Cores Underutilization: OpenMP* Serial Time
Use this recipe to identify a fraction of serial execution
in an application that was parallelized with OpenMP.
Discover additional opportunities for parallelization,
and improve the scalability of the application.

Content Expert: Rupak Roy

The presence of a fraction of serial time in a parallel application can limit the scalability of the application.
Scalability is the capacity of the application to fully utilize available hardware resources like cores for code
execution.

According to Amdahl's law, the maximum speed-up for a parallel application is given by:

where:

• P is a parallel portion of the application execution
• N is a number of processor elements

If the serial part (1-P) of the application execution is greater, this decreases the possibility of a linear speed-
up. The serial portion limits the performance scalability.

When your application is parallelized with OpenMP, the sequential code execution may be a result of one of
these code executions:

• The code executed out of the OpenMP regions.
• The code executed inside the #pragma omp master or #pragma omp single constructs.

This recipe focuses on the code executed out of OpenMP regions. In this recipe, use Intel® VTune™ Profiler to:

• Detect the serial time of the code executed outside of OpenMP regions
• Analyze the distribution of serial hotspot functions/loops
• Understand opportunities for code parallelization

• INGREDIENTS
• DIRECTIONS:

1.Create a baseline.
2.Run HPC Performance Characterization analysis.
3. Identify OpenMP Serial Time.
4.Parallelize the code.
5. Inspect threading errors.

Ingredients
This section lists hardware and software tools used for the performance analysis scenario.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

332

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hpc-performance-characterization-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/cpu-metrics-reference.html#OPENMP-POTENTIAL-GAIN
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/current/overview.html
https://community.intel.com/t5/user/viewprofilepage/user-id/183427

• Application: A miniFE Finite Element Mini-Application that is available for download from https://
github.com/Mantevo/miniFE (OpenMP version)

• Compiler: Intel® oneAPI DPC++/C++ Compiler 2024.0.0 or newer. This recipe relies on this compiler
version to have necessary instrumentation inside Intel OpenMP runtime library used by VTune Profiler for
analysis.

• Performance analysis tools:

• VTune Profiler version 2024.0 or newer - HPC Performance Characterization analysis
• Intel® Inspector 2022.1: Threading Error analysis

NOTE
Get the latest version of Intel® Inspector from this download page.

• Operating system: Linux*, Ubuntu* 20.04.6
• CPU: 11th Gen Intel® Core™ i9-11900KB @ 3.30GHz

Create a Baseline
1. Use the openmp/src/Makefile.intel.openmp make file to build the application.

• To enable debug information, add the -g option.
• For simpler identification, you can see source file information in the names of the OpenMP regions by

including the -parallel-source-info=2 compiler option.
2. Run the compiled application with these parameters:

• nx=200
• ny=200
• nz=200

The number of OpenMP threads corresponds to the number of physical cores. With one thread running per
core (OMP_NUM_THREADS=16, OMP_PLACES=cores), the application takes about 50 seconds.

This is a performance baseline. You use this baseline for further optimizations.

Run HPC Performance Characterization Analysis
To understand potential performance bottlenecks in the sample, run the HPC Performance Characterization
analysis in VTune Profiler.

1. Click the New Project button on the toolbar and specify a name for the new project, for example:
miniFE.

2. In the Configure Analysis window, set these options:

• In the WHERE pane, select the Local Host target system type.
• In the WHAT pane, select the Launch Application target type.
• Specify an application for analysis and use these parameters: nx 200 ny 200 nz 200.
• In the HOW pane, from the Parallelism group, select HPC Performance Characterization .

3. Click the

Start button to run the analysis.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

333

https://github.com/Mantevo/miniFE
https://github.com/Mantevo/miniFE
https://www.intel.com/content/www/us/en/developer/tools/oneapi/inspector.html#gs.1z3hs5

To run the analysis from the command line, use this command:

vtune -collect hpc-performance -data-limit=0 ./miniFE.x nx 200 ny 200 nz 200
Once data collection is complete, VTune Profiler processes the result and resolves symbol information. This is
necessary for source analysis.

Identify OpenMP Serial Time
Using the HPC Performance Characterization analysis, you can see HPC metrics that help you to understand
these performance bottlenecks:

• CPU utilization (parallelism)
• Memory access efficiency
• Vectorization

For applications which use the Intel OpenMP runtime, you can benefit from special OpenMP efficiency metrics
that help identify issues with threading parallelism.

Start your analysis with the Summary view where you see application-level statistics. The Effective
Physical Core Utilization metric has been flagged. This signals a performance problem that requires
investigation:

When you dive deeper into the metric hierarchy, you see that the Serial Time (outside parallel regions)
of the application occupies ~24% of its elapsed time.

Let us look at the serial hotspot in the matrix initialization code, which is the loop at line 133.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

334

Consider running the HPC Performance Characterization analysis with call stacks to explore available
optimization opportunities. Using call stacks can help you find a candidate for parallelism at a proper level of
granularity. Since the call stack collection is not compatible with memory bandwidth analysis, make sure to
disable the Analyze memory bandwidth configuration option first:

To run this analysis from the command line, use this command:

vtune -collect hpc-performance -data-limit=0 -knob enable-stack-collection=true -knob collect-
memory-bandwidth=false ./miniFE.x nx 200 ny 200 nz 200

NOTE
While you can also use the Threading analysis to analyze OpenMP Serial Time with stacks, the HPC
Performance Characterization analysis is a better starting point for a high level understanding of
performance bottlenecks.

Once the data collection finishes, VTune Profiler displays results starting with the Summary view. To identify
top hot spots and see their call stacks, switch to the Bottom-up view.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

335

SparseMatrix_functions.hpp has a loop with iterations by matrix elements. This is a good location to
insert parallelism.

Double click this row to open the source file at that location:

Parallelize the Code
To make the matrix initialization parallelized by OpenMP, insert the omp parallel for pragma :

#pragma omp parallel for
for(int i=0; i<mat_init.n; ++i) {
 mat_init(i);

Re-compile the application and compare the execution time versus the original performance baseline to verify
your optimization.

In this recipe, the Elapsed time of the application after optimization is approximately 42 seconds, which is
~21% speed-up of the application execution.

Re-run the HPC Performance Characterization analysis for the optimized version of the application:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

336

Overall,

• The Effective Physical Core Utilization has improved by 16%.
• The fraction of OpenMP Serial Time has reduced to 3.3%.
• VTune Profiler does not flag the OpenMP Serial Time metric since the threshold is 15%.

To further improve parallel efficiency, you can analyze the most imbalanced barriers. For more information,
see OpenMP Imbalance and Scheduling Overhead.

Inspect Threading Errors
To complete your analysis for parallelism, check your code for threading errors like data races or deadlocks.
Use Intel® Inspector to find potential data races and deadlocks that may not happen in particular hardware
but can hurt in a different environment or even when the same environment uses different settings.

To speed up the check, use the command line interface and reduce the workload size:

inspxe-cl -collect ti3 ./miniFE.x nx 40 ny 40 nz 40
You see that the Intel Inspector does not report any issues for the parallelized code.

Intel® VTune™ Profiler Performance Analysis Cookbook 1

337

Discuss this recipe in the Analyzer forum.

See Also
OpenMP* Code Analysis Method

HPC Performance Characterization Analysis

Threading Analysis

Tutorial: Analyzing an OpenMP* and MPI Application

Scheduling Overhead in an Intel® oneAPI Threading Building Blocks Application
Detect and fix scheduling overhead in an Intel® oneAPI
Threading Building Blocks (oneTBB) application.

Content expert: Jennifer Dimatteo

NOTE Intel® Threading Building Blocks library (previously a part of Intel® Parallel Studio XE and Intel®
System Studio packages) has been replaced by Intel® oneAPI Threading Building Blocks (oneTBB).
Download oneTBB from the Intel® oneAPI Base Toolkit.

During dynamic distribution of fine-grain chunks of work between threads, you can encounter scheduling
overhead. When this happens, parallelism can be inefficient due to two reasons:

• The scheduler takes a significant amount of time to assign work for working threads.
• Working threads spend a lot of time waiting to receive new chunks of work.

In extreme cases, the threaded version of a program can actually be slower than the sequential version. The
majority of oneTBB constructs use a default auto-partitioner. To avoid overhead, the auto-partitioner tailors
the number of chunks larger than the default grain size.

If you use a simple partitioner either intentionally or with constructs like
parallel_deterministic_reduce, you should take care of a grain size. A simple partitioner divides the
work into chunk sizes up to the default grain size of one iteration.

In this recipe, learn how to use Intel® VTune™ Profiler to detect scheduling overhead in a oneTBB application.
The profiling results also give advice on increasing the grain size to avoid an associated slowdown.

• INGREDIENTS
• DIRECTIONS:

1.Create a baseline
2.Run Threading analysis
3. Identify scheduling overhead
4. Increase grain size of parallel work

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario.

• Application: A sample application that calculates the sum of vector elements using the oneTBB
parallel_deterministic_reduce template function.

• Compiler : Intel® Compiler or GNU* compiler with compiler/linker options, for example:

icpx -I <tbb_install_dir>/include -g -O2 -std=c++17 -o vector-reduce vector-
reduce.cpp -L <tbb_install_dir>/lib/intel64/gcc4.8 -ltbb

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

338

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/hpc-performance-characterization-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/threading-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/current/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html

• Performance analysis tools:VTune Profiler - Threading analysis
• Operating system: Ubuntu* 16.04 LTS
• CPU: Intel Xeon® CPU E5-2699 v4 @ 2.20GHz

Create a Baseline
The initial version of the sample code uses parallel_deterministic_reduce with the default grain size
(line 17-23):

#include <stdlib.h>
#include "tbb/tbb.h"

static const size_t SIZE = 50*1000*1000;
double v[SIZE];

using namespace tbb;

void VectorInit(double *v, size_t n)
{
 parallel_for(size_t(0), n, size_t(1), [=](size_t i){ v[i] = i * 2; });
}

double VectorReduction(double *v, size_t n)
{

 return parallel_deterministic_reduce(
 blocked_range<double*>(v, v + n),
 0.f,
 [](const blocked_range<double*>& r, double value)->double {
 return std::accumulate(r.begin(), r.end(), value);
 },
 std::plus<double>()
);
}

int main(int argc, char *argv[])
{
 task_scheduler_init(task_scheduler_init::automatic);

 VectorInit(v, SIZE);

 double sum;

 for (int i=0; i<100; i++)
 sum = VectorReduction(v, SIZE);

 return 0;
}

To make compute work more significant and measurable for statistical analysis, the vector sum calculation is
repeated in the loop in line 35 .

Running the compiled application takes about 9 seconds. This is a performance baseline that you use for
further optimizations.

Run Threading Analysis
To estimate threading parallelism in your application and the time spent on scheduling overhead, run the
Threading analysis in VTune Profiler:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

339

1. Click the

New Project button on the toolbar and specify a name for the new project, for example: vector-
reduce.

2. Click Create Project.

The Configure Analysis window opens.
3. On the WHERE pane, select the Local Host target system type.
4. On the WHAT pane, select the Launch Application target type and specify an application for analysis.
5. On the HOW pane, click the browse button and select Parallelism > Threading analysis.
6. Click the

Start button.

VTune Profiler runs the application and collects data. Once data collection is finalized, the symbol information
is resolved. This is necessary for successful source analysis.

NOTE
Since the analysis is based on instrumentation and uses a stack stitching technology, the elapsed time
of the instrumented application can be slower than the original application run because of the
collection overhead.

Identify Scheduling Overhead
Start your analysis with the Summary view that displays application-level statistics.

The Effective CPU Utilization Histogram shows that, on average, the application utilized only ~3 physical
cores out of 48 available cores:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

340

Flagged Overhead Time metric and the Scheduling sub-metric signal a threading inefficiency problem that
should be explored:

The Spin and Overhead Time section shows [TBB Scheduler Internals] as the main time-consuming
function. The hint on the flag associated with the function informs about scheduling overhead that should be
addressed by increasing a grain size of parallel work:

The sample application contains two oneTBB constructs:

• parallel_for initialization
• parallel_deterministic_reduce to calculate the sum of vector elements

To identify the oneTBB construct that introduces overhead, switch to the Bottom-up view.

Expand the CPU Time > Overhead Time columns to sort the grid by the Scheduling column. Look at the
first row with the oneTBB parallel construct in the Function list:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

341

This row points to the parallel_deterministic_reduce construct in the VectorReduction function that
has the highest scheduling overhead. Try to make work chunks more coarse-grain to eliminate the overhead
in parallelization with this construct.

NOTE
To better visualize the imbalance during the application run, use the Timeline view. The brown
sections show useful work and the red sections show where time was wasted.

Increase Grain Size of Parallel Work
The fine-grain chunks of work which were assigned to worker threads cannot compensate the time spent by
the scheduler on the work assignment. The default chunk size for parallel_deterministic_reduce that
uses a simple partitioner is 1. This means that worker threads will take just one loop iteration to execute
before turning back to the scheduler for a new portion of work. Consider increasing the minimal chunk size to
10000 (line 5 in the snippet below):

double VectorReduction(double *v, size_t n)
{

 return parallel_deterministic_reduce(
 blocked_range<double*>(v, v + n, 10000),
 0.f,

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

342

 [](const blocked_range<double*>& r, double value)->double {
 return std::accumulate(r.begin(), r.end(), value);
 },
 std::plus<double>()
);
}

Repeat the Threading analysis:

You see that the elapsed time of the application has significantly reduced.

• The average effective CPU utilization is ~29 logical cores. This is because the metric counts a warmup
phase. In the compute phase, CPU utilization is closer to 80 cores.

• The CPU time spent on oneTBB scheduling or other parallel work arrangement is negligible.
• The modified code runs more than 10x faster than the original version of the application without collection

time.

See Also
Threading Analysis

Intel® VTune™ Profiler Performance Analysis Cookbook 1

343

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/threading-analysis.html

PMDK Application Overhead
This recipe shows how to detect and fix an overhead
on memory accesses for a PMDK-based application.

Persistent Memory Development Kit (PMDK) provides support for transactional and atomic operations to keep
the data consistent and durable. It is a collection of open source libraries and tools that are available today
for both Linux* and Windows* OS. For more information, please visit pmem.io, the Persistent Memory
Programming web site. PMDK facilitates persistent memory programming adoption with higher level language
support. Currently, C and C++ support is fully validated and delivered on Linux, and available as early access
on Windows.

The new generation of persistent memory from Intel has introduced a third memory tier. In addition to the
memory and storage tiers, the persistent memory tier offers greater capacity than DRAM and significantly
faster performance than storage. Applications can access persistent memory-resident data structures in-
place, like they do with traditional memory, eliminating the need to page blocks of data back and forth
between memory and storage.

However, taking an advantage of PMDK libraries may influence your application performance. Explore this
recipe as an example how Intel® VTune™ Amplifier can help detect such issues.

• INGREDIENTS
• DIRECTIONS:

1.Run Memory Access analysis for your PMDK application
2. Identify hotspots for the PMDK-based app
3.Remove redundant PMDK function calls

Ingredients
This section lists the hardware and software tools used for the performance analysis scenario:

• Application: a sample application that calculates the sum of two vector element-wise using PMDK
memory allocators.

• Compiler: GNU* compiler with the following compiler/linker options:

gcc -c -o array.o -O2 -g -fopenmp -I <pmdk-install-dir>/src/include -I <pmdk-
install-dir>/src/examples array.c
gcc -o arrayBefore array.o -fopenmp -L <pmdk-install-dir>/src/nondebug -lpmemobj -
lpmem -pthread

• Performance analysis tools: Intel VTune Amplifier 2018: Memory Access / Advanced Hotspots analyses

NOTE

• Starting with the 2020 release, Intel® VTune™ Amplifier has been renamed to Intel® VTune™ Profiler.
• Most recipes in the Intel® VTune™ Profiler Performance Analysis Cookbook are flexible. You can apply

them to different versions of Intel® VTune™ Profiler. In some cases, minor adjustments may be
required.

• Get the latest version of Intel® VTune™ Profiler:

• From the Intel® VTune™ Profiler product page.
• Download the latest standalone package from the Intel® oneAPI standalone components page.

• Operating system: Ubuntu* 16.04 LTS
• CPU: Intel® Core™ i7-6700K CPU @ 4.00GHz

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

344

https://pmem.io
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Run Memory Access Analysis for Your PMDK App
This recipe starts with a sample application that utilizes the persistent memory. This application uses a triad
kernel from a well-known stream benchmark and should fully utilize the DRAM bandwidth.

In this sample, the vector sum calculation is repeated in the loop to make compute work more significant and
measurable for statistical analysis:

#include <ex_common.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <libpmemobj.h>
#include <omp.h>

#define REPEATS 32

POBJ_LAYOUT_BEGIN(array);
POBJ_LAYOUT_TOID(array, int);
POBJ_LAYOUT_END(array);

int
main()
{
 size_t size = 82955000;
 size_t pool_size = 16200000000;
 int i,j;
 int multiplier = 3;

 PMEMobjpool *pop;
 char* path = "test_file1";
 if (file_exists(path) != 0)
 {
 if ((pop = pmemobj_create(path, POBJ_LAYOUT_NAME(array),
 pool_size, CREATE_MODE_RW)) == NULL)
 {
 printf("failed to create pool\n");
 return 1;
 }
 }
 else
 {
 if ((pop = pmemobj_open(path, POBJ_LAYOUT_NAME(array))) == NULL)
 {
 printf("failed to open pool\n");
 return 1;
 }
 }

 TOID(int) a;
 TOID(int) b;
 TOID(int) c;

 POBJ_ALLOC(pop, &a, int, sizeof(int) * size, NULL, NULL);
 POBJ_ALLOC(pop, &b, int, sizeof(int) * size, NULL, NULL);
 POBJ_ALLOC(pop, &c, int, sizeof(int) * size, NULL, NULL);

 for (i = 0; i < size; i++)
 {

Intel® VTune™ Profiler Performance Analysis Cookbook 1

345

 D_RW(a)[i] = (int)i;
 D_RW(b)[i] = (int)i+100;
 D_RW(c)[i] = (int)i+3;
 }

 pmemobj_persist(pop, D_RW(a), size * sizeof(*D_RW(a)));
 pmemobj_persist(pop, D_RW(b), size * sizeof(*D_RW(b)));
 pmemobj_persist(pop, D_RW(c), size * sizeof(*D_RW(c)));

 for (j = 0; j < REPEATS; j++)
 {
 #pragma omp parallel for
 for (i = 0; i < size; i++)
 {
 D_RW(c)[i] = multiplier * D_RO(a)[i] + D_RO(b)[i];
 }
 }

 POBJ_FREE(&a);
 POBJ_FREE(&b);
 POBJ_FREE(&c);

 pmemobj_close(pop);
 return 0;
}

To identify performance issues in the sample code and estimate the time spent on memory accesses, launch
the VTune Amplifier and run the Memory Access analysis:

1. Click the New Project button on the toolbar and specify a name for the new project, for example:
arraysum.

2. In the Analysis Target window, select the local host target system for the host-based analysis.
3. Select the Launch Application target type and specify an application for analysis on the right pane.
4. Click the Choose Analysis button on the right, select Microarchitecture Analysis > Memory

Access on the left pane and click Start to run the analysis.

VTune Amplifier launches the application, collects data, finalizes the data collection result resolving
symbol information, which is required for successful source analysis.

Identify Hotspots for the PMDK-based App
Start your analysis with the Summary view that provides application-level statistics per hardware metrics.
Typically, the basic performance baseline is the application Elapsed time, which is equal to ~16 seconds for
this sample code.

In spite of the expected high DRAM utilization for the PMDK code, the summary metrics do not define this
sample app as DRAM bandwidth bound:

The Bandwidth Utilization Histogram also shows that the application underutilized the DRAM bandwidth
with the Observed Maximum about 13 GB/sec, which is much less than expected:

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

346

Obviously, the PMDK has introduced some overhead into the code. For details, switch to Bottom-Up view
and choose the Function / Call Stack grouping level:

The largest hotspot is pmemobj_direct_inline. This is a function called inside D_RO and D_RW macros.
Double-click the function to view the source code in <pmdk-install-dir>/src/include/libpmemobj/
types.h:

#define DIRECT_RW(o) \
 (reinterpret_cast < __typeof__((o)._type) > (pmemobj_direct((o).oid)))
#define DIRECT_RO(o) \
 (reinterpret_cast < const __typeof__((o)._type) > \
 (pmemobj_direct((o).oid)))

#endif /* (defined(_MSC_VER) || defined(__cplusplus)) */

#define D_RW DIRECT_RW
#define D_RO DIRECT_RO

NOTE
To better visualize the DRAM bandwidth utilization during the application run, explore the Platform
view. DRAM Bandwidth shows up in green and blue.

Remove Redundant PMDK Function Calls
Since the memory for each array is allocated as one chunk, it is enough to call D_RO and D_RW only once
before the calculation to get the array start addresses:

int* _c = D_RW(c);
const int* _a = D_RO(a);
const int* _b = D_RO(b);

for (j = 0; j < REPEATS; j++)
{
 #pragma omp parallel for
 for (i = 0; i < size; i++)
 {
 _c[i] = multiplier * _a[i] + _b[i];
 }
}

Re-compile the application and re-run the Memory Access analysis to see how this change affected the
performance:

Intel® VTune™ Profiler Performance Analysis Cookbook 1

347

You see that the Elapsed time of the application has significantly reduced. PMDK overhead does not influence
the performance.

The Bandwidth Utilization Histogram shows that the application fully utilizes DRAM bandwidth with the
Observed Maximum about 25 GB/sec:

NOTE
To discuss this recipe, visit the developer forum.

See Also
Introduction to Programming with Persistent Memory from Intel
Memory Usage View

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

*Other names and brands may be claimed as the property of others.

 1 Intel® VTune™ Profiler Performance Analysis Cookbook

348

https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-programming-with-persistent-memory-from-intel.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/memory-usage-view.html
https://www.intel.com/PerformanceIndex

	Contents
	Intel® VTune™ Profiler Performance Analysis Cookbook
	Methodologies
	Top-down Microarchitecture Analysis Method
	OpenMP* Code Analysis Method
	Custom Data Collection for Performance Analysis (NEW)
	Software Optimization for Intel® GPUs (NEW)
	Core Utilization in DPDK Apps
	PCIe Traffic in DPDK Apps
	DPDK Event Device Profiling
	Effective Utilization of Intel® Data Direct I/O Technology
	Compile a Portable Optimized Binary with the Latest Instruction Set

	Configuration Recipes
	Profiling High Bandwidth Memory Performance on Intel® Xeon® CPU Max Series (NEW)
	Profiling Windows* Applications for Hybrid CPU Platforms (NEW)
	Viewing Analysis Results on a Web Browser (NEW)
	Profiling Machine Learning Applications (NEW)
	Profiling Single-Node Kubernetes* Applications (NEW)
	Analyzing Hot Code Paths Using Flame Graphs (NEW)
	Improving Hotspot Observability in a C++ Application Using Flame Graphs
	Measuring Performance Impact of NUMA in Multi-Processor Systems
	Profiling Games built with Unity* (NEW)
	Profiling Games built with Unreal Engine* (NEW)
	Profiling Java Applications as a Remote User (NEW)
	Profiling JavaScript* Code in Node.js*
	Analyzing CPU and FPGA (Intel® Arria® 10 GX) Interaction
	Profiling a .NET* Core Application
	Profiling Applications in Amazon Web Services* (AWS) EC2 Instances
	Enabling Performance Profiling in GitLab* CI
	Configuring a Hyper-V* Virtual Machine for Hardware-Based Hotspots Analysis
	Profiling an Application for Performance Anomalies (NEW)
	Profiling an OpenMP* Offload Application running on a GPU
	Profiling a SYCL* Application running on a GPU
	Profiling an FPGA-driven SYCL* Application
	Profiling Hardware Without Intel Sampling Drivers
	Profiling MPI Applications
	Profiling Docker* Containers
	Profiling a Remote Target Through a Proxy Server (NEW)
	Profiling in a Singularity* Container
	Profiling Linux*, Android*, and QNX* System Boot Time
	Using Intel® VTune™ Profiler Server with Visual Studio Code and Intel® DevCloud for oneAPI (NEW)
	Using Intel® VTune™ Profiler Server in HPC Clusters
	Using the Command-Line Interface to Analyze the Performance of a SYCL* Application running on a GPU (NEW)

	Tuning Recipes
	Cache-Related Latency Issues in Segmented Cache Environment
	False Sharing
	Frequent DRAM Accesses
	Poor Port Utilization
	Page Faults
	Instruction Cache Misses
	Inefficient Synchronization
	Inefficient TCP/IP Synchronization
	OS Thread Migration
	OpenMP* Imbalance and Scheduling Overhead
	Processor Cores Underutilization: OpenMP* Serial Time
	Scheduling Overhead in an Intel® oneAPI Threading Building Blocks Application
	PMDK Application Overhead

	Notices and Disclaimers

