
Intel® VTune™ Profiler User Guide

Contents

Chapter 1: Intel® VTune™ Profiler User Guide
Introduction ... 11

Tuning Methodology... 14
Tutorials and Samples.. 15
Notational Conventions .. 16
Get Help .. 17
Product Website and Support .. 21
Related Information... 21

Install Intel® VTune™ Profiler.. 22
Sampling Drivers .. 23
Set Up System for GPU Analysis.. 24

Rebuild and Install the Kernel for GPU Analysis 25
Rebuild and Install Module i915 for GPU Analysis on

CentOS*... 27
Rebuild and Install Module i915 for GPU Analysis on

Ubuntu*... 29
Verify Intel® VTune™ Profiler Installation.. 31
Install VTune Profiler Server ... 32

Set Up Transport Security .. 35
Configure User Authentication/Authorization............................... 36

Security Best Practices... 38
Open Intel® VTune™ Profiler ... 39

Get Started with Intel® VTune™ Profiler ... 40
Intel® VTune™ Profiler Graphical User Interface 42
Web Server Interface... 44
Microsoft Visual Studio* Integration... 52
Eclipse* and Intel System Studio IDE Integration 54
Containerization Support.. 55

Run VTune Profiler in a Container .. 56
Profile Container Targets from the Host...................................... 58

macOS* Support... 60
Set Up Project .. 62

WHERE: Analysis System ... 63
Analysis System Options.. 65

WHAT: Analysis Target ... 66
Analysis Target Options.. 67

HOW: Analysis Types ... 73
Search Directories... 75

Search Order.. 76
Set Up Analysis Target ... 78

Prepare Application for Analysis .. 81
Windows* Targets ... 83

Install the Sampling Drivers for Windows* Targets 85
Debug Information for Windows* Application Binaries 86
Compiler Switches for Performance Analysis on Windows* Targets. 87
Debug Information for Windows* System Libraries 89
Add Administrative Privileges.. 91

Linux* Targets .. 91

Intel® VTune™ Profiler User Guide

2

Build and Install the Sampling Drivers for Linux* Targets 92
Debug Information for Linux* Application Binaries....................... 96
Compiler Switches for Performance Analysis on Linux* Targets...... 98
Enable Linux* Kernel Analysis... 102
Resolution of Symbol Names for Linux-Loadable Kernel Modules.. 104
Analyze Statically Linked Binaries on Linux* Targets 104
Set Up Remote Linux* Target ... 105

Embedded Linux* Targets... 115
Configure Yocto Project* and VTune Profiler with the Integration

Layer .. 120
Configure Yocto Project*/Wind River* Linux* and Intel® VTune™

Profiler with the Intel System Studio Integration Layer........... 122
Configure Yocto Project* and Intel® VTune™ Profiler with the

Linux* Target Package ... 124
FreeBSD* Targets ... 125

Set Up FreeBSD* System... 128
QNX* Targets ... 129
Managed Code Targets... 130

.NET* Targets... 131
Windows Store Application Targets .. 133
Go* Application Targets ... 134

Android* Targets... 135
Build and Install Sampling Drivers for Android* Targets.............. 137
Set Up Android* System .. 138
Enable Java* Analysis on Android* System............................... 139
Prepare an Android* Application for Analysis 142
Analyze Unplugged Devices .. 143
Search Directories for Android* Targets 144

Intel® Xeon Phi™ Processor Targets... 144
Targets in Virtualized Environments ... 147

Profile Targets on a VMware* Guest System 148
Profile Targets on a Parallels* Guest System 149
Profile Targets on a KVM* Guest System 150
Profile Targets on a Xen* Virtualization Platform........................ 159
Profile Targets in the Hyper-V* Environment 160

Targets in a Cloud Environment... 161
Arbitrary Targets ... 161
Embedded System Targets ... 163

Analyze Performance ... 164
User-Mode Sampling and Tracing Collection 165
Hardware Event-based Sampling Collection....................................... 166

Allow Multiple Runs or Multiplex Events.................................... 168
Hardware Event-based Sampling Collection with Stacks 169

Performance Snapshot ... 173
Algorithm Group ... 176

Hotspots Analysis for CPU Usage Issues 176
Anomaly Detection Analysis (preview) 183
Memory Consumption Analysis ... 191

Microarchitecture Analysis Group... 193
Microarchitecture Exploration Analysis for Hardware Issues 193
Memory Access Analysis for Cache Misses and High Bandwidth

Issues ... 202
Parallelism Analysis Group.. 215

Threading Analysis .. 215
HPC Performance Characterization Analysis 224

Contents

3

Input and Output Analysis .. 239
Analyze Platform Performance .. 244
Analyze DPDK Applications ... 254
Analyze SPDK Applications ... 257
Analyze Linux Kernel I/O.. 261

Accelerators Analysis Group.. 264
GPU Offload Analysis ... 265
GPU Compute/Media Hotspots Analysis (Preview)...................... 275
CPU/FPGA Interaction Analysis.. 297
NPU Exploration Analysis (Preview) ... 303

Platform Analysis Group ... 308
System Overview Analysis.. 308

Platform Analysis .. 323
Hybrid CPU Analysis .. 329
Source Code Analysis... 332
Custom Analysis ... 339

Custom Analysis Options.. 340
Energy Analysis .. 355

Run Energy Analysis.. 356
View Energy Analysis Data with Intel® VTune™ Profiler 358
Interpret Energy Analysis Data with Intel® VTune™ Profiler 359

Code Profiling Scenarios... 362
Java* Code Analysis .. 363
Python* Code Analysis... 367
Intel® Threading Building Blocks Code Analysis 370
MPI Code Analysis... 371
OpenSHMEM* Code Analysis with Fabric Profiler........................ 377
GPU Application Analysis on Intel® HD Graphics and Intel® Iris®

Graphics .. 382
Frame Data Analysis.. 397
Task Analysis ... 399

Control Data Collection .. 403
Finalization .. 404
Pause Data Collection .. 406
Limit Data Collection ... 407
Generate Command Line Configuration from GUI 408
Minimize Collection Overhead ... 410
Import External Data... 411

Manage Data Views ... 424
Switch Viewpoints ... 425
Control Window Synchronization ... 427
View Stacks ... 428
Manage Grid Views.. 434
Manage Timeline View ... 436
Change Threshold Values ... 439
Choose Data Format.. 439
Group and Filter Data .. 441
View Data on Inline Functions... 444
Analyze Loops .. 448
Stitch Stacks for Intel® oneAPI Threading Building Blocks or

OpenMP* Analysis... 449
Search for Data .. 451

Manage Result Files ... 452
VTune Profiler Filenames and Locations 453
Import Results and Traces into VTune Profiler GUI 455

Intel® VTune™ Profiler User Guide

4

Compare Results... 457
Intel® VTune™ Profiler Command Line Interface .. 465

vtune Command Syntax... 466
vtune Actions ... 467
Run Command Line Analysis ... 468

performance-snapshot Command Line Analysis......................... 471
hotspots Command Line Analysis.. 472
anomaly-detection Command Line Analysis 473
threading Command Line Analysis .. 474
memory-consumption Command Line Analysis............................ 475
hpc-performance Command Line Analysis................................. 476
uarch-exploration Command Line Analysis 477
memory-access Command Line Analysis.................................... 478
tsx-exploration Command Line Analysis................................. 479
tsx-hotspots Command Line Analysis 479
sgx-hotspots Command Line Analysis 480
gpu-hotspots Command Line Analysis 481
gpu-offload Command Line Analysis....................................... 484
npu... 485
graphics-rendering Command Line Analysis............................ 485
fpga-interaction Command Line Analysis 486
io Command Line Analysis ... 487
system-overview Command Line Analysis................................. 488
runsa/runss Custom Command Line Analysis 489
Configure Analysis Options from Command Line........................ 491

Work with Results from Command Line .. 500
View Command Line Results in the GUI.................................... 500
Import Results from Command Line .. 501
Re-finalize Results from Command Line.................................... 503

Generate Command Line Reports .. 504
Summary Report .. 506
Hotspots Report.. 511
Hardware Events Report .. 512
Callstacks Report .. 513
Timeline Report .. 515
Top-down Report .. 520
gprof-cc Report... 521
Difference Report.. 523
View Source Objects from Command Line 524
Save and Format Command Line Reports 526
Filter and Group Command Line Reports 527

Command Line Usage Scenarios.. 530
Use VTune Profiler Server in Containers 530
Android* Target Analysis from the Command Line 531
OpenMP* Analysis from the Command Line 535
Java* Code Analysis from the Command Line 539

Command Line Interface Reference ... 549
Option Descriptions and General Rules..................................... 549
allow-multiple-runs ... 550
analyze-kvm-guest .. 551
analyze-system .. 552
app-working-dir.. 553
archive .. 554
call-stack-mode .. 554

Contents

5

collect ... 555
collect-with .. 559
column.. 560
command .. 561
cpu-mask .. 562
csv-delimiter .. 563
cumulative-threshold-percent ... 564
custom-collector ... 565
data-limit... 566
discard-raw-data .. 567
duration .. 568
filter.. 569
finalization-mode .. 570
finalize .. 571
format... 572
group-by ... 573
help .. 575
import ... 576
inline-mode.. 577
knob ... 578
kvm-guest-kallsyms .. 588
kvm-guest-modules .. 589
limit .. 590
loop-mode ... 591
mrte-mode .. 592
no-follow-child.. 593
no-summary .. 594
no-unplugged-mode.. 595
quiet ... 595
report ... 596
report-knob.. 598
report-output ... 600
report-width... 601
result-dir ... 601
resume-after .. 603
return-app-exitcode .. 603
ring-buffer ... 604
search-dir .. 605
show-as... 606
sort-asc ... 607
sort-desc ... 608
source-object ... 609
source-search-dir.. 610
stack-size .. 611
start-paused .. 612
strategy... 612
target-install-dir ... 613
target-system... 614
target-tmp-dir .. 616
target-duration-type.. 617
target-pid .. 618
target-process .. 619
time-filter .. 620
trace-mpi... 620
user-data-dir.. 621

Intel® VTune™ Profiler User Guide

6

verbose ... 622
version .. 622

Report Problems from Command Line .. 623
API Support.. 624

Instrumentation and Tracing Technology APIs.................................... 624
Basic Usage and Configuration.. 624
Instrumentation and Tracing Technology API Reference 633

JIT Profiling API .. 657
Using JIT Profiling API .. 660
JIT Profiling API Reference ... 661

System APIs Supported by Intel® VTune™ Profiler 667
Troubleshooting... 676

Best Practices: Resolve Intel® VTune™ Profiler BSODs, Crashes, and
Hangs in Windows* OS .. 677

Error Message: Application Sets Its Own Handler for Signal 680
Error Message: Cannot Enable Event-Based Sampling Collection.......... 680
Error Message: Cannot Collect GPU Hardware Metrics 682
Error Message: Cannot Load Data File.. 683
Error Message: Cannot Locate Debugging Information 684
Error Message: Cannot Open Data... 684
Error Message: Client Is Not Authorized to Connect to Server.............. 685
Error Message: Root Privileges Required for Processor Graphics Events 685
Error Message: No Pre-built Driver Exists for This System................... 685
Error Message: Not All OpenCL™ API Profiling Callbacks Are Received ... 686
Error Message: Problem Accessing the Sampling Driver...................... 687
Error Message: Required Key Not Available 687
Error Message: Scope of ptrace System Call Is Limited 688
Error Message: Stack Size Is Too Small .. 688
Error Message: Symbol File Is Not Found.. 689
Problem: Analysis of the .NET* Application Fails 689
Problem: Cannot Access VTune Profiler Documentation....................... 690
Problem: CPU time for Hotspots or Threading Analysis is Too Low 690
Problem: 'Events= Sample After Value (SAV) * Samples' Is Not True If

Multiple Runs Are Disabled ... 691
Problem: Guessed Stack Frames ... 692
Problem: GUI Hangs or Crashes .. 692
Problem: Inaccurate Sum in the Grid ... 693
Problem: Information Collected via ITT API Is Not Available When

Attaching to a Process ... 693
Problem: No GPU Utilization Data Is Collected 693
Problem: Same Functions Are Compared As Different Instances 694
Problem: Skipped Stack Frames .. 694
Problem: Stack in the Top-Down Tree Window Is Incorrect.................. 695
Problem: Stacks in Call Stack and Bottom-Up Panes Are Different........ 695
Problem: System Functions Appear in the User Functions Only Mode.... 696
Problem: VTune Profiler is Slow to Respond When Collecting or

Displaying Data .. 696
Problem: VTune Profiler is Slow on X-Servers with SSH Connection 696
Problem: Unexpected Paused Time .. 697
Problem: {Unknown Timer} in the Platform Power Analysis Viewpoint .. 698
Problem: Unknown Critical Error Due to Disabled Loopback Interface ... 698
Problem: Unknown Frames... 699
Problem: Unreadable Text on macOS* ... 699
Problem: Unsupported Microsoft* Windows* OS................................ 700
Warnings about Accurate CPU Time Collection 700

Contents

7

Reference... 701
User Interface .. 701

Context Menu: Grid... 703
Context Menus: Call Stack Pane.. 704
Context Menus: Project Navigator ... 704
Context Menus: Source/Assembly Window 706
Dialog Box: Binary/Symbol Search ... 707
Dialog Box: Source Search ... 708
Hot Keys.. 709
Menu: Customize Grouping .. 710
Menu: Intel VTune Profiler.. 710
Pane: Call Stack ... 712
Pane: Options - General... 714
Pane: Options - Result Location .. 715
Pane: Options - Source/Assembly ... 716
Project Navigator .. 717
Pane: Timeline ... 718
Toolbar: Configure Analysis .. 721
Toolbar: Filter... 723
Toolbar: Source/Assembly.. 725
Toolbar: Intel VTune Profiler ... 726
Window: Bandwidth - Platform Power Analysis 728
Window: Bottom-up .. 730
Window: Caller/Callee ... 733
Window: Cannot Find <file type> File 733
Window: Collection Log.. 734
Window: Compare Results.. 735
Window: Configure Analysis ... 735
Window: Core Wake-ups - Platform Power Analysis.................... 736
Window: Correlate Metrics - Platform Power Analysis 739
Window: CPU C/P States - Platform Power Analysis 742
Window: Debug .. 745
Window: Event Count - Hardware Events 745
Window: Flame Graph ... 746
Window: Graphics - GPU Compute/Media Hotspots 749
Window: Graphics C/P States - Platform Power Analysis 751
Window: NC Device States - Platform Power Analysis................. 753
Window: Platform ... 756
Window: Platform Power Analysis.. 761
Window: Sample Count - Hardware Events............................... 763
Window: SC Device States - Platform Power Analysis................. 765
Window: Summary ... 767
Window: System Sleep States - Platform Power Analysis 805
Window: Temperature/Thermal Sample - Platform Power Analysis 807
Window: Timer Resolution - Platform Power Analysis 809
Window: Top-down Tree... 811
Window: Uncore Event Count - Hardware Events....................... 812
Window: Wakelocks - Platform Power Analysis 813

CPU Metrics Reference ... 816
GPU Metrics Reference ... 863

ALU0 Active ... 865
ALU0 Instructions ... 865
ALU1 Active ... 865
ALU1 Instructions ... 865
ALU2 Active ... 865

Intel® VTune™ Profiler User Guide

8

ALU2 Instructions ... 865
ALU0 and ALU1 Active ... 866
ALU0 and ALU2 Active ... 866
Average Time ... 866
Computing Threads Started.. 866
Computing Threads Started, Threads/sec 866
CPU Time... 867
EU 2 FPU Pipelines Active... 867
EU Array Active .. 867
EU Array Idle.. 867
EU Array Stalled/Idle... 867
EU Array Stalled ... 868
EU IPC Rate ... 868
EU Send pipeline active ... 868
EU Threads Occupancy .. 868
Host to GPU Memory Read Bandwidth...................................... 868
Host-to-GPU Memory Write Bandwidth..................................... 869
Global ... 869
GPU EU Array Usage.. 869
GPU L3 Bound .. 869
GPU L3 Miss Ratio ... 869
GPU L3 Misses .. 870
GPU L3 Misses, Misses/sec ... 870
GPU Memory Read Bandwidth, GB/sec 870
GPU Memory Texture Read Bandwidth, GB/sec.......................... 870
GPU Memory Write Bandwidth, GB/sec..................................... 870
GPU Texel Quads Count, Count/sec ... 871
GPU Utilization ... 871
Instance Count ... 872
L3 Read Bandwidth ... 872
L3 Write Bandwidth ... 872
L3 Sampler Bandwidth, GB/sec ... 872
L3 Shader Bandwidth, GB/sec... 873
LLC Miss Rate due GPU Lookups.. 873
LLC Miss Ratio due GPU Lookups ... 873
Local ... 873
Maximum GPU Utilization ... 873
Occupancy ... 873
PS EU Active % .. 874
PS EU Stall %... 874
Ratio to Max Bandwidth, % .. 875
Ratio to Max Bandwidth, % .. 875
Ratio to Max Bandwidth, % .. 875
Render/GPGPU Command Streamer Loaded.............................. 875
Samples Blended .. 875
Samples Killed in PS, pixels .. 876
Samples Written ... 876
Sampler Busy... 876
Sampler Is Bottleneck ... 876
Shared Local Memory Read Bandwidth, GB/sec 877
Shared Local Memory Write Bandwidth, GB/sec......................... 877
SIMD Width ... 877
Stack-to-stack Incoming Bandwidth... 877
Stack-to-stack Outgoing Bandwidth... 877
System Memory Read Bandwidth .. 878

Contents

9

System Memory Write Bandwidth.. 878
Size .. 878
Total, GB/sec.. 878
Total Time.. 878
Typed Memory Read Bandwidth, GB/sec................................... 879
Typed Memory Write Bandwidth, GB/sec 879
Typed Reads Coalescence... 879
Typed Writes Coalescence .. 879
Untyped Memory Read Bandwidth, GB/sec 879
Untyped Memory Write Bandwidth, GB/sec............................... 880
Untyped Reads Coalescence ... 880
Untyped Writes Coalescence... 880
VS EU Active .. 880
VS EU Stall .. 881

OpenCL™ Kernel Analysis Metrics Reference....................................... 881
Computing Task Total Time... 881
Instance Count ... 882
SIMD Width ... 882
SIMD Utilization.. 882
Work Size .. 882

Energy Analysis Metrics Reference... 882
Available Core Time... 882
C-State.. 883
D0ix States .. 883
DRAM Self Refresh .. 883
Energy Consumed (mJ) ... 884
Idle Wake-ups .. 884
P-State.. 884
S0ix States .. 885
Temperature .. 885
Timer Resolution... 885
Total Time in C0 State ... 886
Total Time in Non-C0 States ... 886
Total Time in S0 State ... 886
Total Wake-up Count ... 886
Wake-ups .. 886
Wake-ups/sec per Core.. 886

Intel Processor Events Reference... 887
Notices and Disclaimers.. 887

Intel® VTune™ Profiler User Guide

10

Intel® VTune™ Profiler User
Guide 1
This document provides a comprehensive overview of the product functionality, tuning methodologies,
workflows, and instructions to use Intel VTune Profiler performance analysis tool.

Use Intel VTune Profiler to profile serial and multithreaded applications that are executed on a variety of
hardware platforms (CPU, GPU, FPGA). The tool is delivered as a Performance Profiler with Intel Performance
Snapshots and supports local and remote target analysis on the Windows*, Linux*, and Android* platforms.

Though you cannot analyze applications running on the macOS* systems, you can install VTune Profiler on
macOS* and analyze remote Linux or Android targets.

Download Here
You can download VTune Profiler from these sources:

• Standalone version
• As part of Intel® oneAPI Base Toolkit

NOTE
You can download older versions of documentation for VTune Profiler from the documentation archive.

Start Here
• Introduction
• Get Started
• Tutorials and Samples
• Performance Analysis Cookbook
• Intel VTune Profiler Installation Guide

Introduction
Intel® VTune™ Profiler is a performance analysis tool
for serial and multithreaded applications. Use VTune
Profiler to analyze your choice of algorithm. Identify
potential benefits for your application from available
hardware resources.

Use VTune Profiler to locate or determine:

• The most time-consuming (hot) functions in your application and/or on the whole system
• Sections of code that do not effectively utilize available processor time
• The best sections of code to optimize for sequential performance and for threaded performance
• Synchronization objects that affect the application performance
• Whether, where, and why your application spends time on input/output operations
• Whether your application is CPU or GPU bound and how effectively it offloads code to the GPU
• The performance impact of different synchronization methods, different numbers of threads, or different

algorithms
• Thread activity and transitions
• Hardware-related issues in your code such as data sharing, cache misses, branch misprediction, and

others

Usage Models

Intel® VTune™ Profiler User Guide 1

11

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
https://d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/overview.html

• Install VTune Profiler on Windows* or Linux* platforms and use it to analyze local and remote target
systems.

• Use the GUI or run analyses from the command line interface (vtune) to collect data and perform
regression testing.

• Use VTune Profiler as a web server. This is an optimal solution for multi-user environments.
• Install the standalone GUI client or integrate VTune Profiler into IDEs, such as Microsoft Visual Studio* or

Eclipse*.

NOTE
Documentation for versions of VTune Profiler prior to the 2021 release are available for download only.
For a list of available documentation downloads by product version, see these pages:

• Download Documentation for Intel Parallel Studio XE
• Download Documentation for Intel System Studio

Key Features
This table summarizes the availability of important analysis types per host and remote target platform using
VTune Profiler:

Analysis Windows
Target

Linux
Target

Android
Target

FreeBSD*
Target

Hotspots analysis + + +

Threading analysis + +

Remote analysis + + + +

Analysis in/from containers +

IDE (Eclipse*/Visual Studio*) + +

HPC Performance Characterization analysis + +

Microarchitecture Exploration + + + +

Memory Access analysis + +

Memory Consumption analysis +

Input and Output analysis + +4

System Overview analysis +

Custom analysis + + + +

GPU analysis + +² +

VTune Profiler-Platform Profiler analysis +¹ +¹

OpenCL™ kernel analysis + +²

Intel Media SDK program analysis +²

Java* code analysis + + +

.NET* code analysis +

Python* code analysis + +

 1 Intel® VTune™ Profiler User Guide

12

https://www.intel.com/content/www/us/en/developer/articles/guide/download-documentation-intel-parallel-studio-xe-current-previous.html
https://www.intel.com/content/www/us/en/develop/articles/download-documentation-intel-system-studio-current-previous.html

Analysis Windows
Target

Linux
Target

Android
Target

FreeBSD*
Target

Go* application analysis +³ +³

OpenMP* analysis + +

MPI analysis + +

KVM Guest OS analysis +

Ftrace* events analysis + +

Atrace* events analysis +

Energy analysis (visualization only) + + +

¹Preview only; ²Intel HD Graphics and Intel Iris® Graphics only; ³EBS analysis only; 4Hardware event-based
metrics only, excl. MMIO accesses, DPDK, SPDK

VTune Profiler provides features that facilitate the analysis and interpretation of the results:

• Top-down tree analysis: Use to understand which execution flow in your application is more performance-
critical.

• Timeline analysis: Analyze thread activity and the transitions between threads.
• ITT API analysis: Use the ITT API to mark significant transition points in your code and analyze

performance per frame, task, and so on.
• Architecture diagram: Analyze GPU OpenCL™ applications by exploring the GPU hardware metrics per GPU

architecture blocks.
• Source analysis: View source with performance data attributed per source line to explore possible causes

of an issue.
• Comparison analysis: Compare performance analysis results for several application runs to localize the

performance changes you got after optimization.
• Start data collection paused mode: Click the Start Paused button on the command bar to start the

application without collecting performance data and click the Resume button to enable the collection at
the right moment.

• Grouping: Group your data by different granularity in the grid view to analyze the problem from different
angles.

• Viewpoints: Choose among preset configurations of windows and panes available for the analysis result.
This helps focus on particular performance problems.

• Hot keys to start and stop the analysis: Use a batch file to create hot keys to start and stop a particular
analysis.

Caution
Because VTune Profiler requires specific knowledge of assembly-level instructions, its analysis may not
operate correctly if a program (target) is compiled to generate non-Intel architecture instructions. In
this case, run the analysis with a target executable compiled to generate only Intel instructions. After
you finish using VTune Profiler, you can use optimizing compiler options that generate non-Intel
architecture instructions.

See Also
Get Started with Intel® VTune™ Profiler

Install Intel® VTune™ Profiler

Microsoft Visual Studio* Integration

Intel® VTune™ Profiler User Guide 1

13

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html
http://software.intel.com/en-us/articles/using-hot-keys-in-vtune-amplifier-xe/

Intel® VTune™ Profiler Graphical User Interface

Intel® VTune™ Profiler Command Line Interface

Tuning Methodology
When optimizing your code for parallel hardware, consider using the following iterative approach:

Ignore the top two elements if you are not running on a cluster. There is not a recommended start point what
to optimize first as this may vary. Pop up a level, look at all the potential optimizations and see where you
can get the biggest gain for the least work. That is where you want to start.

Use these Intel performance analysis tools for the performance optimization workflow:

 1 Intel® VTune™ Profiler User Guide

14

Explore available performance analysis and tuning scenarios with VTune Profiler provided in:

• Tutorials
• Performance Analysis Cookbook
• Profiling Scenarios for managed code and applications using Intel® runtime libraries
• Tuning Guides

Tutorials and Samples
Intel® VTune™ Profiler provides web tutorials using
sample code for step-by-step instructions on
configuring and interpreting performance analysis.

Analyze Common Performance Bottlenecks - C++ Sample Code
Linux* Tutorial: PDF

Windows* Tutorial: PDF

Sample: pre-built matrix C++ matrix multiplication application. The pre-built application is available from
the Project Navigator when you first launch Intel VTune Profiler. You can access the sample code from:

• Linux: <install-dir>/samples/en/C++/matrix
• Windows: <install-dir>\samples\en\C++\matrix
Learning Objective:

• Demonstrates: Iterative application optimization with VTune Profiler, finding algorithmic and hardware
utilization bottlenecks

• Performance issues: memory access, vectorization
• Analyses used: Performance Snapshot, Hotspots, Memory Access, HPC Performance Characterization,

Microarchitecture Exploration

Analyzing an OpenMP* and MPI Application - C++ Sample Code
Linux* Tutorial: HTML

Intel® VTune™ Profiler User Guide 1

15

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/overview.html
https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-tutorial-common-bottlenecks-linux.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-tutorial-common-bottlenecks-windows.pdf
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/2020/overview.html

Sample: heart_demo C++ application that simulates electrophysiological heart activity. You can access the
sample code at https://github.com/AlexeyMalkhanov/Cardiac_demo.

Learning Objective:

• Demonstrates: Identifying issues in a hybrid OpenMP and MPI application.
• Analysis/tools used: Application Performance Snapshot (APS), Intel Trace Analyzer and Collector, and

VTune Profiler's HPC Performance Characterization analysis

Performance Analysis Cookbook
For end-to-end tuning and configuration use cases, explore the VTune Profiler Performance Analysis
Cookbook that introduces such recipes as:

• Tuning Recipes:

• Frequent DRAM Accesses
• Remote Socket Accesses
• OpenMP* Imbalance and Scheduling Overhead

• Configuration Recipes:

• Profiling in a Docker* Container
• Profiling a .NET* Core App
• Profiling JavaScript* Code in Node.js*

See more recipes here.

To install and set up the VTune Profiler sample code:

1. Copy the archive file from the installation directory to a writable directory or share on your system.
2. Extract the sample from the archive.

NOTE

• Samples are non-deterministic. Your screens may vary from the screen shots shown throughout
these tutorials.

• Samples are designed only to illustrate the VTune Profiler features and do not represent best
practices for tuning any particular code. Results may vary depending on the nature of the analysis
and the code to which it is applied.

See Also
Getting Help

Video and Articles

Microsoft Visual Studio* Integration

Notational Conventions
The following conventions may be used in this document.

Convention Explanation Example

Italic Used for introducing new terms,
denotation of terms, placeholders, or
titles of manuals.

The filename consists of the basename and
the extension.

For more information, refer to the Intel®
Linker Manual.

 1 Intel® VTune™ Profiler User Guide

16

https://github.com/AlexeyMalkhanov/Cardiac_demo
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/vtune-cookbook-frequent-dram-accesses
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/vtune-cookbook-io-issues-remote-socket-accesses
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/vtune-cookbook-openmp-imbalance-and-scheduling-overhead
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/vtune-cookbook-profiling-in-docker-container
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/vtune-cookbook-profiling-a-net-core-application
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/vtune-cookbook-profiling-javascript-code-in-node-js
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Convention Explanation Example

Bold Denotes GUI elements Click Cancel.

> Indicates a menu item inside a
menu.

File > Close

indicates to select Close from the File menu.

Monospace Indicates directory paths and
filenames, or text that can be part of
source code.

ippsapi.h
\alt\include
Use the okCreateObjs() function to...

printf("hello, world\n");
* An asterisk at the end of a word or name

indicates it is a third-party product
trademark.

OpenMP*

Get Help
Use these documents and resources to better understand functionality inIntel® VTune™ Profiler:

• Installation Guides
• Get Started Guide
• User Guide
• Tutorials and Cookbook
• Articles, Webinars, and Videos
• Intel Processor Event Reference
• Release Notes

NOTE
All documentation for VTune Profiler is available online in the Intel Software Documentation Library on
Intel Developer Zone (IDZ). You can also download an offline version of the VTune Profiler
documentation.

Access Documentation
Access product documentation through one of these ways:

• For the cross-platform standalone user interface of the VTune Profiler: Click the

menu button and select Help > documentation_format or click the

Help button on the product toolbar.
• Windows* only: For the VTune Profiler integrated into the Visual Studio user interface, select Intel VTune

Profilerversion > documentation_format from the Help menu or click the product icon on the toolbar.

Intel® VTune™ Profiler User Guide 1

17

https://software.intel.com/en-us/vtune/documentation/view-all
https://d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/

NOTE

• VTune Profiler is shipped as a standalone version and as part of Intel oneAPI Base Toolkit. Access to
VTune Profiler documentation may vary depending on the product shipment.

• You need an internet connection to access all VTune Profiler documentation formats listed in the
menu.

• Google* Chrome* is the recommended browser to view a downloaded copy of the VTune Profiler
documentation. If you use Microsoft* Internet Explorer* or Microsoft Edge* browser, you may
encounter these issues:

• Internet Explorer 11: No help topics show up when you select them in the TOC pane.

Solution: Add http://localhost to the list of trusted sites in the Tools > Internet Options
> Security tab. You can remove the site when you finish viewing the documentation.

• Microsoft Edge: Help panes are truncated and a proper style sheet is not applied.

Solution: Click the Menu <…> and select Open with Internet Explorer.

Installation Guides
Installation Guides contain installation instructions for installing the product and post-installation
configuration steps.

Get Started Guide
VTune Profiler provides a Get Started guide that includes a brief product introduction, provides a basic usage
flow and links to additional resources, like Tutorials using a variety of tuning scenarios for sample
applications. This guide automatically opens after product installation. You can also access this document
through the Help menu/toolbar button or Get Stared link on the Welcome page.

VTune Profiler User Guide
VTune Profiler User Guide documents concepts, procedures, and reference information required to
successfully work with the product. The User Guide is available from the Intel Software Documentation
Library on the web and accessible via the Help menu or the

Help toolbar button.

Context-Sensitive Help
Access help topics on active GUI elements through context-sensitive help configured in VTune Profiler. These
features are available on a product-specific basis:

• Learn more | F1 button |

Context Help button provide help for an active dialog box, property page, pane, or window.
• What's This Column: In the grid, right-click a performance metric column and select the What's This

Column entry from the context menu to open a help topic for this particular metric. You can also view a
lightweight metric description in the pop-up window when hovering over the column name.

 1 Intel® VTune™ Profiler User Guide

18

https://www.intel.com/content/www/us/en/docs/vtune-profiler/get-started-guide/current/overview.html
https://www.intel.com/content/www/us/en/resources-documentation/developer.html
https://www.intel.com/content/www/us/en/resources-documentation/developer.html

Help Tour
Use the Help Tour on the Welcome page to get started with Intel® VTune™ Profiler and understand its
interface. The tour uses a sample project to guide you through a typical workflow.

Overlays
In some windows, an overlay outlines useful tips to manage analysis data and enhance your experience.
Where available, click the

icon for a tour of useful features in the analysis window.

Intel® VTune™ Profiler User Guide 1

19

Tutorials and Cookbook
VTune Profiler provides 15-minute tutorials that show you how to use basic or advanced product features
with a short sample. The tutorials provide an excellent foundation before you read the VTune Profiler help.
For details, see the Tutorials and Samples topic.

For featured tuning and configuration scenarios, explore the Intel® VTune™ Profiler Performance Analysis
Cookbook.

Command Line Interface Cheat Sheet
Use the Command Line Interface Cheat Sheet PDF for quick reference on VTune Profiler CLI.

Articles, Webinars, and Videos
Access a library of articles and video content that can help you complete specific tasks with VTune Profiler.

• Articles
• Webinars - Detailed video content that illustrate workflows and methodologies.
• How-to Videos - Short instructional videos to guide you with common tasks with VTune Profiler

Intel Processor Event Reference
VTune Profiler documentation includes Reference for Intel processor events. To access the Reference for a
particular Intel processor/microarchitecture, select Intel Processor Event Reference option from the Help
menu and choose the required microarchitecture/processor.

You can also find it useful to explore Tuning Guides for Intel microarchitecture created by Intel architects and
available on the web.

Release Notes
VTune Profiler Release Notes provide the most up-to-date information about the product, including a product
description, technical support, system requirements, and known limitations and issues.

See Also
Tutorials and Samples

Related Information

 1 Intel® VTune™ Profiler User Guide

20

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/overview.html
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-cheat-sheet.pdf
https://www.intel.com/content/www/us/en/develop/tools/vtune-profiler/get-started.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-documentation.html
https://www.intel.com/content/www/us/en/develop/tools/vtune-profiler/get-started.html
https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html
https://www.intel.com/content/www/us/en/develop/articles/intel-vtune-release-notes.html

Product Website and Support
These links provide information and support on Intel® VTune™ Profiler.

For additional support information, see the Technical Support section of your Release Notes.

System Requirements
To understand hardware and software requirements for the use of Intel® VTune™ Profiler, see the Intel®
VTune™ Profiler Release Notes.

Related Information
For better understanding of the performance data provided by the Intel® VTune™ Profiler, you are highly
recommended to explore additional resources on the web.

Intel® Processor Information
For the most updates, errata, and the latest information on Intel processors, explore the resources available
at https://www.intel.com/content/www/us/en/develop/articles/intel-sdm.html. The following sections
describe processor manuals for Intel 64, IA-32 architecture processors and for Intel Itanium® processors.

Intel 64 and IA-32 Architectures Manuals

The Intel 64 and IA-32 Architectures Software Developer's Manual consists of the following volumes that
describe the architecture and programming environment of all Intel 64 and IA-32 architecture processors:

• Volume 1 describes the architecture and programming environment of processors supporting IA-32 and
Intel 64 architectures.

• Volume 2 includes the full Instruction Set Reference, A-Z, in one volume. Describes the format of the
instruction and provides reference pages for instructions.

• Volume 3 includes the full System Programming Guide, Parts 1, 2, and 3, in one volume. Describes the
operating-system support environment of Intel 64 and IA-32 Architectures, including: memory
management, protection, task management, interrupt and exception handling, multi-processor support,
thermal and power management features, debugging, performance monitoring, system management
mode, VMX instructions, and Intel Virtualization Technology (Intel VT).

• Intel 64 and IA-32 Architectures Software Developer's Manual Documentation Changes section
describes bug fixes made to the Intel 64 and IA-32 Software Developer's Manual between versions.

NOTE
This Change Document applies to all Intel 64 and IA-32 Software Developer's Manual sets (combined
volume set, 3 volume set and 7 volume set).

Please refer to all volumes when evaluating your design needs.

For more information on processor-specific performance analysis, explore articles and tuning guides available
for download at http://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers/.

Multithreading
You are strongly encouraged to read the following books for in-depth understanding of threading. Each book
discusses general concepts of parallel programming by explaining a particular programming technology:

Intel® VTune™ Profiler User Guide 1

21

https://www.intel.com/content/www/us/en/developer/articles/release-notes/vtune-profiler-release-notes.html
https://www.intel.com/content/www/us/en/develop/articles/intel-sdm.html
http://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers/

Technology Resource

Intel Threading Building
Blocks

Reinders, James. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O'Reilly, July 2007 (http://oreilly.com/
catalog/9780596514808/)

OpenMP* technology Chapman, Barbara, Gabriele Jost, Ruud van der Pas, and David J. Kuck
(foreword). Using OpenMP: Portable Shared Memory Parallel
Programming. MIT Press, October 2007 (http://mitpress.mit.edu/catalog/
item/default.asp?ttype=2&tid=11387)

Microsoft Win32* Threading Akhter, Shameem, and Jason Roberts. Multi-Core Programming:
Increasing Performance through Software Multithreading, Intel Press,
April 2006 (http://www.intel.com/intelpress/sum_mcp.htm).

Intel Analyzers
Explore more profiling and optimization opportunities with Intel performance analysis tools:

• Intel Advisor to design your code performance on Intel hardware with the roofline methodology and
explore potential for vectorization, threading, and offload optimizations.

• Intel Inspector to analyze your code for threading, memory, and persistent memory errors.
• Intel Graphics Performance Analyzers to analyze performance of your game applications (system, frame,

and trace analysis).

Install Intel® VTune™ Profiler
Download and install Intel® VTune™ Profiler on your system to gather performance data, either on your native
system or on a remote system. You can install the application on Linux*, Windows*, or macOS* host
systems but you can collect performance data on remote Windows or Linux target systems only.

System Requirements
To verify hardware and software requirements for your VTune Profiler download, see Intel® VTune™ Profiler
System Requirements.

Download Intel VTune Profiler
Download VTune Profiler from these sources:

• Standalone version
• As part of Intel® oneAPI Base Toolkit

NOTE
You can download older versions of documentation for VTune Profiler from the documentation archive.

Installation Information
Whether you downloaded Intel® VTune™ Profiler as a standalone component or with the Intel® oneAPI Base
Toolkit, the default path for your <install-dir> is:

 1 Intel® VTune™ Profiler User Guide

22

https://www.intel.com/content/www/us/en/develop/tools/advisor.html
https://www.intel.com/content/www/us/en/develop/tools/inspector.html
https://www.intel.com/content/www/us/en/develop/tools/graphics-performance-analyzers.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/

Operating System Path to <install-dir>

Windows* OS • C:\Program Files (x86)\Intel\oneAPI\
• C:\Program Files\Intel\oneAPI\

(in certain systems)

Linux* OS • /opt/intel/oneapi/ for root users
• $HOME/intel/oneapi/ for non-root users

macOS* /opt/intel/oneapi/

For OS-specific installation instructions, refer to the VTune Profiler Installation Guide.

See Also
Sampling Drivers

Cookbook: Profiling Hardware Without Drivers

Sampling Drivers
Intel® VTune™ Profiler uses kernel drivers to enable the hardware event-based sampling. VTune Profiler
installer automatically uses the Sampling Driver Kit to build drivers for your kernel with the default
installation options. If the drivers were not built and set up during installation (for example, lack of
privileges, missing kernel development RPM, and so on), VTune Profiler provides an error message and, on
Linux* and Android* systems, enables driverless sampling data collection based on the Linux Perf* tool
functionality, which has some analysis limitations for a non-root user. VTune Profiler also automatically uses
the driverless mode on Linux when hardware event-based sampling collection is run with stack analysis, for
example, for Hotspots or Threading analysis types.

If not used by default, you may still enable a driver-based sampling data collection by building/installing the
sampling drivers for your target system:

• Windows* targets: Verify the sampling driver is installed correctly. If required, install the driver.
• Linux* targets:

• Make sure the driver is installed.

• Build the driver, if required.
• Install the driver, if required.

• Verify the driver configuration.
• Android* targets: Verify the sampling driver is installed. If required, build and install the driver.

Intel® VTune™ Profiler User Guide 1

23

https://www.intel.com/content/www/us/en/develop/documentation/vtune-install-guide/top.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE

• You may need kernel header sources and other additional software to build and load the kernel
drivers on Linux. For details, see the README.txt file in the sepdk/src directory.

• A Linux kernel update can lead to incompatibility with VTune Profiler drivers set up on the system
for event-based sampling (EBS) analysis. If the system has installed VTune Profiler boot scripts to
load the drivers into the kernel each time the system is rebooted, the drivers will be automatically
re-built by the boot scripts at system boot time. Kernel development sources required for driver
rebuild should correspond to the Linux kernel update.

• If you loaded the drivers but do not use them and no collection is happening, there is no execution
time overhead of having the drivers loaded. The memory overhead is also minimal. You can let the
drivers be loaded at boot time (for example, via the install-boot-script, which is used by
default) and not worry about it. Unless data is being collected by the VTune Profiler, there will be
no latency impact on system performance.

See Also
Cookbook: Profiling Hardware without Sampling Drivers

Embedded Linux* Targets

Configure Yocto Project* and Intel® VTune™ Profiler with the Linux* Target Package

Error Message: No Pre-built Driver Exists for This System

Set Up System for GPU Analysis
To analyze Intel HD and Intel Iris Graphics (further: Intel Graphics) hardware events on a GPU,

• Your system must have the Intel Metric Discovery (MD) API library installed on it.
• You need relevant permissions.

Install Intel Metric Discovery API Library on Windows* OS
On Windows, Intel Metric Discovery API library is part of the official Intel Graphics driver package. You can
install a driver for your system from https://www.intel.com/content/www/us/en/download-center/
home.html.

NOTE
If you run GPU analysis via a Remote Desktop connection, make sure your software fits these
requirements:

• Intel® Graphics driver version 15.36.14.64.4080, or higher
• target analysis application runnable via RDC

Install Intel Metrics Discovery API Library on Linux* OS
Intel Metrics Discovery API library is supported on Linux operating systems with kernel version 4.14 or
newer. If VTune Profiler cannot collect GPU hardware metrics and provides a corresponding error message,
make sure you have installed the API library correctly.

You can download Intel Metrics Discovery API library from https://github.com/intel/metrics-discovery.

 1 Intel® VTune™ Profiler User Guide

24

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/download-center/home.html
https://www.intel.com/content/www/us/en/download-center/home.html
https://github.com/intel/metrics-discovery

Enable Permissions
Typically, you should run the GPU Offload and GPU Compute/Media Hotspots analyses with root privileges on
Linux or as an Administrator on Windows.

If you lack root permissions on Linux, enable collecting GPU hardware metrics for non-privileged users.
Follow these steps:

• Add your username to the video and rendergroups.

To check whether your username is part of the video group, enter: groups | grep video.

To add your username to the video group, enter: sudo usermod -a -G video <username>.
• Set the value of dev.i915.perf_stream_paranoidsysctl option to 0 as follows:

sysctl -w dev.i915.perf_stream_paranoid=0
This command makes a temporary change that is lost after reboot. To make a permanent change, enter:

echo dev.i915.perf_stream_paranoid=0 > /etc/sysctl.d/60-mdapi.conf
• Since GPU analysis relies on the Ftrace* technology, use the prepare_debugfs.sh script that sets read/

write permissions to debugFS.

Enable GPU utilization events (i915 ftrace events)
If you are only looking to see high level information about GPU utilization, you do not need to reconfigure the
kernel.

To analyze detailed GPU utilization metrics on Linux, you may need to rebuild the kernel. Because the i915
driver has to provide low-level tracing events, for kernels 4.14 and newer, enable tracing events using these
kernel configuration options:

CONFIG_EXPERT=y
CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS=y
To check the current state of the CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS option, enter:

grep CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS /boot/config-$(uname -r)
If the option is disabled, you need to rebuild the i915 driver or the whole kernel.

Use the ./install/bin64/prepare-gpu-hardware-metrics.sh script to automatically enable
permissions for non-privileged users.

See Also
Rebuild and Install the Kernel for GPU Analysis

GPU Architecture Terminology for Intel® Xe Graphics
GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Problem: No GPU Utilization Data Is Collected

Rebuild and Install the Kernel for GPU Analysis

To collect i915 ftrace events that are required for a detailed analysis of GPU utilization, your Linux kernel
should be properly configured.

If VTune Profiler cannot start an analysis and you see an error message (Collection of GPU usage events
cannot be enabled. i915 ftrace events are not available), you must rebuild and install the re-configured
module i915.

Intel® VTune™ Profiler User Guide 1

25

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

NOTE Rebuilding the Linux kernel is only required if you need to see detailed information about GPU
utilization. You can run GPU analyses and see high level information about GPU utilization without
rebuilding your Linux kernel.

For kernel versions 4.14 and newer, enable these settings:

• CONFIG_EXPERT=y
• CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS=y
If you update the kernel rarely, it is sufficient to configure and rebuild only module i915.

If you update the kernel often, build the special kernel for GPU analysis. Follow this procedure.

NOTE
Installing the kernel requires root permissions.

1. Add source package repositories for your Ubuntu version.

For example, on Ubuntu Bionic Beaver* add:

sudo add-apt-repository -s "deb http://ru.archive.ubuntu.com/ubuntu/ bionic main restricted"
2. Install build dependencies:

sudo apt -y build-dep linux linux-image-$(uname -r)
sudo apt -y install libncurses-dev flex bison openssl libssl-dev dkms libelf-dev libudev-dev
libpci-dev libiberty-dev autoconf

3. Install kernel headers:

sudo apt -y install linux-headers-$(uname -r)
4. Create a folder for kernel source:

mkdir -p /tmp/kernel
cd !$

5. Download kernel sources:

apt -y source linux
cd linux-*

If you have a custom kernel, you need to find the corresponding source code the kernel belongs to.
6. Create a .config file with the same configuration you have for your running kernel:

cp /boot/config-$(uname -r) .config
make olddefconfig

7. In the new .config file, make sure the following settings are enabled:

CONFIG_EXPERT=y
CONFIG_FTRACE=y
CONFIG_DEBUG_FS=y
CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS=y
Update the file, if required, and save.

8. Create a full .config file for the kernel:

make olddefconfig
9. Build objtool. This tool is required for building the sampling driver.

make -C tools/ objtool

 1 Intel® VTune™ Profiler User Guide

26

10. Build the kernel with the new .config file:

make -j `getconf _NPROCESSORS_ONLN` deb-pkg
If you are using a custom kernel, use this command instead:

 make LOCALVERSION= -j `getconf _NPROCESSORS_ONLN` deb-pkg
11. Install the kernel and kernel modules:

sudo dpkg -i linux-*.deb
12. Reboot the machine with the new kernel.

See Also
Rebuild and Install Module i915 for GPU Analysis on CentOS*

Rebuild and Install Module i915 for GPU Analysis on Ubuntu*

GPU Compute/Media Hotspots Analysis (Preview)

Error Message: Cannot Collect GPU Hardware Metrics

Rebuild and Install Module i915 for GPU Analysis on CentOS*

NOTE Profiling support for CentOS* 7 is deprecated and will be removed in a future release.

To collect i915 ftrace events required to analyze the GPU utilization, your Linux kernel should be properly
configured. If the Intel® VTune™ Profiler cannot start an analysis and provides an error message: Collection of
GPU usage events cannot be enabled. i915 ftrace events are not available. You need to rebuild and install the
re-configured i915 module. For example, for kernel 4.14 and higher, these settings should be enabled:
CONFIG_EXPERT=y and CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS=y.

If you update the kernel often, make sure to build the special kernel for GPU analysis.

NOTE
Installing the kernel requires root permissions.

On CentOS* systems, if you update the kernel rarely, you can configure and rebuild only module i915 as
follows:

1. Install build dependencies:

sudo yum install flex bison elfutils-libelf-devel
2. Create a folder for kernel source:

mkdir -p /tmp/kernel
cd !$

3. Get your kernel version:

uname -r
This is an example of the command output:

4.18.0-80.11.2.el8_0.x86_64

Intel® VTune™ Profiler User Guide 1

27

4. Get source code for the kernel:

wget http://vault.centos.org/8.0.1905/BaseOS/Source/SPackages/kernel-4.18.0-80.11.2.el8_0.src.rpm
rpm --define "_topdir /tmp/kernel/rpmbuild" -i kernel-4.18.0-80.11.2.el8_0.src.rpm
tar -xf ./rpmbuild/SOURCES/linux-4.18.0-80.11.2.el8_0.tar.xz

5. Change the current directory:

cd linux-*
6. Configure the kernel modules:

cp /usr/src/kernels/$(uname -r)/.config ./
cp /usr/src/kernels/$(uname -r)/Module.symvers ./

7. Update the version in Makefile in the current directory.

The version value must be the same as in the uname -r command output. For example, if uname -r
prints 4.18.0-80.11.2.el8_0.x86_64, the values in the Makefile should be:

VERSION = 4
PATCHLEVEL = 18
SUBLEVEL = 0
EXTRAVERSION = -80.11.2.el8_0.x86_64
Update the file, if required, and save it.

8. Make sure the kernel version is set correctly in the Makefile:

make kernelversion
The command output for the example above is the following:

4.18.0-80.11.2.el8_0.x86_64
9. In the new .config file, make sure the following settings are enabled:

CONFIG_EXPERT=y
CONFIG_FTRACE=y
CONFIG_DEBUG_FS=y
CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS=y
Update the file, if required, and save it.

10. Create a full config file for the kernel:

make olddefconfig
11. Build module i915:

make -j$(getconf _NPROCESSORS_ONLN) modules_prepare
make -j$(getconf _NPROCESSORS_ONLN) M=./drivers/gpu/drm/i915 modules

If you get the following error:

LD [M] drivers/gpu/drm/i915/i915.o
ld: no input files

you need to replace the following lines in scripts/Makefile.build:

link_multi_deps = \
$(filter $(addprefix $(obj)/, \
$($(subst $(obj)/,,$(@:.o=-objs)) \
$($(subst $(obj)/,,$(@:.o=-y))) \
$($(subst $(obj)/,,$(@:.o=-m)))),$^)

 1 Intel® VTune™ Profiler User Guide

28

with the line:

link_multi_deps = $(filter %.o,$^)

NOTE
See the patch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?
id=69ea912fda74a673d330d23595385e5b73e3a2b9 for more information.

12. Install the new module:

sudo make M=./drivers/gpu/drm/i915 modules_install
13. Make sure the folder with the new driver is present in /etc/depmod.d/* files, or just add it:

echo "search extradrivers" | sudo tee /etc/depmod.d/00-extra.conf
14. Update initramfs:

sudo depmod
sudo dracut --force

15. Reboot the machine:

sudo reboot
16. Make sure the new driver is loaded:

modinfo i915 | grep filename
The command output should be the following:

filename: /lib/modules/4.18.0-80.11.2.el8_0.x86_64/extradrivers/gpu/drm/i915/i915.ko
To roll back the changes and load the original module i915:

1. Remove the folder with the new driver from /etc/depmod.d/* files:

sudo rm /etc/depmod.d/00-extra.conf
2. Update initramfs:

sudo depmod
sudo update-initramfs -u

3. Reboot the machine:

sudo reboot

GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Rebuild and Install Module i915 for GPU Analysis on Ubuntu*

To collect i915 ftrace events required to analyze the GPU utilization, your Linux kernel should be properly
configured. If the Intel® VTune™ Profiler cannot start an analysis and provides an error message: Collection of
GPU usage events cannot be enabled. i915 ftrace events are not available. You need to rebuild and install the
re-configured module i915. For example, for kernel 4.14 and higher, these settings should be enabled:
CONFIG_EXPERT=y and CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS=y.

If you update the kernel often, make sure to build the special kernel for GPU analysis.

On Ubuntu* systems, if you update the kernel rarely, you can configure and rebuild only module i915 as
follows:

NOTE
Installing the kernel requires root permissions.

Intel® VTune™ Profiler User Guide 1

29

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=69ea912fda74a673d330d23595385e5b73e3a2b9
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=69ea912fda74a673d330d23595385e5b73e3a2b9

1. Add source package repositories for your Ubuntu* version.

For example, on Ubuntu Bionic Beaver* add:

sudo add-apt-repository -s "deb http://ru.archive.ubuntu.com/ubuntu/ bionic main restricted"
2. Install build dependencies:

sudo apt -y build-dep linux linux-image-$(uname -r)
sudo apt -y install libncurses-dev flex bison openssl libssl-dev dkms libelf-dev libudev-dev
libpci-dev libiberty-dev autoconf

3. Install kernel headers:

sudo apt -y install linux-headers-$(uname -r)
4. Create a folder for kernel source:

mkdir -p /tmp/kernel
cd !$

5. Download kernel sources:

apt -y source linux
cd linux-*

6. Configure the kernel modules:

cp /usr/src/linux-headers-$(uname -r)/.config ./
cp /usr/src/linux-headers-$(uname -r)/Module.symvers ./

7. Update the version in Makefile in the current directory.

The version value should be the same as in the uname -r command output. For example, if uname -r
prints 4.15.0-20-generic, the values in the Makefile must be:

VERSION = 4
PATCHLEVEL = 15
SUBLEVEL = 0
EXTRAVERSION = -20-generic
Update the file, if required, and save it.

8. Make sure the kernel version is set correctly in the Makefile:

make kernelversion
The command output for the example above must be:

4.15.0-20-generic
9. Update the new .config file, if required, and save it.

Make sure the following settings in the file are enabled:

CONFIG_EXPERT=y
CONFIG_FTRACE=y
CONFIG_DEBUG_FS=y
CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS=y

10. Create a full config file for the kernel:

make olddefconfig
11. Build module i915:

make -j$(getconf _NPROCESSORS_ONLN) modules_prepare
make -j$(getconf _NPROCESSORS_ONLN) M=./drivers/gpu/drm/i915 modules

If you get the following error:

LD [M] drivers/gpu/drm/i915/i915.o
ld: no input files

 1 Intel® VTune™ Profiler User Guide

30

you need to replace the following lines in scripts/Makefile.build:

link_multi_deps = \
$(filter $(addprefix $(obj)/, \
$($(subst $(obj)/,,$(@:.o=-objs))) \
$($(subst $(obj)/,,$(@:.o=-y))) \
$($(subst $(obj)/,,$(@:.o=-m)))), $^)

with the line:

link_multi_deps = $(filter %.o,$^)

NOTE
See the patch https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?
id=69ea912fda74a673d330d23595385e5b73e3a2b9 for more information.

12. Install the new module:

sudo make M=./drivers/gpu/drm/i915 modules_install
13. Make sure the folder with the new driver is present in /etc/depmod.d/* files, or just add it:

echo "search extradrivers" | sudo tee /etc/depmod.d/00-extra.conf
14. Update initramfs:

sudo depmod
sudo update-initramfs -u

15. Reboot the machine:

sudo reboot
16. Make sure the new driver is loaded:

modinfo i915 | grep filename
The expected command output is the following:

filename: /lib/modules/4.15.0-20-generic/extradrivers/gpu/drm/i915/i915.ko
To roll back the changes and load the original module i915:

1. Remove the folder with new driver from /etc/depmod.d/* files:

sudo rm /etc/depmod.d/00-extra.conf
2. Update initramfs:

sudo depmod
sudo update-initramfs -u

3. Reboot the machine:

sudo reboot

GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Verify Intel® VTune™ Profiler Installation
A self-check script is available to validate that
appropriate drivers are installed and the system is set
up properly to collect performance data. The script
can be run on individual systems or on a cluster
environment.

Intel® VTune™ Profiler User Guide 1

31

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=69ea912fda74a673d330d23595385e5b73e3a2b9
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=69ea912fda74a673d330d23595385e5b73e3a2b9

The vtune-self-checker script is available from <install-dir>/bin64Installation Information on the
Windows or Linux system on which you installed VTune Profiler. The script runs several representative
analysis types on a sample with reliable hotspots. After the script completes, it produces a log file and gives
diagnostics on the success or failure of the checks. The analysis types that are launched cover:

• Software sampling and tracing collection (Hotspots and Threading in the user-mode sampling)
• Core event-based sampling collection (Hotspots in the hardware event-based sampling mode with and

without stacks)
• HPC Performance Characterization
• Microarchitecture Exploration analysis
• Memory Access analysis with uncore events
• Threading with hardware event-based sampling
• Performance Snapshot
• GPU Compute/Media Hotspots (source analysis and characterization modes)

The result of the self-check provides these details:

• Analyses that passed the check
• Analyses that failed the check
• Possible collection limitations
• Steps to overcome collection limitations
• Information about missing permissions or outdated drivers

Use the --log-dir option when running the script to specify a location for the log file to be stored. This
option is useful when running the script on a compute node through a job scheduler.

Install VTune Profiler Server
Set up Intel® VTune™ Profiler as a web server, using a
lightweight deployment intended for personal use or a
full-scale corporate deployment supporting multi-user
environment.

VTune Profiler Server Deployment
Deployment of the VTune Profiler server depends on your usage mode and purpose:

Deployment
Mode

Benefits Limitations

Personal use/
evaluation

• No host platform setup. VTune
Profiler Server is installed as part of
the VTune Profiler GUI.

• Quick on-boarding experience with
self-signed TLS certificates

• Single user mode
• Medium security level

Integration with
SAML Single-Sign-
On (SSO)

• Automatic authentication with
company accounts

• Support for multi-user environment
• High security level
• Support for selective access to VTune

Profiler Server (for example, per user
network group)

• Mandatory company IT support to
register VTune Profiler Server in IT
SAML SSO infrastructure

 1 Intel® VTune™ Profiler User Guide

32

Deployment
Mode

Benefits Limitations

Deployment
behind a reverse
proxy (NGINX*,
Apache* web
server, IIS, etc.)

• Reuse of existing IT web hosting
infrastructure (including transport
security and user authentication)

• High security level
• Support for multi-user environment

• DevOps expertise required

Depending on your choice, you can proceed with the next steps:

• Set up transport security.
• Configure user authentication/authorization.

Intel® VTune™ Profiler User Guide 1

33

How It Works

1. (Reverse proxy and SAML SSO modes) Admin installs a VTune Profiler Server instance in a lab.

 1 Intel® VTune™ Profiler User Guide

34

2. (Reverse proxy and SAML SSO modes) Admin emails the URL of the installed VTune Profiler Server to
the User(s).

3. User accesses the VTune Profiler via a supported web browser, configures and runs analysis on an
arbitrary target system.

VTune Profiler Server can be accessed from any client machine.
4. When analysis is initiated, the VTune Profiler Server installs a VTune Profiler Agent on the specified

target system. This agent performs collection and uploads results to the VTune Profiler Server for
analysis and storage.

Use this glossary of terms for your reference:

VTune Profiler
Server

VTune Profiler started as a web server and serving a web site to access the VTune
Profiler GUI from remote client machines using a web browser.

User User of the VTune Profiler Server.

User client
system

A machine that the User is logged to and used to access the VTune Profiler Server via
a web browser.

Target system A machine, local or remote, that is profiled with the VTune Profiler.

VTune Profiler
Agent

A piece of VTune Profiler software that runs on a target system.

System Requirements
VTune Profiler Server System

• 64-bit Linux* or Windows* OS
• Same system requirements and supported operating system distributions as specified for VTune Profiler

command line tool in the Release Notes

Client System

• Chrome, Firefox or Safari (recent versions)

VTune Profiler Server is tested with the latest versions of supported browsers at the time of each release.

Target System

• 32- or 64-bit Linux or Windows OS
• Same system requirements and supported operating system distributions as specified for VTune Profiler

target systems in the Release Notes

NOTE
VTune Profiler Server currently does not support cross-platform profiling. If the VTune Profiler Server is
hosted on a Linux system, then it supports data collection on Linux target systems only. The same is
applicable to Windows systems.

See Also
Web Server Interface

Set Up Transport Security
VTune Profiler Server web site is accessible via encrypted HTTPS connection. HTTPS requires a Transport
Layer Security (TLS) certificate. Depending on your deployment mode, you can use different types of TLS
certificates.

Intel® VTune™ Profiler User Guide 1

35

https://www.intel.com/content/www/us/en/developer/articles/release-notes/vtune-profiler-release-notes.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/vtune-profiler-release-notes.html

Self-Signed TLS Certificate
The self-signed certificate is automatically generated when the VTune Profiler Server is started. No additional
actions are required from the user who starts the server, but the web browser will provide a warning that the
server certificate is not trusted and will ask for a confirmation to proceed.

Signed TLS Certificate
You are recommended to use properly signed TLS certificates so that web browsers automatically validate
authenticity of the VTune Profiler Server. Such certificate should be provisioned by your company IT
department.

To set up the transport security, the Admin should follow these steps:

1. Provide the signed TLS certificate to users of the VTune Profiler Server.

Make sure to include the VTune Profiler Server DNS name to either Common Name or Alternative
Domain Names.

For example, if the URL to access the VTune Profiler Server is https://vtune.lab01.myorg.com, the
TLS certificate Common Name should be vtune.lab01.myorg.com, or vtune.lab01.myorg.com
should be included into Alternative Domain Names.

2. Start the VTune Profiler Server as follows:

vtune-backend --tls-certificate /path/to/vtune.lab01.myorg.com.pfx --tls-certificate-password-
path /path/to/cert_password.txt

You can also enter the certificate password interactively by using the --tls-certificate-password
option instead of --tls-certificate-password-path. In this case, the VTune Profiler Server will
prompt to enter the password:

vtune-backend --tls-certificate /path/to/vtune.lab01.myorg.com.pfx --tls-certificate-password

Certificate password:
If the certificate private key is stored in a separate file, use the --tls-certificate-key option:

vtune-backend --tls-certificate /path/to/vtune.lab01.myorg.com.crt --tls-certificate-key /
path/to/vtune.lab01.myorg.com.key

See Also
Web Server Interface

Configure User Authentication/Authorization
Use the default passphrase authentication to run the
VTune Profiler Server, or benefit from your company
solutions with reverse proxy or SAML authentication.

User authentication and authorization for VTune Profiler Server is controlled by a configuration file stored in
<vtune-install-dir>/backend/config.yml. This configuration file uses YAML format and comes with
brief inline documentation describing available configuration options.

Passphrase Authentication
In the default personal use mode, VTune Profiler Server is configured to use passphrase authentication/
authorization. When you start the server, you can specify a passphrase:

 1 Intel® VTune™ Profiler User Guide

36

There are no usernames involved: if the passphrase is shared between multiple users, then they are treated
as the same user.

VTune Profiler persists the hash of the passphrase. The browser also persists a secure HTTPS cookie so that
you do not enter the passphrase each time. Cookie expiration time is configurable, default value is 365 days.
When you access the VTune Profiler Server from a different machine or use a different browser, or if the
browser cookies are cleaned / expired, then you are prompted to enter the passphrase again.

If you forget the passphrase, you can reset it by re-running the VTune Profiler Server using the --reset-
passphrase option. The server provides an outcome URL with a one-time token to reset the passphrase:

vtune-backend --reset-passphrase
Serving GUI at https://127.0.0.1:65417?one-time-token=e2ed7c1365c972ec1024ac4e53179a08

When you open this URL in a web browser, you are prompted to set a new passphrase.

Reverse Proxy Authentication
VTune Profiler Server can be deployed behind a reverse proxy, which is a web server that forwards all
requests to the VTune Profiler Server and serves its responses back to the user. With this type of setup, the
system administrator can configure arbitrary user authentication and authorization in the reverse proxy.
Reverse proxy is configured to pass authenticated user ID to the VTune Profiler Server, while the VTune
Profiler Server is configured to trust this user ID.

To enable the reverse proxy authentication, the administrator needs to follow these steps:

1. Change the authentication type in the <vtune-install-dir>/backend/config.yml to reverse-
proxy and specify the header, which is an HTTP header that reverser proxy uses to pass authenticated
user ID.

2. Start the VTune Profiler Server as follows:

• If VTune Profiler Server and reverse proxy are on the same host: start the VTune Profiler
Server without the --allow-remote-ui option to prevent remote connections to be accepted by
the VTune Profiler Agent:

vtune-backend --web-port=8080
Serving GUI at https://127.0.0.1:8080
warn: Server access is limited to localhost only. To enable remote access, restart with --allow-
remote-ui.

• If VTune Profiler Server and reverse proxy are on different hosts: configure the reverse
proxy to use a client certificate authentication when calling the VTune Profiler Server. Provide the
VTune Profiler Server with the path to the pubic part of the reverse proxy client certificate :

vtune-backend --allow-remote-ui --client-certificate /path/to/public/reverse/proxy/cert.crt

NOTE
You are recommended to use the client certificate authentication even when VTune Profiler Server and
the reverse proxy are on the same host to prevent an unauthorized access from the host system.

SAML SSO Authentication
VTune Profiler Server supports SAML 2.0 Single Sign On (SSO) for user authentication.

To enable the SAML SSO authentication, the Admin needs to follow these steps:

1. Change the authentication type in the <vtune-install-dir>/backend/config.yml to saml and
specify the rootUrl and the entityID.

Intel® VTune™ Profiler User Guide 1

37

2. Request the IT service to register the VTune Profiler Server into the SAML SSO infrastructure. The
request should include the entity ID, consume URL (rootUrl + consumePath), and the name of a
network user group to be provided with an access to the VTune Profiler Server.

In response, the IT service provides the entry point for SAML Identity Provider and its public certificate.
3. Enter the data provided with the IT service to the entryPoint and cert fields in the config.yml file.
4. Start the VTune Profiler Server.

See Also
Web Server Interface

Security Best Practices
Performance profiling is an activity that may involve
making important security decisions. Learn about
some important security considerations that arise
when installing and using Intel® VTune™ Profiler.

Due to the inherent nature of performance profiling, Intel® VTune™ Profiler requires certain levels of access to
deliver some of the more advanced features. It is important that you are aware of these implications to
enable you to make informed security decisions.

Administrator and Root Privileges
VTune Profiler requires administrator or root privileges for performing specific types of analyses. On
Windows* OS, this means starting VTune Profiler as Administrator, and on Linux* systems, this requires sudo
privileges.

It is recommended to only start VTune Profiler with elevated privileges if a specific analysis requires these
privileges. Avoid staying in elevated mode for viewing collected results.

Controlling Sampling Driver Access (Linux* OS)
By default, on Linux OS, VTune Profiler installer creates a vtune user group, which is given access to the
Sampling Driver through the Linux* I/O Control. It is recommended to not alter the default settings, for
example, by creating a broad user group. Since the driver runs on the kernel level, exposing the driver to a
large group of users can make your system vulnerable. Additionally, any user that has access to the driver
can potentially obtain sensitive information by collecting performance metrics from the system.

Though VTune Profiler takes preemptive measures by validating all user input, it is recommended that you
follow the principle of least required privilege when allowing access to the sampling driver.

Security Implications of Setting perf_event_paranoid (Linux* OS)
On Linux OS, the perf_event_paranoid setting controls the access levels for unprivileged users of perf.
VTune Profiler may recommend that you set this value to 0 to perform a specific analysis. At this level, the
collected data includes per-process and system-wide performance monitoring data, including CPU and system
events both from the user space and the kernel. This may create a potential for sensitive data leaks.

For more information on the usage of perf with VTune Profiler and possible limitations, see the Profiling
Hardware Without Intel Sampling Drivers Cookbook recipe.

VTune Profiler Server Authentication Security
Though all network traffic of VTune Profiler Server is encrypted, it is important to select the appropriate
authentication scheme when installing VTune Profiler Server. While passphrase authentication is a viable
option for some use cases, such as personal use, it is recommended to use other authentication schemes
offered when using VTune Profiler Server in broader environments. Detailed information on configuring
secure user access channels is available in the Install VTune Profiler Server section of the User Guide.

 1 Intel® VTune™ Profiler User Guide

38

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Open Intel® VTune™ Profiler
Open Intel® VTune™ Profiler with the graphical user
interface (vtune-gui) or command-line interface
(vtune).

NOTE
Intel® VTune™ Profiler is a new renamed version of Intel® VTune™ Amplifier.

To accommodate the product name change, the command line tool amplxe-cl is renamed to vtune.
Graphical interface launcher amplxe-gui is renamed to vtune-gui.

Once you have downloaded Intel® VTune™ Profiler, follow these steps to run the application:

1. Locate the installation directory.
2. Set environment variables.
3. Open Intel® VTune™ Profiler

• From the GUI
• From the command line

Default Installation Paths
Whether you downloaded Intel® VTune™ Profiler as a standalone component or with the Intel® oneAPI Base
Toolkit, the default path for your <install-dir> is:

Operating
System

Path to <install-dir>

Windows* OS • C:\Program Files (x86)\Intel\oneAPI\
• C:\Program Files\Intel\oneAPI\

(in certain systems)

Linux* OS • /opt/intel/oneapi/ for root users
• $HOME/intel/oneapi/ for non-root users

macOS* /opt/intel/oneapi/

Set Environment Variables
To set up environment variables for VTune ProfilerVTune Profiler, run the setvars script:

Linux* OS:source <install-dir>/setvars.sh
Windows* OS:<install-dir>\setvars.bat
When you run this script, it displays the product name and the build number. You can now use the vtune and
vtune-gui commands.

Open VTune Profiler from the GUI
On Windows* OS, use the Search menu or locate VTune Profiler from the Start menu to run the standalone
GUI client.

For the version of VTune Profiler that is integrated into Microsoft* Visual Studio* IDE on Windows OS, do one
of the following:

• Select Intel VTune Profiler from the Tools menu of Visual Studio.

Intel® VTune™ Profiler User Guide 1

39

• Click the

Configure Analysis with VTune Profiler toolbar button.

On a macOS* system, start Intel VTune Profiler version from the Launchpad.

NOTE
You can also launch the VTune Profiler from the Eclipse* IDE.

Open VTune Profiler from the Command Line
To launch the VTune Profiler from the command line, run the following scripts from the <install-dir>/
bin64 directory:

• vtune-gui for the standalone graphical interface
• vtune for the command line interface

To open a specific VTune Profiler project or a result file, enter:

> vtune-gui <path>
where <path> is one of the following:

• full path to a result file (*.vtune)
• full path to a project file (*.vtuneproj)
• full path to a project directory. If the project file does not exist in the directory, the New Project dialog

box opens and prompts you to create a new project in the given directory.

For example, to open the matrix project in the VTune Profiler GUI on Linux, run:

vtune-gui /root/intel/vtune/projects/matrix/matrix.vtuneproj

See Also
Web Server Interface

Install Intel® VTune™ Profiler

Get Started with Intel® VTune™ Profiler

Set Up Project

Get Started with Intel® VTune™ Profiler
When you start Intel® VTune™ Profiler, a Welcome page opens with several links to product news, resources,
and directions for your next steps.

 1 Intel® VTune™ Profiler User Guide

40

To start with VTune Profiler, you need to have a project that specifies a target to analyze.

To create a new project, click the New Project... link. If a project is open, its name shows up on the
Welcome page as the Current project.

To configure and run a new analysis for the current project, click Configure Analysis... on the
Welcome screen. You also use this selection to configure target and analysis settings for a project
that is currently open.

The Configure Analysis link opens the Performance Snapshot analysis type by default. This
snapshot gives you a quick overview of issues affecting your application performance.

For other analysis types, click the analysis header to open the Analysis Tree which displays all
available analyses.

For quick and easy access to an existing project used recently, click the required project name in the
Recent Projects list. Hover over a project name in the list to see the full path to the project file.

Click Open Project... to open an existing project (*.vtuneproj).

To open a recently collected result, click the required item in the Recent Results list. By default,
each result name has an identifier of its analysis type (last two letters in the result name); for
example, tr stands for Threading analysis. Hover over a result name in the list to see the full path to
the result file.

Click Open Result... to open a result file (*.vtune).

Use the link bar to access additional informational resources such as Performance Analysis Cookbook,
online product documentation or social media channels. Consider getting started with the product by
running the Help Tour that guides you through the interface using a sample project.

Review the latest Featured Content that typically includes performance tuning scenarios and tuning
methodology articles.

Use the Get Started document to get up and running with a basic Hotspots analysis using your own
application on your host system.

• Windows*
• Linux*
• macOS*

NOTE
From a macOS host, you can launch a collection on a remote Linux* system or on an Android* system
and view the data collection result on the host. VTune Profiler does not support local analysis on a
macOS host.

Intel® VTune™ Profiler User Guide 1

41

https://software.intel.com/en-us/vtune-amplifier-cookbook
https://www.intel.com/content/www/us/en/docs/vtune-profiler/get-started-guide/current/windows-os.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/get-started-guide/current/linux-os.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/get-started-guide/current/macos.html

See Also
Introduction and Key Features

Set Up Remote Linux* Target

Android* Targets

Intel® VTune™ Profiler Graphical User Interface

Intel® VTune™ Profiler Command Line Interface

Eclipse* and Intel System Studio IDE Integration

Microsoft Visual Studio* Integration

Intel® VTune™ Profiler Graphical User Interface
When you create a project in Intel® VTune™ Profiler, these features help you analyze data:

 1 Intel® VTune™ Profiler User Guide

42

Project Navigator. Use the navigator to manage your project and collected analysis results.

Menu and Toolbar. Use the VTune Profiler menu and toolbar to configure and control performance
analysis, define and view project properties. Click the

Intel® VTune™ Profiler User Guide 1

43

button to open/close the Project Navigator. Use the

Configure Analysis toolbar button to access an analysis configuration.

Analysis type and viewpoint. View the correlation of the analysis result and a viewpoint associated
with it. A Viewpoint is a pre-set configuration of windows/panes for an analysis result. For most of
analysis types, you can click the down arrow to switch between viewpoints and focus on particular
performance metrics.

Analysis Windows. Switch between window tabs to explore the analysis type configuration options
and collected data provided by the selected viewpoint.

Grouping. Use the Grouping drop-down menu to choose a granularity level for grouping data in the
grid. Available groupings are based on the hierarchy of the program units and let you analyze the
collected data from different perspectives; for example, if you are developing specific modules in an
application and interested only in their performance, you may select the Module/Function/Call
Stack grouping and view aggregated data per module functions.

Filtering.VTune Profiler provides two basic options for filtering the collected data: per object and per
time regions. Use the filter toolbar to filter out the result data according to the selected object
categories: Module, Process, Thread, and so on. To filter the data by a time region, select this region
on the timeline, right-click and choose Filter In by Selection content menu option.

This could be useful, for example, to get region specific data in the context summary for the HPC
Performance Characterization or GPU Compute/Media Hotspots analyses.

See Also
Open Intel® VTune™ Profiler

Analyze Performance

Control Data Collection

Microsoft Visual Studio* Integration

Web Server Interface
Use Intel® VTune™ Profiler in a web server mode to get
an easy on-boarding experience, benefit from a
collaborative multi-user environment, and access a
common repository of collected performance results.

The web server interface helps you quickly get started with the tool since you do not need to install VTune
Profiler as a desktop application on every client system. You can use the VTune Profiler Server to configure
and control analysis on arbitrary target systems and view collected results.

To run an analysis via a web interface:

1. (Personal mode) Run the VTune Profiler Server to get a URL to access the web interface.

(Reverse proxy/SAML SSO modes) Get the server URL from your admin.
2. Access the server via the URL.
3. Deploy the VTune Profiler Agent
4. Select your target system:

 1 Intel® VTune™ Profiler User Guide

44

• client system (localhost)
• remote system

5. Run the analysis

To control VTune Profiler agents, use the Administrator Dashboard.

Run VTune Profiler Server
Prerequisite: VTune Profiler Server is installed with VTune Profiler GUI.

In the personal/evaluation usage mode, run the VTune Profiler Server as follows:

1. Start the VTune Profiler Server:

<vtune-install-dir>/bin64/vtune-backend
If you want the VTune Profiler Server to access a specific TCP port, specify it with the --web-port
option. For example:

vtune-backend --web-port=8080
VTune Profiler Server outputs a URL to access the GUI. For the first run, the URL includes a one-time
token. For example:

Serving GUI at https://127.0.0.1:64880?one-time-token=0160852eeff593e0ab0a0f90991b4efa
Optionally, you can specify a working directory for VTune Profiler Server using the --data-directory
option. For example:

vtune-backend --web-port=8080 --data-directory="C:\vtune-results"

NOTE Additional command-line options are available to make the usage of VTune Profiler Server in
containers more convenient. See Use VTune Profiler Server in Containers for details.

VTune Profiler Server allows you to create a directory with a custom hierarchy, organized to best fit
your needs. Once you point VTune Profiler Server to this directory using the --data-directory option,
users will be able to access all projects and results, regardless of folder names and levels of nesting.
This can be especially useful if you're using an HPC scheduler to regularly collect VTune Profiler
performance data and put it into a shared folder on the network for later examination. For example,
you can organize your results folder by users and their workloads:

Intel® VTune™ Profiler User Guide 1

45

NOTE

• By default, access to the VTune Profiler Server is limited to the local host only. To enable access
from remote client and target systems, restart the server with the --allow-remote-access
option.

• By default, server host profiling is not enabled. To enable the server host profiling, restart the
server with the --enable-server-profiling option.

2. Open the URL with the provided one-time token.

NOTE
If you start the VTune Profiler Server in the personal/evaluation mode with no signed TLS certificate
provided, your web browser warns you that the default self-signed server certificate is not trusted and
asks for your confirmation to proceed.

3. Set a passphrase in the Set Passphrase dialog box.

In the reverse proxy or SAML SSO usage modes, use the URL provided by your admin to access the VTune
Profiler Server instance installed in a lab.

 1 Intel® VTune™ Profiler User Guide

46

Deploy the VTune Profiler Agent
You can choose between automated and manual deployment of the VTune Profiler Agent.

Deploy the Agent automatically

NOTE
VTune Profiler Server uses SSH for automated agent deployment. Running an SSH server on the target
machine is required for automated deployment.

To deploy the Agent automatically:

1. Enter the target machine username.
2. Enter the credentials for target machine:

• For Public key authentication, add your public SSH key to the authorized_keys file on the
target system for the user account that you specify in the Username field. Then, select the Private
key file on your client machine. If your private key is encrypted, specify the Private key
passphrase.

• Alternatively, switch to Password authentication and provide the username and password.
3. Optionally, specify the deployment directory.
4. Click the Deploy Agent button.

Intel® VTune™ Profiler User Guide 1

47

Deploy the Agent manually

To deploy the Agent manually:

1. Click the Download Agent Manually button In the WHERE pane of the Configure Analysis window
or access the http://<VTune Profiler Server URL>/api/collection-agent/download URL to
download the Agent.

NOTE
You can use tools such as wget to download the Agent directly to the target system.

2. Extract the Agent archive with your tool of choice and copy its contents to the target system.
3. Run the vtune-agent executable on the target system and specify the agent owner using the -owner

<vtune-user-id> option.

NOTE
You can find your VTune Profiler user ID in the About dialog.

4. Compare the Agent key fingerprint in the WHERE pane of the Configure Analysis window with the
fingerprint printed out by the agent upon startup. If they match, click the Admit Agent button.

Shared Agents
You can run a shared VTune Profiler Agent. In this case, the Agent will be available to all users of an instance
of VTune Profiler Server. This means that any user of this VTune Profiler Server instance will be able to run
data collection using this agent. It is recommended to only run shared agents using dedicated faceless
accounts.

To deploy a shared agent, check the Share the agent with all VTune Profiler users checkbox in the
WHERE pane of the Configure Analysis dialog, or use the --shared command line option when deploying
an agent manually.

Select a Client System
To profile a client system, which is the same machine that you use to access the VTune Profiler Server via a
web browser, do the following:

1. Click New Project and specify a name for the new project.

VTune Profiler opens the project configuration with your localhost pre-selected as a target system.
2. Configure your analysis target and analysis type.

Select a Remote System
To profile a remote target system, do the following:

1. In the WHERE pane of the Configure Analysis window, click the

down arrow to see available target systems.

 1 Intel® VTune™ Profiler User Guide

48

2. Select Add new remote target....

NOTE
VTune Profiler maintains a list of used remote systems, if any, and displays it under Remote Targets.

3. Enter the hostname or IP address.

Run the Analysis
Once the Agent is running, the Configure Analysis pane displays information that VTune Profiler is
detecting the device configuration.

The Agent downloads the collectors and the target package, which is approximately 100MB in size. Once the
target package is downloaded, the Agent analyzes the target system configuration and displays the
applicable analysis types.

To run an analysis:

1. Install the Intel sampling drivers manually by running these commands:

On Windows* OS:

<vtune-agent-dir>\bin64\amplxe-sepreg.exe
On Linux* OS:

<vtune-agent-dir>/sepdk/src/build-driver
<vtune-agent-dir>/sepdk/src/insmod-sep
The <vtune-agent-dir> is the <vtune_profiler_<version>> installation folder created on the client
system by VTune Profiler.

2. Configure your analysis target and analysis type.
3. Click the

Start button to run the analysis.

Analyze Process Running Under Arbitrary Account (Linux* OS)
VTune Profiler Server provides a way to analyze a process that is running under an arbitrary user account. A
common example is analyzing a process in Attach to Process mode that was previously started under an
arbitrary user account. The account running the process is not necessarily the same as the account the
VTune Profiler Agent was deployed for.

Intel® VTune™ Profiler User Guide 1

49

To enable this functionality, provide the following wrapper script in the Advanced Options section of the
WHAT pane:

#!/bin/sh
#Run VTune collector as the target process owner
sudo -C 65000 -A -u <target process owner> "$@"

The sudo command call runs the VTune Profiler collector under the account specified under <target process
owner>. Replace this placeholder with the account name under which the target process is running.

If the target workload or the collector request a sudo elevation during the analysis, VTune Profiler Server
requests this password interactively in the Web Interface:

NOTE

• The interactive sudo elevation requires that the VTune Profiler Agent is deployed under an account
that has sudo privileges. To achieve that, ensure that the Username that you provide during
deployment belongs to an account with sudo privileges.

• VTune Profiler provides the password directly to the target system and does not store the
password.

Control VTune Profiler Agents
The Administrator Dashboard feature of VTune Profiler Server enables you to monitor and manage one or
multiple agents from a single point.

To open the Administrator Dashboard:

1. Open the VTune Profiler Server interface in your browser.
2. In the main toolbar, open the drop-down menu and select Administrator Dashboard.

 1 Intel® VTune™ Profiler User Guide

50

The dashboard opens in a new tab and shows all agents that are related to this instance of VTune
Profiler Server. This includes both connected and disconnected agents.

Intel® VTune™ Profiler User Guide 1

51

The dashboard enables you to:

• View information related to this agent:

• Target system IP address and hostname
• The username of the agent's user.
• Current connection status.

• Admit or stop one or multiple agents. To admit or stop multiple agents, select the agents by ticking the
checkboxes and click Admit selected or Stop selected.

See Also
Install VTune Profiler Server Set up Intel® VTune™ Profiler as a web server, using a lightweight
deployment intended for personal use or a full-scale corporate deployment supporting multi-user
environment.
Cookbook: Using VTune Profiler Server in HPC Clusters

Microsoft Visual Studio* Integration
You can simplify the process of debugging code and
tuning your application when both your application
and tuning tools are available in the same interface.
Intel® VTune™ Profiler integrates into Microsoft Visual
Studio* environment and enables you to create and
tune your application within a single environment.

Explore details on:

• Integrate VTune Profiler into Visual Studio during installation
• Integrate VTune Profiler into Visual Studio after installation
• Configuring VTune Profiler via Visual Studio Options pane

NOTE Support for Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1 release, and will
be removed in a future release.

 1 Intel® VTune™ Profiler User Guide

52

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/vtune-profiler-server-in-hpc.html

Integrate VTune Profiler into Visual Studio During Installation
VTune Profiler integrates into Visual Studio by default. You specify the version of Visual Studio used for
integration in the IDE Integration portion of the installation wizard. If you have several versions of Visual
Studio and want to instruct the installation wizard to use a specific version for integration, click the
Customize link and specify the required version. For example:

NOTE
You can only integrate one version of VTune Profiler into Visual Studio IDE.

Integrate VTune Profiler into Visual Studio After Installation
If you have already installed VTune Profiler and need to integrate it into Visual Studio IDE, do the following:

1. Open the installation wizard from Control Panel > Programs > Uninstall a program > Intel®
VTune™ Profiler > Change.

2. In the Installed Products window, select the Modify > Add/Remove Components option from the
drop-down menu.

3. Click through to step 3: Integrate IDE. Select the required version of Visual Studio IDE.
4. Click the Next arrow button to complete the update.

Open VTune Profiler in Visual Studio IDE
Once you have integrated VTune Profiler in Visual Studio, open the IDE. The toolbar displays icons to start
VTune Profiler and profile with it.

You can also access VTune Profiler from the Tools menu in the IDE.

Load a project in the Solution Explorer window. Once you have compiled it, you can profile with VTune
Profiler. When you click the Open VTune Profiler icon from the toolbar, the application opens to the
Welcome Page.

The graphical interface of VTune Profiler integrated into Visual Studio is similar to the standalone VTune
Profiler interface.

Intel® VTune™ Profiler User Guide 1

53

Configure VTune Profiler for Visual Studio
To configure VTune Profiler options in the Visual Studio IDE, click the pull-down menu next to the Open
VTune Profiler icon (

) and select Options...:

• Use the General pane to configure general collection options such as application output destination,
management of the collected raw data, and so on.

• Use the Result Location pane to specify the result name template that defines the name of the result file
and its directory.

• Use the Source/Assembly pane to manage the source file cache and specify syntax for the disassembled
code.

• Use the Privacy pane to opt in/out of collecting your information for the Intel® Software Improvement
Program.

If you need to change environment settings, however, read the documentation provided for the Visual Studio
product.

From the standalone interface, you can access VTune Profiler options via the File > Options... menu.

NOTEVTune Profiler does not support the use of CMakePresets.json in Visual Studio.

Supported Visual Studio Projects
VTune Profiler supports the following Visual Studio project types:

• public const string FortranProjectType = "{60B2DF28-7A97-4DB5-AD4A-C0A6CFA6A9EC}";
• public const string CSProjectType = "{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}";
• public const string VBProjectType = "{F184B08F-C81C-45F6-A57F-5ABD9991F28F}";
• public const string ExeProjectType = "{911E67C6-3D85-4FCE-B560-20A9C3E3FF48}";
• public const string CPPProjectType = "{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}";
• public const string ICPPProjectType = "{EAF909A5-FA59-4C3D-9431-0FCC20D5BCF9}";
• public const string PythonProjectType = "{888888A0-9F3D-457C-B088-3A5042F75D52}";
• public const string FSProjectType = "{F2A71F9B-5D33-465A-A702-920D77279786}";

VTune Profiler Release Notes
VTune Profiler System Requirements

Eclipse* and Intel System Studio IDE Integration
After Intel® System Studio installation, Intel® VTune™Profiler is integrated into the Eclipse* IDE. As a result,
you get access to the VTune Profiler standalone interface.

Tip
When you launch VTune Profiler directly from Intel System Studio, you do not need to set environment
variables on your system because they are set during the launch process.

To open the VTune Profiler from Intel System Studio, select the Tools > VTune Profiler > Launch VTune
Profiler menu option.

 1 Intel® VTune™ Profiler User Guide

54

https://www.intel.com/content/www/us/en/developer/articles/release-notes/vtune-profiler-release-notes.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html

See Also
Analyze Performance

Intel® VTune™ Profiler Graphical User Interface

Containerization Support
Use containers to set up environments for profiling:

• You can prepare a container with an environment pre-configured with all the tools you need, then develop
within that environment.

• You can move that environment to another machine without additional setup.
• You can extend containers with different sets of compilers, profilers, libraries, or other components, as

needed.

Depending on the setup, Intel® VTune™ Profiler supports the following target types and analyses:

Setup Target Type Analysis Type

VTune Profiler and
app running in the
same container

• Launch Application
• Attach to Process
• Profile System (not supported

for Java* targets)

• User-Mode Sampling Hotspots
• Hardware Event-Based Sampling Hotspots
• Microarchitecture Exploration

VTune Profiler in
the container and
an app outside the
container

• Attach to Process
• Profile System (not supported

for Java targets)

VTune Profiler
outside the
container and an
app in the

• Attach to Process
• Profile System

Intel® VTune™ Profiler User Guide 1

55

Setup Target Type Analysis Type

container
(supported
containers: LXC*,
Docker, Mesos*,
Singularity*)

NOTE

• The Hotspots (hardware event-based sampling mode) and Microarchitecture Exploration analyses
are configured to use driver-less data collection based on the Linux Perf* tool.

• In the Profile System mode, VTune Profiler profiles all applications running in the same container
or in different containers simultaneously. So, the standard limitation for the system-wide profiling
of the managed code is not applicable to Java applications running in the containers.

• The Attach to Process target type for Java apps is supported only with the Java Development Kit
(JDK).

• When VTune Profiler and an application are NOT running in the same container, both local and
remote target system configurations are available.

See Also
Profile Container Targets from the Host

Run VTune Profiler in a Container

Cookbook: Profiling in a Docker* Container
Cookbook: Profiling in a Singularity* Container

Run VTune Profiler in a Container
Install a Docker* image with Intel® VTune™ Profiler
and profile native or Java* applications running inside
the same container or outside the container.

Prerequisites
• Configure a Docker image:

1.Create and configure a Docker image.

For the pre-installed Intel® oneAPI Base Toolkit including VTune Profiler, you may pull an existing
Docker image from the Docker Hub repository:

host> image=amr-registry.caas.intel.com/oneapi/oneapi:base-dev-ubuntu18.04
host> docker pull "$image"

2.To enable profiling from the container and have all host processes visible from the container, run your
Docker image with --pid=host as follows:

host> docker run --pid=host --cap-add=SYS_ADMIN --cap-add=SYS_PTRACE -it "$image"
where the SYS_ADMIN value adds a capability to run hardware event-based sampling analysis; the
SYS_PTRACE value enables user-mode sampling analysis.

• To profile a target application running in the same container where VTune Profiler is installed, do the
following:

1.Copy your application to the running Docker container. For example:

host> docker cp /home/samples/matrix.tar 98fec14f0c08:/var/local
where 98fec14f0c08 is your container ID.

 1 Intel® VTune™ Profiler User Guide

56

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-in-docker-container.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-in-singularity-container.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-in-docker-container.html

2.Compile your target in the container, if required.

Install and Run VTune Profiler in a Container

NOTE
These steps are NOT required if you use a Docker image with pre-installed Intel oneAPI Base Toolkit.

1. Install the command-line interface of VTune Profiler inside your Docker container.

Make sure to select the [2] Custom installation > [3] Change components to install and de-select
components that are not required in the container environment: [3] Graphical user interface and
[4] Platform Profiler.

2. After installation, set up environment variables for the VTune Profiler. For example, for VTune Profiler in
Intel oneAPI Base Toolkit:

container> source /opt/intel/oneapi/vtune/version/env/vars.sh

Run Analysis for Your Container Target
Set up your analysis for a target running in the container, using the following supported target and analysis
types:

Target Type Analysis Type

• Launch Application
• Attach to Process
• Profile System (not supported for Java*

targets)

• User-Mode Sampling Hotspots
• Hardware Event-Based Sampling Hotspots
• Microarchitecture Exploration

To run an analysis, enter:

vtune -collect <analysis_type> [options] -- [container_target]
For example:

container> vtune -collect hotspots -knob sampling-mode=hw -- /home/samples/matrix

Run Analysis for Your Host Target
Set up your analysis for a target running on the host, using the following supported target and analysis
types:

Target Type Analysis Type

• Attach to Process
• Profile System (not supported for Java

targets)

• User-Mode Sampling Hotspots
• Hardware Event-Based Sampling Hotspots
• Microarchitecture Exploration

To run an analysis, enter:

vtune -collect <analysis_type> [options] -- [host_target]
For example:

container> vtune -collect hotspots -target-process java
Known Issues:

Intel® VTune™ Profiler User Guide 1

57

1. Issue: Function-level analysis is not available by default. VTune Profiler maps the samples to the
binaries from user target app but it cannot resolve the functions because the binaries from the host are
not available from the container.

Solution: Run the Docker container with the mounted host folder containing the binaries and specify a
search directory as an argument to the vtune command.

2. Issue:VTune Profiler is run in the container by the root user while the app on the host is run by a non-
root user. As a result, User-Mode Sampling Hotspots analysis fails to run with an error "Both target and
VTune Profiler should be run by the same user".

Solution: Make sure the same user runs VTune Profiler in the container and the target app outside the
container.

See Also
Cookbook: Profiling in a Docker* Container
Cookbook: Profiling in a Singularity* Container
Installation Guide for VTune Profiler on Linux*
Run Command Line Analysis

Profile Container Targets from the Host
Launch Intel® VTune™ Profiler from the host and profile
native or Java* applications running in an LXC*,
Docker, Mesos*, or Singularity* container on a Linux
system.

Prerequisites
VTune Profiler automatically detects an application running in the container. No container configuration
specific for performance analysis is required. But to run user-mode sampling analysis types (Hotspots or
Threading), make sure to run the container with the ptrace support enabled:

host> docker run --cap-add=SYS_PTRACE -td myimage
or launch the container in the privileged mode:

host> docker run --privileged -td myimage

Configure and Run an Analysis for a Container Target
Set up your analysis for a target running in the container, using the following supported target and analysis
types:

Target Type Analysis Type

• Attach to Process
• Profile System

• User-Mode Sampling Hotspots
• Hardware Event-Based Sampling Hotspots
• Microarchitecture Exploration

1. Create a VTune Profiler project on the host system.
2. From the WHERE pane of the Configure Analysis window, select the Local Host system to start

analysis from your host Linux system or Remote Linux (SSH) to start analysis from a remote Linux
system connected to your host system via SSH. For the remote Linux targets, make sure to configure
SSH connection.

3. From the WHAT section, specify your analysis target. For container target analysis, the following target
types are supported: Attach to Process and Profile System.

Configure your process or system target as usual using available configuration options.

 1 Intel® VTune™ Profiler User Guide

58

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-in-docker-container.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-in-singularity-container.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-install-guide/top/linux.html

NOTE
In the Profile System mode, VTune Profiler profiles all applications running in the same container or
in different containers simultaneously. So, the standard limitation for the system-wide profiling of the
managed code is not applicable to Java applications running in the containers.

You can attach the VTune Profiler running under the superuser account to a Java process or a C/C++
application with embedded JVM instance running under a low-privileged user account. For example, you
may attach the VTune Profiler to Java based daemons or services.

NOTE
The dynamic attach mechanism is supported only with the Java Development Kit (JDK).

4. From the HOW section, select an analysis and customize the analysis options, if required.

NOTE
The Hotspots (hardware event-based sampling mode) and Microarchitecture Exploration analyses are
configured to use driverless data collection based on the Linux Perf* tool to gather performance data
for targets running in a container.

5. Click Start to launch the analysis.

Alternatively, you may configure and run any of these analyses using the VTune Profiler command line
interface (vtune). For example, to run a system-wide Hotspots analysis locally, enter:

host> vtune -collect hs -knob sampling-mode=hw -analyze-system -d 60
To run Hotspots analysis in the Attach to Process mode on a remote system, enter:

host> vtune -target-system=ssh:user1@172.16.254.1 -collect hs -knob sampling-mode=hw -target-
process=java -d 60

View Data
The collected result opens in the default Hotspots viewpoint, where paths to container modules show up with
prefixes (for instance, docker or lxc):

Intel® VTune™ Profiler User Guide 1

59

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

See Also
Cookbook: Profiling in a Docker* Container
Cookbook: Profiling in a Singularity* Container
Java* Code Analysis

Collect Data on Remote Linux* Systems from Command Line

Analysis Target Options

macOS* Support
You can run Intel® VTune™ Profiler on a macOS* host system to launch a collection on a remote Linux*
system or Android* system. You can also view the data collection result on the macOS host. However, Intel®
VTune™ Profiler does not support data collection on a local macOS machine.

Prerequisites
See the Intel VTune Profiler Installation Guide - macOS for detailed information about installing and
configuring VTune Profiler for use on a macOS host.

1. Install VTune Profiler on your macOS host.
2. Set up a SSH connection to your remote target. You may need to install the appropriate drivers on the

target system:

• Target Linux System
• Target Android System

Get Started
1. Launch the VTune Profiler GUI from the Launchpad or launch the command line collector by executing

the amplxe-vars script and running the vtune command. By default, VTune Profiler is installed under
the /Applications directory. For more information, see Standalone VTune Profiler Interface.

 1 Intel® VTune™ Profiler User Guide

60

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-in-docker-container.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-in-singularity-container.html

2. Create a new project.
3. Click the Configure Analysis icon to set up your remote collection. This opens the Performance

Snapshot analysis type by default.

4. View and analyze the results on the host system.

Intel® VTune™ Profiler User Guide 1

61

NOTE Profiling support for the macOS* 11 operating system is deprecated and will be removed in a
future release.

See Also
Introduction

Analyze Performance

Intel® VTune™ Profiler Graphical User Interface

Set Up Project
Before you run an analysis with Intel® VTune™ Profiler,
you must first create a project. This is a container for
an analysis target, analysis type configuration, and
data collection results. You use the VTune Profiler user
interface to create a project. You cannot create one
from the command line.

For Microsoft Visual Studio* IDE, VTune Profiler creates a project for an active startup project, inherits Visual
Studio settings and uses the application generated for the selected project as your analysis target. The
default project directory is My VTune Results-[project name] in the solution directory.

For the standalone graphical interface, create a project by specifying its name and path to an analysis target.
The default project directory is %USERPROFILE%\My Documents\Amplifier XE\Projects on Windows*
and $HOME/intel/vtune/projects on Linux*.

To create a VTune Profiler project for the standalone GUI:

1. Click New Project... in the Welcome screen.

2. In the Create a Project dialog box, configure these settings:

Use This To Do This

Project Name field Enter the name of a new project.

Location field and
Browse button

Choose or create a directory to contain the project.

 1 Intel® VTune™ Profiler User Guide

62

Use This To Do This

Tip
Store all your project directories in the same location.

Create Project button Create a container *.vtuneproj file and open the Configure Analysis window.

3. Click the Create Project button.

The Configure Analysis window opens.

Your default project is pre-configured for the Performance Snapshot analysis. This presents an overview of
issues that affect the performance of your application. Click the

Start button to proceed with the default setup.

To select a different analysis type, click on the name of the analysis in the analysis header section. This
opens an Analysis Tree with all available analysis types.

NOTE
You cannot run a performance analysis or import analysis data without creating a project.

See Also
WHERE: Analysis System

WHAT: Analysis Target

HOW: Analysis Types

VTune Profiler Filenames and Locations

WHERE: Analysis System
Before running a performance analysis, make sure to
prepare your target system, which is a system where
a profiling session runs.

The target system can be the same as the host system, which is a system where you have installed VTune
Profiler. If you run an analysis on the same system where you installed VTune Profiler (i.e. target
system=host system), the target system is called a local system. Target systems other than local ones are
called remote systems.

When you create a project, the Configure Analysis window opens pre-configured to run Performance
Snapshot on the local host. Click on the analysis name in the WHERE pane to open the Analysis Tree, where
you can choose a different analysis type.

Intel® VTune™ Profiler User Guide 1

63

Use these options to decide where you want to run the analysis.

Option Description

Local Host Run an analysis on the local host system.

NOTE
This type of the target system is not available for
macOS*.

Remote Linux (SSH) Run an analysis on a remote regular or embedded
Linux* system. VTune Profiler uses the SSH
protocol to connect to your remote system.

Android Device (ADB) Run an analysis on an Android device. VTune
Profiler uses the Android Debug Bridge* (adb) to
connect to your Android device.

Communication Agent (TCP/IP) Profile an embedded system running a real-time
operating system using the Analysis
Communication Agent.

Arbitrary Host (not connected) Create a command line configuration for a platform
NOT accessible from the current host, which is
called an arbitrary target.

Explore system-specific requirements for analysis targets:

• Windows* targets
• Linux* targets
• Embedded Linux targets (Wind River*, Yocto*)
• Android* targets
• Embedded system targets

See Also
Analysis System Options

Configure SSH Access for Remote Collection

Window: Configure Analysis

 1 Intel® VTune™ Profiler User Guide

64

Analysis System Options
Specify a system targeted for performance analysis in
the Configure Analysis window.

Prerequisites: Make sure to prepare your target system for analysis.

To access the system configuration options:

1. Open the Configure Analysis window.
2. Choose a target system in the WHERE pane.

If you select the Local Host option, no system specific configuration is required. Other systems types
need additional configuration.

Remote Linux* Options
When you select the Remote Linux (SSH) system on the WHERE pane, the VTune Profiler provides the
following configuration options:

Use This To Do This

SSH destination field Specify a username, hostname, and port (if required) for your remote Linux
machine as username@hostname[:port].

Make sure an SSH password-less connection is established in advance.

VTune Profiler
installation directory on
the remote system field

Specify a path to the VTune Profiler on the remote system.

• If VTune Profiler is not installed on the remote system, the collectors are
automatically copied over, installed in the default location (/tmp), and
the path is supplied.

• If VTune Profiler is already installed in a location other than /tmp, add
the location here.

Temporary directory on
the remote system field

Specify a path to the /tmp directory on the remote system where
performance results are temporarily stored.

Deploy button Deploy the collector package to the target system if the package is not
found on the target system.

Android* Options
When you select the Android Device (ADB) system on the WHERE pane, the VTune Profiler displays the
ADB destination menu and prompts you to specify an Android device for analysis. When the ADB
connection is set up, the VTune Profiler automatically detects available devices and displays them in the
menu.

Arbitrary Host Options
When you select the Arbitrary Host (not connected) system on the WHERE pane, the VTune Profiler
prompts you to specify the following data for the system targeted for the analysis but currently not
accessible:

Use This To Do This

Hardware platform field Select a hardware platform for analysis from the drop-down menu, for
example: Intel® processor code named Anniedale.

Operating system field Specify either Windows* or GNU*/Linux* operating system.

Intel® VTune™ Profiler User Guide 1

65

What's Next
In the WHAT pane, select an analysis target for the specified analysis system.

NOTE
You can launch an analysis only for targets accessible from the current host. For an arbitrary target,
you can only generate a command line configuration, save it to the buffer and later launch it on the
intended host.

See Also
Set Up Android* System

Prepare an Android* Application for Analysis

Set Up Linux* System for Remote Analysis

Arbitrary Targets

WHAT: Analysis Target
A target is an executable file you analyze using the
Intel® VTune™ Profiler, which could be an executable
file, a process, or a whole system.

By default, when you create a new project, the VTune Profiler opens an analysis configuration with the
Launch Application analysis target pre-selected:

To change a target type for your project, click the

Browse button on the WHAT pane. Select from these target types:

Launch
Application

Enable the Launch Application pane and choose and configure an application to
analyze, which can be either a binary file or a script. See options for launching an
application.

 1 Intel® VTune™ Profiler User Guide

66

NOTE
This target type is not supported for the Hotspots analysis of Android applications. Use
the Attach to Process or Launch Android Package types instead.

Attach to Process Enable the Attach to Process pane and choose and configure a process to
analyze. See options for attaching to a process.

Profile System Enable the Profile System pane and configure the system-wide analysis that
monitors all the software executing on your system.

Launch Android
Package

Enable the Launch Android Package pane to specify the name of the Android*
package to analyze and configure target options. See options for launching an
Android package.

Options available for the target configuration depend on the target system you select in the WHERE pane.

To focus on analyzing particular processes, you may collect data on all processes (without selecting the
Attach to Process target type) and then filter the collected results as follows:

1. From the Grouping drop-down menu in the Bottom-up window, select the grouping by Process, for
example: Process/Function/Thread/Call Stack.

2. In the grid, right-click the process you are interested in and select the Filter In by Selection option
from the context menu.

VTune Profiler updates the grid to provide data for the selected process only.
3. From the Grouping drop-down menu, select any other grouping level you need, for example:

Function/Call Stack.

VTune Profiler groups the data for the selected process according to the granularity you specified.

NOTE
If attaching to a running process causes a hang or crash, consider launching your application with the
VTune Profiler in a paused state, and resume the collection when the application gets to an area of
interest.

See Also
WHERE: Analysis System

Analysis Target Options

Analysis System Options

HOW: Analysis Types

Analysis Target Options
Manage the analysis of your target using target
specific configuration options provided in the
Configure Analysis window.

To access target configuration options:

1. Open the Configure Analysis window.
2. Choose a target system on the WHERE pane.
3. Choose a target type on the WHAT pane and configure the options below.

Intel® VTune™ Profiler User Guide 1

67

NOTE
To create a command line configuration for a target not accessible from the current host, choose the
Arbitrary Host target system on the WHERE pane. Make sure to choose an operating system your
target will be running with: Windows or GNU/Linux and a hardware platform.

Target options vary with the selected target system and target type (Launch Application, Launch Android
Package, Attach to Process, or Profile System).

Basic Options

Use This To Do This

Inherit settings from
Visual Studio* project
check box (supported for
Visual Studio IDE only)

Enable/disable using the project currently opened in Visual Studio IDE and
its current configuration settings as a target configuration. Checking this
check box makes all other target configuration settings unavailable for
editing.

Inherit system
environment variables
check box

Inherit and merge system and user-defined environment variables.
Otherwise, only the user-defined variables are set.

Launch Application options:

Application field Specify a full path to the application to analyze, which can be a binary file
or script.

Application parameters
field

Specify input parameters for your application.

Use application directory
as working directory
check box

Automatically match your working and application directory (enabled by
default). An application directory is the directory where your application
resides. For example, for a Linux application /home/foo/bar the
application directory is /home/foo. Application and working directories may
be different if, for example, an application file is located in one directory but
should be launched from a different directory (working directory).

Working directory field Specify a directory to use for launching your analysis target. By default, this
directory coincides with the application directory.

Attach to Process options:

Process name field Identify the executable to analyze by its name.

PID field Identify the executable to analyze by its process ID (PID).

Click the Select button to see a list of currently available processes to
attach to. As soon as you select a process of interest, the VTune Profiler
automatically populates the Process name fields with the data for the
selected process.

Launch Android Package options:

Package name field Specify the name of the Android* package (*.apk) to analyze.

 1 Intel® VTune™ Profiler User Guide

68

Launch Android Package options:

To see Android applications and corresponding packages (*.apk) currently
installed on the device targeted for analysis, click the Select button. You
may choose to view only debuggable APKs by selecting the corresponding
checkbox.

NOTE
For performance analysis on non-rooted devices, compile your Android
application setting the debuggable attribute to true
(android:debuggable="true") but make sure to set APP_OPTIM to
release in your Application.mk to enable compilation with optimization.

Arbitrary Host options:

Use MPI launcher check
box

Enable the check box to generate a command line configuration for MPI
analysis. Configure the following MPI analysis options:

• Select MPI launcher: Select an MPI launcher that should be used for
your analysis. You can either enable the Intel MPI launcher option
(default) or select Other and specify a launcher of your choice.

• Number of ranks: Specify the number of ranks used for your
application.

• Profile ranks: Use All to profile all ranks, or choose Selective and
specify particular ranks to profile, for example: 2-4,6-7,8.

• Result location: Specify a relative or absolute path to the directory
where the analysis result should be stored.

Advanced Options
Use the Advanced section to provide more details on your target configuration.

Use This To Do This

User-defined
environment variables
field

Type or paste environment variables required for running your application.

Managed code profiling
mode menu

Select a profiling mode for managed code. Managed mode attributes data
to managed source and only collects managed portion. Native mode
collects everything but does not attribute data to managed source. Mixed
mode collects everything and attributes data to managed source where
appropriate.

Automatically resume
collection after (sec)

Specify the time that should elapse before the data collection is resumed.
When this options is used, the collection starts in the paused mode
automatically.

Automatically stop
collection after (sec)

Set the duration of data collection in seconds starting from the target run.
This is useful if you want to exclude some post-processing activities from
the analysis results.

Analyze child processes
check box

Collect data on processes launched by the target process. Use this option
when profiling an application with the script.

Intel® VTune™ Profiler User Guide 1

69

Use This To Do This

Selecting this option enables the Per-process Configuration where you
can specify child processes to analyze. For example, if your target
application calls shell or makes processes, you can choose to exclude them
from analysis and focus only on the processes you develop.

The Default process configuration represents how all processes should be
analyzed. This line cannot be removed, but can be customized. Depending
on your choice, you may include/exclude from the data collection specific
processes (self value) and the child processes they spawn (children
value).

This option is not applicable to hardware event-based analysis types.

Duration time estimate
menu NOTE

This option is deprecated. Use the CPU sampling interval option on the HOW
configuration pane instead.

Estimate the application duration time. This value affects the size of
collected data. For long running targets, sampling interval is increased to
reduce the result size. For hardware event-based sampling analysis types,
the VTune Profiler uses this estimate to apply a multiplier to the configured
sample after value.

Allow multiple runs
check box

Enable multiple runs to achieve more precise results for hardware event-
based collections. When disabled, the collector multiplexes events running a
single collection, which lowers result precision.

Analyze system-wide
check box

Enable analyzing all processes running on the system. When disabled, only
the target process is analyzed.

This option is applicable to hardware event-based sampling analysis types
only.

Limit collected data by
section

If the amount of raw collected data is very large and takes long to process,
use any of the following options to limit the collected data size:

• Result size from collection start, MB: Set the maximum possible
result size (in MB) to collect. VTune Profiler will start collecting data from
the beginning of the target execution and suspend data collection when
the specified limit for the result size is reached. For unlimited data size,
specify 0.

• Time from collection end, sec: Set the timer enabling the analysis
only for the last seconds before the target run or collection is
terminated. For example, if you specified 2 seconds as a time limit, the
VTune Profiler starts the data collection from the very beginning but
saves the collected data only for the last 2 seconds before you terminate
the collection.

 1 Intel® VTune™ Profiler User Guide

70

Use This To Do This

NOTE
The size of data stored in the result directory may not exactly match
the specified result size due to the following reasons:

• The collected data may slightly exceed the limit since the VTune
Profiler only checks the data size periodically.

• During finalization, the VTune Profiler loads the raw data into a
database with additional information about source and binary files.

CPU mask field Specify CPU(s) to collect data on (for example: 2-8,10,12-14). This option
is applicable to hardware event-based analysis types only.

Custom collector field Provide a command line for launching an external collection tool, if any. You
can later import the custom collection data (time intervals and counters) in
a CSV format to a VTune Profiler result.

Select finalization mode
section

Finalization may take significant system resources. For a powerful target
system, select Full mode to apply immediately after collection. Otherwise,
shorten finalization with selecting the fast mode (default) or defer it to run
on another system (compute checksums only).

Wrapper script field Provide a script that is launched on the target system before starting the
collection. On the host system, you can prepare a custom script that
prepares the target environment and calls the VTune Profiler collector in this
environment.

An example of the wrapper script:

#!/bin/bash

Prefix script
echo "Target process PID: $VTUNE_TARGET_PID"

Run VTune collector
"$@"

Postfix script
ls -la $VTUNE_RESULT_DIR
You can use the script to perform any actions available through the CLI of
your target operating system, and use "$@" or "$*" to pass all arguments
into the script and start VTune Profiler collection in this environment.

The following environment variables are available from the script:

VTUNE_TARGET_PID
 VTUNE_TARGER_PROC_NAME
 VTUNE_RESULT_DIR
 VTUNE_TEMP_DIR
 VTUNE_TARGET_PACKAGE_DIR
 VTUNE_DATA_DIR
 VTUNE_USER_DATA_DIR

Intel® VTune™ Profiler User Guide 1

71

Use This To Do This

NOTE

• VTune Profiler preserves the content of the script. The script is
preserved within the project and is run for every analysis within that
project. To apply any changes to the script, attach it again using the
same Wrapper script field.

• For Linux targets, make sure that the script file is saved with LF line
endings.

Result location options Select where you want to store your result file. By default, the result is
stored in the project directory.

Trace MPI check box
(Linux* targets only)

Configure collectors to trace MPI code and determine MPI rank IDs in case
of a non-Intel MPI library implementation.

Analyze KVM guest OS
check box (Linux targets
only)

Enable KVM guest system profiling. For proper kernel symbol resolution,
make sure to specify:

• a local path to the /proc/kallsyms file copied from the guest OS
• a local path to the /proc/modules file copied from the guest OS

Android Device options:

Analyze unplugged
device check box

Enable collection on an unplugged device to exclude ADB connection and
power supply impact on the results. When this option is used, you configure
and launch an analysis from the host but data collection starts after
disconnecting the device from the USB cable or a network. Collection results
are automatically transferred to the host as soon as you plug in the device
back.

Arbitrary Host options:

Select a system for
result finalization options

The result can be finalized on the same target system where the analysis is
run (default). In this case make sure your target system is powerful enough
for finalization. If you choose to finalize the result on another system,
VTune Profiler will only compute module checksums to avoid an ambiguity
in resolving binaries on a different system.

Support Limitations
• VTune Profiler provides limited support for profiling Windows* services. For details, see Profiling Windows

Services article on the web.
• System-wide profiling is not supported for the user-mode sampling and tracing collection.
• For driverless event-based sampling data collection, VTune Profiler supports local and remote Launch

Application, Attach to Process and Profile System target types but their support fully depends on the Linux
Perf profiling credentials specified in the /proc/sys/kernel/perf_event_paranoid file and managed
by the administrator of your system using root credentials. For more information, see the perf_event
related configuration files topic at http://man7.org/linux/man-pages/man2/perf_event_open.2.html. By
default, only user processes profiling at the both user and kernel spaces is permitted, so you need
granting wider profiling credentials via the perf_event_paranoid file to employ the Profile System
target type.

 1 Intel® VTune™ Profiler User Guide

72

HTTP://SOFTWARE.INTEL.COM/EN-US/ARTICLES/PROFILING-WINDOWS-SERVICE
HTTP://SOFTWARE.INTEL.COM/EN-US/ARTICLES/PROFILING-WINDOWS-SERVICE

What's Next
In the HOW pane, select an analysis type applicable to the specified target type and click Start to run the
analysis.

NOTE
You can launch an analysis only for targets accessible from the current host. For an arbitrary target,
you can only generate a command line configuration, save it to the buffer and later launch it on the
intended host.

See Also
Arbitrary Targets

Managed Code Targets

Limit Data Collection

Allow Multiple Runs or Multiplex Events

Import External Data

Generate Command Line Configuration from GUI

HOW: Analysis Types
Intel® VTune™ Profiler provides a set of pre-configured
analysis types you may start with to address your
particular performance optimization goals.

When you create a project, VTune Profiler opens the Configure Analysis window that prompts you to
specify WHAT you want to analyze (an application, process, or a whole system), a system WHERE you plan to
run the analysis, and select HOW you need to run the analysis.

Click the header in the HOW pane to open an analysis tree. Select from an analysis type from one of these
groups:

Performance Snapshot analysis:

• Use Performance Snapshot to get an overview of issues that affect the performance of an application on
your system. The analysis is a good starting point that recommends areas for deeper focus. You also get
guidance on other analysis types to consider running next.

Algorithm analysis:

Intel® VTune™ Profiler User Guide 1

73

• Use the Hotspots analysis type to investigate call paths and find where your code is spending the most
time. Identify opportunities to tune your algorithms. See Finding Hotspots tutorial: Linux | Windows.

• Use Anomaly Detection (preview) to identify performance anomalies in frequently recurring intervals of
code like loop iterations. Perform fine-grained analysis at the microsecond level.

• Memory Consumption is best for analyzing memory consumption by your app, its distinct memory
objects, and their allocation stacks. This analysis is supported for Linux targets only.

Microarchitecture analysis:

• Microarchitecture Exploration (formerly known as General Exploration) is best for identifying the CPU
pipeline stage (front-end, back-end, and so on) and hardware units responsible for your hardware
bottlenecks.

• Memory Access is best for memory-bound apps to determine which level of the memory hierarchy is
impacting your performance by reviewing CPU cache and main memory usage, including possible NUMA
issues.

Parallelism analysis:

• Threading is best for visualizing thread parallelism on available cores, locating causes of low concurrency,
and identifying serial bottlenecks in your code.

• Use HPC Performance Characterization to understand how your compute-intensive application is using the
CPU, memory, and floating point unit (FPU) resources. See Analyzing an OpenMP* and MPI Application
tutorial: Linux.

I/O analysis:

• Input and Output analysis monitors utilization of the IO subsystems, CPU and processor buses.

Accelerators analysis:

• GPU Offload (preview) is targeted for applications using a Graphics Processing Unit (GPU) for rendering,
video processing, and computations. It helps you identify whether your application is CPU or GPU bound.

• GPU Compute/Media Hotspots (preview) is targeted for GPU-bound applications and helps analyze GPU
kernel execution per code line and identify performance issues caused by memory latency or inefficient
kernel algorithms.

• CPU/FPGA Interaction analysis explores FPGA utilization for each FPGA accelerator and identifies the most
time-consuming FPGA computing tasks.

Platform analysis:

• System Overview is a driverless event-based sampling analysis that monitors a general behavior of your
target system and identify platform-level factors that limit performance.

VTune Profiler-Platform Profiler:

Use VTune Profiler-Platform Profiler to get a holistic view of system behavior. You can then perform system
characterization on a deployed system that runs a full load over an extended period of time.

With VTune Profiler-Platform Profiler, you can get insights into these aspects:

• Platform configuration
• Utilization
• Performance
• Imbalances related to compute, memory, storage, IO, and interconnects

NOTE
A PREVIEW FEATURE may or may not appear in a future production release. It is available for your
use in the hopes that you will provide feedback on its usefulness and help determine its future. Data
collected with a preview feature is not guaranteed to be backward compatible with future releases.

Advanced users can create a custom analysis using the data collectors provided by VTune Profiler, or
combining the collector of VTune Profiler with another custom collector.

 1 Intel® VTune™ Profiler User Guide

74

https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-common-bottlenecks-linux/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-common-bottlenecks-windows/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/current/overview.html

Search Directories
Search directories are used to locate supporting files
and display analysis information in relation to your
source code.

In some cases, the Intel® VTune™ Profiler cannot locate the supporting user files necessary for displaying
analysis information and you may need to configure additional search locations or override standard ones.
This is required for .exe projects on Windows* created out of Microsoft Visual Studio*, where no information
about project directory structure is available, for C++ projects with a third party library for which you wish to
define binaries/sources, or for the imported projects with the data collected remotely. When you run a
remote data collection, the VTune Profiler copies binary files from the target system to the host by default.
You need to either copy symbol and source files to the host or mount a directory with these files.

VTune Profiler searches the directories in the particular order when finalizing the collected data. For the
VTune Profiler integrated into the Visual Studio IDE, the search directories are defined by the Microsoft Visual
Studio C++ project properties.

For successful module resolution, the VTune Profiler needs to locate the following files:

• binaries (executables and dynamic libraries)
• symbols
• source files

It automatically locates the files for C/C++ projects that are not moved after building the application and
collecting the performance data.

Configure Search Directories
To configure search directories:

1. Click the

Configure Analysis toolbar button.

The Configure Analysis window opens.
2. Click the

Search Sources/Binaries button at the bottom to open the corresponding dialog box and specify
paths for symbol, binary and source files for the file resolution on the host.

3. To add a new search directory in the Search Directories table, click the <Add a new search
location> row and type in the path and name of the directory in the activated text box, or click the
browse button on the right to select a directory from the list. For example, if your project was initially
located in /work/projects/my_project on Linux* and then was moved to /home/user/
my_project_copy, you need to specify the /home/user/my_project_copy as a search directory for
binary/symbol and source files.

NOTE
The search is non-recursive. Make sure to specify all required directories.

If the search directories were not configured properly and modules were not resolved, you may see the
following:

Intel® VTune™ Profiler User Guide 1

75

• In the Summary window, you see a pop-up message starting with "Data is not complete due to missing
symbol information for user modules...". This pop-up window provides shortcut options to specify search
directories and re-resolve the analysis result.

• In the Bottom-up or Top-down Tree pane, the module shows only one [Unknown] line instead of
meaningful lines with function names.

• When you double-click a row to view the related source code, you get a Cannot find the source file
window asking you to locate the source file.

If the VTune Profiler cannot locate symbol files for system modules, it may provide incomplete stack
information in the Bottom-up/Top-down Tree panes and Call Stack pane. In this case, you may see
[Unknown frame(s)] hotspots when attributing system layers to user code using the Call Stack Mode
option on the filter toolbar. To avoid this for Windows targets, make sure to configure the Microsoft symbol
server or set the _NT_SYMBOL_PATH environment variable. For Linux targets, enable Linux kernel analysis.

See Also
Dialog Box: Binary/Symbol Search

Dialog Box: Source Search

Problem: Unknown Frames

Finalization

Search Directories for Remote Linux* Targets

Search Directories for Android* Targets

Specify Search Directories from Command Line
 from command line

Search Order
When locating binary/symbol/source files, the Intel® VTune™ Profiler searches the following directories, in the
following order:

1. Directory <result dir>/all (recursively).
2. Additional search directories that you defined for this project in the VTune ProfilerBinary/Symbol

Search dialog box.
3. For local collection, an absolute path.

For remote collection, the VTune Profiler searches its cache directory for modules copied from the
remote system or tries to get the module from the remote system using the absolute path.

For results copied from a different machine, make sure to copy all the necessary source, symbol, and
binary files required for result finalization.

• For binaries, the path is captured in the result data files.
• For symbol files, the path is referenced in the binary file.
• For source files, the path is referenced in the symbol file.

On Linux*, to locate the vmlinux file, the VTune Profiler searches the following directories:

• /usr/lib/debug/lib/modules/`uname -r`/vmlinux
• /boot/vmlinuz-`uname -r`

4. Search around the binary file.

1.Search the directory of the corresponding binary file.
2.On Windows*, search the directory of the corresponding binary file and alter the name of the symbol
file holding the initial extension (for example, app.dll + app_x86.pdb -> app.pdb).
3.On Linux, search the .debug subdirectory of the corresponding binary file directory.

 1 Intel® VTune™ Profiler User Guide

76

5. On Windows, Microsoft Visual Studio* search directories. All directories are considered as non-
recursive. Directories may be specific to the selected build configuration and platform in time of
collection.

6. System directories.

On Windows:

• Binary files: %SYSTEMROOT%\system32\drivers (non-recursively)
• Symbol files:

• All directories specified in the _NT_SYMBOL_PATH environment variable (non-recursively). Symbol
server paths are possible here as well as in step 2.

• srv*%SYSTEMROOT%\symbols (treated as a symbol server path)
• %SYSTEMROOT%\symbols\dll (non-recursively)

On Linux:

• Binary files: If the file to search is a bare name only (no full path, no extension), it is appended by
the .ko extension before searching in the following directories:

1./lib/modules (non-recursively)
2./lib/modules/`uname -r`/kernel (recursively)

• Symbol files:

• /usr/lib/debug (non-recursively)
• /usr/lib/debug with appended path to the corresponding binary file (for example, /usr/lib/

debug/usr/bin/ls.debug)
• Source files:

• /usr/src (non-recursively)
• /usr/src/linux-headers-`uname -r` (non-recursively)

If the VTune Profiler cannot find a file that is necessary for a certain operation, such as viewing source, it
brings up a window enabling you to enter the location of the missing file.

Intel® VTune™ Profiler User Guide 1

77

NOTE
VTune Profiler automatically applies recursive search to the <result dir>/all directory and some
system directories (Linux only). Additional directories you specify in the project configuration are
searched non-recursively.

1. For non-recursive directories, the VTune Profiler searches paths by merging the parts of the
file path with the specified directory iteratively. For example, for the /aaa/bbb/ccc/
filename.ext file on Linux:

/specified/search/directory/aaa/bbb/ccc/filename.ext
/specified/search/directory/bbb/ccc/filename.ext
/specified/search/directory/ccc/filename.ext
/specified/search/directory/filename.ext

2. For recursive directories, the VTune Profiler searches the same paths as for the non-recursive
directory and, in addition, paths in all sub-directories up to the deepest available level. For
example:

/specified/search/directory/subdir1/filename.ext
/specified/search/directory/subdir1/sub…subdir1/filename.ext
...
/specified/search/directory/subdir1/sub…subdirN/filename.ext
...
/specified/search/directory/subdirN/filename.ext

3. For symbol server paths on Windows, symsrv.dll is used from product distributive. Custom
symsrv.dll:s are not supported.

See Also
Search Directories

Window: Cannot Find <file type> File

Dialog Box: Binary/Symbol Search

Dialog Box: Source Search

Set Up Analysis Target
When you create a project for the Intel® VTune™
Profiler performance analysis, you have to specify
what you want to profile - your analysis target, which
could be an executable file, a process, or a whole
system.

Supported Targets
Before starting an analysis, make sure your target and system are compiled/configured properly for
performance profiling.

VTune Profiler supports analysis targets that you can run in these environments:

 1 Intel® VTune™ Profiler User Guide

78

Development
Environment
Integration

• Microsoft* Visual Studio*
• Eclipse*

Target
Platform

• Linux* OS
• Windows* OS
• Android* OS
• FreeBSD*
• QNX*
• Intel® Xeon Phi® processors (code name: Knights Landing)

Programming
Language

• C/C++
• Fortran
• C# (Windows Store applications)
• Java*
• JavaScript
• Python*
• Go*
• .NET*
• .NET Core

Programming
Model

• Windows* API
• OpenMP* API
• Intel Cilk™ Plus
• OpenCL™ API
• Message Passing Interface (MPI)
• Intel Threading Building Blocks
• Intel Media SDK API

Virtual
Environment

• VMWare*
• Parallels*
• KVM*
• Hyper-V*
• Xen*

Containers LXC*, Docker*, Mesos*

Specify Your Target
To specify your target for analysis:

1. Click the

New Project button on the toolbar to create a new project.

If you need to re-configure the target for an existing project, click the

Configure Analysis toolbar button.

The Configure Analysis window opens. By default, the project is pre-configured to run the
Performance Snapshot analysis.

Intel® VTune™ Profiler User Guide 1

79

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html

2. If you do not run an analysis on the local host, expand the WHERE pane and select an appropriate
target system.

The target system can be the same as the host system, which is a system where the VTune Profiler GUI
is installed. If you run an analysis on the same system where the VTune Profiler is installed (i.e. target
system=host system), such a target system is called local. Target systems other than local are called
remote systems. But both local and remote systems are accessible targets, which means you can
access them either directly (local) or via a connection (for example, SSH connection to a remote
target).

Local Host Run an analysis on the local host system.

NOTE
This type of the target system is not available for macOS*.

Remote Linux (SSH) Run an analysis on a remote regular or embedded Linux* system.
VTune Profiler uses the SSH protocol to connect to your remote system.
Make sure to fill in the SSH Destination field with the username,
hostname, and port (if required) for your remote Linux target system as
username@hostname[:port].

Android Device (ADB) Run an analysis on an Android device. VTune Profiler uses the Android
Debug Bridge* (adb) to connect to your Android device. Make sure to
specify an Android device targeted for analysis in the ADB Destination
field. When the ADB connection is set up, the VTune Profiler
automatically detects available devices and displays them in the menu.

Arbitrary Host (not
connected)

Create a command line configuration for a platform NOT accessible from
the current host, which is called an arbitrary target.

3. From the WHAT pane, specify an application to launch or click the

Browse button to select a different target type:

Launch Application
(pre-selected)

Enable the Launch Application pane and choose and configure an
application to analyze, which can be either a binary file or a script.

NOTE
This target type is not supported for the Hotspots analysis of Android
applications. Use the Attach to Process or Launch Android Package
types instead.

Attach to Process Enable the Attach to Process pane and choose and configure a
process to analyze.

Profile System Enable the Profile System pane and configure the system-wide
analysis that monitors all the software executing on your system.

Launch Android
Package

Enable the Launch Android Package pane to specify the name of the
Android* package to analyze and configure target options.

 1 Intel® VTune™ Profiler User Guide

80

NOTE

• If you use VTune Profiler as a web server, the list of available targets and target systems differs.
• For driverless event-based sampling data collection, VTune Profiler supports local and remote

Launch Application, Attach to Process and Profile System target types but their support fully
depends on the Linux Perf profiling credentials specified in the /proc/sys/kernel/
perf_event_paranoid file and managed by the administrator of your system using root
credentials. For more information see the perf_event related configuration files topic at http://
man7.org/linux/man-pages/man2/perf_event_open.2.html. By default, only user processes
profiling at the both user and kernel spaces is permitted, so you need granting wider profiling
credentials via the perf_event_paranoid file to employ the Profile System target type.

What's Next
As soon as you specified the analysis system and target, you may either click the Start button to run
Performance Snapshot or click the analysis name in the analysis header to choose a different analysis type.

See Also
Analysis System Options

Analysis Target Options

WHAT: Analysis Target

HOW: Analysis Types

target-system
vtune option

Arbitrary Targets
 (not connected)

Collect Data on Remote Linux* Systems from Command Line

Generate Command Line Configuration from GUI

Prepare Application for Analysis
Follow this guidance to understand how to compile an
application for analysis with Intel® VTune™ Profiler and
make your analysis more productive.

Recommendations for All Compiled Languages
These guidelines apply to all supported operating system hosts and compiled languages. It is highly
recommended that you follow this guidance to make your use of VTune Profiler as effective as possible.

• Do This:

Build your application in Release mode, with maximum appropriate compiler optimization level.

Because:

• This eliminates performance issues that can be resolved by compiler optimizations, enabling you to
focus on bottlenecks that require your attention.

• Do This:

Intel® VTune™ Profiler User Guide 1

81

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Generate debug information for your application, and, if possible, download debug information for any
third-party libraries it uses.

Because:

• This enables source-level analysis: view problematic source lines right in VTune Profiler.
• This enables resolution of function names and proper call stack information.
• By default, most compilers/IDEs do not generate debug information in Release mode.

Prepare a C++ Application on Windows
To fulfill the recommendations on Windows, you will need these compiler flags:

/O2 /Zi /DEBUG
• The /O2 flag enables compiler optimizations that favor speed.

NOTE The /O2 flag is a recommendation to ensure you are profiling the Release version of your
application with optimizations that favor speed enabled. If the production use of your application calls
for a different optimization level, use your required level. The key idea is to profile your application
when it is compiled as close to production use as possible.

• The /Zi and /DEBUG flags enable generation of debug info in the Program Database (PDB) format.

Follow these steps to configure the optimization level and debug information generation in Microsoft Visual
Studio*:

1. Enable Release build configuration:

a. On the Visual Studio toolbar, from the Solution Configuration drop-down list, select Release.

This also enables the /O2 optimization level. To check, right-click on your project and open
Properties > C/C++ > Optimization.

2. Enable Debug information generation:

a. Right-click your project and select the Properties item in the context menu.

The Property Pages dialog opens.
b. Make sure the Release configuration is selected in the Configuration drop-down list.
c. From the left pane, select C++ > General.
d. In the Debug Information Format field, choose Program Database (/Zi).
e. From the left pane, select Linker > Debugging.
f. In the Generate Debug Info field, select Generate Debug Information (/DEBUG).
g. Click OK to save your changes and close the dialog box.

These steps cover the most important compiler switches that apply to all C++ applications.

Additional compiler switches are recommended for applications that use OpenMP* or Intel® oneAPI Threading
Building Blocks for threading. See the Compiler Switches for Performance Analysis on Windows* Targets topic
for more information.

Once you have the debug information, make sure to set the Search Directories to point VTune Profiler to the
PDB and source files.

Prepare a C++ Application on Linux
To fulfill the recommendations on Linux, you will need these compiler flags:

-O2 -g
• The -O2 flag enables compiler optimizations that favor speed.

 1 Intel® VTune™ Profiler User Guide

82

NOTE The -O2 flag is a recommendation to ensure you are profiling the Release version of your
application with optimizations that favor speed enabled. If the production use of your application calls
for a different optimization level, use your required level. The key idea is to profile your application
when it is compiled as close to production use as possible.

• The -g flag enables generation of debug information.

On Linux, VTune Profiler requires debug information in the DWARF format to enable source and call stack
analysis.

The -g option usually produces debugging information in the DWARF format. If you are having trouble
generating debug information in the DWARF format, see Debug Information for Linux Binaries.

These steps cover the most important compiler switches that apply to all C++ applications.

Additional compiler switches are recommended for applications that use OpenMP* or Intel® oneAPI Threading
Building Blocks for threading. See the Compiler Switches for Performance Analysis on Linux* Targets topic for
more information.

Once you have the debug information, make sure to set the Search Directories to point VTune Profiler to the
binary and source files.

Prepare a SYCL Application
Same basic recommendations apply to SYCL applications.

Additionally, add these flags to enable functionality specific to accelerators:

This Flag Does This

-gline-tables-only
-fdebug-info-for-profiling

Enable generating debug information for GPU analysis of a
SYCL application.

-Xsprofile Enable source-level mapping of performance data for
CPU/FPGA Interaction analysis.

(Optional) Instrument Your Code
VTune Profiler also offers the Instrumentation and Tracing Technology API (ITT API) for C++ and Fortran,
which enables you to:

• generate and collect trace data for your application
• mark logical sections—such as a multi-step data loading process—of your code and see them in VTune

Profiler
• finely balance overhead and amount of trace data
• when necessary, eliminate all ITT API calls at compile time with a single macro, thus getting zero

overhead

See the Instrumentation and Tracing Technology API section for details on configuration and usage.

Windows* Targets
Use the Intel® VTune™ Profiler for the performance
analysis of Windows* targets.

Prepare a Windows Target for Analysis
Before you begin analyzing your target for performance, you need to configure and build it as follows:

• Enable downloading debug information for the system libraries by configuring the Microsoft* Symbol
Server.

Intel® VTune™ Profiler User Guide 1

83

• Enable debug information generation for your application binary files.
• Build your target in the Release mode with the recommended compiler optimization settings.
• Create a baseline against which you can compare the performance improvements as a result of tuning.

For example, you instrument your code to determine how long it takes to compress a certain file. Your
original target code, augmented to provide these timing data, serves as your performance baseline. Every
time you modify your target, compare the performance metrics of your optimized target with the baseline,
to verify that the performance has improved.

Choose a Target from Visual Studio* IDE
For the VTune Profiler integrated into the Microsoft Visual Studio* IDE, you may choose an analysis target
and run a performance analysis directly from your development environment.

To choose an analysis target for an existing solution:

1. Open a solution in the Intel VTune Profiler Results folder. To display the folder, in the Visual Studio
IDE, select View > Other Windows > Intel VTune Profiler Results.

2. If the solution contains more than one project, select an appropriate project.

VTune Profiler toolbar and menu items are enabled. By default, the VTune Profiler inherits the Visual
Studio settings and uses the application generated for the selected project as your analysis target. You
may right-click the project and select

Configure Analysis toolbar button to verify target properties from the menu. By default, the target
type is set to Launch Application.

To choose an existing standalone executable file:

1. From the Visual Studio menu, choose File > Open > Project/Solution.

The Open Project dialog box opens.
2. Select the Executable Files (*.exe) filter and choose an executable file.

Visual Studio software creates a solution with a single project that contains your executable file. VTune
Profiler features are enabled.

3. Right-click the project and select Intel VTune Profilerversion > Configure Analysis... option.

The Configure Analysis window opens.
4. Click the Binary/Symbol Search or Source Search button at the bottom to specify search

directories. By default, the search directories are defined by the Microsoft Visual Studio* C++ project
properties. To view default project search directories for system functions in Visual Studio, right-click
the project in the Solution Explorer and select Properties.

When finalizing the collected data, the VTune Profiler uses these directories to search for binary
(executables and dynamic libraries), symbol (typically .pdb files), and source files supporting your
target in the particular order. VTune Profiler automatically locates the files for C/C++ projects which are
not moved after building the application and collecting the performance data.

5. Save the solution.

NOTE
Different versions of Visual Studio may have different user interface elements. Refer to the Visual
Studio online help for the exact user interface elements that you need to view file location.

 1 Intel® VTune™ Profiler User Guide

84

Configure a Windows Target
When creating a VTune Profiler project, you access the Configure Analysis window and select any of the
three available target types for further configuration: Launch Application, Attach to Process, or Profile
System. For example, for the Launch Application target type, you need to specify an application (and its
parameters, if required) for analysis:

When done with the configuration, click the

Browse button on the HOW pane on the right to select and run an analysis type.

See Also
Analysis Target Options

Install the Sampling Drivers for Windows* Targets

Analyze Performance

Search Directories

Cookbook: Profiling JavaScript* Code in Node.js*

Install the Sampling Drivers for Windows* Targets

NOTE
To install the drivers on Windows* 7 (deprecated) and Windows* Server 2008 R2 operating systems,
you must enable the SHA-2 code signing support for these systems by applying Microsoft Security
update 3033929. If the security update is not installed, event-based sampling analysis types will not
work properly on your system.

To verify the sampling driver is installed correctly on a Microsoft Windows* OS, open the command prompt
as an administrator and run the amplxe-sepreg.exe utility located at <install-dir>/bin64.

To make sure your system meets all the requirements necessary for the hardware event-based sampling
collection, enter:

amplxe-sepreg.exe -c
This command performs the following dependency checks required to install the sampling driver:

• platform, architecture, and OS environment
• availability of the sampling driver binaries: sepdrv4_x.sys, socperf2_x.sys, and sepdal.sys
• administrative privileges
• 32/64-bit installation

To check whether the sampling driver is loaded, enter:

Intel® VTune™ Profiler User Guide 1

85

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-javascript-code-in-node-js.html
https://technet.microsoft.com/en-us/library/security/3033929
https://technet.microsoft.com/en-us/library/security/3033929

amplxe-sepreg.exe -s
If the sampling driver is not installed but the system is supported by the VTune Profiler, execute the following
command with the administrative privileges to install the driver:

amplxe-sepreg.exe -i

See Also
Sampling Drivers

Install Intel® VTune™ Profiler

Debug Information for Windows* Application Binaries
Intel® VTune™ Profiler requires debug information for
the binary files it analyzes to obtain accurate
performance data and enable source analysis.

Generate Debug Information in the PDB Format
On Windows* operating systems, debug information is provided in PDB files. Make sure both your system
and application libraries/executable have PDB files.

By default, the Microsoft Visual Studio* IDE does not generate PDB information in the Release mode. For
better results with the VTune Profiler, enable symbol generation manually.

To generate debug information for your binary files:

1. Right-click your C++ project and select the Properties item in the context menu.

The <your_project> Property Pages dialog box opens.
2. From the Configuration drop-down list, choose the Release configuration.

It may be already selected if your current configuration in the Visual Studio environment is Release.
3. From the left pane, select Configuration Properties > C/C++ > General.
4. In the Debug Information Format field, choose Program Database (/Zi).
5. From the left pane, select Configuration Properties > Linker > Debugging.
6. In the Generate Debug Info field, choose Generate Debug Information (/DEBUG).
7. Click OK to close the dialog box.
8. Compile your target application with optimizations.

NOTE
If you configured Visual Studio to generate debug information for your files, you cannot "fix" previous
results because the executable and the debug information do not match the executable you used to
collect the old results.

To generate a native .PDB file for a native image of .NET* managed assembly:

Use the Native Image Generator tool (Ngen.exe) from the .NET Framework. Make sure the search
directories, specified in the Binary/Symbol Search dialog box, include path to the generated .pdb file.

Generate Debug Information for SYCL Applications
To enable performance profiling and generate debug information for SYCL applications running on a GPU,
make sure to compile your code with -gline-tables-only and -fdebug-info-for-profiling options.

See Also
Debug Information for Windows* System Libraries

 1 Intel® VTune™ Profiler User Guide

86

Problem: Unknown Frames

Search Directories

Compiler Switches for Performance Analysis on Windows* Targets
Intel® VTune™ Profiler can analyze most native binaries on Windows* target systems. However, the settings
below are recommended to make the performance analysis more productive and easier:

Use This
Switch

To Do This

/Zi (highly
recommended)

Enable generating the symbol information required to associate addresses with source
lines and to properly walk the call stack in user-mode sampling and tracing analysis
types (Hotspots and Threading).

Release build
(highly
recommended)

Enable maximum compiler optimization to focus VTune Profiler on performance problems
that cannot be optimized with the compiler.

/MD or /MDd Enable identifying the C runtime calls as system functions and differentiating them from
the user code when a proper Call stack mode is applied to the VTune Profiler collection
result.

/D
"TBB_USE_THR
EADING_TOOLS
"

Enable full support for Intel® oneAPI Threaded Building Blocks(oneTBB) in VTune Profiler.

Without TBB_USE_THREADING_TOOLS set, the VTune Profiler will not properly identify
concurrency issues related to using Intel TBB constructs.

/Qopenmp
(highly
recommended)

(Intel C++
Compiler)

Enable the VTune Profiler to identify parallel regions due to OpenMP* pragmas.

/Qopenmp-
link:dynamic
(Intel C++
Compiler)

Enable the Intel Compiler to choose the dynamic version of the OpenMP runtime libraries
which has been instrumented for the VTune Profiler. Usually, this option is enabled for
the Intel Compiler by default.

/Qparallel-
source-
info=2
(Intel C++
Compiler)

Enable/disable source location emission when OpenMP or auto-parallelism code is
generated. 2 is the level of source location emission that tells the compiler to emit path,
file, routine name, and line information.

-gline-
tables-only
-fdebug-
info-for-
profiling
Intel oneAPI
DPC++
Compiler

Enable generating debug information for GPU analysis of a SYCL application.

-Xsprofile Enable source-level mapping of performance data for FPGA application analysis.

Intel® VTune™ Profiler User Guide 1

87

Use This
Switch

To Do This

Intel oneAPI
DPC++
Compiler

Explore the list of libraries recommended or not recommended for the user-mode sampling and tracing
analysis types:

Library Recommended Not Recommended

OpenMP
Runtime
(supplied by
the Intel
Compiler)

libiomp5md.dll
or
libguide40.dll

libiomp5mt.lib, libguide.lib, vcomp80.dll/vcomp90.dll,
or vcomp80d.dll/vcomp90d.dll

C Runtime msvcr90.dll,
msvcr80.dll ,
msvcr90d.dll, or
msvcr80d.dll

libcmt.lib

Avoid These Switches
The following compiler settings are NOT recommended:

Do Not Use
This Switch

Because Of This

debug:parall
el

Enables the Intel® Parallel Debugger Extension for the Intel Compiler, which is not used
for the VTune Profiler.

/Qopenmp-
link:static

Chooses the static version of the OpenMP runtime libraries for the Intel Compiler. This
version of the OpenMP runtime library does not contain the instrumentation data
required for the VTune Profiler analysis.

/
Qopenmp_stub
s

Prevents OpenMP code from being parallel.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Debug Information for Windows* Application Binaries

Debug Information for Windows* System Libraries

Compiler Switches for Performance Analysis on Linux* Targets

 1 Intel® VTune™ Profiler User Guide

88

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Debug Information for Windows* System Libraries

By default, the Microsoft Visual Studio* IDE does not generate PDB information in the Release mode. For
better results with the Intel® VTune™ Profiler, enable symbol generation manually. For system libraries, use
the Microsoft* Symbol Server to download the required PDB files from the Microsoft* web site by selecting
any of the options below:

• Option 1: Configure the Microsoft* Symbol Server from Visual Studio.
• Option 2: Configure the Microsoft Symbol Server from the VTune Profiler Standalone GUI.
• Option 3: Set the environment variable.

NOTE
VTune Profiler does not automatically search the Microsoft symbol server for debug information for
system files since this functionality:

• Requires an internet connection. Some users are collecting and viewing results on isolated lab
systems and do not have internet access.

• Adds an overhead to finalization of the collection results. For each module without debug
information on the local system, a request goes out to the symbol server. If symbols are available,
additional time is required to download the symbol file.

• Uses additional disk space. If symbols for system modules are not used, this disk space is wasted.
• May be unwanted. Many users do not need to examine details of time spent in system calls and

modules. Automatically downloading symbols for system files would be wasteful in this case.

Configure the Microsoft* Symbol Server from Visual Studio* IDE

NOTE
The instructions below refer to the Microsoft Visual Studio* 2015 integrated development environment
(IDE). They may slightly differ for other versions of Visual Studio IDE.

1. Make sure you have Internet connection available on your machine.
2. Go to Tools > Options....

The Options dialog box opens.
3. From the left pane, select Debugging > Symbols.
4. In the Symbol file (.pdb) locations field, select the Microsoft Symbol Servers option, typically

provided by default, or click the

button and add the following address to the list: http://msdl.microsoft.com/download/symbols.
5. Make sure the added address is checked.
6. In the Cache symbols in this directory field, specify the directory where the downloaded symbol files

will be stored.

NOTE
If you plan to download symbols from the Microsoft symbol server only once and then use local
storage, use the following syntax for the cache directory: srv*<local_dir>. For example:
srv*C:\Windows\symbols.

See this example:

Intel® VTune™ Profiler User Guide 1

89

7. Click OK to close the dialog box.

For newly collected results, the VTune Profiler downloads debug information for system libraries
automatically while finalizing the results. For previous results, however, you need to re-finalize the
results so that the VTune Profiler can download the debug information for system libraries. To start re-
finalizing the result, right-click the result node in the Solution Explorer and choose Re-resolve and
Open.

NOTE
If you use the symbol server, the finalization process may take a long time to complete the first time
the VTune Profiler downloads the debug information for system libraries to the local directory specified
in the Options (for example, C:\Windows\symbols). Subsequent finalizations should be faster.

Configure the Microsoft Symbol Server from the VTune Profiler Standalone GUI
1. Click the

Configure Analysis button on the toolbar.

The Configure Analysis window opens.
2. Click the

Search Binaries button at the bottom.
3. Add the following string to the list of search directories:

srv*C:\local_symbols_cache_location*http://msdl.microsoft.com/download/symbols
where local_symbols_cache_location is the location of local symbols. The debug symbols for
system libraries will be downloaded to this location.

NOTE
If you specify different directories for different projects, the files will be downloaded multiple times,
adding unwanted overhead. If you have a Visual Studio project that defines a cache directory for the
symbol server, use the same directory in the standalone VTune Profiler so that you do not waste time
and space downloading symbols that already exist in a cache directory.

 1 Intel® VTune™ Profiler User Guide

90

Set the Environment Variable
Set the environment variable (system or user) _NT_SYMBOL_PATH to
srv*C:\local_symbols_cache_location*http://msdl.microsoft.com/download/symbols .

See Also
Debug Information for Windows* Application Binaries

Enable Linux* Kernel Analysis

Compiler Switches for Performance Analysis on Windows* Targets

Prepare an Android* Application for Analysis

Add Administrative Privileges

To enable such options as detecting context switches or highly accurate CPU time collection, you need local
administrator privileges for running the product.

To run a standalone version of the Intel® VTune™ Profiler as an administrator, right-click the product entry in
the Start menu and select Run as administrator from the context menu.

To run the Intel® VTune™ Profiler integrated into Visual Studio* IDE as the administrator, do the following:

1. From the Start menu, select All Programs > Intel Studio versionand right-click Intel Studio
version with VS version option.

The context menu opens.
2. From the context menu, select the Run as administrator option.

Microsoft Visual Studio* IDE opens with the administrative privileges assigned to your name.

See Also
Highly Accurate CPU Time Data Collection

Linux* Targets
Use the Intel® VTune™ Profiler for performance
analysis on local and remote Linux* target systems.

To analyze your Linux target, do the following:

1. Prepare your target application for analysis:

• Enable downloading debug information for system kernels by installing debug info packages
available for your system version.

• Enable downloading debug information for the application binaries by using the -g option when
compiling your code. Consider using the recommended compiler settings to make the performance
analysis more effective.

• Build your target in the Release mode.
• Create a baseline against which you can compare the performance improvements as a result of

tuning.

For example, you instrument your code to determine how long it takes to compress a certain file.
Your original target code, augmented to provide these timing data, serves as your performance
baseline. Every time you modify your target, compare the performance metrics of your optimized
target with the baseline, to verify that the performance has improved.

2. Prepare your target system for analysis:

• Build and install the sampling drivers, if required.

Intel® VTune™ Profiler User Guide 1

91

NOTE

• If the drivers were not built and set up during installation (for example, lack of privileges, missing
kernel development RPM, and so on), VTune Profiler provides an error message and enables
driverless sampling data collection based on the Linux Perf* tool functionality, which has a limited
scope of analysis options.

• On Ubuntu* systems, VTune Profiler may fail to collect Hotspots and Threading analysis data if the
scope of the ptrace() system call application is limited.

To workaround this issue for one session, set the value of the kernel.yama.ptrace_scopesysctl
option to 0 with this command:

sysctl -w kernel.yama.ptrace_scope=0
To make this change permanent, see the corresponding Troubleshooting topic.

• For remote analysis, configure SSH connection and set up your remote Linux system depending on
the analysis usage mode.

3. Create a VTune Profiler project and run the performance analysis of your choice.

Ubuntu* Systems

See Also
Compiler Switches for Performance Analysis on Linux* Targets

Set Up Remote Linux* Target

Collect Data on Remote Linux* Systems from Command Line

Build and Install the Sampling Drivers for Linux* Targets
Prerequisites for remote Linux target systems: You need root access to the target system.

Prerequisites for all Linux systems: Sampling driver sources. You can find the sampling driver sources for
the local system in the <install_dir>/sepdk folder of your VTune Profiler installation. For remote targets,
locate the target packages for the desired system in the <install_dir>/target folder of your installation,
copy the package to the target system, extract it, and build the driver.

Install Drivers on Linux* Host Systems
During product installation on a host Linux OS, you may control the drivers installation options via the
Advanced Options. VTune Profiler provides the following options:

Use This Option To Do This

Sampling driver install type
[build driver (default) /
driver kit files only]

Choose the driver installation option. By default, VTune Profiler uses
the Sampling Driver Kit to build the driver for your kernel. You may
change the option to driver kit files only if you want to build the
driver manually after installation.

Driver access group [vtune
(default)]

Set the driver access group ownership to determine which set of users
can perform the collection on the system. By default, the group is
vtune. Access to this group is not restricted. To restrict access, see
the Driver permissions option below. You may set your own group
during installation in the Advanced options or change it manually after
installation by executing: ./boot-script -–group <your_group>
from the <install-dir>/sepdk/src directory.

 1 Intel® VTune™ Profiler User Guide

92

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Use This Option To Do This

Driver permissions [660
(default)]

Change permissions for the driver. By default, only a vtune group
user can access the driver. Using this access the user can profile the
system, an application, or attach to a process.

Load driver [yes (default)] Load the driver into the kernel.

Install boot script [yes
(default)]

Use a boot script that loads the driver into the kernel each time the
system is rebooted. The boot script can be disabled later by
executing: ./boot-script --uninstall from the <install-dir>/
sepdk/src directory.

Enable per-user collection
mode [no (default) / yes]

Install the hardware event-based collector driver with the per-user
filtering on. When the filtering is on, the collector gathers data only
for the processes spawned by the user who started the collection.
When it is off (default), samples from all processes on the system are
collected. Consider using the filtering to isolate the collection from
other users on a cluster for security reasons. The administrator/root
can change the filtering mode by rebuilding/restarting the driver at
any time. A regular user cannot change the mode after the product is
installed.

NOTE
For MPI application analysis on a Linux* cluster, you may enable the Per-
user Hardware Event-based Sampling mode when installing the Intel
Parallel Studio XE Cluster Edition. This option ensures that during the
collection the VTune Profiler collects data only for the current user. Once
enabled by the administrator during the installation, this mode cannot be
turned off by a regular user, which is intentional to preclude individual
users from observing the performance data over the whole node including
activities of other users.

After installation, you can use the respective vars.sh files to set
up the appropriate environment (PATH, MANPATH) in the current
terminal session.

Driver build options … Specify the location of the kernel header files on this system, the path
and name of the C compiler to use for building the driver, the path
and name of the make command to use for building the driver.

Check Sampling Driver Installation
To verify that the sampling driver is installed correctly on the host Linux system:

1. Check whether the sampling drivers are installed:

$ cd <install-dir>/sepdk/src
$./insmod-sep -q
This provides information on whether the drivers are currently loaded and, if so, what the group
ownership and file permissions are on the driver devices.

2. Check group permissions.

Intel® VTune™ Profiler User Guide 1

93

If drivers are loaded, but you are not a member of the group listed in the query output, request your
system administrator to add you to the group. By default, the driver access group is vtune. To check
which groups you belong to, type groups at the command line. This is only required if the permissions
are other than 666.

NOTE
If there is no collection in progress, there is no execution time overhead of having the driver loaded
and very little overhead for memory usage. You can let the system module be automatically loaded at
boot time (for example, via the install-boot-script script, used by default). Unless the data is
being collected by the VTune Profiler, there will be no latency impact on the system performance.

Verify Kernel Configuration
To verify kernel configuration:

1. Make sure that the kernel header sources are present on your host system. The kernel version should
be 2.6.28 or later. To find the kernel version, explore kernel-src-dir/include/linux/
utsrelease.h, or, depending on the kernel version: kernel-src-dir/include/generated/
utsrelease.h. For more details, see the README.txt file in the sepdk/src directory.

2. Make sure the following options are enabled in the kernel configuration for hardware event-based
sampling (EBS) collection:

• CONFIG_MODULES=y
• CONFIG_MODULE_UNLOAD=y
• CONFIG_PROFILING=y(kernel versions 5.16 or older)
• CONFIG_SMP=y
• CONFIG_KALLSYMS=y
• CONFIG_TRACEPOINTS=y (required for kernel versions 5.17 and newer; recommended for all other

versions)
• CONFIG_KPROBES=y(kernel versions 5.17 and newer)

3. In addition to the options above, make sure the following options are enabled in the kernel
configuration for EBS collection with stacks:

• CONFIG_KRETPROBES=y
• CONFIG_FRAME_POINTER=y (optional but recommended for Call Stack Mode)

4. For remote target systems, determine if signed kernel modules are required
(CONFIG_MODULE_SIG_FORCE=y). If they are, you must have the signed key that matches your target
system.

If you are building the sampling drivers from a fresh kernel source and want to use it for an existing
target system, get the original key files and sign the sampling driver with the original key. Alternatively,
build the new kernel and flash it to the target device so the target device uses your kernel build.

Build the Sampling Driver
Prerequisites:

• You need kernel header sources and other additional software to build and load the kernel drivers on
Linux. Refer to the Verify kernel configuration section.

• To cross-build drivers for a remote target Linux system, extract the package from the <install-dir>/
target folder to <extract_dir>.

 1 Intel® VTune™ Profiler User Guide

94

NOTE
If the current version of the sampling driver that is shipped with the VTune Profiler installation does
not suit your needs, for example, due to a recent change in the Linux* kernel, you can find the latest
version of the sampling driver on the Sampling Driver Downloads page.

To build the driver if it is missing:

1. Change the directory to locate the build script:

• To build drivers for a local system: $ cd <install-dir>/sepdk/src
• To cross-build drivers for a remote target system: $ cd <extract-dir>/sepdk/src

2. Use the build-driver script to build the drivers for your kernel. For example:

• $./build-driver
The script prompts the build option default for your local system.

• $./build-driver -ni
The script builds the driver for your local system with default options without prompting for your input.

• $./build-driver -ni -pu
The script builds the driver with the per-user event-based sampling collection enabled, without prompting
for your input.

• $./build-driver -ni \
--c-compiler=i586-i586-xxx-linux-gcc \
--kernel-version="<kernel-version>" \
--kernel-src-dir=<kernel-source-dir> \
--make-args="PLATFORM=x32 ARITY=smp"
--install-dir=<path>
The script builds the drivers with a specified cross-compiler for a specific kernel version. This is usually
used for the cross-build for a remote target system on the current host. This example uses the following
options:

• -ni disables the interactive during the build.
• --c-compiler specifies the cross build compiler. The compiler should be available from the PATH

environment. If the option is not specified, the host GCC compiler is used for the build.
• --kernel-version specifies the kernel version of the target system. It should match the uname -r

output of your target system and the UTS_RELEASE in kernel-src-dir/include/generated/
utsrelease.h or kernel-src-dir/include/linux/utsrelease.h, depending on your kernel
version.

• --kernel-src-dir specifies the kernel source directory.
• --make-args specifies the build arguments. For a 32-bit target system, use PLATFORM=x32. For a 64-

bit target system, use PLATFORM=x32_64
• --install-dir specifies the path to a writable directory where the drivers and scripts are copied after

the build succeeds.

Use ./build-driver -h to get the detailed help message on the script usage.

To build the sampling driver as RPM using build services such as Open Build Service (OBS):

Use the sepdk.spec file located at the <install-dir>/sepdk/src directory.

Intel® VTune™ Profiler User Guide 1

95

https://www.intel.com/content/www/us/en/develop/articles/intel-vtune-profiler-sampling-driver-downloads.html

Install the Sampling Drivers
Prerequisites for remote target systems: Copy the sepdk/src folder or the folder specified by the --
install-dir option when building the driver to the target system using ssh, ftp, adb, sdb, or other
supported means.

To install the drivers:

1. If building the drivers succeeds, install them manually with the insmod-sep script:

$ cd <install_dir>/sepdk/src
$./insmod-sep -r -g <group>
where <group> is the group of users that have access to the driver.

To install the driver that is built with the per-user event-based sampling collection on, use the -pu (-
per-user) option as follows:

$./insmod-sep -g <group> -pu
If you are running on a resource-restricted environment, add the -re option as follows:

$./insmod-sep -re
2. Enable the Linux system to automatically load the drivers at boot time:

$ cd <install_dir>/sepdk/src
$./boot-script --install -g <group>
The -g <group> option is only required if you want to override the group specified when the driver was
built.

To remove the driver on a Linux system, run:

./rmmod-sep -s

See Also
Cookbook: Profiling Hardware without Sampling Drivers

Sampling Drivers

Install Intel® VTune™ Profiler

Embedded Linux* Targets

Configure Yocto Project* and Intel® VTune™ Profiler with the Linux* Target Package

Error Message: No Pre-built Driver Exists for This System

Debug Information for Linux* Application Binaries
Intel® VTune™ Profiler requires debug information for
the binary files it analyzes to obtain accurate
performance data and enable source analysis.

Debug Information for Performance Analysis
If your system and application modules have debug information, the VTune Profiler is able to provide full-
scale statistics on call stacks, source data, function names, and so on. For example, you may use the Call
Stack Mode on the filter toolbar to select the User/system functions option and view data on both user
and system functions.

 1 Intel® VTune™ Profiler User Guide

96

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/profiling-hardware-without-sampling-drivers.html

If the VTune Profiler does not find debug information for the binaries, it statically identifies function
boundaries and assigns hotspot addresses to generated pseudo names func@address for such functions, for
example:

If a module is not found or the name of a function cannot be resolved, the VTune Profiler displays module
identifiers within square brackets, for example: [module].

If the debug information is absent, the VTune Profiler may not unwind the call stack and display it correctly in
the Call Stack pane. Additionally in some cases, it can take significantly more time to finalize the results for
modules that do not have debug information.

Generate Debug Info in the DWARF Format
Compile your code using the -g option that usually produces debugging information in the DWARF format.

If DWARF is not a default debugging information format for the compiler, or if you are using MinGW/Cygwin
GCC*, use the -gdwarf-version option, for example: -gdwarf-2 or -gdwarf-3.

Generate Debug Info File for the ELF Format
You can create separate debug info files and link them with an executable/library via debug link or build ID.
Please refer to the GNU* Binutils documentation for more details.

VTune Profiler recognizes both types of linking:

• If an executable file in the ELF format contains a build ID and has a separate debug info file with the
name generated by the build ID, the VTune Profiler is able to find and validate the separate symbol file if
proper search directories are set. While searching the symbol file, the VTune Profiler checks the .build-
id subdirectory of each search directory for a file named hh/hhhhhhhhhhh.debug where hh is the first 2
hexadecimal characters of build ID and hhhhhhhhhhh is the remaining part.

• If an executable file contains a debug link (specified in the .gnu_debuglink section) with a name of
separate debug info file, VTune Profiler tries to find it.

Generate Debug Information for SYCL* Applications
To enable performance profiling and generate debug information for SYCL applications running on a GPU,
make sure to compile your code with -gline-tables-only and -fdebug-info-for-profiling options.

Generate Debug Information for OpenMP* Offload Applications
When you build OpenMP* Offload applications with the Intel® oneAPI DPC++/C++ Compiler or Intel Fortran
compiler, compile your code with the --info-for-profiling switch.

NOTE When using the Intel Fortran compiler to compile OpenMP Offload code, make sure to use the -
debug offload option.

See Also
Compiler Switches for Performance Analysis on Linux* Targets

Enable Linux* Kernel Analysis

Intel® VTune™ Profiler User Guide 1

97

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html

Problem: Unknown Frames

Search Directories

Compiler Switches for Performance Analysis on Linux* Targets
Intel® VTune™ Profiler can analyze most native binaries on Linux target systems. However, the settings below
are recommended to make the performance analysis more productive and easier:

Use This
Switch

To Do This

-g (highly
recommended)

Enable generating the symbol information required to associate addresses with source
lines and to properly walk the call stack in user-mode sampling and tracing collection
types (Hotspots and Threading).

Release build
or -O2 (highly
recommended)

Enable maximum compiler optimization to focus the VTune Profiler on real performance
problems that cannot be optimized with the compiler.

-shared-intel
(Intel® C++
Compiler)

-shared-
libgcc (GCC*
Compiler)

Enable identifying the libm and C runtime calls as system functions and differentiating
them from the user code when a proper filter mode is applied to the VTune Profiler
collection result.

-debug
inline-debug-
info
(Intel C++
Compiler)

Enable the VTune Profiler to identify inline functions and, according to the selectedinline
mode, associate the symbols for an inline function with the inline function itself or its
caller. This is the default mode for GCC* 4.1 and higher.

NOTE The debug inline-debug-info option is enabled by default for the Intel®
oneAPI DPC++/C++ Compiler if you compile with optimizations (-O2 or higher) and debug
information (-g option).

-D
TBB_USE_THREA
DING_TOOLS

Enable Intel® oneAPI Threading Building Blocks Analysis (oneTBB) for the VTune
Profiler. This macro is automatically set if you compile with -D_DEBUG or -
DTBB_USE_DEBUG.

Without TBB_USE_THREADING_TOOLS set, the VTune Profiler will not properly identify
concurrency issues related to using oneTBB constructs.

-qopenmp
(highly
recommended)

(Intel C++
Compiler)

Enable the VTune Profiler to identify parallel regions due to OpenMP* pragmas.

-qopenmp-link
dynamic
(Intel C++
Compiler)

Enable the Intel Compiler to choose the dynamic version of the OpenMP runtime
libraries which has been instrumented for the VTune Profiler. Usually, this option is
enabled for the Intel Compiler by default.

-parallel-
source-info=2

Enable/disable source location emission when OpenMP or auto-parallelism code is
generated. 2 is the level of source location emission that tells the compiler to emit
path, file, routine name, and line information.

 1 Intel® VTune™ Profiler User Guide

98

Use This
Switch

To Do This

(Intel C++
Compiler)

--info-for-
profiling
Intel oneAPI
DPC++
Compiler

Intel Fortran
Compiler

Enable generating debug information for GPU analysis of a SYCL application.

Generate debug information for OpenMP* Offload applications compiled by Intel Fortran
compiler

-Xsprofile
Intel oneAPI
DPC++
Compiler

Enable source-level mapping of performance data for FPGA application analysis.

Avoid These Switches
The following compiler settings are NOT recommended:

Do Not Use
This Switch

Because Of This

Debug build or
-O0

Changes the performance of your application compared to a release build and may
dramatically impact the performance profiling potentially causing you to analyze and
attempt optimization on a section of code that is not a performance problem in the
release build.

-static
-static-
libgcc

Prevents the VTune Profiler from being able to run the user-mode sampling and tracing
analysis types. See below for more details.

NOTE
When you specify the -fast switch with the Intel Compiler, it automatically enables -
static.

-static-
intel

Prevents the user-mode sampling and tracing analysis types from distinguishing system
functions properly. This is the default option for the Intel Compiler.

-qopenmp-
link static

Chooses the static version of the OpenMP runtime libraries for the Intel Compiler. This
version of the OpenMP runtime library does not contain the instrumentation data
required for the VTune Profiler analysis.

-
qopenmp_stub
s

Prevents OpenMP code from being parallel.

-msse4a, -
m3dnow

Generates binaries that use instructions not supported by Intel processors, which may
cause unknown behavior when profiling with the VTune Profiler.

Intel® VTune™ Profiler User Guide 1

99

Do Not Use
This Switch

Because Of This

-debug
[parallel |
extended |
emit-column
| expr-
source-pos |
semantic-
stepping |
variable-
locations]

VTune Profiler works best with -debug full (the default mode when using -g). Other
options including parallel, extended, emit-column, expr-source-pos, semantic-
stepping, and variable-locations are not supported by the VTune Profiler. See -
debug inline-debug-info for more information.

-coarray Prevents the Threading analysis from identifying properly the locks that disable scaling
in Coarray Fortran.

Compiling for the User-Mode Sampling and Tracing Analysis
For successful user-mode sampling and tracing analysis (Hotspots and Threading) of your executable and all
shared libraries, use the following switches to properly walk through the call stack:

• Use -g to generate the symbol information and enable the source code analysis.
• Use -fno-omit-frame-pointer to enable the frame pointers analysis.

NOTE
There are other options that may add frame pointers to your binary as a side effect, for example: -
fexceptions (default for C++) or -O0. To make sure the executable (and shared libraries) have this
information, use the objdump -h <binary> command and make sure you see the .eh_frame_hdr
section there.

User-mode sampling and tracing analysis types work better with dynamic versions of the following libraries:

Library Dynamic
Version
(Recommended
)

Static Version (Not Recommended)

OpenMP
Runtime
(supplied by the
Intel Compiler)

libiomp5.so or
libguide40.so

libiomp5.a or libguide4.a

Posix Thread libpthread.so libpthread.a

C Runtime libc.so libc.a

C++ Runtime libstdc++.so libstdc++.a

Intel Libm libm.so libm.a

User-mode sampling and tracing collection has the following limitations for analyzing statically linked
libraries/functions:

 1 Intel® VTune™ Profiler User Guide

100

• The static version of the OpenMP runtime library supplied by the Intel Compiler does not provide the
necessary instrumentation for the Threading analysis type.

• Call Stack mode cannot properly distinguish user code from system functions.
• User-mode sampling and tracing collection cannot execute unless various C Runtime functions are

exported. There are multiple ways to do this; for example, use the -u command of the GCC compiler:

• -u malloc
• -u free
• -u realloc
• -u getenv
• -u setenv
• -u __errno_location

If your application creates Posix threads (either explicitly or via the static OpenMP library or some other
static library), you need to explicitly define the following additional functions:

• -u pthread_key_create
• -u pthread_key_delete
• -u pthread_setspecific
• -u pthread_getspecific
• -u pthread_spin_init
• -u pthread_spin_destroy
• -u pthread_spin_lock
• -u pthread_spin_trylock
• -u pthread_spin_unlock
• -u pthread_mutex_init
• -u pthread_mutex_destroy
• -u pthread_mutex_trylock
• -u pthread_mutex_lock
• -u pthread_mutex_unlock
• -u pthread_cond_init
• -u pthread_cond_destroy
• -u pthread_cond_signal
• -u pthread_cond_wait
• -u _pthread_cleanup_push
• -u _pthread_cleanup_pop
• -u pthread_setcancelstate
• -u pthread_self
• -u pthread_yield
The easiest way to do this is by creating a file with the above options and passing it to gcc or ld. For
example:

gcc -static mysource.cpp @Cdefs @Pdefs
where Cdefs is a file with options for the required C functions and Pdefs is a file with the options for the
required POSIX functions.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Compiler Switches for Performance Analysis on Windows* Targets

Intel® VTune™ Profiler User Guide 1

101

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Debug Information for Windows* Application Binaries

Enable Linux* Kernel Analysis

Analyze Statically Linked Binaries on Linux* Targets
 on Linux targets

Enable Linux* Kernel Analysis
For successful performance analysis of the kernel and system libraries, do the following:

1. Enable kernel modules resolution.
2. Download and install debug info packages available for your Linux system version.
3. Build the Linux kernel with debug information.

Enable Kernel Modules Resolution
To provide accurate performance statistics for the Linux kernel, the VTune Profiler requires kernel modules
information provided in the /proc/kallsyms file. Make sure the /proc/sys/kernel/kptr_restrict file
contains values that enable reading /proc/kallsyms and providing non-zero addresses for the kernel
pointers:

• If the kptr_restrict value is 0, kernel addresses are provided without limitations (recommended).
• If the kptr_restict value is 1, addresses are provided if the current user has a CAP_SYSLOG capability.
• If the kptr_restrict value is 2, the kernel addresses are hidden regardless of privileges the current

user has.

See more details at: http://lwn.net/Articles/420403/, http://man7.org/linux/man-pages/man7/
capabilities.7.html.

If kernel pointers information was explicitly hidden by setting the kptr_restrict to a non-zero value,
hardware event-based analysis results may not contain functions from kernel modules. As a result, you may
see the CPU time associated with the [Outside any known module] item. To workaround this problem for
the current session, set the contents of the /proc/sys/kernel/kptr_restrict file to 0 before starting
the VTune Profiler as follows:

sysctl -w kernel.kptr_restrict=0

NOTE
To enable kernel profiling without the Intel Sampling Driver via perf, set the perf_event_paranoid
value to <= 1. See the Linux kernel documentation for details.

To resolve symbols for the Linux kernel, the VTune Profiler also uses the System.map file created during the
kernel build and shipped with the system by default. If the file is located in a non-default directory, you may
add it to the list of search directories in the Binary/Symbol Search dialog box when configuring your target
properties.

NOTE
The settings in the /proc/kallsyms and System.map file enable the VTune Profiler to resolve kernel
symbols and view kernel functions and kernel stacks but do not enable the assembly analysis.

 1 Intel® VTune™ Profiler User Guide

102

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

Download and Install Available Debug Kernel Versions
After installing the Linux operating system, the kernel is contained in vmlinux, or vmlinuz, or bzImage in /
boot. Linux vendors typically release compressed kernel files stripped of symbols (vmlinuz or bzImage).
vmlinux is the uncompressed Linux kernel, but it does not include debug information. So, by default the
VTune Profiler cannot retrieve kernel function information from these kernels and presents all hot addresses
captured in the kernel as a unique function or module named [vmlinux]. However, some vendors have
released special debug versions of their kernels that are suitable for performance analysis.

1. Use the uname -r command to identify the running Linux kernel version.
2. Download and install two RPMs matching your system: kernel-debug-debuginfo-*.rpm and

kernel-debuginfo-common-*.rpm. To do this, use any of the following options:

• Browse through the RPMs on your installation CDs or DVDs. For example, for SuSE Linux Enterprise*
9, 10, and 11 distros, SuSE provides "debug" kernel RPMs (kernel-debug-*.rpm) available on the
install CD or from the website. After installing the RPM, the debug version of the kernel file is located
under /boot/vmlinux-*-debug or under /boot/vmlinuz-*-debug. You need to manually
uncompress this kernel file using the gunzip program.

• Browse through the OS vendor FTP site and download the packages. For example: look at ftp://
ftp.redhat.com/pub/redhat/linux/enterprise/5Server/en/os to get packages for Redhat* Enterprise
Server.

• Look for other sources on the internet. For example, for Red Hat Enterprise* Linux 3, 4 and 5
distros, Red Hat provides debuginfo RPMs at http://people.redhat.com/duffy/debuginfo/. After
installing the RPM, the debug version of the kernel file is located under /usr/lib/debug/boot (EL
3) or /usr/lib/debug/lib/modules (EL 4, 5).

3. Use the following commands to install the RPMs:

rpm -ivh kernel-debuginfo-common-*.rpm
rpm -ivh kernel-debug-debuginfo-*.rpm

For some operating systems, you can use yum to install packages directly, for example:

yum --enablerepo=rhel-debuginfo install kernel-debuginfo
4. Verify that the packages have been installed, for example:

rpm -qa|grep kernel
5. Modify the VTune Profiler target properties and specify the path to the uncompressed kernel binary in

the Dialog Box: Binary/Symbol Search , for example: /usr/lib/debug/lib/modules/
2.6.18-128.el5debug/.

Build the Linux Kernel with Debug Information
1. Configure the kernel sources.
2. Edit the kernel source top-level Makefile and add the -g option to the following variables:

CFLAGS_KERNEL := -g
CFLAGS := -g

3. Run make clean; make to create the vmlinux kernel file with debug information. Once a debug
version of the kernel is created or obtained, specify that kernel file as the one to use during
performance analysis.

As soon as the debug information is available for your kernel modules, any future analysis runs will display
the kernel functions appropriately. To resolve the previously collected data against this new symbol
information, update the project Search Directories and click the Re-resolve button to apply the changes.

See Also
Debug Information for Windows* Application Binaries

Intel® VTune™ Profiler User Guide 1

103

Compiler Switches for Performance Analysis on Linux* Targets
 on Linux* targets

Analyze Statically Linked Binaries on Linux* Targets
Call Stack Mode

Resolution of Symbol Names for Linux-Loadable Kernel Modules
To resolve symbol information for Linux kernel
modules, Intel® VTune™ Profiler uses content in
the /sys/module/<module-name>/sections/
directory during the finalization step.

Default permissions for the /sys/module/<module-name>/sections/ directory may allow access only for
the root user. In this case, VTune Profiler reports a warning message. Run VTune Profiler with root privileges
or change permissions for all files in this directory.

Limitations
When you collect data on a remote Linux system, VTune Profiler does not read /sys/module/<module-
name>/sections/* for results. In this case, to resolve symbols properly:

1. Copy the <module-name>/sections folder manually from the target system to ../<parent
directory>/<module-name>/sections on the host system.

2. Add <parent directory> to VTune search directories for binary and symbol files.

See Also
Compiler Switches for Performance Analysis on Linux* Targets

Enable Linux* Kernel Analysis

Problem: Unknown Frames

Search Directories

Analyze Statically Linked Binaries on Linux* Targets

To profile a statically linked binary file, temporary stop stripping the binary file during compilation and make
sure the binary file exports the following symbols from system libraries:

• _init() in the main executable: if you profile a tree of processes, consider using the strategy option.
• libc.so:

• A target exports setenv, getenv(), and __errno_location() symbols unconditionally.
• If a target employs recv() API, it exports recv() and poll().
• If a target employs sleep() or usleep() APIs, it exports sleep() or usleep() respectively, and

nanosleep() symbol.

• libpthread.so:

• If a target employs pthread_create() API, it exports the following symbols:

• pthread_create()
• pthread_key_create()
• pthread_setspecific()
• pthread_getspecific()
• pthread_self()
• pthread_getattr_np()

 1 Intel® VTune™ Profiler User Guide

104

• pthread_attr_destroy()
• pthread_attr_setstack()
• pthread_attr_getstack()
• pthread_attr_getstacksize()
• pthread_attr_setstacksize()
• If a target employs pthread_cancel() API, it exports the following symbols:

• pthread_cancel()
• _pthread_cleanup_push()
• _pthread_cleanup_pop()

• If a target employs _pthread_cleanup_push() or _pthread_cleanup_pop() API, it exports the
following symbols:

• _pthread_cleanup_push()
• _pthread_cleanup_pop()

• If a target employs pthread_mutex_lock() API, it exports pthread_mutex_lock() and
pthread_mutex_trylock() symbol.

• If a target employs pthread_spin_lock() API, it exports pthread_spin_lock() and
pthread_spin_trylock() symbol.

• libdl.so:

If a target employs any of dlopen(), dlsym(), or dlclose() APIs, it exports all three of them
simultaneously.

If the binary file does not export some of the symbols above, use the -u linker switch (for example, specify -
Wl,-u__errno_location if you use compiler for linking) to include symbols into the binary file at the linking
stage of compilation.

See Also
Compiler Switches for Performance Analysis on Linux* Targets

Control Data Collection

Set Up Remote Linux* Target
Use the Intel® VTune™ Profiler installed on the
Windows*, Linux*, or macOS* host to analyze code
performance on remote Linux systems.

VTune Profiler supports the following usage modes for remote analysis of Linux applications on regular and
embedded systems:

• Remote CLI (vtune) or GUI (vtune-gui) (recommended for regular and embedded systems)
• Native CLI with installing and running vtune directly on a remote Linux system
• Native SEP with sep (recommended for tiny embedded systems)

Remote CLI and GUI Usage Mode
Requirements for the target system: ~25 MB disk space

This mode is recommended for most cross-development scenarios supported by the VTune Profiler, especially
if your target system is resource-constrained (insufficient disk space, memory, or CPU power) or if you use a
highly customized Linux target system.

To collect data on a remote Linux system:

Intel® VTune™ Profiler User Guide 1

105

1. Install VTune
Profiler

Install the full-scale VTune Profiler product on the host system.

2. Prepare your
target system
for analysis

1. Set up a password-less SSH access to the target using RSA keys.
2. Install the VTune Profiler target package with data collectors on the target Linux

system.

NOTE
If you choose to install the target package to a non-default location, make sure
to specify the correct path either with the VTune Profiler installation
directory on the remote system option in the WHERE pane (GUI) or with the
-target-install-dir option (CLI).

3. Build the drivers on the host (if required), copy them to the target system and
install the drivers.

NOTE
To build the sampling driver as RPM using build services as Open Build Service
(OBS), use the sepdk.spec file located at <install_dir>/sepdk/src the
directory.

3. Configure and
run remote
analysis

1. On your host system, open the VTune Profiler GUI and select Configure
Analysis.

2. In the Where pane, specify an SSH connection to a remote Linux system.

 1 Intel® VTune™ Profiler User Guide

106

3. In the What pane, specify your target application on the remote system. Make
sure to specify search directories for symbol/source files required for finalization
on the host.

4. In the How pane, choose and configure an analysis type.
5. Start the analysis.

VTune Profiler launches your application on the target, collects data, copies the
analysis result and binary files to the host, and finalizes the data.

4. View results View the collected data on the host.

Native Usage Mode
Requirements for the target system: ~200 MB disk space.

This mode is recommended for regular Linux target systems from supported operating systems listed in the
product Release Notes. In this mode, you install the full-scale VTune Profiler product on the host system and
install the command line interface of the VTune Profiler, vtune, on the target system, which enables you to
run native data collection directly on the target.

The following figure shows an overview of the remote analysis that is run with vtune directly on the target
system:

In the native usage mode, workflow steps to configure and run analysis on a remote system are similar to
the remote collectors mode.

Intel® VTune™ Profiler User Guide 1

107

Native Sampling Collector (SEP) Usage Mode
Sampling сollector (SEP) is a command-line tool for hardware event-based sampling analysis targeted for
resource-restricted systems. The SEP package is delivered as part of the target package of the VTune
Profiler. The SEP package contains both sep utilities and the sepdk source code (for pax.ko and sep4_x.ko)
to build the sampling drivers.

To use SEP, extract the SEP package from the vtune_profiler_target_sep_x86.tgz or
vtune_profiler_target_sep_x86_64.tgz file, build the driver and upload both driver and sep utilities to
the target, and then collect the event-based sampling performance data in command line. See the Sampling
Enabling Product User's Guide for more details.

NOTE
VTune Profiler also provides the sepdk sources for building sampling drivers. This source code could be
same as the source code provided in the SEP package, if the VTune Profiler uses the same driver as
SEP. VTune Profilersepdk sources also include the event-based stack sampling data collector that is
not part of the SEP package.

See Also
Deploy your SSH Key for Intel® VTune™ Profiler

Collect Data on Remote Linux* Systems from Command Line

Set Up Linux* System for Remote Analysis

You can collect data remotely on a target Linux* system by specifying the system as the analysis target in
Intel® VTune™ Profiler by selecting Remote Linux (SSH) in the Where pane when configuring an analysis.
VTune Profiler provides an option to automatically install the appropriate collectors on the target system.
Specify a location for the install using the VTune Profiler installation directory on the remote system
field.

NOTE
The automatic installation on the remote Linux system does not build the sampling drivers although
you can install the pre-built sampling drivers if you connect via password-less SSH as the root user.
Driverless sampling data collection is based on the Linux Perf* tool functionality, which is available
without Root access and has a limited scope of analysis options. To collect advanced hardware event-
based sampling data, manually install the sampling driver or set up the password-less SSH connection
with the Root user account.

1. Install the VTune Profiler collectors on the target system.

• Install the VTune Profiler collectors automatically.
• If the collectors are not automatically installed or you get an error message after an automatic

install attempt, use the following steps to manually prepare for data collection on a remote Linux
system:

Install the VTune Profiler collectors manually.
2. Build and install sampling drivers. (Optional).
3. Set up an SSH access to the target system.

Install the VTune Profiler Collectors Automatically
When you enter the connection parameters in the Remote Linux* (SSH) window of the WHERE pane,
VTune Profiler checks for the presence of VTune Profiler collector package on the target system specified.

If an appropriate package was not located on the target system, VTune Profiler offers to deploy the package
automatically.

 1 Intel® VTune™ Profiler User Guide

108

https://www.youtube.com/watch?v=lTqAA1lcGw4
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Press the Deploy button to start the automatic collectors package deployment process.

If the collectors are not automatically installed or you get an error message after an automatic install
attempt, you can install the collectors manually.

Install the VTune Profiler Collectors Manually
Use the following steps to set up analysis on a target regular or embedded Linux target system.

1. Copy the required target package archive to the target device using ftp, sftp, or scp. The following
target packages are available on the host system where the VTune Profiler is installed:

• <install-dir>/target/linux/vtune_profiler_target_sep_x86.tgz - provides hardware
event-based sampling collector only (SEP) for x86 systems

• <install-dir>/target/linux/vtune_profiler_target_sep_x86_64.tgz - provides hardware
event-based sampling collector only (SEP) for 64-bit systems

• <install-dir>/target/linux/vtune_profiler_target_x86.tgz - provides all VTune Profiler
collectors for x86 systems

• <install-dir>/target/linux/vtune_profiler_target_x86_64.tgz - provides all VTune
Profiler collectors for 64-bit systems

NOTE
Use both *_x86 and *_x86_64 packages if you plan to run and analyze 32-bit processes on 64-bit
systems.

Intel® VTune™ Profiler User Guide 1

109

2. On the target device, unpack the product package to the /tmp directory or another writable location on
the system:

target> tar -zxvf <target_package>.tgz
VTune Profiler target package is located in the newly created directory /tmp/
vtune_profiler_<version>.<package_num>.

When collecting data remotely, the VTune Profiler looks for the collectors on the target device in its default
location: /tmp/vtune_profiler_<version>.<package_num>. It also temporary stores performance results
on the target system in the /tmp directory. If you installed the target package to a different location or need
to specify another temporary directory, make sure to configure your target properties in the Configure
Analysis window as follows:

• Use the VTune Profiler installation directory on the remote system option to specify the path to the
VTune Profiler on the remote system. If default location is used, the path is provided automatically.

• Use the Temporary directory on the remote system option to specify a non-default temporary
directory.

Alternatively, use the -target-install-dir and -target-tmp-dir options from the vtune command line.

Build and Install the Drivers Manually

NOTE
Building the sampling drivers is only required if the drivers were not built as part of the collector
installation. The installation output should inform you if building the sampling driver is required.

To enable hardware event-based sampling analysis on your target device:

1. Build the sampling driver on the target system.

NOTE

• Make sure kernel headers correspond to the kernel version running on the device. For details, see
the README.txt file in the sepdk/src directory.

• Make sure compiler version corresponds to the architecture (x86 or x86_64) of the kernel running
on the target system.

• For Hotspots in hardware event-based sampling mode, Microarchitecture Exploration, and Custom
event-based sampling analysis types, you may not need root credentials and installing the sampling
driver for systems with kernel 2.6.32 or higher, which exports CPU PMU programming details
over /sys/bus/event_source/devices/cpu/format file system. Your operating system limits on
the maximum amount of files opened by a process as well as maximum memory mapped to a
process address space still apply and may affect profiling capabilities. These capabilities are based
on Linux Perf* functionality and all its limitations fully apply to the VTune Profiler as well. For more
information, see the Tutorial: Troubleshooting and Tips topic at https://perf.wiki.kernel.org/
index.php/Main_Page.

2. On the target device, install the drivers.

If the insmod-sep script does not work on the target system due to absence of standard Linux
commands, you may install drivers manually using the Linux OS insmod command directly.

 1 Intel® VTune™ Profiler User Guide

110

NOTE
To build the sampling driver as RPM using build services as Open Build Service (OBS), use the
sepdk.spec file located at the <install-dir>/sepdk/src the directory.

See Also
Set Up Remote Linux* Target

Collect Data on Remote Linux* Systems from Command Line

Set Up Analysis Target

Configure SSH Access for Remote Collection
To collect data on a remote Linux* system, a
password-less SSH connection is required.

NOTE
A root connection is required to load the sampling drivers and to collect certain performance metrics.
You (or your administrator) can configure the system using root permissions and then set up
password-less SSH access for a non-root user if desired. For example, build and load the sampling
drivers on the target system using root access and then connect to the system and run analysis as a
non-root user. If you set up access without using the sampling drivers, then driverless event-based
sampling can still be used.

Use one of the methods below to enable password-less SSH access:

• Enable a password-less connection from Windows* to Linux*
• Manually configure a connection from macOS*/Linux to Linux

NOTE
Versions of Intel® VTune™ Profiler older than 2019 Update 5 have a different configuration for
password-less SSH. For legacy instructions, see this article.

Enable a Password-less SSH Access from Windows to Linux
For Windows-to-Linux remote analysis, the VTune Profiler automatically configures a password-less access
based on the public key identification.

1. Create a VTune Profiler project.
2. In the Configure Analysis window, select the Remote Linux (SSH) target system from the WHERE

pane.
3. Specify your remote system in the SSH destination field as user@target; for example:

root@172.16.254.1.

VTune Profiler verifies your SSH connection and, if fails, it generates public/private keys required for
enabling the password-less access and reports the results via an interactive terminal window.

4. When the public/private keys are generated, press any key to enter your credentials and let VTune
Profiler automatically copy and apply the public/private keys.

Alternatively, you may press Ctrl-C to stop the automation. In this case, you need to manually add the
already generated public/private keys from the paths specified in the terminal window to ~/.ssh/
authorized_keys on the remote system.

Intel® VTune™ Profiler User Guide 1

111

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/configuring-ssh-access-for-remote-collection-with-intel-vtune-amplifier.html

NOTE
VTune Profiler does not keep your credentials but uses them only once to enable the password-less
access.

When the keys are applied, the terminal window closes and you can proceed with the project configuration
and analysis. For all subsequent sessions, you will not be asked to provide credentials for remote accesses to
the specified system.

Configure a Password-less SSH Access from Linux/macOS to Linux
For remote collection on a Linux target system, set up the password-less mode on the local Linux or macOS
host as follows:

1. Generate the key with an empty passphrase:

host> ssh-keygen -t rsa
2. Copy the key to target system:

host> ssh-copy-id user@target
Alternatively, if you do not have ssh-copy-id on your host system, use the following command:

host> cat .ssh/id_rsa.pub | ssh user@target 'cat >> .ssh/authorized_keys'
3. Verify that a password is not required anymore, for example:

host> ssh user@target ls

Possible Issues
If the keys are copied but the VTune Profiler cannot connect to the remote system via SSH, make sure the
permissions for ~/.ssh and home directories, as well as SSH daemon configuration, are set properly.

Permissions

Make sure your ~/.ssh and ~/.ssh/authorized_keys directory permissions are not too open. Use the
following commands:

chmod go-w ~/

chmod 700 ~/.ssh

chmod 600 ~/.ssh/authorized_keys
SSH Configuration

Check that the /etc/ssh/sshd_config file is properly configured for the public key authentication.

NOTE
For this step, you may need administrative privileges.

If present, make sure the following options are set to yes:

RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile .ssh/authorized_keys

For root remote connections, use:

PermitRootLogin yes

 1 Intel® VTune™ Profiler User Guide

112

If the configuration has changed, save the file and restart the SSH service with:

sudo service ssh restart
sudo service sshd restart (on CentOS)

See Also
Set Up Remote Linux* Target

Search Directories for Remote Linux* Targets
For accurate module resolution and source analysis of
your remote Linux application, make sure the Intel®
VTune™ Profiler has access to your binary/symbol and
source files on the host system.

If debug information is provided in separate files for your binaries, you need to specify search paths for these
files on the host when configuring a performance analysis. If these files are not present on the host system,
make sure to either copy them from the target system or mount the directory with these files. Then, add
these locations to the search paths of the analysis configuration.

To add search paths, use any of the following options:

• From command line, use the --search-dir/--source-search-dir options. For example, from a
Windows* host:

host>./vtune -target-system=ssh:user1@172.16.254.1 --collect hotspots -knob sampling-mode=hw -r
system_wide_r@@@ --search-dir C:\my_projects\symbols

• From GUI, use the Binary/Symbol Search and Source Search dialog boxes.

NOTE
The search is non-recursive. Make sure to specify all required directories.

When you run a remote analysis, the VTune Profiler launches your application on the remote target, collects
data, copies all binary files to the host, and finalizes the analysis result. During finalization, the VTune Profiler
searches the directories for binary/symbol and source data in the following order:

1. Directory <result dir>/all (recursively).
2. Additional search directories that you defined for this project in the Binary/Symbol Search/Source

Search dialog boxes or --search-dir/--source-search-dir command line options.
3. Absolute path on the remote target or VTune Profiler cache directory (binary files only).

See Also
Set Up Remote Linux* Target

Search Directories

Specifying Search Directories
 from command line

Debug Information for Linux* Application Binaries

Enable Linux* Kernel Analysis

Temporary Directory for Performance Results on Linux* Targets
Configure a temporary directory for the remote or
local data collection on Linux target systems.

When performing a hardware event-based sampling collection with the Intel® VTune™ Profiler or configuring
the result directory for analysis on a mounted share, temporary data files are written to the system global
temporary directory. Typically the global temporary directory is /tmp.

Intel® VTune™ Profiler User Guide 1

113

Depending on the length of the VTune Profiler analysis and data collected, significant temporary disk space
may be required. The temporary data may exceed the current allocated or available global temporary storage
space. If the system global temporary space is exceeded, the VTune Profiler analysis may fail with a warning
similar to the following: Warning: Cannot load data file `/home/user/r001hs/data.0/
tbs0123456789.tb6' (tbrw call…..) failed: Invalid sample file (24). Note that the VTune Profiler
temporary files may no longer be in the temporary storage location, giving you the false impression that
there is plenty of space available. In this case, you may wish to check the temporary storage usage while the
analysis is running. If the usage of system temporary storage reaches 100%, this may be the root cause of
the error.

If the cause of the error is insufficient temporary disk space, you may set up an alternative temporary
directory for collected data. VTune Profiler may still keep writing some scratch files of insignificant size (for
example, the socket file sep_ipc_socket_0) to the system global temporary directory. However, it will
utilize the defined alternative temporary location for the larger files such as those beginning with lwp (for
example, lwp28478__wallclock.tb7, lwp28478_user.mrk, lwp28478_7.txt). When the VTune Profiler
completes finalization, all temporary scratch files are automatically removed.

Configuring an Alternative Temporary Directory for Local Targets
For local targets, you may set the standard Linux TMPDIR environment variable to an alternate directory path
with the sufficient temporary storage space. To configure the TMPDIR environment variable, do the following:

1. From within the shell where you will be running the VTune Profiler command line or GUI, assign a value
and export TMPDIR, for example:

> export TMPDIR=/directory_path/ tmp
2. Verify the assignment:

> echo $TMPDIR
3. Verify directory permissions are sufficient for the directory assigned to TMPDIR:

> ls -ld /directory_path/ tmp
4. From the shell window, run the VTune Profiler hardware event-based sampling collection using either

the command line or GUI.

Configuring an Alternative Temporary Directory for Remote Targets
To change the temporary directory for remote targets from GUI, do the following:

1. Click the

Configure Analysis button.
2. Select the remote Linux (SSH) target system.
3. In the Temporary directory on the remote system field specify your alternative temporary

directory.

To specify an alternative temporary directory from the command line, use the target-tmp-dir option, for
example:

host>./vtune --target-system=ssh:vtune@10.125.21.170 -target-tmp-dir=/home/tmp –collect hotspots
-knob sampling-mode=hw -knob enable-stack-collection=true -- /home/samples/matrix

See Also
Set Up Analysis Target

 1 Intel® VTune™ Profiler User Guide

114

Embedded Linux* Targets
Use the Intel® VTune™ Profiler for performance
analysis on Embedded Linux* systems, Wind River*,
Yocto Project*, FreeBSD* and others.

Embedded device performance data can be collected remotely on the embedded device and running the
analysis from an instance of VTune Profiler installed on the host system. This is useful when the target
system is not capable of local data analysis (low performance, limited disk space, or lack of user interface
control).

NOTE
Root access to the operating system kernel is required to install the collectors and drivers required for
performance analysis using VTune Profiler.

To enable performance analysis on an embedded device, use any of the following:

• Intel System Studio integration layer (Wind River* Linux and Yocto Project* only)
• Intel VTune Profiler Yocto Project Integration Layer
• bundled VTune Profiler installation packages

Use the Intel System Studio Integration Layer

NOTE
The Intel System Studio integration layer works for embedded systems with Wind River Linux or Yocto
Project installed.

The Intel System Studio integration layer allows the Intel System Studio products to be fully integrated with
a target operating system by building the drivers and corresponding target packages into the operating
system image automatically. Use this option in the case where a platform build engineer has control over the
kernel sources and signature files, but the application engineer does not. The platform build engineer can
integrate the product drivers with the target package and include them in the embedded device image that is
delivered to the application engineer.

Intel® VTune™ Profiler User Guide 1

115

1. Install Intel System Studio using the installer GUI.
2. Install the Intel System Studio integration layer.

a. Copy the integration layer from the Intel System Studio installation folder to the target operating
system development folder.

b. Run the post-installation script: <iss-install-dir>/YoctoProject/meta-intel-iss/yp-
setup/postinst_<OS>_iss.sh <ISS_BASE_dir>
For example, for Wind River Linux: /YoctoProject/meta-intel-iss/yp-setup/
postinst_wr_iss.sh

3. Build the recipe that includes the appropriate VTune Profiler package.

a. Add the path to the /YoctoProject/meta-intel-iss to the bblayers.conf file:

BBLAYERS= "\
...
<OS_INSTALL_DIR>/YoctoProject/meta-intel-iss\
...
"

b. Add the VTune Profiler recipes to conf/local.conf. Possible recipes include:

• intel-vtune-drivers: integrates all VTune Profiler drivers for PMU-based analysis with
stacks and context switches. Requires additional kernel options to be enabled.

• intel-vtune-sep-driver: integrates drivers for PMU-based analysis with minimal
requirements for kernel options.

For more information about these collection methods, see Remote Linux Target Setup.
4. Build the target operating system, which will complete the integration of the VTune Profiler collectors

and drivers.
5. Flash the operating system to the target embedded device.

 1 Intel® VTune™ Profiler User Guide

116

After flashing the operating system to the target embedded device, ensure that the appropriate VTune
Profiler drivers are present. For more information, see Building the Sampling Drivers for Linux Targets.

6. Run the analysis on the target embedded device from the host system using an SSH connection or
using the SEP commands.

a. Set up a password-less SSH access to the target using RSA keys.
b. Specify your target application and remote system.

NOTE
After configuring the remote connection, VTune Profiler will install the appropriate collectors on the
target system.

c. Choose an analysis type.
d. Run the analysis from the host.

Use the information available in the Sampling Enabling Product User's Guide to run the SEP commands.
7. View results in the VTune Profiler GUI on the host.

Examples: Configuring Yocto Project* with the Intel System Studio Integration Layer

Use the Intel VTune Profiler Yocto Project Integration Layer
Intel VTune Profiler Yocto Project integration layer builds the drivers into the operating system image
automatically. Use this option in the case where a platform build engineer has control over the kernel sources
and signature files, but the application engineer does not. The platform build engineer can integrate the
product drivers with the target package and include them in the embedded device image that is delivered to
the application engineer.

1. Install Intel VTune Profiler.
2. Configure the integration layer.

a. Extract the <install-dir>/target/linux/vtune_profiler_target_x86.tgz or <install-
dir>/target/linux/vtune_profiler_target_x86_64.tgz package.

b. Modify the sepdk/vtune-layer/conf/user.conf file to specify user settings.

Intel® VTune™ Profiler User Guide 1

117

a. Specify one of the following paths:

• Path to unzipped target package: VTUNE_TARGET_PACKAGE_DIR = "<PATH>"
• Path to VTune Profiler installation directory: VTUNE_PROFILER_2020_DIR = "<PATH>"

b. (Optional) To integrate the SEP driver during system book, specify ADD_TO_INITD = "y".
c. Copy the integration layer to the Yocto Project development environment.
d. Add the path to the layer to the bblayers.conf file:

BBLAYERS= "\
...
<OS_INSTALL_DIR>/vtune-layer\
...
"

e. Add the VTune Profiler recipes to conf/local.conf. Possible recipes include:

• intel-vtune-drivers: integrates all VTune Profiler drivers for PMU-based analysis with
stacks and context switches. Requires additional kernel options to be enabled.

• intel-vtune-sep-driver: integrates drivers for PMU-based analysis with minimal
requirements for kernel options.

For more information about these collection methods, see Remote Linux Target Setup.
3. Build the target operating system, which will complete the integration of the VTune Profiler collectors

and drivers.
4. Flash the operating system to the target embedded device.

After flashing the operating system to the target embedded device, ensure that the appropriate VTune
Profiler drivers are present.

5. 5. Run the analysis on the target embedded device from the host system using an SSH connection or
using the SEP commands.

a. Set up a password-less SSH access to the target using RSA keys.
b. Specify your target application and remote system.
c. Choose an analysis type.
d. Run the analysis from the host.

Use the information available in the Sampling Enabling Product User's Guide to run the SEP commands.
6. View results in the VTune Profiler GUI.

Example: Configuring Yocto Project with the VTune Profiler Integration Layer

Use the Bundled Intel VTune Profiler Installation Packages
You can build the appropriate drivers and install the VTune Profiler collectors on your kernel image manually
with a command line. This option requires root access to the configured kernel source.

 1 Intel® VTune™ Profiler User Guide

118

1. Install Intel VTune Profiler using the installer GUI.
2. Run the analysis on the target embedded device.

a. Set up a password-less SSH access for the root user to the target using RSA keys.
b. Specify your target application and remote system. The collectors and drivers within the package

should be automatically installed.
c. Choose an analysis type.
d. Run the analysis from the host.

3. 3. View results in the VTune Profiler GUI on the host.

Troubleshooting

If the drivers were not built during collector installation, the installation output should inform you that
building the sampling driver is required.

The drivers are built either on the target system or on the host system, depending on compiler toolchain
availability:

1. If the compiler toolchain is available on the target system:

a. On the target embedded device, build the driver from the <install-dir>/sepdk/src directory
using the ./build-driver command.

b. Load the driver into the kernel using the ./insmod-sep command.
2. If the compiler toolchain is not available on the target system:

a. On the host system, cross-build the driver using the driver source from the target package
sepdk/src directory with the ./build-driver command. Provide the cross-compiler (if
necessary) and the target kernel source tree for the build.

b. Copy the sepdk/src folder to the target system.
c. Load the driver into the kernel using the ./insmod-sep command.

Example: Configuring Yocto Project with Intel VTune Profiler Target Packages

See Also
Build and Install the Sampling Drivers for Linux* Targets

Intel® VTune™ Profiler User Guide 1

119

Configure Yocto Project* and VTune Profiler with the Integration Layer

NOTE Profiling support for the Yocto Project* is deprecated and will be removed in a future release.

Intel® VTune™ Profiler can collect and analyze performance data on embedded Linux* devices running Yocto
Project*. This topic provides an example of setting up the VTune Profiler to collect performance data on an
embedded device with Yocto Project 1.8 installed using the Intel VTune Profiler integration layer provided
with the product installation files. The process integrates the VTune Profiler product drivers with the target
package and includes them in the embedded device image. Root access to the kernel is required.

NOTE
VTune Profiler is able to collect some performance data without installing the VTune Profiler drivers. To
collect driverless event-based sampling data, installing the drivers and root access is not required. For
full capabilities, install the VTune Profiler drivers as described here.

Select the Target Package
VTune Profiler provides two Yocto Project recipes in the following packages:

• The vtune_profiler_target_sep_x86_64.tgz package includes the intel-vtune-sep-driver
recipe, which enables performance data collection using hardware event-based sampling. Attempting to
collect stacks when using this recipe will automatically switch to driverless collection mode. This recipe
has minimal requirements for Linux kernel configuration.

• The vtune_profiler_target_x86_64.tgz package includes the intel-vtune-drivers recipe, which
enables the full performance data capabilities using hardware event-based sampling. This recipe has
additional requirements for Linux kernel configuration. The intel-vtune-drivers recipe is a superset of
the intel-vtune-sep-driver recipe.

Only one recipe can be used at a time. There is no difference between the x86 and x86_64 target packages
for building recipes within Yocto Project. Both can be used on either 32 bit or 64 bit systems.

1. Download the VTune Profiler target package or locate the package in the <install-dir>/target/
linux directory on the host system where VTune Profiler is installed.

2. Copy the selected target package to a location on the Yocto Project build system.

Prepare the Integration Layer
1. On the Yocto Project build system, extract the vtune_profiler_target_sep_x86_64.tgz or

vtune_profiler_target_x86_64.tgz archive to a writeable location.

cd $HOME
tar xvzf vtune_profiler_target_x86_64.tgz

2. (Optional) Modify the $HOME/vtune_profiler_<version>/sepdk/vtune-layer/conf/user.conf
file to specify user settings.

a. If the VTune Profiler recipe has been split from the target package, specify one of the following
paths:

• Path to unzipped target package: VTUNE_TARGET_PACKAGE_DIR = "$HOME/
vtune_profiler_<version>"

• Path to VTune Profiler: VTUNE_PROFILER_2020_DIR = "/opt/intel/vtune_profiler"
b. To integrate the SEP driver during system boot:

Specify ADD_TO_INITD = "y" for init-based Yocto systems;

Or specify ADD_TO_SYSTEMD = "y" for systemd-based Yocto systems.

 1 Intel® VTune™ Profiler User Guide

120

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

3. In the Yocto Project development environment, add the path to the layer to the bblayer.conf file. For
example:

vi conf/bblayers.conf
BBLAYERS = "$HOME/vtune_profiler_<version>/sepdk/vtune-layer\"

Your file should look similar to the following:

BBLAYERS ?= " \
 $HOME/source/poky/meta \
 $HOME/source/poky/meta-poky \
 $HOME/source/poky/meta-yocto-bsp \
 $HOME/source/poky/meta-intel \
 $HOME/vtune_profiler/sepdk/vtune-layer \
 "

4. Specify the Intel VTune Profiler recipe in conf/local.conf. In this example, the intel-vtune-
drivers is used.

vi "conf/local.conf"
IMAGE_INSTALL_append = " intel-vtune-drivers"

NOTE
You cannot add both intel-vtune-drivers and intel-vtune-sep-driver at the same time.

Build and Flash the Target Operating System
1. Build the target operating system. For example:

bitbake core-image-sato

NOTE
If you modified the kernel configuration options, make sure the kernel is recompiled.

2. Flash the operating system to the embedded device.

Configure and Run Remote Analysis
Use the following steps on the host system to set up and launch the analysis on the embedded device:

1. Set up a password-less SSH access to the target using RSA keys.
2. Create a new project.
3. Select the remote Linux (SSH) analysis system and specify the collection details.
4. Configure the analysis type.
5. Start the analysis.

See Also
Embedded Linux* Targets

Configure Yocto Project* and Intel® VTune™ Profiler with the Linux* Target Package

Configure Yocto Project*/Wind River* Linux* and Intel® VTune™ Profiler with the Intel System
Studio Integration Layer

Intel® VTune™ Profiler User Guide 1

121

Configure Yocto Project*/Wind River* Linux* and Intel® VTune™ Profiler with the Intel System
Studio Integration Layer

NOTE Profiling support for the Yocto Project* is deprecated and will be removed in a future release.

You can use Intel® VTune™ Profiler to collect and analyze performance data on embedded Linux* devices
running Yocto Project* or Wind River* Linux*. This example describes how you set up VTune Profiler using
the Intel System Studio integration layer, to collect performance data on an embedded device with Yocto
Project 1.8 or Wind River* Linux* installed. The integration layer is available with the product installation
files. The process integrates the VTune Profiler product drivers with the target package and includes them in
the embedded device image. For this example, you need root access to the kernel.

Install the Intel System Studio Integration Layer
Prerequisite: Install Intel System Studio on the host system.

1. Copy the integration layer from the Intel System Studio installation folder to the appropriate
development folder.

For Yocto Project*:

cp -r <ISS_BASE_DIR>/YoctoProject/meta-intel-iss <YOCTO_HOME>/
For Wind River* Linux*:

cp -r <ISS_BASE_DIR>/YoctoProject/meta-intel-iss <WR_HOME>/
where

• <ISS_BASE_DIR> : Root folder of the Intel System Studio installation. By default, this is /opt/
intel/system_studio_<version>.x.y/. For example, for the 2019 version, the root folder
is /opt/intel/system_studio_2019.0.0/.

• <YOCTO_HOME> : Root folder of the Yocto Project* cloned directory.
• <WR_HOME> : Root folder of the Wind River* Linux* cloned directory.

2. Register the layer by running the post-installation script.

For Yocto Project*:

In the shell console, go to the <YOCTO_HOME> folder and run this command:.

$ meta-intel-iss/yp-setup/postinst_yp_iss.sh <ISS_BASE_DIR>
For Wind River* Linux*:

In the shell console, go to the <WR_HOME> folder and run this command:.

$ meta-intel-iss/yp-setup/postinst_wr_iss.sh <ISS_BASE_DIR>
To uninstall the Intel System Studio integration:

1. Run the appropriate script to uninstall:

For Yocto Project*:

In the shell console, go to the <YOCTO_HOME> folder and run this command:.

$ meta-intel-iss/yp-setup/uninst_yp_iss.sh
For Wind River* Linux*:

In the shell console, go to the <WR_HOME> folder and run this command:.

$ meta-intel-iss/yp-setup/uninst_wr_iss.sh

 1 Intel® VTune™ Profiler User Guide

122

2. Remove the meta-intel-iss layer.

Add the Intel VTune Profiler Recipe
1. Add the path to the wr-iss-<version> to the bblayer.conf file. For example:

vi /path/to/poky-fido-10.0.0/build/conf/bblayers.conf
BBLAYERS = "$HOME/source/poky/wr-iss-2019\"

Your file should look similar to the following:

BBLAYERS ?= " \
 $HOME/source/poky/meta \
 $HOME/source/poky/meta-poky \
 $HOME/source/poky/meta-yocto-bsp \
 $HOME/source/poky/meta-intel \
 $HOME/source/poky/wr-iss-2019 \
 "

2. Add the Intel VTune Profiler recipe to conf/local.conf. Two recipes are available,

intel-vtune-drivers and intel-vtune-sep-driver. In this example, the intel-vtune-drivers
is used so the analysis can be run from the VTune Profiler GUI on the host system.

vi "conf/local.conf"
IMAGE_INSTALL_append = " intel-vtune-drivers"

NOTE
You cannot add both intel-vtune-drivers and intel-vtune-sep-driver at the same time.

Build and Flash the Target Operating System
1. Build the target operating system. For example:

bitbake core-image-sato
2. Flash the operating system to the embedded device.

Configure and Run Remote Analysis
Use the following steps on the host system to set up and launch the analysis on the embedded device:

1. Set up a password-less SSH access to the target using RSA keys.
2. Create a new project.
3. Select the remote Linux (SSH) analysis system and specify the collection details.
4. Configure the analysis type.
5. Start the analysis.

See Also
Embedded Linux* Targets

Configure Yocto Project*/Wind River* Linux* and Intel® VTune™ Profiler with the Intel System
Studio Integration Layer

Configure Yocto Project* and Intel® VTune™ Profiler with the Linux* Target Package

Intel® VTune™ Profiler User Guide 1

123

Configure Yocto Project* and Intel® VTune™ Profiler with the Linux* Target Package

NOTE Profiling support for the Yocto Project* is deprecated and will be removed in a future release.

Intel® VTune™ Profiler can collect and analyze performance data on embedded Linux* devices. This topic
provides an example of setting up Intel VTune Profiler to collect performance data on an embedded device
running Yocto Project*. The first section provides information for a typical use case where the required
collectors are automatically installed. The second section provides steps to manually install the collectors and
the VTune Profiler drivers for hardware event-based sampling data collection.

Automatically Configure and Run Remote Analysis
Use the following steps on the host system to set up and launch the analysis on the embedded device:

1. Set up a password-less SSH access to the target using RSA keys.
2. Open VTune Profiler and create a new project.
3. Select the remote Linux (SSH) analysis target and specify the collection details. VTune Profiler

connects to the target system and installs the appropriate collectors. If the automatic installation fails
or if you want to collect hardware event-based sampling with the VTune Profiler drivers, follow the
instructions below to manually configure the target system.

4. Select the analysis type.
5. Start the analysis.

Manually Configure the Linux Target System
Use these steps only if the automatic installation fails.

1. Copy the target package archive to the target device. The following target packages are available:

• <intall-dir>/target/vtune_profiler_target_sep_x86.tgz - provides hardware event-based
sampling collector only (SEP) for x86 systems

• <install-dir>/target/vtune_profiler_target_x86.tgz - provides all VTune Profiler collectors
for x86 systems

• <install-dir>/target/vtune_profiler_target_sep_x86_64.tgz - provides hardware event-
based sampling collector only (SEP) for 64-bit systems

• <install-dir>/target/vtune_profiler_target_x86_64.tgz - provides all VTune Profiler
collectors for 64-bit systems

For example, the following command copies the vtune_profiler_target_x86_64.tgz package to the
embedded device using SCP:

scp -r vtune_profiler_target_x86_64.tgz root@123.45.67.89:/opt/intel/
2. Extract the file on the target system. For example:

tar -xvsf vtune_profiler_target_x86_64.tgz
3. Make sure the sampling driver is available on the target system. The installation output should inform

you if building the sampling driver is required. If it is not, you will need to build the sampling driver and
install it on the target system.

If the compiler toolchain is available on the target embedded system, build the driver on the target
device using the following steps:

a. Open a command prompt and navigate to the <install-dir>/sepdk/src directory. For
example:

cd /opt/intel/vtune_profiler_2020.0.0.0/sepdk/src

 1 Intel® VTune™ Profiler User Guide

124

b. Build the driver using the ./build-driver command. For example:

 ./build-driver -ni \ --kernel-src-dir=/usr/src/kernel/ \ --kernel-version=4.4.3-yocto-standard
\ --make-args="PLATFORM=x64 ARITY=smp"

c. Load the driver into the kernel using the ./insmod-sep command.

If the compiler toolchain is not available on the target embedded system, build the driver on the host
system and install it on the target device using the following steps:

a. Open a command prompt and navigate to the <install-dir>/sepdk/src directory. For
example:

cd /opt/intel/vtune_profiler_2020.0.0.0/sepdk/src
b. Cross-build the driver using the using the ./build-driver command. Provide the cross-compiler

(if necessary) and the target kernel source tree for the build. For example:

mkdir drivers
./build-driver -ni \
--c-compiler=i586-i586-xxx-linux-gcc \
--kernel-version=4.4.3-yocto-standard \
--kernel-src-dir=/usr/src/kernel/ \
--make-args="PLATFORM=x32 ARITY=smp" \
--install-dir=./drivers

c. Copy the sepdk/src/drivers folder to the target system.
d. Load the driver into the kernel using the ./insmod-sep command.

See Also
Embedded Linux* Targets

Configure Yocto Project*/Wind River* Linux* and Intel® VTune™ Profiler with the Intel System
Studio Integration Layer

FreeBSD* Targets
Intel® VTune™ Profiler allows you to collect
performance data on a FreeBSD* target system.

Intel VTune Profiler is not installed on the FreeBSD target system. Instead, you are able to install VTune
Profiler on a Linux*, Windows*, or macOS* host system and use a target package for collecting event-based
sampling data on a remote FreeBSD target system in one of the following ways:

• Using VTune Profiler's automated remote collection capability (command line or user interface)
• Collecting the results locally on the FreeBSD system and copying them to the host system for viewing with

VTune Profiler (command line only)

The following sections explain these options in more detail.

Supported Features

Remote Collection Local Collection

Collection from Linux, Windows, or macOS host
system using the Intel VTune Profiler GUI or
command line (vtune)

Collection from the FreeBSD system using:

• Intel VTune Profiler command line (vtune)
• Sampling enabling product (SEP) collectors

Analysis Types: Analysis types (VTune Profiler command line only):

• hotspots

Intel® VTune™ Profiler User Guide 1

125

Remote Collection Local Collection

• Hotspots (hardware event-based sampling
mode)

• Microarchitecture Exploration
• Memory Access (without heap object allocation

tracking)
• Input and Output (with hardware event-based

metrics and SPDK analysis; without MMIO
accesses and DPDK analysis)

• Custom Analysis

• uarch-exploration
• memory-access
• io (with hardware event-based metrics and

SPDK analysis; without MMIO accesses and
DPDK analysis)

• custom event-based sampling analysis

View results on host system View results in VTune Profiler on a Linux, Windows,
or macOS host system

Remote Collection from Host System

1. Install VTune Profiler on your Linux*, Windows*, or macOS* host. Refer to the Installation Guide for
your host system for detailed instructions.

2. Install the appropriate sampling drivers on the FreeBSD target system. For more information, see
FreeBSD* System Setup.

3. [Optional] If you want to collect performance data with stacks, build your FreeBSD target application
using the -fno-omit-frame-pointer compiler option, to allow the sampling collector to determine the
call chain via frame pointer analysis.

4. Collect performance data using remote analysis from the host system from the VTune Profiler command
line or GUI.

a. Create or open a project.
b. Specify your target application and remote system and make sure to specify search directories for

symbol/source files required for finalization on the host.
c. Choose and configure an analysis type.

Supported VTune Profiler analysis types (event-based sampling analysis only) include:

• Hotspots (hardware event-based sampling mode)
• Microarchitecture Exploration

 1 Intel® VTune™ Profiler User Guide

126

• Memory Access (without heap object allocation tracking)
• Input and Output (with hardware event-based metrics and SPDK analysis; without MMIO

accesses and DPDK analysis)
• Custom Analysis

d. Run the analysis from the host. Depending on your settings, the application launches and runs
automatically. Once collection is finished, the result is finalized and displayed with the Summary
window open.

5. Review the results on the host system.

Native Collection on FreeBSD System

1. Install VTune Profiler on your Linux*, Windows*, or macOS* host. Refer to the Installation Guide for
your host system for detailed instructions.

2. Install the appropriate sampling drivers on the FreeBSD target system. For more information, see
FreeBSD* System Setup.

3. [Optional] If you want to collect performance data with stacks, build your FreeBSD target application
using the -fno-omit-frame-pointer compiler option, which allows the sampling collector to
determine the call chain via frame pointer analysis.

4. Collect performance data using one of the following methods. For more information about each of these
methods, see Remote Linux Target Setup.

• Native analysis on the target system using the VTune Profiler command line (vtune). Supported
analysis types include: hotspots, uarch-exploration, memory-access, io or custom event-based
sampling analysis.

• Native analysis on the target system using the sampling enabling product (SEP) collectors. For more
information, see the Sampling Enabling Product User Guide.

5. Copy the results to the host system.
6. Review the results with VTune Profiler.

• If you used the vtune command, open the *.vtune file.
• If you collected SEP data, import the *.tb7 file.

See Also
Introduction

Intel® VTune™ Profiler User Guide 1

127

https://www.intel.com/content/www/us/en/content-details/686077/emon-user-s-guide.html

Set Up Remote Linux* Target

Set Up FreeBSD* System

Set Up FreeBSD* System
Intel® VTune™ Profiler allows you to collect
performance data remotely on a FreeBSD* target
system.

Intel® VTune™ Profiler includes a target package for collecting event-based sampling data on a FreeBSD*
target system either via the remote collection capability or by collecting the results locally on the FreeBSD
system and copying them to a Linux*, Windows*, or macOS* host system. The collected data is then
displayed on a host system that supports the graphical interface.

1. Install VTune Profiler on your Linux, Windows, or macOS host. Refer to the Installation Guide for your
host system for detailed instructions.

2. Install the appropriate sampling drivers on the FreeBSD target system. Use the <vtune-install-
dir>/target/freebsd/vtune_profiler_target_x86_64.tgz file for analysis using VTune Profiler
or the <vtune-install-dir>/target/freebsd/vtune_profiler_target_sep_x86_64.tgz file for
analysis using the sampling enabling product (SEP) collectors.

3. Collect performance data using one of the following methods. For more information about each of these
methods, see FreeBSD* Targets and Remote Linux Target Setup.

• Remote analysis from the host system using the VTune Profiler command line or GUI.
• Native analysis on the target system using the VTune Profiler command line.
• Native analysis on the target system using the SEP collectors.

4. Review the results on the host system.

Install the Sampling Drivers on FreeBSD
Use the following steps to configure your FreeBSD target system for event-based sampling analysis. Root
privileges are required on the target system to install the VTune Profiler drivers.

1. Copy the <vtune-install-dir>/target/freebsd/vtune_profiler_target_x86_64.tgz file to the
target system using FTP, SFTP, or SCP.

2. Extract the archive to the /opt/intel directory on the target system.
3. Navigate to the following location: /opt/intel/sepdk/modules
4. Run the following commands to build the appropriate drivers:

$ make
$ make install

5. Run the following command to install the drivers:

$ kldload sep pax
Allow non-root users to run an event-based sampling analysis by running the following commands after
installing the drivers:

$ chgrp -R <user_group> /dev/pax
$ chgrp -R <user_group> /dev/sep

Remove the Sampling Drivers from FreeBSD
Run the following command to unload the sampling drivers:

$ kldunload sep pax
See Also
FreeBSD* Targets

 1 Intel® VTune™ Profiler User Guide

128

Set Up Remote Linux* Target

QNX* Targets
Intel® VTune™ Profiler supports collecting performance
data on QNX* target systems.

Data collection is possible via command line interface from a host system running Windows* or Linux* to the
target QNX system. The collected traces are transferred to the host system via ethernet and stored for
review. After collection, the performance results can be imported and viewed in the Intel VTune Profiler user
interface.

The target collector can be integrated into the target QNX image during the image build process and requires
only 1 MB of space on the target file system. Because the traces are transferred to the host system,
collection can be done on target systems with limited storage capacity or with read-only file systems.

1. Prerequisites
2. Set up your system
3. Run analysis
4. View and interpret results

Prerequisites
• Host System: Linux* or Windows* system with QNX BSP and VTune Profiler installed
• Target System: Supported processor with QNX7 operating with instrumental kernel, connected to the host

system via ethernet. Supported processors include Intel® Pentium®, Intel® Celeron®, or Intel Atom®
processors formerly code named Apollo Lake or Intel Atom® processors formerly code named Denverton.

• Turn off firewall restrictions for network connections between the host system and target system

Set up Your System
Complete the following steps on your host and target system to install collectors and enable performance
analysis using Intel VTune Profiler:

1. Ensure that the host system is connected to the target QNX system via ethernet and log in to the target
QNX system using a command window.

2. Make the <install-dir>/target/qnx_x86_64/bin64/sep file on the host system available on the
target QNX system by copying, mounting a network share, or integrating it into the target image.

3. On the host system, launch the VTune Profiler user interface, click New Project, specify a project
name, and click Create Project.

4. Click Configure Analysis, select local host in the WHERE pane, and click Search Binaries.
5. In the Binary/Symbol Search window, browse to the location of the kernel and application target

modules on the host system, and click OK.

Run Analysis
Analysis is run using collectors previously installed on the target QNX system and a command invoked on the
host Windows or Linux system. All result files are saved to the host system.

1. On the target QNX system, run the following command: <sep-dir>/sep
Where <sep-dir> is the location where the sep file was copied. The target collector loads and waits for
the host system to connect.

2. On the host system, run one of the following analysis commands.

• Hotspots with call stacks: <install-dir>/bin64/sep -start -d <duration> -target-ip
<target-ip-address> -target-port 9321 -lbr call_stack -out <filename>.tb7

Intel® VTune™ Profiler User Guide 1

129

Example command:

/opt/intel/vtune_profiler/bin64/sep -start -d 60 -target-ip 12.345.67.89 -target-port 9321 -lbr
call_stack -out hotspots_callstacks.tb7

NOTE
Call stacks are hardware based and limited to a depth of 16 frames. Due to hardware limitations, the
depth of the captured call stack can be less than 16 frames.

• Custom CPU events: <install-dir>/bin64/sep.exe -start -d <duration> -target-ip
<target-ip-address> -target-port 9321 -ec "<event-list>" -out <filename>.tb7
Example command:

/opt/intel/vtune_profiler/bin64/sep.exe -start -d 60 -target-ip 12.345.67.89 -target-port 9321 -
ec "MEM_LOAD_UOPS_RETIRED.DRAM_HIT,MEM_LOAD_UOPS_RETIRED.HITM,MEM_LOAD_UOPS_RETIRED.L2_HIT" -out
custom.tb7

See the Sampling Enabling Product User's Guide for more information.
3. After collection begins, run the application on the target QNX system or ensure that it is already

running. The analysis collects system-wide data. Collection stops automatically when the specified
duration is complete.

4. After collection is complete, stop the application on the target QNX system if it is not already finished.

View and Interpret Results
After collection is complete, the *.tb7 result file is available on the host system.

1. On the host system, import the *.tb7 file into the previously created project.
2. Switch to the Hotspots viewpoint and review the performance data collected.

• If you collected hotspots data, begin with the Summary window in the Hotspots viewpoint. The
Top Hotspots list shows the top 5 functions that occupied the most CPU time. Double-click a
function to be taken to the Bottom-up window where you can see aggregated performance data
and a timeline showing activity over the entire collection. For more information, see Hotspots View.

• If you collected CPU event data, begin with the Microarchitecture Exploration viewpoint. For
more information, see Microarchitecture Exploration View.

See Also
Cookbook: Profiling Operating System Boot Time on Linux* and QNX*

Managed Code Targets
Enable performance analysis of Java*, .NET*,
Python*, Go* or Windows* Store targets by
configuring the managed code profiling options.

To configure the managed code analysis:

1. Click the

Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From the WHERE pane, select a required target system (for example, local host).
3. From the WHAT pane, select a target type (for example, Launch Application).
4. Expand the Advanced section and configure the Managed code profiling mode by choosing one of

the following options:

 1 Intel® VTune™ Profiler User Guide

130

https://www.intel.com/content/www/us/en/content-details/686077/emon-user-s-guide.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-linux-and-qnx-system-boot-time.html

• Native mode collects data on native code only, does not attribute data to managed source.
• Managed mode collects everything, resolves samples attributed to native code, attributes data to

managed source only. The call stack in the analysis result displays data for managed code only.
• Mixed mode collects everything and attributes data to managed source where appropriate. Consider

using this option when analyzing a native executable that makes calls to the managed code.
• Auto mode automatically detects the type of target executable, managed or native, and switches to

the corresponding mode.

NOTE

• On Windows* OS, the managed code profiling setting is inherited automatically from the Visual
Studio* project. For native targets, the Managed code profiling mode option is disabled.

• System-wide profiling for managed code is not supported on Windows* OS.
• Managed and Mixed modes are not supported on Linux* OS.

See Also
.NET* Targets

Windows Store Application Targets

Go* Application Targets

Java* Code Analysis

Python* Code Analysis
Set up Analysis Target
mrte-mode
vtune option

Java* Code Analysis from Command Line

.NET* Targets
Explore performance analysis specifics for pure .NET*
applications or native applications with .NET calls.

Intel® VTune™ Profiler automatically identifies the type of the code based on the debugger type specified in
the Visual Studio project property pages:

Intel® VTune™ Profiler User Guide 1

131

VTune Profiler inherits this setting to set the profiling mode for the analysis target. The following types are
possible:

• Native mode collects data on native code only, does not attribute data to managed source.
• Managed mode collects everything, resolves samples attributed to native code, attributes data to

managed source only. The call stack in the analysis result displays data for managed code only.
• Mixed collects everything and attributes data to managed source where appropriate. Consider using this

option when analyzing a native executable that makes calls to the managed code.
• Auto mode automatically detects the type of target executable, managed or native, and switches to the

corresponding mode.

Profiling Pure .NET Applications
If you analyze a pure .NET application, the VTune Profiler resolves the Auto mode to Mixed.

Before profiling a pure .NET application, make sure to generate debug information for a native image of .NET
managed assembly, which is required for successful module resolution and source analysis:

1. Use the Native Image Generator tool (Ngen.exe) from the .NET Framework to generate a native .pdb
file.

2. Click the

Configure Analysis button on the toolbar.
3. In the Configure Analysis window, click the

Search Binaries button at the bottom.

 1 Intel® VTune™ Profiler User Guide

132

4. In the Binary/Symbol Search dialog box, add a path to the generated native .pdb file.

Profiling Native Applications with .NET Calls
If you analyze a native application that calls managed code, the VTune Profiler resolves the Auto mode to
Native and does not profile managed code. In this case, if you want to enable the VTune Profiler to profile
the managed code called from the native application, set the profiling mode to Mixed as follows:

1. Click the

Configure Analysis button on the toolbar.

The Configure Analysis window opens.
2. De-select the Inherit settings from Visual Studio* project check box.

The Managed code profiling mode option is enabled.
3. In the WHAT pane, from the Advanced > Managed code profiling mode menu, select the required

profiling mode.

NOTE

• System-wide profiling is not supported for managed code.
• Starting with the VTune Amplifier 2018 Update 2, you can use the Hotspots analysis in the

hardware event-based sampling mode (former Advanced Hotspots) to profile .Net Core applications
running on Linux* or Windows* systems in the Launch Application mode. For the product
versions prior to 2018 Update 2, make sure to manually configure CoreCRL environment variables
to enable the Advanced Hotspots analysis.

See Also
Problem: Analysis of the .NET* Application Fails

mrte-mode
vtune option

Windows Store Application Targets
Intel® VTune™ Profiler supports a hardware event-based sampling analysis for Windows Store C/C++, C# and
JavaScript applications running via the Attach to Process and Profile System modes. The Launch
Application mode is not supported.

Before analysis make sure you have administrative privileges to run the data collection.

Support Limitations for Windows Store C# Application Analysis
Starting from Microsoft Windows 8*, all Windows Store C# applications are automatically pre-compiled with
the NGEN service during each 24 hours. VTune Profiler cannot resolve Native Image methods since symbol
information for these methods is absent. As a result, when you profile a pre-compiled application with the
VTune Profiler, you have [unknown] function entries instead of C# methods. You can either generate .pdb
files for native images via the Ngen.exe tool or temporarily workaround this problem until the next
automatic NGEN pre-compilation:

1. Locate automatically pre-compiled assemblies. Typically 32-bit assemblies are located in C:\Users
\Administrator\AppData\Local\Packages\<package>\AC\Microsoft
\CLR_v4.0_32\NativeImages\ and 64-bit assemblies are located in C:\Users\Administrator
\AppData\Local\Packages\<package>\AC\Microsoft\CLR_v4.0_32\NativeImages\ folders.

Intel® VTune™ Profiler User Guide 1

133

https://www.intel.com/content/www/us/en/content-details/671287/profiling-runtime-generated-and-interpreted-code-with-intel-vtune-amplifier-on-windows-os.html

NOTE
<package> varies with applications. To identify the package, use any of the following options:

• Open the Task Manager and check the properties for your application. The General tab contains
the package value including the version that should be omitted. For example, if the General tab
displays 47828<app_name>_1.0.0.4_neutral__sgvg9sxsmbbt4, then NGEN'ed modules are
located in C:\Users\Administrator\AppData\Local\Packages
\47828<app_name>_sgvg9sxsmbbt4\AC\Microsoft\CLR_v4.0_32\NativeImages\.

• Use the Process Explorer tool: explore the list of modules loaded in the application, find
*.ni.exe modules and get their location.

2. Rename the folders that include *.ni.dll or *.ni.exe. For example, rename C:\Users
\Administrator\AppData\Local\Packages\47828<app_name>_sgvg9sxsmbbt4\AC\Microsoft
\CLR_v4.0_32\NativeImages\<app_name> to C:\Users\Administrator\AppData\Local
\Packages\47828<app_name>_sgvg9sxsmbbt4\AC\Microsoft\CLR_v4.0_32\NativeImages
\<app_name>.

3. Re-start your application.

CLR JIT-compiles the methods. You can use the VTune Profiler to profile your C# application until the
next automatic NGEN pre-compilation.

NOTE
This workaround is not recommended for .NET* Framework libraries (for example, mscorlib.dll).

Support Limitations for Windows Store JavaScript Application Analysis
VTune Profiler supports mapping to the source file for JavaScript modules. But when you dive to the source
from the grid or Timeline pane, the VTune Profiler does not locate the most performance-critical code line by
default but opens the first line of the function in the Source pane. Use the navigation buttons to switch
between hot code lines.

See Also
Set Up Analysis Target

Go* Application Targets
Use the Intel® VTune™Profiler to analyze Go*
applications using the hardware event-based sampling
data collection.

Prerequisites: When configuring your analysis target, use the Search Sources button to specify paths for
your application source files so that the VTune Profiler can resolve the functions and display statistics per
source line.

VTune Profiler supports Go applications profiling with the following analysis types:

• Hotspots (hardware event-based sampling mode)
• Microarchitecture Exploration
• Custom Analysis

Limitations
• Only Go applications compiled with a compiler version 1.6 and later are supported.
• Only 64-bit version of Go applications is supported.
• On Windows* OS, call stack collection is not supported.

 1 Intel® VTune™ Profiler User Guide

134

See Also
Get Started with Intel® VTune™ Profiler

Hardware Event-based Sampling Collection

Set Up Analysis Target

Android* Targets
Use the Intel® VTune™ Profiler installed on the Windows*, Linux,* or macOS* host to analyze code
performance on a remote Android* system.

NOTE
For successful product operation, the target Android system should have ~25 MB disk space.

VTune Profiler supports the following usage mode with VTune Profiler remote collector and ADB
communication:

1. Install VTune Profiler
Install the full-scale VTune Profiler product on the host system. By default, the VTune Profiler also installs the
remote collector on the target Android system as soon as you run the first remote collection.

Intel® VTune™ Profiler User Guide 1

135

NOTE
If the remote VTune Profiler collector is installed on a non-rooted device, during installation you may
get an error message on missing/incorrect drivers. You can dismiss this message if you plan to run the
user-mode sampling and tracing collection (Hotspots) only.

2. Prepare your target system for analysis
• Configure your Android device for analysis.
• Gain adb access through TCP/IP to an Android device.
• To enable hardware-event-based sampling analysis or Java* analysis, gain root mode adb access to the

Android device.

NOTE
Depending on your system configuration, you may not need to gain a root mode access for Hotspots
(hardware event-based sampling mode), Microarchitecture Exploration and Custom EBS analysis
types.

• To enable hardware-event-based sampling analysis, verify that version compatible pre-installed signed
drivers are on the target Android system.

3. Configure and run remote analysis
1. Prepare your Android application for analysis.

Tip
Use ITT APIs to control performance data collection by adding basic instrumentation to your
application.

2. Specify your analysis target and remote system.

NOTE
You may use the Analyze unplugged device option to exclude the ADB connection and power supply
impact on the performance results. In this case, the collection starts as soon as you disconnect the
device from the USB cable or a network. The analysis results are transferred to the host when you
plug in the device back.

3. Optionally, specify binary and source search directories.
4. Choose an analysis type.

NOTE
On Android platforms, the VTune Profiler supports hardware event-based sampling analysis types and
Hotspots analysis in the user-mode sampling mode. Other algorithmic analysis types are not
supported.

5. Configure the analysis type.
6. Run the analysis from the host.

4. View collected data
View the collected data on the host.

 1 Intel® VTune™ Profiler User Guide

136

NOTE
To run Energy analysis on an Android system, use the Intel® SoC Watch tool.

See Also
Set Up Android* System

Android* Target Analysis from the Command Line

Manage Data Views

Build and Install Sampling Drivers for Android* Targets

On some versions of Android systems, including most of the Intel® supplied reference builds for SDVs, the
required drivers are pre-installed in /lib/modules or /system/lib/modules. If the drivers are not pre-
installed in any of these directories, you need to build them manually from the command line. Optionally, you
can get the drivers integrated into the Android build so that they are built and installed when the operating
system is built.

Android requires signed drivers. Every time the Android kernel is built, a random private/public key is
generated. Drivers must be signed with the random private key to be loaded. The drivers (socperf2_x.ko,
pax.ko , sep4_x.ko , and vtsspp.ko) must be signed with the same key and be compiled against the same
kernel headers/sources as what is installed on the Android target system.

VTune Profiler has options for building a new driver on the Linux host system and installing it on a target
Android system. This is not the default and will only work if you provide the proper kernel headers/sources
and a signing key. For example, the VTune Profiler uses the --with-drivers option for building PMU drivers
and --kernel-src-dir option for providing the configured kernel headers/sources tree path.

To build the sampling drivers on the host Linux system, enter:

<install-dir>/bin{32,64}/vtune-androidreg.sh --package-command=build --with-drivers --
kernel-src-dir=/ path /to/configured/kernel/sources [--jitvtuneinfo=jit|src|dex|none]
To install the sampling drivers from the Linux host, enter:

<install-dir>/bin{32,64}/vtune-androidreg.sh --package-command=install --with-drivers
--kernel-src-dir=/ path/to/configured/kernel/sources [--jitvtuneinfo=jit|src|dex|none]
To sign the drivers after the drivers are built:

Typically the VTune Profiler automatically signs drivers if kernel sources with the keys are available when it
builds the drivers. Otherwise, to manually sign the drivers, use the following command:

$KERNEL_SRC/source/scripts/sign-file CONFIG_MODULE_SIG_HASH $KERNEL_SRC/
signing_key.priv $KERNEL_SRC/signing_key.x509 driver.ko
where the CONFIG_MODULE_SIG_HASH value is extracted from the $KERNEL_SRC/.config file.

NOTE
You need the "exact" signing key that was produced at the time and on the system where your kernel
was built for your target.

See Also
Sampling Drivers

Install Intel® VTune™ Profiler

Intel® VTune™ Profiler User Guide 1

137

Prepare an Android* Application for Analysis

Set Up Android* System

Set Up Android* System
When using the VTune Profiler to collect data remotely on a target Android device, make sure to:

• Configure your Android device for analysis.
• Gain adb access to an Android device.
• For hardware event-based sampling, gain a root mode adb access to the Android device.
• Use the pre-installed drivers on the target Android system.

Optionally, do the following:

• Enable Java* analysis.
• To view functions within Android-supplied system libraries, device drivers, or the kernel, get access from

the host development system to the exact version of these binaries with symbols not stripped.
• To view sources within Android-supplied system libraries, device drivers, or the kernel, get access from

the host development system to the sources for these components.

Configure an Android Device for Analysis
To configure your Android device, do the following:

1. Allow Debug connections to enable adb access:

a. Select Settings > About <device>.
b. Tap Build number seven times to enable the Developer Options tab.
c. Select the Settings > Developer Options and enable the USB debugging option.

NOTE
Path to the Developer Options may vary depending on the manufacture of your device and system
version.

2. Enable Unknown Sources to install the VTune Profiler Android package without Google* Play. To do
this, select Settings > Security and enable the Unknown Sources option.

Gain ADB Access to an Android Device
VTune Profiler collector for Android requires connectivity to the Android device via adb. Typically Android
devices are connected to the host via USB. If it is difficult or impossible to get adb access to a device over
USB, you may get adb over Ethernet or WiFi. To connect ADB over Ethernet or WiFi, first connect to Ethernet
or connect to a WiFi access point and then do the following:

1. Find the IP Address of the target. The IP address is available in Android for Ethernet via
Settings>Wireless&Networks>Ethernet>IP Address or for Wi-Fi via
Settings>Wireless&Networks>Wi-Fi><Connected Access Point>>IP Address.

2. Make sure adb is enabled on the target device. If not enabled, go to Terminal App (of your choice) on
the device and type:

> su
> setprop service.adb.tcp.port 5555
> stop adbd
> start adbd

3. Connect adb on the host to the remote device. In the Command Prompt or the Terminal on the host,
type:

> adb connect <IPAddres>:5555

 1 Intel® VTune™ Profiler User Guide

138

Gain a Root Mode ADB Access to the Android Device
For performance analysis on Android platforms, you typically need a root mode adb access to your device to:

• Install and load drivers needed for hardware event-based sampling.
• Enable the Android device to support Java* analysis.
• Run hardware event-based sampling analysis.

NOTE
There are several analysis types on Android systems that do NOT require root privileges such as
Hotspots Analysis (user-mode samplingmode) and Perf*-based driverless sampling event-based
collection.

Depending on the build, you gain root mode adb access differently:

• User/Production builds : Gaining root mode adb access to a user build of the Android OS is difficult and
different for various devices. Contact your manufacturer for how to do this.

• Engineering builds : Root-mode adb access is the default for engineering builds. Engineering builds of
the Android OS are by their nature not "optimized". Using the VTune Profiler against an engineering build
is likely to result in VTune Profiler identifying code to optimize which is already optimized in user and
userdebug builds.

• Userdebug builds : Userdebug builds of the Android OS offer a compromise between good results and
easy-to-run tools. By default, userdebug builds run adb in user mode. VTune Profiler tools require root
mode access to the device, which you can gain via typing adb root on the host. These instructions are
based on userdebug builds.

Use the Pre-installed Drivers on the Target Android System
For hardware event-based sampling analysis, the VTune Profiler needs sampling drivers to be installed. On
some versions of Android systems, including most of the Intel supplied reference builds for SDVs, the
following drivers are pre-installed in /lib/modules or /system/lib/modules :

• Hardware event-based analysis collectors:

• socperf2_x.ko
• pax.ko
• sep3_x.ko
• sep4_x.ko
• vtsspp.ko

Typically having pre-installed drivers is more convenient. You can check for pre-installed drivers by typing:

adb shell ls [/lib/modules|/system/lib/modules]
If the drivers are not available or the version does not match requirements, consider building and installing
the drivers.

See Also
Prepare an Android* Application for Analysis

Cookbook: Profiling Hardware Without Sampling Drivers

Enable Java* Analysis on Android* System
Explore configuration settings required to enable Java analysis with Intel® VTune™ Profiler on an Android
system:

• Enable Java analysis on rooted devices

Intel® VTune™ Profiler User Guide 1

139

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

• Enabling Java analysis for code generated with ART* compiler

Enabling Java Analysis on Rooted Devices
By default, the VTune Profiler installs the remote collector on the target rooted Android devices with the --
jitvtuneinfo=src option. To change the Java profiling option for rooted devices, you need to re-install the
remote collector on the target manually using the --jitvtuneinfo=[jit|src|dex|none] option on
amplxe-androidreg.bat (Windows) or amplxe-androidreg.sh (Linux). For example:

On Windows*:

<install-dir >\bin32\amplxe-androidreg.bat --package-command=install --jitvtuneinfo=src
On Linux*:

<install-dir >/bin{32,64}/amplxe-androidreg.sh --package-command=install --
jitvtuneinfo=src
VTune Profiler updates the /data/local.prop file as follows:

1. Basic information about the compiled trace: root@android:/ # cat /data/local.prop
dalvik.vm.extra-opts=-Xjitvtuneinfo:jit

2. Mapping from JIT code to Java source code and basic information about the compiled trace:
root@android:/ # cat /data/local.prop dalvik.vm.extra-opts=-Xjitvtuneinfo:src

3. Mapping from JIT code to DEX code and basic information about the compiled trace: root@android:/
cat /data/local.prop dalvik.vm.extra-opts=-Xjitvtuneinfo:dex

4. JIT data collection. By default, JIT collection is disabled if you do not supply any options:
root@android:/ # cat /data/local.prop dalvik.vm.extra-opts=-Xjitvtuneinfo:none

Additionally, if your Dalvik JVM supports instruction scheduling, disable it by adding -Xnoscheduling at the
end of dalvik.vm.extra-opts. For example:

root@android:/ # cat /data/local.prop dalvik.vm.extra-opts=-Xjitvtuneinfo:src -
Xnoscheduling

NOTE
Java analysis currently requires an instrumented Dalvik JVM. Android systems running on the 4th
Generation Intel® Core™ processors or Android systems using ART vs. Dalvik for Java are not
instrumented to support JIT profiling. You do not need to specify --jitvtuneinfo=N.

Tip
If you are able to see the --generate-debug-info option in the logcat output (adb logcat *:S
dex2oat:I), the compiler uses this option.

Enabling Java Analysis for Code Generated with ART* Compiler
To enable a source-level analysis, the VTune Profiler requires debug information for the analyzed binary files.
By default, the ART compiler does not generate the debug information for Java code. Depending on your
usage scenario, you may choose how to enable generating the debug information with the ART compiler:

NOTE
For releases prior to Android 6.0 Marshmallow*, the --generate-debug-info in the examples below
should be replaced with --include-debug-symbols.

 1 Intel® VTune™ Profiler User Guide

140

To Do This: Do This:

Profile a 3rd party
application or
system
application
installed as
an .apk file

1. Set the system property dalvik.vm.dex2oat-flags to --generate-debug-
info:

adb shell setprop dalvik.vm.dex2oat-flags --generate-debug-info
2. If you use --compiler-filter=interpret-only, set the optimization level to

speed:

adb shell setprop
dalvik.vm.dex2oat-filter speed
3. (Re-)install the application.

adb shell install -r
TheApp.apk

Profile all
applications
installed as .apk
or .jar files by
re-building the
Android image
when pre-
optimization for
private
applications is
enabled
(LOCAL_DEX_PRE
OPT:=true
property set in
device.mk)

1. On your host system, open the /build/core/dex_preopt_libart.mk file,
located in your Android OS directory structure.

2. Modify the --no-generate-debug-info line to --generate-debug-info and
save and close the file.

3. Rebuild the Android image and flash it to your device.
4. If you are using an Android image that is not PIC configured

(WITH_DEXPREOPT_PIC:=false property set in device.mk), generate
classes.dex from odex using the patchoat command. classes.dex should
appear in /data/dalvik-cache/x86/
system@app@appname@appname.apk@classes.dex

Profile all
applications
installed as .apk
or .jar files by
re-building the
Android image
when pre-
optimization for
private
applications is
disabled
(LOCAL_DEX_PRE
OPT:=false
property set in
device.mk)

1. Set the system property dalvik.vm.dex2oat-flags to --generate-debug-
info:

adb shell rm -rf /data/dalvik-cache/x86/
system@app@webview@webview.apk@classes.dex
adb shell setprop dalvik.vm.dex2oat-flags --generate-debug-info
2. Stop and start the adb shell:

adb shell stop
adb shell start
3. Generate the dex file:

adb shell ls /data/dalvik-cache/x86/
system@app@webview@webview.apk@classes.dex
adb pull /data/dalvik-cache/x86/system@app@webview@webview.apk@classes.dex

Profile an
application
executed by the
dalvikvm
executable

Add the compiler option --generate-debug-info followed by -Xcompiler-option.
Make sure the application has not been compiled yet.

rm –f /data/dalvik-cache/*/*TheApp.jar*
adb shell dalvikvm –Xcompiler-option --include-debug-symbols –cp TheApp.jar

Intel® VTune™ Profiler User Guide 1

141

To Do This: Do This:

Profile system
and core classes

NOTE
This action is
required if Java
core classes get
compiled to the /
data/dalvik-
cache/
subdirectory.
Manufacturers
may place them in
different
directories. If
manufactures
supply the
precompiled
boot.oat file
in /system/
framework/
x86, Java core
classes will not be
resolved because
they cannot be re-
compiled with
debug information.

Set the system property dalvik.vm.image-dex2oat-flags to --generate-
debug-info and force recompilation:

adb shell stop
adb shell rm –f /data/dalvik-cache/*/*
adb shell setprop dalvik.vm.dex2oat-flags --generate-debug-info
adb shell setprop dalvik.vm.image-dex2oat-flags --generate-debug-info
adb shell start
If you run the application before the system classes are compiled, you should add
another compiler option -Ximage-compiler-option --generate-debug-info:

adb shell rm –f /data/dalvik-cache/*/*
adb shell dalvikvm –Xcompiler-option --generate-debug-info -Ximage-compiler-
option --generate-debug-info –cp TheApp.jar

See Also
Prepare an Android* Application for Analysis

Prepare an Android* Application for Analysis
Before starting an analysis with the VTune Profiler, make sure your Android application is compiled with
required settings:

Compilation Settings
Performance analysis is only useful on binaries that have been optimized and have symbols to attribute
samples to source code. To achieve that:

• Compile your code with release level settings (for example, do not use the /O0 setting on GCC*).
• Do not set APP_OPTIM to debug in your Application.mk as this setting disables optimization (it

uses /O0) when the compiler builds your binary.
• To run performance analysis (Hotspots) on non-rooted devices, make sure to compile your code setting

the debuggable attribute to true in AndroidManifest.xml.

 1 Intel® VTune™ Profiler User Guide

142

NOTE
If your application is debuggable (android:debuggable="true"), the default setting will be debug
instead of release. Make sure to override this by setting APP_OPTIM to release.

By default, the Android NDK build process for Android applications using JNI creates a version of your .so
files with symbols.

The binaries with symbols included go to [ApplicationProjectDir]/obj/local/x86.

The stripped binaries installed on the target Android system via the .apk file go to
[ApplicationProjectDir]/libs/x86 . These versions of the binaries cannot be used to find source in the
VTune Profiler. However, you may collect data on the target system with these stripped binaries and then
later use the binaries with symbols to do analysis (as long as it is an exact match).

When the VTune Profiler finishes collecting the data, it copies .so files from the device (which have had their
symbols stripped). This allows the very basic functionality of associating samples to assembly code.

Tip
Use ITT APIs to control performance data collection by adding basic instrumentation to your
application.

See Also
Android* Target Analysis from the Command Line

Instrumentation and Tracing Technology APIs

Analyze Unplugged Devices
Configure the Intel® VTune™ Profiler to run the
collection on a detached device by using the Analyze
unplugged device option.

Intel VTune Profiler allows you to run an analysis on a mobile system that is detached from the network or
USB drive during the collection. Detaching the device from an ADB connection allows for increased accuracy
in certain system performance metrics, such as power consumption. Unplugged analysis is currently
supported for Android* target devices.

1. Connect to the target Android device via ADB. For more information, see Android* System Setup.
2. Click the Configure Analysis button on the VTune Profiler toolbar.
3. Select the Android device (ADB) option from the WHERE pane.
4. In the WHAT pane, select the analysis target.
5. Expand the Advanced section of the WHAT pane and select the Analyze unplugged device option.
6. Select the analysis type from the HOW pane and click Start.
7. Unplug the device from the USB.

Collection begins as soon as the device is disconnected. Data is collected on the device using the
settings selected. An alert appears after collection completes. You can also tap the Stop button on your
device to stop the collection.

8. Reconnect the device to the USB when collection completes. The collected results are automatically
transferred to Intel VTune Profiler, processed, and displayed in the viewpoint appropriate to the analysis
type selected. If you plug in the device before collection completes, the collection stops and the results
are transferred to Intel VTune Profiler.

See Also
-no-unplugged-mode
vtune option

Intel® VTune™ Profiler User Guide 1

143

Search Directories for Android* Targets
For accurate module resolution and source analysis of your Android* application, make sure to specify search
paths for binary and source files when configuring performance analysis:

• from command line, use the --search-dir/--source-search-dir options; for example:

host>./vtune --collect hotspots -knob sampling-mode=hw -r system_wide_r@@@ --search-dir ~/
AndroidOS_repo/out/target/product/ctp_pr1/symbols/

• from GUI, use the Dialog Box: Binary/Symbol Search and Dialog Box: Source Search dialog boxes

If you have not set the project search directories at the time of collection or import, you will not be able to
open the source code. Only Assembly view will be available for source analysis.

Consider the following when adding search paths:

• By default, the VTune Profiler pulls many binaries from the target device.
• The Kernel [vmlinux] is one file that does not contain symbols on the target device. Typically it is

located in [AndroidOSBuildDir]/out/target/product/[your target]/linux/kernel/vmlinux.
• Many operating system binaries with symbols are located in either [AndroidOSBuildDir]/out/target/

product/[your target]/symbols, or [AndroidOSBuildDir]/out/target/product/[your
target]/obj.

• Application binaries with symbols are located in [AndroidAppBuildDir]/obj/local/x86.
• Application source files for the C/C++ modules are usually located in [AndroidAppBuildDir]/jni , not

in [AndroidAppBuildDir]/src (where the Java *source files are). Some third-party software in Android
does not provide binaries with symbols. You must contact the third party to get a version of the binaries
with symbols.

• You can see if a binary has symbols by using the file command in Linux and make sure that it says not
stripped.

 file MyBinary.ext
MyBinary.ext: ELF 32-bit LSB shared object, Intel 80386, version 1
(SYSV), dynamically linked, not stripped

See Also
Search Directories

Intel® Xeon Phi™ Processor Targets
The following figure shows basic workflow required to analyze an application running on Intel® Xeon Phi™
processors (code named Knights Landing and Knights Mill) based on Intel Many Integrated Core Architecture
(Intel® MIC Architecture) or perform a system-wide analysis using Intel® VTune™ Profiler. Analysis is
supported on a Linux* target with the self-boot version of the Intel Xeon Phi processor. You may choose to
run one of the predefined analysis types, HPC Performance Characterization, Memory Access,
Microarchitecture Exploration, Hotspots, or create a custom analysis type.

NOTE
Instrumentation-based collections such as Hotspots in the user-mode sampling mode or Threading
analysis can cause a significant overhead on the number of worker threads. Instead, use Hotspots
analysis in the hardware event-based sampling mode or HPC Performance Characterization to explore
application scalability.

 1 Intel® VTune™ Profiler User Guide

144

NOTE
The workflow represented in the diagram is the recommended flow to speed up the analysis process.
It is possible to run the full Intel VTune Profiler collection on the Intel Xeon Phi processor, but
finalization and visualization might be slow. You can follow the regular analysis flow directly on the
target Intel Xeon Phi processor.

Prerequisites
It is recommended to install the sampling driver for hardware event-based sampling collection types such as
HPC Performance Characterization, Memory Access, Microarchitecture Exploration, or Hotspots (hardware
event-based sampling mode). If the sampling driver is not installed, Intel VTune Profiler can work on Linux
Perf*. Be aware of the following system configuration settings:

• To enable system-wide and uncore event collection that allows the measurement of DRAM and MCDRAM
memory bandwidth that is a part of the Memory Access and HPC Performance Characterization analysis
types, use root or sudo to set /proc/sys/kernel/perf_event_paranoid to 0.

echo 0>/proc/sys/kernel/perf_event_paranoid
• To enable collection with the Microarchitecture Exploration analysis type, increase the default limit of

opened file descriptors. Use root or sudo to increase the default value in /etc/security/limits.conf
to 100*<number_of_logical_CPU_cores>.

<user> hard nofile <100 * number_of_logic_CPU_cores>
<user> soft nofile <100 * number_of_logic_CPU_cores>

1. Configure and run analysis on the target system with an Intel Xeon Phi processor
There are two ways to configure and run the analysis on the target system:

Intel® VTune™ Profiler User Guide 1

145

• Finalization on host system (recommended): Use a command to run the analysis on the system with the
Intel Xeon Phi processor without finalizing. This option results in the best performance.

From a command prompt, run the collection with the deferred finalization option to calculate the binary
check sum for proper symbol resolution on the host system. For example, to run a Memory Access
analysis: vtune -collect memory-access -finalization-mode=deferred -r
<my_result_dir> ./my_app
For more information, see vtune Command Syntax and finalization-mode topics.

Tip
You can also generate a command using the VTune Profiler GUI as described below. After generating
the command, add the -finalization-mode=deferred option to the command to delay finalization.

• Finalization on target system: Use the VTune Profiler GUI on the host system to generate a command for
the target system with the Intel Xeon Phi processor. Run and finalize the analysis on the target system.
This method may not provide the fastest results.

1. In the WHERE pane, select Arbitrary Host button, set the processor architecture to Intel® Processor
code named Knights Landing, and specify the operating system type.

2. In the WHAT pane, select Launch Application and configure the analysis:

• Enter the application name and parameters.
• Select the Use MPI Launcher checkbox and provide the launcher name, number of ranks, ranks to

profile, and result location.
3. In the HOW pane, select and configure an analysis type.

• Hotspots
• HPC Performance Characterization
• Microarchitecture Exploration
• Memory Access

4.Click the Command Line button at the bottom of the window to generate the command.
5.Copy the generated command to a command prompt on the target system and run the analysis.

Finalization begins after the analysis completes. Finalization may take several minutes.

2. Open the result on the host system
Copy the result to the host system (if the results collected on the target system are not available on the host
via a share). Finalize the result if your command specified deferred finalization.

1. Copy the result to the host system using SSH or a similar method.
2. [Optional] Finalize the result by providing the result file and search directories to the binaries of interest

if the module paths are different from the target system. For example: vtune -finalize -r
<my_result_dir> -search-dir <my_binary_dir>

3. Open and interpret analysis results
There are two ways to view the results:

• View results in the command line by running a command to generate a report based on the data
collected. For example, the following command creates a hotspots report: vtune -report hotspots -r
<my_result_dir>

• Launch Intel VTune Profiler on the host system and view the result file.

1.Open Intel VTune Profiler.
2.Use the open result action on the toolbar or from the menu button to browse to the result file.
3.Analyze the results and make optimizations to your application.

• HPC Performance Characterization Data View

 1 Intel® VTune™ Profiler User Guide

146

• Memory Usage Data View
• Hotspots Data View
• Microarchitecture Exploration Data View

See Also
Custom Analysis

Dialog Box: Binary/Symbol Search

Dialog Box: Source Search

Targets in Virtualized Environments
Configure your system to use the Intel® VTune™
Profiler for targets running in such virtualization
environments as Hyper-V* on Windows*, KVM* or
VMWare ESXi* on Linux*, and others.

Virtual machines are made up of the following components:

• Host operating system: system from which the virtual machine is accessed. Supported host systems:
Linux*, Windows*

• Virtual machine manager (VMM) or cloud service provider: tool used to access and manage the virtual
machine.

• Guest operating system: system accessed via the VMM and profiled using Intel VTune Profiler. Supported
guest systems: Linux*, Windows*

In most cases, the VTune Profiler is installed on the guest operating system and analysis is run on the guest
system. The guest system may not have full access to the system hardware to collect performance data.
Analysis types that require access to system hardware, such as those that require uncore event counters, will
not work on a virtual machine.

NOTE
Typically the host operating system has access to the system hardware to collect performance data,
but there are cases in which the host system may also be virtualized. If this is the case and you want
to collect performance data on the host system, treat the host system as you would a guest system
and assume that it no longer has the same level of access to the system hardware.

Analysis Type Support
Support for VTune Profiler analysis types varies depending upon which counters have been virtualized by the
VMM. You can refer to the documentation for your VMM to get a list of virtualized counters.

If you run an analysis type that cannot be run in a virtualized environment, VTune Profiler displays a warning
message.

Intel® VTune™ Profiler User Guide 1

147

VTune Profiler uses the two sampling-based collection modes for analysis:

• User-Mode Sampling

In general, the Hotspots analysis type in this mode will work on every supported VMM because the
analysis type does not require access to the system hardware.

• Hardware Event-Based Sampling

Analysis types that use this mode (Hotspots and Microarchitecture Exploration) have limited reporting
functionality. For example, they may not include accurate results for stacks because this data relies on
information provided by precise events. Running analysis types that rely on precise events will return
results, but the collected data will be incomplete or distorted. That is, the result may not point to the
actual instruction that caused the event, which can be difficult to differentiate from correct events.

To enable performance analysis in the hardware event-based sampling mode on a virtual machine,
additional configuration steps are required. As soon as you installed VTune Profiler, you need to enable
the vPMU for your hypervisor:

• VMware*
• Hyper-V*
• KVM*
• Xen* Project
• Parallels* Desktop

NOTE
Analysis types based on uncore events (Memory Access, Input and Output analysis, and others) and
related performance metrics (Memory Bandwidth, PCIe Bandwidth, and others) are not supported on
virtual machines.

Virtual Machine Host/Guest Support
A typical virtualized environment includes a host operating system, which boots first and from which the VMM
is loaded, and virtual machines (VMs) running guest operating systems. There are multiple combinations of
each and support varies based on each component.

Linux Host Windows Host

Linux Guest KVM

Hyper-V

VMware

VMware

Windows
Guest

VMware VMware

Hyper-V

VTune Profiler supports profiling host and guest OS from the host system. This type of analysis is only
available for virtual machines with KVM hypervisor as a preview feature.

See Also
Profile Targets on a KVM* Guest System

Profile Targets on a VMware* Guest System
Configure the Intel® VTune™ Profiler to analyze
performance on a VMware* guest system.

 1 Intel® VTune™ Profiler User Guide

148

VMware users can use the VTune Profiler to analyze a Windows* or Linux* virtual guest system. VTune
Profiler is installed and run on the guest system. Additional information about installing VTune Profiler is
available from the installation guides. Refer to the installation guide for the guest system operating system
(Windows or Linux).

Use the following steps to enable event-based sampling analysis on the VMware virtual machine. Refer to the
VMware documentation for the most up-to-date information.

1. From the host system, open the configuration settings for the virtual machine.
2. Select the Processors device on the left.
3. Select the Virtualize CPU performance counters checkbox.
4. Click Save to apply the change.

See Also
Hardware Event-based Sampling Collection

Profile Targets on a Parallels* Guest System
Configure the Intel® VTune™ Profiler to analyze
performance on a Parallels* guest system.

Parallels* Desktop users can use Intel® VTune™ Profiler to analyze a Windows* or Linux* virtual guest system
using a macOS* host. Intel VTune Profiler is installed and run on the guest system. Additional information
about installing VTune Profiler is available from the installation guides. Refer to the installation guide for the
guest system operating system (Windows or Linux).

Use the following steps to enable event based sampling analysis inside Parallels virtual machines. Refer to
the Parallels documentation for the most up-to-date information.

1. Open the configuration options:

• Click the Parallels icon in the menu bar, press and hold the Option (Alt) key, and choose Configure.

Intel® VTune™ Profiler User Guide 1

149

• Choose Virtual Machine > Configure from the Parallels Desktop menu bar at the top of the
screen.

2. Select the Options tab.
3. Select Optimization.
4. Select the Enable PMU virtualization checkbox.

See Also
Install Intel® VTune™ Profiler

Hardware Event-based Sampling Collection

Profile Targets on a KVM* Guest System
Configure the Intel® VTune™ Profiler to analyze
performance on a KVM guest system.

Performance analysis for the host and virtual machine(s) in cloud environments helps identify such issues as
resource contention (for example, CPU/vCPU time) and network/IO activity. VTune Profiler uses Perf*-based
driverless collection to enable performance analysis of the guest Linux* operating system via Kernel-based
Virtual Machine (KVM) from the host system.

Unlike other virtual machine systems, systems using KVM on a Linux* host to access a Linux guest can have
VTune Profiler installed on either the host system to analyze performance on the guest system or installed
directly on the guest system to analyze the guest system. Additional information about installing VTune
Profiler is available from the Linux installation guides.

 1 Intel® VTune™ Profiler User Guide

150

Depending on your analysis target, you may choose any of the supported usage modes for KVM guest OS
profiling.

Profiling Modes
Currently, the VTune Profiler supports the following usage modes for KVM guest OS profiling, and each of
them has some limitations:

Profiling System KVM Guest OS (User
Apps)

KVM Guest OS (User and
Kernel Space)

Host and KVM Guest
OS (User and Kernel
Space)

(preview feature)

Supported
analysis

User-mode sampling:
Hotspots and
Threading

Event-based sampling:
Hotspots and limited
Microarchitecture Exploration

Event-based sampling:
all types with accurate
attribution of user-
space activity to the
user processes on the
guest

Target type Applications in the
Launch and Attach
modes

• Applications in the Launch
and Attach modes

• System-wide analysis

System-wide analysis
(host and guest OS)

VTune Profiler
installation mode

On the guest OS On the guest OS On the host and guest
OS (VTune Profiler
custom collector)

Limitations No system-wide
analysis for user-mode
sampling

• Limited event-based
sampling analysis due to a
limited set of virtualized
PMU events and
unavailable uncore events

• No information from the
host

• Additional debugfs
and custom
collector
configuration is
required

• Access to the host
system running VM
is required

• Not applicable to
cloud environments

Configuration Learn more PMU event virtualization
required for Event-based
sampling

Learn more

Analyze KVM guest
OS option

Learn more

See Also
Install Intel® VTune™ Profiler

analyze-kvm-guest

kvm-guest-kallsyms

kvm-guest-modules

Intel® VTune™ Profiler User Guide 1

151

Profile KVM Kernel Modules from the Host

If you are a system developer and interested in the performance analysis of a guest Linux* system including
KVM modules, consider using this usage mode:

1. Prepare your system for analysis:
a. Copy the /proc/kallsyms and /proc/modules files from a guest OS to a host file system to

have KVM guest OS symbols resolved.
b. Copy any guest OS’s modules of interests (vmlinux and any *.ko files) from a guest OS and save

them to a [guest] folder on the host file system.
2. Click the

Configure Analysis button on the VTune Profiler toolbar.

The Configure Analysis window opens.
3. Make sure to select the Local Host target system in the WHERE pane and configure the required

target type in the WHAT pane.

By default, the Launch Application target type is selected.

If you select the Attach to Process target type, specify the qemu-kvm process to attach to.

Alternatively, you may specify the PID of the qemu-kvm process. To determine the PID, enter:

 1 Intel® VTune™ Profiler User Guide

152

$ ps aux | grep kvm
4. In the Advanced section of the WHAT pane, select the Analyze KVM guest OS option and enter

paths to the local copies of the guest /proc/kallsyms and /proc/modules files; for example:

5. Click the

Search Binaries button on the bottom right.

The Binary/Symbol Search dialog box opens.
6. Add a local path to a [guest] folder where all modules copied from the guest OS reside.

For example, if your [guest] folder is located in /home/vtune, specify /home/vtune as a search
directory:

7. Click OK to save your changes.
8. In the HOW pane, select a required analysis type.

Intel® VTune™ Profiler User Guide 1

153

For KVM guest OS profiling, you may choose analysis types using Perf*-based EBS data collection:
Hotspots (hardware event-based sampling mode), System Overview, or configure your own custom
analysis.

9. Click the Start button at the bottom to run the analysis.

When you run the analysis, the VTune Profiler collects the data on both host and guest OS and displays
merged statistics in the result. Guest OS modules have the [guest] postfix in the grid. For example:

Focus on the Platform tab to analyze your code performance on the guest OS and correlate this data with
CPU, GPU, power, hardware event metrics and interrupt count at each moment of time. If you enabled the
kvm Ftrace event collection for your target, you can also monitor the statistics for KVM kernel module:

Limitations
• In this mode, the VTune Profiler collects data only on the kernel space modules on the KVM guest OS.

Data on user space modules shows up in the [Unknown] node and includes only high-level statistics.

 1 Intel® VTune™ Profiler User Guide

154

• Call stack data is not collected for this type of profiling.

See Also
analyze-kvm-guest
vtune option

kvm-guest-kallsyms
vtune option

kvm-guest-modules
vtune option

Profile KVM Kernel and User Space on the KVM System
Install the VTune Profiler on the KVM system and
configure your target for the KVM guest OS profiling.

For application analysis, you need to install the Intel® VTune™ Profiler directly on your guest OS. VTune
Profiler installation detects a virtual environment and disables sampling drivers installation to avoid system
instability. When the product is installed, proceed with project configuration by specifying your application as
an analysis target and selecting an analysis type:

This profiling type supports two usage modes:

• Guest OS (user apps)
• Guest OS (kernel and user space)

Both profiling modes are applicable to cloud environments but introduce some limitations.

Guest OS (User App) Profiling Mode
In this mode, the VTune Profiler supports user-mode sampling and tracing analysis types, Hotspots and
Threading, for the applications running in the Launch or Attach mode. System-wide analysis is not supported.

Guest OS (Kernel and User Space) Profiling Mode
In this mode, the VTune Profiler provides limited event-based collection options for the Hotspots and
Microarchitecture Exploration analyses and requires additional host system configuration to virtualize PMU
counters.

Intel® VTune™ Profiler User Guide 1

155

To enable event-based sampling analysis on the KVM system:

1. From the host system, open the configuration settings for the virtual machine.
2. Select the CPUs or Processor option on the left.
3. Enter host-passthrough into the Model field to pass through the host CPU features without modifying

the guest system.
4. Click Apply to save the changes.

When you select a hardware event-based analysis type (for example, Microarchitecture Exploration), the
VTune Profiler automatically enables a driverless event-based sampling collection using the Linux Perf* tool.
For this analysis, the VTune Profiler collects only architectural events. See the Performance Monitoring Unit
Sharing Guide for more details on the supported architectural events.

Limitations
• User-mode sampling limitations:

• Only Hotspots and Threading analyses are supported.
• No system-wide analysis is available.

• Hardware event-based sampling limitations:

• Only Hotspots and limited Microarchitecture Exploration analyses are supported.
• PEBS counters are not virtualized.
• Uncore events are not available.

• KVM modules and host system modules do not show up in the analysis result.
• Data on the guest OS and your application modules show up as locally collected statistics with no

[guest] markers.

See Also
analyze-kvm-guest
vtune option

kvm-guest-kallsyms
vtune option

 1 Intel® VTune™ Profiler User Guide

156

https://www.intel.com/content/www/us/en/content-details/727001/performance-monitoring-unit-sharing-guide.html
https://www.intel.com/content/www/us/en/content-details/727001/performance-monitoring-unit-sharing-guide.html

kvm-guest-modules
vtune option

Dialog Box: Binary/Symbol Search

Profile KVM Kernel and User Space from the Host

In this mode, Intel® VTune™ Profiler collects two traces in parallel: system-wide performance data trace on
the host and OS-level event trace on the guest system. These traces get merged into one VTune Profiler
result and provide:

• simultaneous analysis of user space activity (processes, threads, functions) from the host on the guest
system;

• accurate attribution of collected data to the user processes running on the guest, based on the timestamp
synchronization.

This usage mode provides the following advantages:

• VMs are not required to virtualize performance counters. All performance analysis features are available to
VM users out of the box.

• Sampling drivers (VTune Profiler sampling driver or Perf*) do not need to be installed on a guest VM.

To enable KVM kernel and user space profiling from the host:

1. Install the VTune Profiler on the host and virtual machine.

NOTE
You do not need to install sampling drivers.

2. On both host and guest systems, run the script from the bin64 folder as a root:

$ prepare-debugfs.sh -g <user_group>
$ echo 0 > /proc/sys/kernel/perf_event_paranoid

3. Configure a password-less SSH access from the host to the KVM guest system.
4. If your host system is multi-socket, export the environment variable to set the time source to TSC

before starting the VTune Amplfier:
VTUNE_RUNTOOL_OPTIONS=--time-source=tsc

5. Create a project.
6. From the WHAT pane in the Configure Analysis window, expand the Advanced section and enter the

following string to the Custom collector field:
python <vtune_install_dir>/bin64/kvm-custom-collector.py --kvm-ssh-
login=<username>@<kvm_ssh_ip> --vtune-dir-on-kvm=<vtune-install-dir>

NOTE
For additional details on particular options, see the kvm-custom-collector.py script help.

7. To collect data from the guest kernel space, select the Analyze KVM Guest OS option.

Copy /proc/kallsyms and /proc/modules files from the virtual machine to the host.

NOTE
Since these are pseudo-files, you are recommended to cat their content into a regular file and then
copy it to the host. Specify paths to the copied files in the project properties.

8. From the HOW pane, select any hardware event-based sampling analysis (for example, General
Exploration) and run the analysis from the host.

Explore the collected data by enabling all the grouping levels containing a VM component to differentiate the
host and target data.

Intel® VTune™ Profiler User Guide 1

157

Example 1: Hotspots Analysis (Hardware Event-Based Sampling Mode)

Analyze hotspots for both an application launched from the Linux host, app-from-host, and an application
launched on the KVM guest system, app-in-vm:

Example 2: Microarchitecture Exploration Analysis

Analyze the efficiency of the Microarchitecture Usage for the application launched on the KVM guest system.
The context summary on the right pane shows the hardware metrics for the thread (launched inside the
KVM) selected in the grid:

System Requirements and Limitations
• Minimum Linux kernel version for host system is 4.9.
• debugfs is mounted on both host and guest system.
• Irrespective of the number of KVM/Qemu processes running, only one running VM instance can be

profiled.
• In the result view, threads with the same name may be grouped into one process (ftrace).
• In the result view, samples before the first context switch may be attributed to the hypervisor thread on

the host.

See Also
Use a Custom Collector

analyze-kvm-guest
vtune option

kvm-guest-kallsyms
vtune option

 1 Intel® VTune™ Profiler User Guide

158

kvm-guest-modules
vtune option

Profile Targets on a Xen* Virtualization Platform
Configure Intel® VTune™ Profiler and your system with
a Xen virtualization platform for performance profiling.

You can use the VTune Profiler for hardware event-based analysis either for a guest OS (DomU), a privileged
OS (Dom0), or all the domains at once.

Configure a Target System for Analysis
Before running a VTune Profiler analysis on a system with a Xen virtualization platform, enable full-platform
CPU monitoring required for event-based sampling analysis:

$ echo "all" > /sys/hypervisor/pmu/pmu_mode
To get CPU profiling data on a virtualized system (Dom0 and the hypervisor only), enter:

$ echo "hv" > /sys/hypervisor/pmu/pmu_mode

NOTE

• Some configurations do not support the all mode.
• CPU events virtualization requires root privileges.
• Unlike CPU profiling, GPU profiling in the hv mode is available for all domains (Dom0 and DomU).

Configure VTune Profiler for Xen Platform-Wide Analysis
Prerequisites: Make sure the Dom0 remote analysis target is accessible via the Ethernet/SSH connection
from your host without any password.

Create a VTune Profiler project and specify options for your remote target as follows:

1. Select the remote Linux (SSH) type of the target system on the WHERE pane.
2. Specify SSH destination details for your Dom0 remote target system.
3. Select the Profile System target type to enable platform-wide performance monitoring (WHAT pane).

As soon as you set up the target options, the VTune Profiler attempts to automatically install required
components on the specified remote system. If, for some reason, the system cannot be reached, VTune
Profiler displays an error message. To troubleshoot this potential problem, make sure the default path
specified as the VTune Profiler installation on the remote system in the WHERE pane is
accessible, writable, and has 200Mb of available space. If not, specify another location, for example: /
tmp.

As soon as the connection is established and the target is configured, select an analysis type supported on
the Xen virtualization platform from the HOW pane:

• Microarchitecture Exploration
• GPU Rendering (preview)

See Also
Set Up Analysis Target

Set Up Remote Linux* Target

target-system
vtune option

target-tmp-dir

Intel® VTune™ Profiler User Guide 1

159

vtune option

Profile Targets in the Hyper-V* Environment
Configure your Windows* system to enable hardware
event-based performance analysis in the Hyper-V
virtualization environment.

VTune Profiler supports performance profiling in the Hyper-V environment with some limitations applicable to
the event-based sampling collection. So, before you start the analysis, make sure your system configuration
satisfies the requirements.

Verify Your System Configuration for Hardware Analysis
• For the hardware analysis in your Hyper-V environment, make sure your system runs on:

• Intel microarchitectures code named Skylake, Goldmont, or later;
• Windows 10 RS3 operating system (version 1709) or later. To check the system version, use the

winver command.
• Run the msinfo32 command to make sure the Hyper-V is enabled and running.

The System Summary in the System Information dialog box should show the Virtualization-based
security item as Running:

NOTE
If your system does not meet the profiling requirements but you plan to run hardware event-based
sampling analysis with VTune Profiler, make sure to disable the Hyper-V feature in the system
settings.

Disable the Credential Guard and Device Guard on Hyper-V
The Hyper-V has optional security features: Device Guard and Credential Guard. When either or both of them
are enabled, accessing non-architectural PMU MSRs triggers (required for the driver-based hardware event
sampling analysis) a general protection fault. For example, offcore response MSRs and uncore related MSRs
are non-architectural MSRs. To collect these events, you must disable the security features as follows:

1. Make sure the security features are running on your system:

a. Run the msinfo32 command to open the System Information dialog.
b. In the System Summary, check whether the Virtualization-based Security Services

Running item includes Hypervisor enforced Code Integrity and/or Credential Guard values.
2. Disable these security features by running the Microsoft* DG-CG-Readiness-Tool, available at https://

www.microsoft.com/en-us/download/details.aspx?id=53337:

a. Open Powershell as an administrator and go to the tool installation directory.
b. Run the tool as follows:

.\DG_Readiness_Tool_v2.1.ps1 -Disable -CG -DG
c. Reboot the system.
d. Make sure the device guard is turned off. The output from msinfo32 should NOT include either

Hypervisor enforced Code Integrity or Credential Guard.

 1 Intel® VTune™ Profiler User Guide

160

See Also
Error Message: Cannot Enable Event-Based Sampling Collection

Targets in a Cloud Environment
You can use Intel® VTune™ Profiler to run application performance analysis in the user-mode sampling mode
on Windows* or Linux* virtual machine based instances or any analysis type on a bare-metal cloud instance.

These cloud service providers are supported:

• Amazon Web Services* (AWS)
• Google Cloud Platform*
• Microsoft Azure*

You can install VTune Profiler either directly on the cloud instance or on a Windows, Linux, or macOS* host
system and target a Linux cloud instance for remote analysis.

Prerequisites:

• Existing account with one of the supported cloud service providers
• Existing Linux or Windows instance in the cloud
• Linux instance: Root or sudo privileges to enable user-mode sampling Hotspots analysis by setting /

proc/sys/kernel/yama/ptrace_scope to 0. See the Intel VTune Profiler Release Notes for instructions
on enabling it permanently.

• If installing in the cloud: At least 25GB of instance storage

To install VTune Profiler on the cloud instance, copy the VTune Profiler installer to the cloud instance and run
the installer. For more information, see the VTune Profiler Install Guide..

A use case with steps for installing and configuring VTune Profiler on an Amazon Web Services instance and
running a Hotspots analysis on that instance is available from the VTune Profiler Cookbook.

Arbitrary Targets
Configure and generate a command line for
performance analysis on a system that is not
accessible from the current host.

Besides targets accessible to Intel® VTune™ Profiler directly on the host or via a remote connection (SSH or
ADB), you have an Arbitrary Host option to create a command line configuration for a platform not
accessible from the current host. You can select any of the supported hardware platforms and operating
systems, configure corresponding target and analysis options, and generate a command line by clicking the
Command Line button. The generated command line will be saved in the buffer and can be used later on
the intended host.

NOTE
The option to generate a command line from GUI via the Command Line button is available for both
accessible and arbitrary targets.

To configure an analysis for an arbitrary host:

1. Create a new project or click the

Configure Analysis toolbar button for an existing project.
2. From the Configure Analysis window, click the

Intel® VTune™ Profiler User Guide 1

161

https://www.intel.com/content/www/us/en/developer/articles/release-notes/vtune-profiler-release-notes.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-applications-in-aws-ec2-instances.html

Browse button on the WHERE pane and select the Arbitrary Host (not connected) type of the
target system.

3. Specify a platform for profiling:

• Select a hardware platform for analysis from the drop-down menu, for example: Intel® processor
code named Anniedale.

• Specify either Windows* or GNU*/Linux* operating system.
4. Switch to the WHAT pane to configure analysis target options.

For MPI analysis of an arbitrary target, enable the Use MPI launcher check box to generate a
command line configuration. Configure the following MPI analysis options:

• MPI launcher: Select an MPI launcher that should be used for your analysis. You can either enable
the Intel MPI launcher option (default) or select Other and specify a launcher of your choice, for
example: aprun, srun, or lbrun.

• Number of ranks: Specify the number of ranks used for your application.
• Profile ranks: Use All to profile all ranks, or choose Selective and specify particular ranks to

profile, for example: 2-4,6-7,8.
• Result location: Specify a relative or absolute path to the directory where the analysis result

should be stored.

If your target system is not powerful enough, consider selecting another system for the result
finalization as follows:

In this case, VTune Profiler calculates only binary checksum to be used for finalization on the host
machine. This option is recommended for analysis on the Intel Xeon Phi processor (code name: Knights
Landing).

5. Switch to the HOW panechoose and configure (if required) an analysis type.
6. Click the

Command Line... button at the bottom to generate a command line for your configuration.

For example, VTune Profiler generates the following command line for a test MPI application that will
be launched on a GNU/Linux system via Intel MPI launcher and analyzed for Memory Access issues on
ranks 2-4,6-7,8:

$ mpirun -n 14 -gtool "vtune -collect memory-access:2-4,6-7,8" /temp/vtune/test
7. Click the Copy button to copy the generated command line to the buffer and use it later on the

intended host.

See Also
Analysis Target

Set Up Analysis Target

Finalization

MPI Code Analysis

 1 Intel® VTune™ Profiler User Guide

162

Embedded System Targets
Use the Analysis Communication Agent to profile
embedded systems running real-time operating
systems supporting the TCP/IP protocol suite, as well
as their applications.

Intel® VTune™ Profiler offers the Communication Agent (TCP/IP) connection type that enables you to
profile embedded systems running real-time operating systems and their applications. Using the Analysis
Communication Agent and the sampling driver, you can configure your operating system to enable remote
performance profiling using VTune Profiler.

This analysis configuration requires an implementation of the sampling driver and the Analysis
Communication Agent for your system. An open reference solution for the Linux* OS kernel is available
through the Analysis Communication Agent GitHub* repository. You can use this reference solution to create
custom implementations of the driver and the Analysis Communication agent. Detailed implementation
information and instructions are available in the in the Analysis Communication Agent documentation.

You can profile your operating system via the Analysis Communication Agent using the Hotspots and
Microarchitecture Exploration analysis types in the Profile System mode.

NOTE
This connection type uses the TCP/IP protocol suite. This connection is not secure, and it is
recommended to use this connection type in a secure lab environment.

This analysis configuration includes the following components:

• Target side:

• Sampling Driver

The sampling driver is a module that is loaded into the kernel of your operating system that enables
the collection of performance data.

• Analysis Communication Agent

The Analysis Communication Agent is a software agent that runs on the target system which serves as
a connection between the VTune Profiler collector running on the host side and the sampling driver
running on the target system.

• Host side:

• Communication Agent (TCP/IP) connection type

The Communication Agent (TCP/IP) connection type is used to connect to the Analysis
Communication Agent running on the target system via the TCP/IP protocol suite.

Prerequisites
• Sampling driver and Analysis Communication Agent implementations for your target system. You can use

the reference solution to help implement and build these components.
• A TCP/IP capable operating system with the sampling driver loaded and Analysis Communication Agent

launched.
• A host system with VTune Profiler installed.

Run Analysis
Once the target system is ready, follow these steps to run an analysis:

1. Launch VTune Profiler on the host system.
2. (Optional) Click the New Project button to create a new project.
3. Click Configure Analysis and select the Communication Agent (TCP/IP) connection type in the

WHERE pane.

Intel® VTune™ Profiler User Guide 1

163

https://github.com/intel/aca
https://github.com/intel/aca/blob/master/docs/Analysis_Communication_Agent_Reference_Solution.pdf
https://github.com/intel/aca

4. Specify the target hostname and port.
5. Configure any desired options in the WHAT pane.
6. Select the analysis type in the HOW pane.
7. In the Binary/Symbol Search window, browse to the location of the kernel and application target

modules on the host system.
8. Click the

Start button to run the analysis.
9. Analyze the result using the VTune Profiler GUI to identify any performance bottlenecks in the kernel or

applications.

Analyze Performance
After you create a project and specify a target for analysis, you are ready to run your first analysis.

Performance Snapshot

Click Configure Analysis on the Welcome page. By default, this action opens the Performance Snapshot
analysis type. This is a good starting point to get an overview of potential performance issues that affect your
application. The snapshot view includes recommendations for other analysis types you should consider next.

Analysis Groups

Click anywhere on the analysis header that contains the name of the analysis type. This opens the Analysis
Tree, where you can see other analysis types grouped into several categories. See Analysis types to get an
overview of these predefined options.

Advanced users can create custom analysis types which appear at the bottom of the analysis tree.

Analysis Group Analysis Types

Algorithm analysis • Hotspots
• Anomaly Detection
• Memory Consumption

Microarchitecture analysis • Microarchitecture Exploration
• Memory Access

Parallelism analysis • Threading

 1 Intel® VTune™ Profiler User Guide

164

Analysis Group Analysis Types

• HPC Performance Characterization

I/O analysis • Input and Output

Accelerators analysis • GPU Offload
• GPU Compute/Media Hotspots (Preview)
• CPU/FPGA Interaction
• NPU Exploration Analysis (Preview)

Platform Analyses System Overview

Aspects of Analysis Types

• You can run an analysis type using the graphical interface (vtune-gui) or from the command line
interface (vtune).

• All analysis types in VTune Profiler are based on one of these data collection types:

• User-mode sampling and tracing collection
• Hardware event-based sampling collection (driver-based or driverless mode), optionally extended with

the stack collection
• Each analysis type provides a set of performance metrics that helps you sort out the problems in your

code and understand how to optimize it.

VTune Profiler also supports remote collection modes through the GUI and command line, using the SSH or
ADB connections.

See Also
Run Command Line Analysis

Reference

Run Energy Analysis

User-Mode Sampling and Tracing Collection
When profiling application execution, the Intel® VTune™ Profiler takes snapshots of how that application
utilizes the processors in the system. A thread is considered active at a specific moment if it is ready to
execute or is executing (not blocking). The snapshots of the number of running threads at the moment
provide a hint to the degree of parallelism of the application as well as how this application utilizes processor
resources. VTune Profiler classifies utilization into the ranges: Idle, Poor, Ok, and Ideal.

The user-mode sampling and tracing collector interrupts a process, collects the value of all active instruction
addresses and captures a calling sequence for each of these samples. Sampled instruction pointers along
with their calling sequences (stacks) are stored in data collection files. Statistically collected IP samples with
calling sequences enable the viewer to display a call graph or/and the most time-consuming paths. Use this
data to understand the control flow for statistically important code sections.

On Linux* the user-mode sampling and tracing collector embeds an agent library into the profiled
application. The agent sets up the OS timer for each thread in the application. Upon timer expiration, the
application receives the SIGPROF or another runtime signal that is handled by the collector.

Average overhead of the user-mode sampling and tracing collector is about 5% when sampling is using the
default interval of 10ms.

VTune Profiler uses the user-mode sampling and tracing collector to collect data for the following analysis
types:

• Hotspots

Intel® VTune™ Profiler User Guide 1

165

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

• Threading
• Memory Consumption

You can also create a custom analysis type based on the user-mode sampling and tracing collection.

Collecting Stack Data
When collecting data, the VTune Profiler analyzes no more than one stack per configured interval. It unwinds
stacks each 10 milliseconds of thread execution. But the VTune Profiler may decide to skip or emulate stack
unwinding for performance reasons. In this case, when processing the collected data during finalization, the
VTune Profiler tries to find matching stacks in the history for events without stacks.

This approach reduces stack unwinding overhead but may provide incorrect stacks due to wrong matches. In
such cases, the VTune Profiler displays pseudo nodes in the bottom-up/top-down trees marked as [Guessed
frame(s)], and [Skipped frame(s)]. See Troubleshooting to learn how to overcome these problems.

VTune Profiler may also display [Unknown frame(s)] nodes if it could not locate symbol files for system or
application modules when unwinding the stack. See Resolving Unknown Frame(s) for more details.

See Also
Error Message: Application Sets Its Own Handler for Signal

Hardware Event-based Sampling Collection with Stacks

Hardware Event-based Sampling Collection

Hardware Event-based Sampling Collection
During the hardware event-based sampling (EBS),
also known as Performance Monitoring Counter (PMC)
analysis in the sampling mode, the Intel® VTune™
Profiler profiles your application using the counter
overflow feature of the Performance Monitoring Unit
(PMU).

The data collector interrupts a process and captures the IP of interrupted process at the time of the interrupt.
Statistically collected IPs of active processes enable the viewer to show statistically important code regions
that affect software performance.

Caution
Statistical sampling does not provide 100% accurate data. When the VTune Profiler collects an event,
it attributes not only that event but the entire sampling interval prior to it (often 10,000 to 2,000,000
events) to the current code context. For a big number of samples, this sampling error does not have a
serious impact on the accuracy of performance analysis and the final statistical picture is still valid. But
if something happened for very little time, then very few samples will exist for it. This may yield
seemingly impossible results, such as two million instructions retiring in 0 cycles for a rarely-seen
driver. In this case, you may either ignore hotspots showing an insignificant number of samples or
switch to a higher granularity (for example, function).

The average overhead of event-based sampling is about 2% on a 1ms sampling interval.

The number of hardware events (Performance Monitoring Counters) that can be collected simultaneously is
limited by CPU capabilities. Usually, it is no more than four events. To overcome this limitation, the VTune
Profiler splits the event list into several event groups. Each group consists of events that can be collected
simultaneously. VTune Profiler uses one of the following techniques:

• Runs an application several times collecting one event group during each run.
• Runs an application only once and multiplexes the event groups in a round robin fashion during the run.

This technique may not work on some OS/hardware combinations.

 1 Intel® VTune™ Profiler User Guide

166

During product installation on Linux*, you have an option to install the sampling driver with the per-user
filtering enabled. When the filtering is on, the collector gathers data only for the processes spawned by the
user who started the collection. When it is off (default), samples from all processes on the system are
collected. Consider using the filtering to isolate the collection from other users on a cluster for security
reasons. The administrator/root can change the filtering mode by rebuilding/restarting the driver at any time.
A regular user cannot change the mode after the product is installed.

By default, the VTune Profiler collector samples your target and does not analyze execution paths. But you
can enable the Collect stacks option during analysis configuration to make the collector take exact
measurements of any hardware performance events or timestamps, as well as collect a call stack to the point
where a thread gets activated and inactivated. On Linux* systems, by default, VTune Profiler uses the
driverless Perf collection mode for the hardware event-based stack analysis.

VTune Profiler uses the hardware event-based sampling collector to collect data for the following analysis
types:

• Anomaly Detection
• Hotspots (hardware event-based sampling mode)
• Performance Snapshot
• Microarchitecture Exploration
• Memory Access
• GPU Compute/Media Hotspots (preview)
• GPU Offload (preview)
• System Overview
• Threading
• HPC Performance Characterization
• CPU/FPGA Interaction (preview)

NOTE
This is a PREVIEW FEATURE. A preview feature may or may not appear in a future production
release. It is available for your use in the hopes that you will provide feedback on its usefulness and
help determine its future. Data collected with a preview feature is not guaranteed to be backward
compatible with future releases.

You can also create a custom analysis type based on the hardware event-based sampling collection.

Caution
Analysis types that use the hardware event-based sampling collector are limited to only one collection
allowed at a time on a system.

Prerequisites:

It is recommended to install the sampling driver for hardware event-based sampling collection types. For
Linux* and Android* targets, if the sampling driver is not installed, VTune Profiler can enable the Perf*
driverless collection. Be aware of the following configuration settings for Linux target systems:

• To enable system-wide and uncore event collection, use root or sudo to set /proc/sys/kernel/
perf_event_paranoid to 0.

echo 0>/proc/sys/kernel/perf_event_paranoid
• To enable collection with the Microarchitecture Exploration analysis type, increase the default limit of

opened file descriptors. Use root or sudo to increase the default value in /etc/security/limits.conf
to 100*<number_of_logical_CPU_cores>.

<user> hard nofile <100 * number_of_logic_CPU_cores>
<user> soft nofile <100 * number_of_logic_CPU_cores>

See Also
Hardware Event-based Sampling Collection with Stacks

Intel® VTune™ Profiler User Guide 1

167

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

User-Mode Sampling and Tracing Collection

Cookbook: Profiling Hardware Without Sampling Drivers

Cookbook: Top-Down Microarchitecture Analysis Method
Intel Processor Events Reference

Allow Multiple Runs or Multiplex Events
Enable multiple runs of the event-based sampling data
collection for more accurate analysis results.

Intel® VTune™ Profiler runs the hardware event-based sampling analysis to collect data based on the events
defined for the selected analysis type. The number of events it can monitor during a single run is limited by
the number of performance counters in your processor. If you enable multiple runs of the data collection, the
VTune Profiler runs the hardware event-based sampling data collector as many times as required to collect
data on all the events specified for the analysis type. If you specified an application to launch as an analysis
target, the VTune Profiler launches your application each time the hardware event-based sampling collector
runs.

VTune Profiler allows to avoid multiple runs of the data collection by multiplexing the use of physical counters
within a single sampling run. Event multiplexing removes the need for multiple runs of the application,
thereby reducing the time needed to complete sampling collection at the cost of lower precision of the result
data. Event sample counts collected in the multiplexed mode are extrapolated to the total collection runtime.

Event multiplexing is also useful if the application does not have a long steady state or takes a long time to
get to steady state. On the other hand, if application initialization is short and it gets to steady state quickly,
then you can do multiple short runs and will not need to do event multiplexing.

To enable/disable multiple runs of the data collection:

1. Click the

Configure Analysis button on the VTune Profiler toolbar.

The Configure Analysis window opens.
2. Specify your target system type and select the Application to Launch target type.

NOTE
Collecting data in multiple runs is only possible if an application to launch is specified.

3. On the WHAT configuration pane, scroll down to the Advanced section and select the Allow multiple
runs option to enable more precise event data collection or deselect the option to use event
multiplexing.

If you enable the multiple run mode, the VTune Profiler runs the data collection several times for each event
set. You can easily detect these multiple runs on the Timeline pane: they are separated with the grayed out
paused areas.

The multiple run mode affects the metrics calculation. All "total" types of metrics (Total Time, Elapsed Time)
are calculated for the whole analysis session that includes multiple runs while all other metrics are provided
per run.

If you want to avoid running the application multiple times but get more accurate multiplexing data, you
need to create a custom analysis and enable the Use precise multiplexing option available for the custom
hardware event-based sampling analysis configuration. This option enables a multiplexing algorithm that

 1 Intel® VTune™ Profiler User Guide

168

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html

switches event groups on each sample. This mode provides more reliable statistics for applications with a
short execution time. You may also consider enabling the precise multiplexing if the MUX Reliability metric for
the Microarchitecture Exploration analysis result is low.

See Also
allow-multiple-runs
vtune option

Custom Analysis Options

Problem: 'Events= Sample After Value (SAV) * Samples' Is Not True If Multiple Runs Are Disabled

Set Up Analysis Target

Hardware Event-based Sampling Collection with Stacks
Configure the event-based sampling collector to
analyze call stacks for your functions and identify
performance, parallelism and power consumption
issues.

NOTE
For Linux* targets, make sure your kernel is configured to support event-based stack sampling
collection.

Multitask operating systems execute all software threads in time slices (thread execution quanta). Intel®
VTune™ Profiler profiler handles thread quantum switches and performs all monitoring operations in
correlation with the thread quantum layout.

The figure below explains the general idea of per-thread quantum monitoring:

Intel® VTune™ Profiler User Guide 1

169

• The profiler gains control whenever a thread gets scheduled on and then off a processor (that is, at thread
quantum borders). That enables the profiler to take exact measurements of any hardware performance
events or timestamps, as well as collect a call stack to the point where the thread gets activated and
inactivated.

• The profiler determines a reason for thread inactivation: it can either be an explicit request for
synchronization , or a so-called thread quantum expiration, when the operating system scheduler
preempts the current thread to run another, higher-priority one instead.

• The time during which a thread remains inactive is also measured directly and differentiated based on the
thread inactivation reason: inactivity caused by a request for synchronization is called Wait time, while
inactivity caused by preemption is called Inactive time.

While a thread is active on a processor (inside a quantum), the profiler employs event-based sampling to
reconstruct the program logic and associate hardware events and other characteristics with the program
code. Unlike the traditional event-based sampling, the profiler upon each sampling interrupt also collects:

• call stack information
• branching information (if configured so)
• processor timestamps

All that allows for statistically reconstructing program execution logic (call and control flow graphs) and
tracing threading activity over time, as well as collecting virtually any information related to hardware
utilization and performance.

Configure Stack Collection
1. Click the

 1 Intel® VTune™ Profiler User Guide

170

Configure Analysis button on the VTune Profiler toolbar.

The Configure Analysis window opens.
2. Specify your analysis system in the WHERE pane and your analysis target in the WHAT pane.
3. In the HOW pane, choose the required event-based sampling analysis type. Typically, you are

recommended to start with the Hotspots analysis in the hardware event-based sampling mode.
4. Configure collection options, if required. For call stack analysis, consider enabling the Collect stacks

option.
5. Click the Start button at the bottom to run the selected analysis type.

VTune Profiler collects hardware event-based sampling data along with the information on execution
paths. You may see the collected results in the Hardware Events viewpoint providing performance,
parallelism and power consumption data on detected call paths.

NOTE

• The event-based stack sampling data collection cannot be configured for the entire system. You
have to specify an application to launch or attach to.

• By default, on Linux* systems, VTune Profiler uses the driverless Perf*-based mode for hardware
event-based collection with stacks. To use the driver-based mode, set the Stack size option to 0
(unlimited).

• Call stack analysis adds an overhead to your data collection. To minimize the overhead incurred
with the stack size, use the Stack size option in the custom hardware event-based sampling
configuration or -stack-size knob from CLI to limit the size of a raw stack. By default, on Linux a
stack size of 1024 bytes is collected. On Windows, by default, a full size stack is collected (zero size
value). If you disable this option, the overhead will be also reduced but no stack data will be
collected.

Analyze Performance
Select the Hardware Events viewpoint and click the Event Count tab. By default, the data in the grid are
sorted by the Clockticks (CPU_CLK_UNHALTED) event count providing primary hotspots on top of the list.

Click the plus sign to expand each hotspot node (a function, by default) into a series of call paths, along
which the hotspot was executed. VTune Profiler decomposes all hardware events per call path based on the
frequency of the path execution.

The counts of the hardware events of all execution paths leading to a sampled node sum up to the event
count of that node. For example, for the CpupSyscallStub function, which is the top hotspot of the
application, the INST_RETIRED.ANY event count equals the sum of event counts for all 5 calling sequences:
25 700 419 203.

Intel® VTune™ Profiler User Guide 1

171

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Such a decomposition is extremely important if a hotspot is in a third-party library function whose code
cannot be modified, or whose behavior depends on input parameters. In this case the only way of
optimization is analyzing the callers and eliminating excessive invocations of the function, or learning which
parameters/conditions cause most of the performance degradation.

Explore Parallelism
When the call stacks collection is enabled (for example, Collect stacks option for the Hotspots in the
hardware event-based sampling mode), the VTune Profiler analyzes context switches and displays data on
the threads activity using the context switch performance metrics.

Click the Context Switch by Reason > Synchronization column header to sort the data by this metric.
The synchronization hotspots with the highest number of context switches and high Wait time values typically
signals a thread contention on this stack.

Select a context switch oriented type of the stack (for example, the Preemption Context Switch Count
type) in the drop-down menu of the Call Stack pane and explore the Timeline pane that shows each
separate thread execution quantum. A dark-green bar represents a single thread activity quantum, grey bars
and light-green bars - thread inactivity periods (context switches). Hover over a context switch region in the
Timeline pane to view details on its duration, start time and the reason of thread inactivity.

 1 Intel® VTune™ Profiler User Guide

172

When you select a context switch region in the Timeline pane, the Call Stack pane displays a call sequence
at which a preceding quantum was interrupted.

You may also select a hardware or software event from the Timeline drop-down menu and see how the event
maps to the thread activity quanta (or to the inactivity periods).

Correlate data you obtained during the performance and parallelism analysis. Those execution paths that are
listed as the performance hotspots with the highest event count and as the synchronization hotspots are
obvious candidates for optimization. Your next step could be analyzing power metrics to understand the cost
of such a synchronization scheme in terms of energy.

NOTE

• For analyses using the Perf*-based driverless collection, the types of context switches (preemption
or synchronization) may not be identified on kernels older than 4.17 and the following metrics may
not be available: Wait time, Wait Rate, Inactive Time, Preemption and Synchronization Context
Switch Count.

• The speed at which the data is generated (proportional to the sampling frequency and the intensity
of thread synchronization/contention) may become greater than the speed at which the data is
being saved to a trace file, so the profiler will try to adapt the incoming data rate to the outgoing
data rate by not letting threads of a program being profiled be scheduled for execution. This will
cause paused regions to appear on the timeline, even if no pause was explicitly requested. In
ultimate cases, when this procedure fails to limit the incoming data rate, the profiler will begin
losing sample records, but will still keep the counts of hardware events. If such a situation occurs,
the hardware event counts of lost sample records will be attributed to a special node: [Events
Lost on Trace Overflow].

See Also
knob enable-stack-collection=true

Performance Snapshot
VTune Profiler provides several analysis types that are tailored to examine various application types and
aspects of performance. Performance Snapshot captures a picture of these aspects and presents an overview
of the workings of your application.

Use Performance Snapshot when you want to see a summary of issues affecting your application. This
analysis also includes recommendations for other analysis types that you can run next for a deeper
investigation.
Run the Analysis

Before running Performance Snapshot, make sure you Create a project.

1. Click Configure Analysis on the VTune Profiler welcome screen. This opens the Performance
Snapshot analysis type by default. You can also select this analysis from the Analysis Tree.

2. In the WHAT pane, specify your target application and any application parameters.
3. In the HOW pane, click the Start button (

) to run the analysis.

Intel® VTune™ Profiler User Guide 1

173

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE
To run Performance Snapshot from the command line for this configuration, use the

Command Line button at the bottom.

4. Once the data collection is complete, see a performance overview in the Summary tab.

The overview typically includes several metrics along with their descriptions.

 1 Intel® VTune™ Profiler User Guide

174

Expand each metric for detailed information about contributing factors.

A flagged metric indicates a value outside acceptable/normal operating range. Use
tool tips to understand how to improve a flagged metric.

Intel® VTune™ Profiler User Guide 1

175

See guidance on other analyses you should consider running next. The Analysis
Tree highlights these recommendations.

See Also
Run Command Line Analysis

Reference

Run Energy Analysis

Algorithm Group
The analyses in the Algorithm group target software
tuning. They help you understand where your
application spends the most time. You can also
analyze the efficiency of your algorithms.

The Algorithm group includes these analysis types:

• Hotspots focuses on a particular target, identifies functions that took the most CPU time to execute,
restores the call tree for each function, and shows thread activity.

• Anomaly Detection analysis helps you identify performance anomalies in frequently recurring intervals of
code like loop iterations.

• Memory Consumption analyzes your Linux* native or Python* targets to explore memory consumption
(RAM) over time and identify memory objects allocated and released during the analysis run.

Hotspots Analysis for CPU Usage Issues
Use the Hotspots analysis to understand an
application flow and identify sections of code that get
a lot of execution time (hotspots). This is a starting
point for your algorithm analysis.

 1 Intel® VTune™ Profiler User Guide

176

Hotspots analysis has two sampling-based collection modes:

• User-mode sampling, which incurs higher overhead but does not require sampling drivers for collection.
Starting with Intel® VTune™ Amplifier 2019, this mode replaced the former Basic Hotspots analysis.

• Hardware event-based sampling, which provides minimum collection overhead but needs sampling drivers
or Perf* to be installed. Starting with VTune Amplifier 2019, this mode replaced the former Advanced
Hotspots analysis.

NOTE
Intel® VTune™ Profiler is a new renamed version of Intel® VTune™ Amplifier.

How It Works: User-Mode Sampling
VTune Profiler uses a low overhead (about 5%) user-mode sampling and tracing collection that gets you the
information you need without slowing down application execution significantly. The data collector profiles
your application using the OS timer, interrupts a process, collects samples of all active instruction addresses
with the sampling interval of 10ms, and captures a call sequence (stack) for each sample. VTune Profiler
stores the sampled instruction pointer (IP) along with a call sequence in data collection files, and then
analyzes and displays this data in a result tab. Statistically collected IP samples with call sequences enable
the VTune Profiler to display a top-down tree (call tree). Use this data to understand the control flow for
statistically important code sections.

In the user-mode sampling, the collector does not gather system-wide performance data but focuses on your
application only. To analyze system performance, use the hardware event-based sampling mode.

VTune Profiler displays a list of functions in your application ordered by the amount of time spent in each
function. It also captures the call stacks for each of these functions so you can see how the hot functions are
called.

Intel® VTune™ Profiler User Guide 1

177

A large number of samples collected at a specific process, thread, or module can imply high processor
utilization and potential performance bottlenecks. Some hotspots can be removed, while other hotspots are
fundamental to the application functionality and cannot be removed.

How It Works: Hardware Event-Based Sampling
The hardware event-based sampling mode is based on the hardware event-based sampling collection and
analyzes all the processes running on your system at the moment, providing CPU time data on whole system
performance. VTune Profiler creates a list of functions in your application ordered by the amount of time
spent in each function. By default, the Hotspots analysis in the hardware event-based sampling mode does
not capture the function call stacks as the hotspots are collected. But you still can analyze stacks for your
application modules by selecting the Collect stacks option explicitly.

NOTE

• If you cannot run the hardware event-based sampling with stacks, disable the Collect stacks
option and run the collection. To correlate the obtained hardware event-based sampling data with
stacks, run a separate Hotspots analysis in the User-Mode Sampling mode.

• On 32-bit Linux* systems, the VTune Profiler uses a driverless Perf*-based collection for the
hardware event-based sampling mode.

Configure and Run Analysis
To configure and run the Hotspots analysis:

Prerequisites: Create a project.

1. Click the

(standalone GUI)/

(Visual Studio IDE) Configure Analysis button on the VTune Profiler welcome screen.
2. In the HOW pane, select the Hotspots analysis from the Analysis Tree.
3. Configure the following options:

User-Mode
Sampling mode

Select to enable the user-mode sampling and tracing collection for hot spots
and call stack analysis (formerly known as Basic Hotspots). This collection
mode uses a fixed sampling interval of 10ms. If you need to change the
interval, click the Copy button and create a custom analysis configuration.

Hardware Event-
Based Sampling
mode

Select to enable hardware event-based sampling collection for Hotspots
analysis (formerly known as Advanced Hotspots).

You can configure the following options for this collection mode:

• CPU sampling interval, ms to specify an interval (in milliseconds)
between CPU samples. Possible values for thehardware event-based
sampling mode are 0.01-1000. 1 ms is used by default.

• Collect stacks to enable advanced collection of call stacks and thread
context switches.

 1 Intel® VTune™ Profiler User Guide

178

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE
When changing collection options, pay attention to the Overhead diagram on the
right. It dynamically changes to reflect the collection overhead incurred by the
selected options.

Show additional
performance
insights check box

Get additional performance insights, such as vectorization, and learn next
steps. This option collects additional CPU events, which may enable the
multiplexing mode.

The option is enabled by default.

Details button Expand/collapse a section listing the default non-editable settings used for
this analysis type. If you want to modify or enable additional settings for the
analysis, you need to create a custom configuration by copying an existing
predefined configuration. VTune Profiler creates an editable copy of this
analysis type configuration.

4. Click the

Start button to run the analysis.

NOTE
To generate the command line for this configuration, click the Command Line... button at the bottom.

View Data
When the data is collected, VTune Profiler opens it in the Hotspots by CPU Utilization viewpoint providing
the following views for analysis:

• Summary window displays statistics on the overall application execution to analyze CPU time and
processor utilization.

• Bottom-up window displays hotspot functions in the bottom-up tree, CPU time and CPU utilization per
function.

• Top-down Tree window displays hotspot functions in the call tree, performance metrics for a function only
(Self value) and for a function and its children together (Total value).

• Caller/Callee window displays parent and child functions of the selected focus function.
• Platform window provides details on CPU and GPU utilization, frame rate, memory bandwidth, and user

tasks (if corresponding metrics are collected).

What's Next
1. Identify the most time-consuming function in the grid and double-click it for source analysis.
2. Analyze the source of the critical function starting with the highlighted hottest code line and moving

further with the Hotspot Navigation options.
3. Modify your code to remove bottlenecks and improve the performance of your application.
4. Re-run the analysis and verify your optimization with the comparison mode.
5. Fix vectorization and get code-specific recommendations with the Vectorization and Code Insights

perspective in Intel® Advisor.

For further steps, explore the Insights section provided in the Summary window. This section contains
information on your target performance against metrics collected in addition to standard hotspots metrics. If
there are any performance issues detected, the VTune Profiler flags such a metric value and provides an
insight on potential next steps to fix the problem.

Intel® VTune™ Profiler User Guide 1

179

https://www.intel.com/content/www/us/en/docs/advisor/user-guide/current/analyze-vectorization-perspective.html
https://www.intel.com/content/www/us/en/docs/advisor/user-guide/current/analyze-vectorization-perspective.html

Information provided by Hotspots analysis is important for tuning serial applications as well as the serial
sections of parallel applications. The Hotspots analysis data helps you understand what your application is
doing and identify the code that is critical to tune. For parallel applications running on multi-core systems,
consider running the Threading or HPC Performance Characterization analyses in addition..

See Also
collect
 hotspots vtune option

Offload and Optimize OpenMP* Applications with Intel Tools
Tutorial: Analyze Common Performance Bottlenecks on Linux* - C++ Sample Code
Tutorial: Analyze Common Performance Bottlenecks on Windows* - C++ Sample Code
Tutorial: Analyze Common Performance Bottlenecks on Windows* - C++ Sample Code
Fix Vectorization and Get Code Insights

Hotspots View
Identify program units that took the most CPU time.
These are recognized as hotspots. The Hotspots
viewpoint is available for all analysis results.

Follow these steps to interpret performance data available in the Hotspots viewpoint:

1. Define a performance baseline.
2. Identify the hottest function.
3. Identify algorithm issues.
4. Analyze source.
5. Explore other analysis types.

Define a Performance Baseline
Start your analysis in the Summary window. Here you see general information about the execution of your
application. Note that the Elapsed time is different from the application CPU time. The Elapsed time is the
application time from start to termination. The application CPU time is the sum of the active processor time
for all the threads that run the application. It does not include waiting times.

Use the Elapsed time value as a baseline to compare versions before and after optimization. When tuning the
application, as you add more threads, the Elapsed time tends to decrease whereas the CPU time may
increase.

If you ran the Hotspots analysis in the hardware event-based sampling mode, the analysis metrics in the
Summary window display the Microarchitecture Usage metric. Use this metric to estimate the code efficiency
on your hardware platform:

If this metric value is flagged as critical, consider running the Microarchitecture Exploration analysis to
dive deeper into hardware metrics.

Identify the Hottest Function
Get a list of the most time-consuming functions in the Top Hotspots section of the Summary window. Click
on a hotspot function to explore its call flow and other related metrics in the Bottom-up view.

By default, the Bottom-up view presents a sorted display of CPU Time in descending order, starting with the
most time-consuming functions. Start optimizing the functions with the largest CPU time.

Expand the CPU Time column to get more details on how effectively the CPU time was used:

 1 Intel® VTune™ Profiler User Guide

180

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/offload-optimize-openmp-applications.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-common-bottlenecks-linux/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-common-bottlenecks-windows/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-common-bottlenecks-windows/current/overview.html
https://www.intel.com/content/www/us/en/docs/advisor/user-guide/current/analyze-vectorization-perspective.html

Next, focus your tuning efforts on the program units with the largest Poor value. This means that your
application underutilized the CPU time during the execution of these program units. The overall goal of
optimization is to achieve Ideal (green

) or OK (orange

) CPU utilization state and shorten the Poor and Over CPU utilization values.
Identify Hot Code Paths

Switch to the Flame Graph window to quickly identify the hottest code paths in your application. Analyze the
CPU time spent on each program unit and its related callee functions.

The flame graph plots stack profile population (sorted alphabetically) on the horizontal axis. The vertical axis
shows stack depth, starting from zero at the bottom. The width of each element in the flame graph indicates
the percentage of CPU time of the function (and its callees) to the total CPU time.

Intel® VTune™ Profiler User Guide 1

181

Identify Algorithm Issues
If you identify issues with the calling sequences in your application, you can improve performance by revising
the order in which functions are called. Use these methods:

• Top-down Tree pane: Analyze the Total and Self time data for callers and callees of the hotspot function to
understand whether this time can be optimized.

• Call Stack pane: Identify the highest contributing stack for the program unit(s) selected in the Bottom-
up or Top-down Tree panes. Use the navigation buttons

to see the different stacks that called the selected program unit(s). The contribution bar shows the
contribution of the currently visible stack to the overall time spent by the selected program unit(s). You
can also use the drop-down list in the Call Stack pane to view data for different types of stacks.

NOTE
Stack data is available by default for the user-mode sampling mode. To have this data for the
hardware event-based sampling mode, you need to enable the Collect stacks option in the Hotspots
analysis configuration.

Analyze Source
Double-click the hottest function to view its related source code in the Source/Assembly window. Open the
code editor directly from Intel® VTune™ Profiler and improve your code (for example, minimizing the number
of calls to the hotspot function).

What's Next
If you ran the analysis with the default Show additional performance insights option, the Summary
view will include the Insights section that provides additional metrics for your target such as efficiency of
the hardware usage and vectorization. This information helps you identify potential next steps for your
performance analysis and understand where you could focus your optimization efforts.

 1 Intel® VTune™ Profiler User Guide

182

Related information
• An explanation of Flame Graphs
• Flame Graph Window
• Source Code Analysis
• View Stacks
• Reference

Anomaly Detection Analysis (preview)
Use Anomaly Detection to identify performance
anomalies in frequently recurring intervals of code like
loop iterations. Perform fine-grained analysis at the
microsecond and nanosecond level.

Intel® VTune™ Profiler User Guide 1

183

https://www.brendangregg.com/flamegraphs.html

Application performance can occasionally be hampered by the presence of performance anomalies. A
performance anomaly is any short-lived, sporadic issue that causes unrecoverable consequences. These
issues may not be statistically discernible but they create a poor user experience and can be very expensive
to fix. When the performance of your application requires varying amounts of work for instances of the same
task or when it displays variations in a single/few iterations of a loop, these are symptoms of anomalous
behavior in your application.

Use Anomaly Detection analysis to identify performance anomalies in your application that are otherwise
difficult to isolate. This analysis type uses Intel® Processor Trace (Intel® PT) technology to perform trace data
collection and fine-grained time and event measurement. Intel® PT is an extension of Intel® Architecture that
captures information about software execution using dedicated hardware. The hardware causes only minimal
performance perturbation to the software being traced.

NOTE
This is a PREVIEW FEATURE. A preview feature may or may not appear in a future production
release. It is available for your use in the hopes that you will provide feedback on its usefulness and
help determine its future. Data collected with a preview feature is not guaranteed to be backward
compatible with future releases.

The control flow trace feature in Intel® PT generates a variety of packets that, when combined with the
binaries of a program by a post-processing tool, can be used to produce an exact execution trace. The
packets record flow information such as instruction pointers (IP), indirect branch targets, and directions of
conditional branches within contiguous code regions (basic blocks). For descriptions of key concepts in Intel®
PT, see Chapter 35 of the Intel Software Developer's Manual (Volume 3C):System Programming Guide.

To detect software performance anomalies using VTune Profiler, you use the Instrumentation and Tracing
Technology (ITT) API to designate specific code regions of interest and then run Anomaly Detection analysis.

Common Performance Anomalies
These are typical examples of performance anomalies in a software application.

• Financial transactions that take an unusually long time to process.
• Glitches in the UI of a video game like slow or skipped video frames.
• Packet losses in large applications that have SPDK/DPDK loops.
• High frequency applications where processing speed is critical and some iterations run slower than others.

Run Anomaly Detection in one of these situations where observed application behavior deviates from
expected behavior in some iterations.

Causes for Performance Anomaly
• Change in control flow: Different instances of the same task require different amounts of work.
• Uncommon observations: Expensive handling of errors or memory/storage reallocation.
• Context switches: Synchronization or preemption.
• Unexpected kernel activity: Interrupts or page faults.
• Micro-architectural issues: Cache misses or incorrect branch predictions.
• Frequency drops: Low CPU utilization, cooling issues, or the inclusion of Intel® Advanced Vector

Extensions (Intel® AVX) instructions in the code.

The Anomaly Detection Analysis Workflow
When you observe anomalies in your application performance, use Anomaly Detection for a detailed
investigation.

1. Prepare your application for analysis.
2. Define parameters that break your code into smaller regions of interest. Decide how long you want to

simulate each region.
3. Run Anomaly Detection.

 1 Intel® VTune™ Profiler User Guide

184

https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3c-system-programming-guide-part-3.html
https://github.com/intel/ittapi
https://github.com/intel/ittapi

4. Review anomalies in detail:

a. Load trace data for the processor for each anomaly in the Bottom-up view to examine code
regions of interest.

b. Open trace data to see frequency information for a specific region.
c. Examine source and assembly views to see the number of loop iterations.

Configure and Run Analysis
Prepare your Application

Large applications can generate huge volumes of data through a profiling run. This in turn can cause
significant delay in processing results. You may only want to focus on anomalies in a particular operation in
your code. Mark this section by defining it as a Code Region of Interest. Use the ITT API for this purpose.

1. Register the name of the code region you plan to profile:

__itt_pt_region region = __itt_pt_region_create("region");
2. Mark the target loop in your application with this name:

for(…;…;…)
{
 __itt_mark_pt_region_begin(region);
 <code processing your task>
 __itt_mark_pt_region_end(region);
}

Run the Analysis

1. On the Welcome screen, click Configure Analysis.
2. In the Analysis Tree, select the Anomaly Detection analysis type in the Algorithm group.
3. In the WHAT pane, specify your application and any relevant application parameters.
4. In the HOW pane, specify parameters for the analysis.

Parameter Description Range Recommended Value

Maximum number of
code regions for
detailed analysis

Specify number of code
regions for your
application.

10-5000 For faster loading of details,
pick a value not more
than1000.

Maximum duration
of analysis per
code region

Specify the duration of
analysis time (ms) to be
spent on each code
region.

0.001-1000 Any value under 1000 ms.

Intel® VTune™ Profiler User Guide 1

185

5. Click the

Start button to run the analysis.

NOTE
To run Anomaly Detection from the command line, use the

Command Line button at the bottom.

View Data
Once the analysis is complete, VTune Profiler displays results in the Summary window.

• Elapsed Time indicates the total time spent on all code regions of interest.
• Code Region of Interest Duration Histogram plots the number of instances of performance-critical

tasks against specified duration (or latency). See specific code regions in the Fast and Slow regions to
understand why the duration changed.

• Collection and Platform Info displays relevant details about the system, data about the collection
platform, and the resulting set size.

View Data on a Different System

The above procedure is useful when you process analysis results on the same system where you collected
data. If you want to transfer the collected data onto a different system before you view it, run the archive
command after data collection to copy essential binaries to the results folder. You must complete this step
before transferring results to the new system to load collection details without problems.

To run the archive command:

1. Collect results as described above.
2. At the command line, type:

vtune.exe --archive -r r001ad
where r001ad is an example of an analysis result.

 1 Intel® VTune™ Profiler User Guide

186

NOTE
To view collected data on a different system, you must copy all binaries including system and compiler
runtime binaries that are linked to your main binary and were accessed during the collection. The
archive command is useful for this purpose since it is not easy to copy these binaries manually.

Next Steps
See the Anomaly Detection view for information on interpreting collected data in these ways:

• Load trace details for each analysis in the Bottom-up window.
• Look for unexpected kernel activity. See if applications entered certain kernels that should not have been

activated during the analysis.
• Use the source and assembly views to compare code regions of interest in fast and slow regions of the

histogram.

See Also
Anomaly Detection View Interpret results after performing Anomaly Detection analysis on your
application. Identify performance anomalies by examining code regions of interest.

Anomaly Detection View
Interpret results after performing Anomaly Detection
analysis on your application. Identify performance
anomalies by examining code regions of interest.

Use the Anomaly Detection view to interpret the results of an Anomaly Detection analysis. A typical workflow
involves an examination in these areas:

View Data
Once you complete running Anomaly Detection on your application, the collected data displays in the
Summary window.

Start with the Code Region of Interest Duration Histogram. This shows the number of instances of a
performance-critical task for a specific duration or latency (in ms).

Examine the histogram to see:

• Code regions of interest
• Information about regions where simulations executed faster or slower than normal

This diagram identifies unexpected performance outliers in the Slow region.

Intel® VTune™ Profiler User Guide 1

187

NOTE If necessary, use the sliders on the X-axis to adjust the thresholds for Fast, Good, and Slow
latencies.

Load Details for Slow Region
In the Bottom-up window, load details for the slow code regions of interest:

1. Switch to the Bottom-up window.
2. Group results by Code Region of Interest / Duration Type.
3. To further examine the outliers in the Slow region, right click on the Slow field and select Load Intel

Processor Data by Selection.

This loads details about the code regions of interest in the Intel Processor Trace Details window.

Compare Processor Trace Details
Once you load trace data in the Intel Processor Trace Details window, you can compare trace details of
individual instances of marked code regions by placing them side by side. The top of a stack represents the
kernel entry point.

Metric Interpretation

Instructions Retired, Call Count, Total
Iteration Count

Control flow metrics. Instructions Retired refers
to the number of entries into a kernel.

CPU Time (Kernel and User) Active time on the CPU.

Wait Time, Inactive Time Duration for which a thread was idle because of
synchronization or preemption.

Elapsed Time Latency (Wall-clock time of the code region
execution).

Use this window as a hub to detect the following types of performance anomalies.

• Context Switch Anomaly
• Kernel-Induced Anomaly
• Frequency Drops
• Control Flow Deviation Anomaly

 1 Intel® VTune™ Profiler User Guide

188

Context Switch Anomaly
1. In the Intel Processor Trace Details window, check the Inactive Time and Wait Time metrics. The

Wait Time indicates the duration for which a thread was idle due to synchronization issues.

a. If the metrics are zero, the application had no context switches. Proceed to check for a different
type of anomaly.

b. If the metrics are non-zero, continue with this procedure to check for context switches.
2. Sort the data by Wait Time.
3. For the instances that had significant Wait Time, compare the Wait Time with Elapsed Time. If the

thread was idle for a considerable portion of elapsed time, this was due to a context switch
synchronization issue. In this example, thread 25883 was idle for 1.269 out of 1.318 milliseconds,
which is about 96% of the time.

4. Expand the instance to drill down to a function or a stack. Identify the stack(s) that brought the thread
to an idle state.

Kernel-Induced Anomaly
1. In the Intel Processor Trace Details window, sort the data by Kernel Time. The topmost element of

the stack points to the entry point into the kernel. Where the ratio of kernel time to Elapsed Time is
high, a significant amount of time was spent in the kernel. In this example, 566 out of 997
microseconds were spent in the kernel for the highlighted thread.

2. Expand the thread to see contributing stacks that could be responsible for long kernel times.

Due to the presence of dynamic code in the kernel and drivers, it is not possible to perform static processing
of these binaries. The kernel_activity node at the top of the stack aggregates all performance data for
kernel activity that happened during a specific instance of the Code Region of Interest.

Since kernel binaries are not processed, VTune Profiler cannot collect code flow metrics like Call Count,
Iteration Count, or Instructions Retired. All these metrics are zero, except Instructions Retired, which
indicates the number of entries into the kernel.

A possible explanation for a kernel-induced anomaly could be network speed. This could cause a slowdown
when control goes to the kernel while receiving a request and sending a response over the network.

Intel® VTune™ Profiler User Guide 1

189

Frequency Drops
Find information about frequency drops in one of these windows:

• Bottom-up window: Shows frequency information for the entire application.
• Intel Processor Trace Details window: Shows frequency information only for the loaded region.

Frequency drops can happen due to several reasons:

• There are Intel® Advanced Vector Extensions (Intel® AVX) instructions used inside or outside a loaded
code region.

• There are underlying hardware issues like cooling.
• Apart from your application, low activity on the core and OS can also cause frequency drops. Look for high

numbers of Inactive Time or Wait Time.

Control Flow Deviation Anomaly
When the Instructions Retired metric is unexpectedly huge for some threads, it indicates a control flow
anomaly. A code deviation could have happened during execution of the code region.

1. Select a node in the grid where you see a high value for Instructions Retired.
2. Right-click and select Filter In by Selection from the context menu.
3. Switch to the Caller/Callee window.

In the flat profile view, you can see functions annotated with Self and Total CPU Times. The caller view
shows the callers of the selected function in a bottom-up representation. The callee view shows a call
tree from the selected function in a top-down representation.

In this example, the function call to _slab_evict_one function from _slab_evict_rand causes a
significant delay as evidenced by the Self CPU Time.

Source Code Analysis:

This is an alternative method to identify deviations in the control flow.

1. Check the Total Iteration Count to compare the number of loop iterations between a fast and slow
iteration.

 1 Intel® VTune™ Profiler User Guide

190

2. If the slower iteration has a higher iteration count, switch to Source Assembly view and examine the
source code of the function.

3. Check to see if the slower iteration passed the validation of the cached element.

Both of these methods indicate the presence of a Cache Eviction, which can occur infrequently. While you
may not be able to eliminate cache evictions entirely, you can minimize them through these ways:

• Increase the cache size.
• Update cache data and repeat the analysis.

See Also
Anomaly Detection Analysis

Analyze Performance

Memory Consumption Analysis
Use the Memory Consumption analysis for your Linux*
native or Python* targets to explore memory
consumption (RAM) over time and identify memory
objects allocated and released during the analysis run.

How It Works

During Memory Consumption analysis, the VTune Profiler data collector intercepts memory allocation and
deallocation events and captures a call sequence (stack) for each allocation event (for deallocation, only a
function that released the memory is captured). VTune Profiler stores the calling instruction pointer (IP)
along with a call sequence in data collection files, and then analyzes and displays this data in a result tab.

Configure and Run Analysis
To configure and run the Memory Consumption analysis:

Prerequisites: Create a project.

1. Click the

(standalone GUI)/

(Visual Studio IDE) Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From HOW pane, click the

Browse button and select Memory Consumption.

The Memory Consumption analysis is pre-configured to collect data at the memory objects (data
structures) granularity, which is provided due to instrumentation of memory allocations/de-allocations
and getting static/global variables from symbol information.

3. Optionally, you may configure the Minimal dynamic memory object size to track option. This option
helps reduce runtime overhead of the instrumentation. The default value is 32 bytes.

Intel® VTune™ Profiler User Guide 1

191

4. Click the

Start button to run the analysis.

NOTE
Generate the command line for this configuration using the

Command Line button at the bottom.

View Data
By default, the analysis result opens in the Memory Consumption viewpoint. Identify peaks of the memory
consumption on the Timeline pane and analyze allocation stacks for the hotspot functions. Double-click a
hotspot function to switch to the Source view and analyze the source lines allocating a high amount of
memory.

See Also
Memory Consumption and Allocations View

Minimize Collection Overhead

collect
 memory-consumption vtune option

Memory Consumption and Allocations View
Explore the data collected with the Memory
Consumption analysis for your native or Python*
target and identify the most memory-consuming
functions, analyze their allocation stacks and source.

Start with the Summary window that displays a list of top memory-consuming functions.

For example, the foo function has the highest Memory Consumption metric value and could be a candidate
for optimization:

For further investigation, switch to the Bottom-up tab and explore the memory consumption distribution
over time. Focus on the peak values on the Timeline pane, select a time range of interest, right click and
use the Filter In by Selection context menu option to filter in the program units (functions, modules,
processes, and so on) executed during this range:

 1 Intel® VTune™ Profiler User Guide

192

In the example above, the python foo function allocated 915 310 048 bytes of memory in a call tree
displayed in the Call Stack pane on the right but released only 817 830 048 bytes. 92MB is the maximum
Allocation/Deallocation delta value that signals a potential memory leak. Clicking the foo function opens the
Source view highlighting the code line that allocates the maximum memory. Use this information for deeper
code analysis to identify a cause of the memory leaks.

See Also
Memory Consumption Analysis

Analyze Performance

Microarchitecture Analysis Group
The Microarchitecture analysis group introduces
analysis types that help you estimate how effectively
you code runs on modern hardware.

• Microarchitecture Exploration helps identify the most significant hardware issues affecting the
performance of your application. Consider this analysis type as a starting point when you do hardware-
level analysis.

• Memory Access measures a set of metrics to identify memory access related issues (for example, specific
to NUMA architectures).

Prerequisites:

It is recommended to install the sampling driver for hardware event-based sampling collection types. For
Linux* and Android* targets, if the sampling driver is not installed, VTune Profiler can work on Perf*
(driverless collection). Be aware of the following configuration settings for Linux target systems:

• To enable system-wide and uncore event collection that allows the measurement of DRAM and MCDRAM
memory bandwidth that is a part of the Memory Access analysis type, use root or sudo to set /proc/sys/
kernel/perf_event_paranoid to 0.

echo 0>/proc/sys/kernel/perf_event_paranoid
• To enable collection with the Microarchitecture Exploration analysis type, increase the default limit of

opened file descriptors. Use root or sudo to increase the default value in /etc/security/limits.conf
to 100*<number_of_logical_CPU_cores>.

<user> hard nofile <100 * number_of_logic_CPU_cores>
<user> soft nofile <100 * number_of_logic_CPU_cores>

Microarchitecture Exploration Analysis for Hardware Issues
Use the Microarchitecture Exploration analysis
(formerly known as General Exploration) to triage
hardware usage issues in your application.

Once you have used Hotspots analysis to determine hotspots in your code, run the Microarchitecture
Exploration analysis to understand how efficiently your code is passing through the core pipeline. During
Microarchitecture Exploration analysis, VTune Profiler collects a complete list of events for analyzing a typical
client application. It calculates a set of predefined ratios used for the metrics and facilitates identifying
hardware-level performance problems.

Intel® VTune™ Profiler User Guide 1

193

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE
Intel® VTune™ Profiler is a new renamed version of Intel® VTune™ Amplifier.

How It Works
The Microarchitecture Exploration analysis strategy varies by microarchitecture. For modern
microarchitectures starting with Intel microarchitecture code name Ivy Bridge, the Microarchitecture
Exploration analysis is based on the Top-Down Microarchitecture Analysis Method using the Top-Down
Characterization methodology, which is a hierarchical organization of event-based metrics that identifies the
dominant performance bottlenecks in an application.

Superscalar processors can be conceptually divided into the front-end, where instructions are fetched and
decoded into the operations that constitute them, and the back-end, where the required computation is
performed. Each cycle, the front-end generates up to four of these operations. It places them into pipeline
slots that then move through the back-end. Thus, for a given execution duration in clock cycles, it is easy to
determine the maximum number of pipeline slots containing useful work that can be retired in that duration.
The actual number of retired pipeline slots containing useful work, though, rarely equals this maximum. This
can be due to several factors: some pipeline slots cannot be filled with useful work, either because the front-
end could not fetch or decode instructions in time (Front-end bound execution) or because the back-end was
not prepared to accept more operations of a certain kind (Back-end bound execution). Moreover, even
pipeline slots that do contain useful work may not retire due to bad speculation. Front-end bound execution
may be due to a large code working set, poor code layout, or microcode assists. Back-end bound execution
may be due to long-latency operations or other contention for execution resources. Bad speculation is most
frequently due to branch misprediction.

Each cycle, each core can fill up to four of its pipeline slots with useful operations. Therefore, for some time
interval, it is possible to determine the maximum number of pipeline slots that could have been filled in and
issued during that time interval. This analysis performs this estimate and breaks up all pipeline slots into four
categories:

• Pipeline slots containing useful work that issued and retired (Retired)

 1 Intel® VTune™ Profiler User Guide

194

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html

• Pipeline slots containing useful work that issued and cancelled (Bad speculation)
• Pipeline slots that could not be filled with useful work due to problems in the front-end (Front-end Bound)
• Pipeline slots that could not be filled with useful work due to a backup in the back-end (Back-end Bound)

To use Microarchitecture Exploration analysis, first determine which top-level category dominates for
hotspots of interest. You can then dive into the dominating category by expanding its column. There, you can
find many issues that may contribute to that category.

NOTE

• For a detailed tuning methodology behind the Microarchitecture Exploration analysis and some of
the complexities associated with this analysis, see Understanding How General Exploration Works in
Intel® VTune™ Profiler.

• For architecture-specific Tuning Guides, see https://www.intel.com/content/www/us/en/developer/
articles/guide/processor-specific-performance-analysis-papers.html.

Configure and Run Analysis
To configure options for the Microarchitecture Exploration analysis:

Prerequisites: Create a project and specify an analysis target.

1. Click the

(standalone GUI)/

(Visual Studio IDE) Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From HOW pane, click the

Browse button and select Microarchitecture Exploration.
3. Configure the following options:

CPU sampling
interval, ms spin
box

Specify an interval (in milliseconds) between CPU samples.

Possible values - 1-1000.

The default value is 1 ms.

Extend
granularity for
the top-level
metrics selection
area

By default, VTune Profiler collects data required to compute top-level metrics
(Front-End Bound, Bad Speculation, Memory Bound, Core Bound, and
Retiring) and all their sub-metrics.

You may limit the data collection by selecting particular top-level metrics. In
this case, the VTune Profiler extends the level of granularity and collects
additional sub-metrics only for the selected top-level metrics. For example, if
you select the Memory Bound top-level metric, the VTune Profiler collects
additional data and provides Memory Bound sub-metrics (such as DRAM
Bound, Store Bound, and so on), which helps narrow down the analysis to
particular microarchitecture levels.

Limiting the amount of data collected simultaneously may also improve
profiling accuracy due to less multiplexing. This may be particularly helpful for
short-running application or applications with short phases.

Intel® VTune™ Profiler User Guide 1

195

https://www.intel.com/content/www/us/en/developer/articles/technical/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe.html
https://www.intel.com/content/www/us/en/developer/articles/technical/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe.html
https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html
https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html

Analyze memory
bandwidth check
box

Collect the data required to compute memory bandwidth.

The option is disabled by default.

Evaluate max
DRAM bandwidth
check box

Evaluate maximum achievable local DRAM bandwidth before the collection
starts. This data is used to scale bandwidth metrics on the timeline and
calculate thresholds.

The option is enabled by default.

Collection mode
drop-down menu

Choose the Detailed sampling-based collection mode (default) to view a data
breakdown per function and other hotspots. Use the Summary counting-
based mode for an overview of the whole profiling run. This mode has a lower
collection overhead and faster post-processing time.

Details button Expand/collapse a section listing the default non-editable settings used for
this analysis type. If you want to modify or enable additional settings for the
analysis, you need to create a custom configuration by copying an existing
predefined configuration. VTune Profiler creates an editable copy of this
analysis type configuration.

NOTE

• For detailed information on events collected for Microarchitecture Exploration on a particular
microarchitecture, refer to the Intel Processor Event Reference.

• To generate the command line for this configuration, use the

Command Line button at the bottom.

4. Click the

Start button to run the analysis.

View Data
To analyze the collected data, use the default Microarchitecture Exploration viewpoint that provides a high-
level performance overview based on the Top-Down Microarchitecture Analysis Method. To easier understand
where you could focus your optimization efforts and which part of the microarchitecture pipeline introduces
inefficiencies, start with the Microarchitecture Pipe.

See Also
collect microarchitecture-exploration
vtune option to run the analysis from CLI

Hardware Event-based Sampling Collection

Set Up Project

Microarchitecture Exploration View
Explore the Intel® VTune™ Profiler Microarchitecture
Exploration viewpoint for the PMU analysis based on
the top-down microarchitecture analysis method that
uses key hardware metrics organized by execution

 1 Intel® VTune™ Profiler User Guide

196

https://download.01.org/perfmon/

categories so that you could easily identify what
portion of the pipeline is responsible for the majority
of execution time.

When the Microarchitecture Exploration analysis (formerly known as General Exploration) is complete, the
VTune Profiler opens the Microarchitecture Exploration viewpoint. The hierarchy of event-based metrics in
this viewpoint depends on your hardware architecture. For example, starting with the Intel microarchitecture
code name Ivy Bridge, the VTune Profiler analyzes execution categories based on the Top-Down
Microarchitecture Analysis Method:

The four leaf categories serve as high-level performance metrics in the Microarchitecture Exploration
viewpoint.

Each metric is an event ratio defined by Intel architects and has its own predefined threshold. VTune Profiler
analyzes a ratio value for each aggregated program unit (for example, function). When this value exceeds
the threshold and the program unit has more then 5% of CPU time from collection CPU time, it signals a
potential performance problem and highlights such a value in pink.

NOTE

• For a detailed tuning methodology behind the Microarchitecture Exploration analysis and some of
the complexities associated with this analysis, see Understanding How General Exploration Works in
Intel® VTune™ Profiler.

• For architecture-specific Tuning Guides, visit https://www.intel.com/content/www/us/en/developer/
articles/guide/processor-specific-performance-analysis-papers.html.

To interpret the performance data provided during the hardware event-based sampling analysis, you may
follow the steps below:

1. Learn metrics and define a performance baseline.
2. Identify hardware issues.
3. Analyze source.
4. Explore other analysis types/viewpoints.

Learn Metrics and Define a Performance Baseline
In the Microarchitecture Exploration viewpoint, click the Summary tab to switch to the Summary window.

Intel® VTune™ Profiler User Guide 1

197

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/developer/articles/technical/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe.html
https://www.intel.com/content/www/us/en/developer/articles/technical/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe.html
https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html
https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html

The first section displays the summary statistics on the overall application execution per hardware-related
metrics measured in Pipeline Slots or Clockticks. Metrics are organized by execution categories in a list and
also represented as a µPipe diagram. To view a metric description, mouse over the help icon

:

In the example above, mousing over the L1 Bound metric displays the metric description in the tooltip.

A flagged metric value signals a performance issue for the whole application execution. Mouse over the
flagged value to read the issue description:

You may use the performance issues identified by the VTune Profiler as a baseline for comparison of versions
before and after optimization. Your primary performance indicator is the Elapsed time value.

Grayed out metric values indicate that the data collected for this metric is unreliable. This may happen, for
example, if the number of samples collected for PMU events is too low. In this case, when you hover over
such an unreliable metric value, the VTune Profiler displays a message:

You may either ignore this data, or rerun the collection with the data collection time, sampling interval, or
workload increased.

 1 Intel® VTune™ Profiler User Guide

198

By default, the VTune Profiler collects Microarchitecture Exploration data in the Detailed mode. In this mode,
all metric names in the Summary view are hyperlinks. Clicking such a hyperlink opens the Bottom-up
window and sorts the data in the grid by the selected metric. The lightweight Summary collection mode is
limited to the Summary view statistics.

Identify Hardware Issues
To view hardware issues per a program unit, switch to the Bottom-up pane. Each row represents a program
unit and percentage of time used by this unit. Program units that take more than 5% of the CPU time are
considered as hotspots. By default, the VTune Profiler sorts the data in the descending order by Clockticks
and provides the hotspots at the top of the list.

Most of the columns in the Bottom-up pane represent a hardware performance metric. VTune Profiler
calculates a metric based on the formula provided by Intel architects. Mouse over the column header to read
the metric description. By default, metric values are represented as numbers. You can change the
representation mode with the Show Data As context menu option.

The right pane displays a context summary for the selected function. Analyze per-function hardware metrics
and their visual representation on the µPipe diagram to estimate the contribution of this particular function to
the overall performance.

Each metric has a threshold value. If the metric value exceeds the threshold and the program unit is a
hotspot, the VTune Profiler highlights this value in pink as performance-critical. Mouse over each pink cell to
read a description of the issue and recommended solution (if any).

In the example above, created on the Intel microarchitecture code name Skylake, the VTune Profiler
identified the sphere_intersect function as one of the biggest hotspots that took much CPU time. VTune
Profiler detected that the back-end portion of the pipeline caused the stalls. For the back-end, the VTune
Profiler identified Memory Bound > L1 Bound issue as a dominant bottleneck. 14.6% of Clockticks used in
this function was stalled missing L1 data cache. This means that if you focus on this function hotspot and
optimize it, you can potentially gain ~15% speed-up for this function.

Intel® VTune™ Profiler User Guide 1

199

VTune Profiler is able to identify the most common types of pipeline bottlenecks. You may go deeper for more
details. If the deeper levels of the metrics do not display any data, it means that the VTune Profiler cannot
see a dominant bottleneck on the lower level.

Analyze Source
When you identified a critical function, double-click it to open the Source/Assembly window and analyze the
source code.

The Source/Assembly window displays locator metrics that show what code contributed the most to the
issue represented by the metric. For example, if you have the Back-End Bound metric equal to 60% for your
function, the source view for this function splits the 60% value across function source lines or instructions to
help you identify a source line/instruction with the biggest value contributing the most to the total 60% Back-
End Bound metric.

Use the hotspots navigation toolbar buttons to navigate to the biggest hotspot for each locator metric and
identify the code to optimize.

What's Next
• You may view the collected data using the Hotspots viewpoint or run the Hotspots analysis type. Analyzing

the source and assembly code for the hotspot function in the Hotspots viewpoint helps identify which
instruction contributes most to the poor performance and how much CPU time the hotspot source line
takes. Such a code analysis could be useful for the hotspots that do not show any issues in the sub-
metrics but do show problems at the upper level of metrics (see the example above).

• Run the comparison analysis to understand the performance gain you obtained after your optimization.
• You may create your custom analysis configuration and monitor events you are interested in.

NOTE

• For information on processor events, see the Intel Processor Event Reference.
• Explore tuning recipes for hardware issues in the Performance Analysis Cookbook.

See Also
Analyze Performance

Custom Analysis

Cookbook: Top-Down Microarchitecture Analysis Method

Source Code Analysis

Microarchitecture Pipe
Explore the µPipe diagram of the CPU
microarchitecture metrics provided by the Intel®
VTune™ Profiler with the Microarchitecture Exploration
analysis to identify inefficiencies in the CPU utilization.

When your Microarchitecture Exploration analysis result is collected, the VTune Profiler opens the Summary
window that provides an overview of your target app performance based on the Top-down Microarchitecture
Analysis Method (TMA). Treat the diagram as a pipe with an output flow equal to the ratio: Actual
Instructions Retired/Possible Maximum Instruction Retired (pipe efficiency). If there are pipeline
stalls decreasing retiring, the pipe shape gets narrow.

 1 Intel® VTune™ Profiler User Guide

200

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/tuning-recipes.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html

The µPipe is based on CPU pipeline slots that represent hardware resources needed to process one micro-
operation. Usually there are several pipeline slots available (pipeline width). If pipeline slot does not retire,
this is considered as a stall. The fraction of retired pipeline slots represents CPU Microarchitecture efficiency.
If there were no stalls on all the CPU cycles, this is considered as 100% efficient CPU execution.

There are usually multiple reasons for stalling pipeline slots, identification of these reasons, as well as their
root causes is a CPU Microarchitecture performance analysis process based on the TMA model.

The µPipe in the Microarchitecture Exploration viewpoint visualizes top-level CPU microarchitecture metrics as
fractions of the overall number of pipeline slots in a pipe form where all the stalls are represented as
obstacles making the pipe narrow.

The pipe is divided into 3 columns and 5 rows where each row represents a pipeline high-level metric:

• Retiring metric (a fraction of retired pipeline slots) in the middle green row represents the efficiency of the
pipe and spans for all 3 columns.

• Memory Bound metric row above the Retiring metric spans for 2 columns.
• Core Bound metric row under the Retiring metric spans for 2 columns.
• Front-End Bound metric is the top row.
• Bad Speculation metric row at the bottom may have a dedicated representation of a drain meaning

wasted CPU work.

The height of the whole pipe is a constant value. The height of every row equals the fraction represented by
the corresponding metric.

Red color signals a potential performance problem. A fraction of the green color in the diagram helps
estimate how good execution efficiency is. So, the pipe form clearly represents existing CPU
microarchitecture issues and enables you to recognize the following common patterns:

A no significant issues
B Memory bound execution
C Core bound execution
D Front End bound execution
E Bad Speculation issues (for example, branch misprediction)
F a combination of Memory and Bad Speculation issues

Example 1
This an example of a pipe representing significant Front-End Bound and Core Bound issues limiting the whole
efficiency to 24.4%:

Intel® VTune™ Profiler User Guide 1

201

Example 2
This is an example of good CPU execution efficiency with a Front-End issue:

See Also
Instructions Retired Event

CPU Metrics Reference

Memory Access Analysis for Cache Misses and High Bandwidth Issues
Use the Intel® VTune™ Profiler's Memory Access
analysis to identify memory-related issues, like NUMA
problems and bandwidth-limited accesses, and
attribute performance events to memory objects (data
structures), which is provided due to instrumentation
of memory allocations/de-allocations and getting
static/global variables from symbol information.

NOTE
Intel® VTune™ Profiler is a new renamed version of Intel® VTune™ Amplifier.

 1 Intel® VTune™ Profiler User Guide

202

How It Works

Memory Access analysis type uses hardware event-based sampling to collect data for the following metrics:

• Loads and Stores metrics that show the total number of loads and stores
• LLC Miss Count metric that shows the total number of last-level cache misses

• Local DRAM Access Count metric that shows the total number of LLC misses serviced by the local
memory

• Remote DRAM Access Count metric that shows the number of accesses to the remote socket
memory

• Remote Cache Access Count metric that shows the number of accesses to the remote socket cache
• Memory Bound metric that shows a fraction of cycles spent waiting due to demand load or store

instructions

• L1 Bound metric that shows how often the machine was stalled without missing the L1 data cache
• L2 Bound metric that shows how often the machine was stalled on L2 cache
• L3 Bound metric that shows how often the CPU was stalled on L3 cache, or contended with a sibling

core
• L3 Latency metric that shows a fraction of cycles with demand load accesses that hit the L3 cache

under unloaded scenarios (possibly L3 latency limited)
• NUMA: % of Remote Accesses metric shows percentage of memory requests to remote DRAM. The

lower its value is, the better.
• DRAM Bound metric that shows how often the CPU was stalled on the main memory (DRAM). This

metric enables you to identify DRAM Bandwidth Bound, UPI Utilization Bound issues, as well as
Memory Latency issues with the following metrics:

• Remote / Local DRAM Ratio metric that is defined by the ratio of remote DRAM loads to local
DRAM loads

• Local DRAM metric that shows how often the CPU was stalled on loads from the local memory
• Remote DRAM metric that shows how often the CPU was stalled on loads from the remote

memory
• Remote Cache metric that shows how often the CPU was stalled on loads from the remote cache in

other sockets
• Average Latency metric that shows an average load latency in cycles

Intel® VTune™ Profiler User Guide 1

203

NOTE

• The list of metrics may vary depending on your microarchitecture.
• The UPI Utilization metric replaced QPI Utilization starting with systems based on Intel

microarchitecture code name Skylake.

Many of the collected events used in the Memory Access analysis are precise. This simplifies understanding
the data access pattern. Off-core traffic is divided into the local DRAM and remote DRAM accesses. Typically,
you should focus on minimizing remote DRAM accesses that usually have a high cost.

Configure and Run Analysis
To configure options for the Memory Access analysis:

Prerequisites: Create a project.

1. Click the

(standalone GUI)/

(Visual Studio IDE) Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From HOW pane, click the

Browse button and select Memory Access.
3. Configure the following options:

CPU sampling
interval, ms field

Specify an interval (in milliseconds) between CPU samples.

Possible values - 0.01-1000.

The default value is 1 ms.

Analyze dynamic
memory objects
check box (Linux
only)

Enable the instrumentation of dynamic memory allocation/de-allocation and
map hardware events to such memory objects. This option may cause
additional runtime overhead due to the instrumentation of all system memory
allocation/de-allocation API.

The option is disabled by default.

Minimal dynamic
memory object
size to track, in
bytes spin box
(Linux only)

Specify a minimal size of dynamic memory allocations to analyze. This option
helps reduce runtime overhead of the instrumentation.

The default value is 1024.

Evaluate max
DRAM bandwidth
check box

Evaluate maximum achievable local DRAM bandwidth before the collection
starts. This data is used to scale bandwidth metrics on the timeline and
calculate thresholds.

The option is enabled by default.

Analyze OpenMP
regions check box

Instrument and analyze OpenMP regions to detect inefficiencies such as
imbalance, lock contention, or overhead on performing scheduling, reduction
and atomic operations.

 1 Intel® VTune™ Profiler User Guide

204

The option is disabled by default.

Details button Expand/collapse a section listing the default non-editable settings used for
this analysis type. If you want to modify or enable additional settings for the
analysis, you need to create a custom configuration by copying an existing
predefined configuration. VTune Profiler creates an editable copy of this
analysis type configuration.

4. Click the

Start button to run the analysis.

Limitations:

• Memory objects analysis can be configured for only Linux* targets only and also only for processors based
on Intel microarchitectures code named Haswell or newer architectures.

View Data
For analysis, explore the Memory Usage viewpoint that includes the following windows:

• Summary window displays statistics on the overall application execution, including the application-level
bandwidth utilization histogram.

• Bottom-up window displays performance data per metric for each hotspot object. If you enable the
Analyze memory objects option for data collection, the Bottom-up window also displays memory
allocation call stacks in the grid and Call Stack pane. Use the Memory Object grouping level, preceded
with the Function level, to view memory objects as the source location of an allocation call.

• Platform window provides details on tasks specified in your code with the Task API, Ftrace*/Systrace*
event tasks, OpenCL™ API tasks, and so on. If corresponding platform metrics are collected, the Platform
window displays over-time data as GPU usage on a software queue, CPU time usage, OpenCL™ kernels
data, and GPU performance per the Overview group of GPU hardware metrics, Memory Bandwidth, and
CPU Frequency.

Support Limitations
Memory Access analysis is supported on the following platforms:

• 2nd Generation Intel® Core™ processors
• Intel® Xeon® processor families, or later
• 3rd Generation Intel Atom® processor family, or later

If you need to analyze older processors, you can create a custom analysis and choose events related to
memory accesses. However, you will be limited to memory-related events available on those processors. For
information about memory access events per processor, see the VTune Profiler tuning guides.

For dynamic memory object analysis on Linux, the VTune Profiler instruments the following Memory
Allocation APIs:

• standard system memory allocation API: mmap, malloc/free, calloc, and others
• memkind - https://github.com/memkind/memkind
• jemalloc - https://github.com/memkind/jemalloc
• pmdk - https://github.com/pmem/pmdk

See Also
Memory Usage View

collect
memory-accessvtune option

Intel Processor Events Reference

Intel® VTune™ Profiler User Guide 1

205

https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html

CPU Metrics Reference

Sampling Interval

Memory Usage View
Use the Intel® VTune™ Profiler to analyze cache misses
(L1/L2/LLC), memory loads/stores, memory
bandwidth and system memory allocation/de-
allocation, identify high bandwidth issues and NUMA
issues in your memory-bound application.

To analyze memory usage data, run these analysis types:

• Memory Access analysis
• Microarchitecture Exploration analysis with the Analyze memory bandwidth option enabled
• HPC Performance Characterization analysis with the Analyze memory bandwidth option enabled

When the analysis is complete, VTune Profiler opens the Memory Usage viewpoint. This viewpoint displays
data per memory-access-correlated event-based metrics. Each metric is an event ratio defined by Intel
architects and may have its own predefined threshold. VTune Profiler analyzes a ratio value for each
aggregated program unit (for example, function). When this value exceeds the threshold and the program
unit has more than 5% of CPU time from the collection CPU time, it signals a potential performance problem
and highlights that value.

To interpret performance data obtained through the analysis, follow this procedure:

1. Analyze Topology, Memory, and Cross-Socket Bandwidth.
2. View performance metrics by memory objects (Linux* targets only).
3. Identify code sections and memory objects inducing bandwidth.
4. Analyze bandwidth issues over time.
5. Identify code and memory objects with NUMA issues.
6. Analyze source.

Analyze Topology, Memory, and Cross-Socket Bandwidth
Start your performance analysis in the Summary window of the Memory Usage viewpoint. Here, the
Platform Diagram displays system topology and utilization metrics for DRAM, Intel® UPI links, and physical
cores.

Sub-optimal application topology can result in induced DRAM and Intel® QuickPath Interconnect (Intel® QPI)
or Intel® Ultra Path Interconnect (Intel® UPI) cross-socket traffic. These incidents can limit performance.

 1 Intel® VTune™ Profiler User Guide

206

NOTE
The platform diagram is available for:

• All client platforms
• Server platforms based on Intel® microarchitecture code name Skylake, with up to four sockets.
• Server platforms based on Intel® microarchitecture code named Sapphire Rapids.

High Bandwidth Memory Data in Platform Diagram

For server platforms based on Intel® microarchitecture code named Sapphire Rapids, the Platform Diagram
also includes information about High Bandwidth Memory (HBM). Use this information to distinguish from
DRAM-specific utilization in the diagram.

For example, this diagram shows information about HBM mode utilization, where the system has no DRAM.

Here is an example of the Platform Diagram data in a system that has both HBM and DRAM.

If you selected the Evaluate max DRAM bandwidth option in your analysis configuration, the Platform
Diagram shows the average DRAM utilization. Otherwise, it shows the average DRAM bandwidth.

The Average UPI Utilization metric displays UPI utilization in terms of transmit. Irrespective of the number
of UPI links that connect a pair of packages, the Platform Diagram shows a single cross-socket connection, .
If there are several links, the diagram displays the maximum value.

Intel® VTune™ Profiler User Guide 1

207

On top of each socket, the Average Physical Core Utilization metric indicates the utilization of physical
cores by computations of the application under analysis.

Once you examine the topology and utilization information in the diagram, focus on other sections in the
Summary window and then switch to the Bottom-up and Platform windows next.

View Performance Metrics by Memory Objects (Linux* targets only)
If you enabled the Analyze dynamic memory objects configuration option for the Memory Access analysis,
you can configure the Memory Usage viewpoint to display performance metrics per memory objects
(variables, data structures, arrays).

NOTE
Memory objects identification is supported only for Linux targets and only for processors based on
Intel microarchitecture code named Haswell and newer architectures. On Windows*, you can group by
Cachelines, see the metrics against the code, and figure out what data structures it accesses.

There are several types of memory objects:

• Dynamic memory objects are allocated on heap using the malloc, new, and similar functions. Such
objects are identified by the line where an allocation happened; for example, a source line where the
malloc function was called.

• Global objects are global or static variables. Such objects are identified by the module and variable
name, for example: libiomp5.sp!_kmp_avail_proc (4B), where 4B is an allocation size.

• Stack objects are local variables. VTune Profiler does not recognize individual variables, so all references
to stack memory are associated with one memory object named [Stack].

For memory objects data, click the Bottom-up tab and select a grouping level containing Memory Object
or Memory Object Allocation Source. The Memory Object granularity groups the data by individual
allocations (call site and size) while Memory Object Allocation Source groups by the place where an
allocation happened.

Only metrics based on DLA-capable hardware events are applicable to the memory objects analysis. For
example, the CPU Time metric is based on a non DLA-capable Clockticks event, so cannot be applied to
memory objects. Examples of applicable metrics are Loads, Stores, LLC Miss Count, and Average Latency.

Identify Code Sections and Memory Objects Inducing Bandwidth
In the Bandwidth Utilization section of the Summary window, you can select a bandwidth domain (like
DRAM or Interconnect) and analyze the bandwidth utilization over time represented on the histogram:

 1 Intel® VTune™ Profiler User Guide

208

This histogram shows how much time the system bandwidth was utilized by the selected bandwidth domain
and provides thresholds to categorize bandwidth utilization as High, Medium and Low. By default, for Memory
Analysis results the thresholds are calculated based on the maximum achievable DRAM bandwidth measured
by the VTune Profiler before the collection starts and displayed in the System Bandwidth section of the
Summary window. To enable this functionality for custom analysis results, make sure to select the Evaluate
max DRAM bandwidth option. If this option is not enabled, the thresholds are calculated based on the
maximum bandwidth value collected for this result. You can also set the threshold by moving sliders at the
bottom. The modified values will be applied to all subsequent results in this project.

Explore the table under the histogram to identify which functions were frequently accessed while the
bandwidth utilization for the selected domain was high. Clicking a function from the list opens the Bottom-up
window with the grid automatically grouped by Bandwidth Domain / Bandwidth Utilization Type /
Function / Call Stack and this function highlighted. Under the DRAM, GB/sec > High utilization type, you
can see all functions executing when the system DRAM bandwidth utilization was high. Sort the grid by LLC
Miss Count to see what functions contributed to the high DRAM bandwidth utilization the most:

Intel® VTune™ Profiler User Guide 1

209

In addition to identifying bandwidth-limited code, the VTune Profiler provides a workflow to see the
frequently accessed memory objects (variables, data structures, arrays) that had an impact on the high
bandwidth utilization. So, if you enabled the memory object analysis for your target, the Bandwidth
Utilization section includes a table with the top memory objects that were frequently accessed while the
bandwidth utilization for the selected domain was high. Click such an object to switch to the Bottom-up
window with the grid automatically grouped by Bandwidth Domain / Bandwidth Utilization Type /
Memory Object / Allocation Stack and this object highlighted. Under the DRAM > High utilization type,
explore all memory objects that were accessed when the system DRAM bandwidth utilization was high. Sort
the grid by LLC Miss Count to see what memory objects contributed to the high DRAM bandwidth utilization
the most:

 1 Intel® VTune™ Profiler User Guide

210

Analyze Bandwidth Issues Over Time
To identify bandwidth issues in your application over time, focus on the Timeline pane provided at the top of
the Bottom-up window. For Memory Analysis results, the DRAM Bandwidth graph is scaled according to the
maximum achievable DRAM bandwidth measured by the VTune Profiler before the collection start. To enable
this functionality for custom analysis results, make sure to select the Evaluate max DRAM bandwidth
option. If this option is not enabled, the thresholds are calculated based on the maximum bandwidth value
collected for this result.

Bandwidth events are not associated with any core, but, instead, associated with the uncore (iMC, the
integrated memory controller). Uncore events happen on structures shared between all CPUs in a package
(for example, 10 CPUs on a single package). This makes it impossible to associate any single uncore event
with any code context. So, the VTune Profiler may only associate bandwidth uncore event counts with the
socket, or package, on which the uncore event happened, and time.

Hover over a bar with high bandwidth value to learn how much data was read from or written to DRAM
through the on-chip memory controller. Use time-filtering context menu options to filter in a specific range of
time during which bandwidth is notable. Then, switch to the core-based events that correlate with bandwidth
in the grid below to determine what specific code is inducing all the bandwidth.

Intel® VTune™ Profiler User Guide 1

211

Identify Code and Memory Objects with NUMA Issues
Many modern multi-socket systems are based on the Non-Uniform Memory Architecture (NUMA) where
accesses to the memory allocated on the home (local) CPU socket have better latency/bandwidth than
accesses to the remote memory. To identify NUMA issues, focus on the following hierarchically organized
metrics in the Bottom-up view:

• Memory Bound > DRAM Bound > Local DRAM metric shows a fraction of cycles the CPU stalled
waiting for memory loads from the local memory.

• Memory Bound > DRAM Bound > Remote DRAM metric shows a fraction of cycles the CPU stalled
waiting for memory loads from the remote memory.

• Memory Bound > DRAM Bound > Remote Cache metric shows a fraction of cycles the CPU stalled
waiting for memory loads from the remote socket cache.

• LLC Miss Count > Local DRAM Access Count, LLC Miss Count > Remote DRAM Access Count, LLC
Miss Count > Remote Cache Access Count - metrics show the number of accesses to local memory,
remote memory and remote cache respectively.

The performance of your application can be also limited by the bandwidth of Interconnect links (inter-socket
connections). VTune Profiler provides mechanisms to identify code and memory objects inducing this type of
bandwidth similar to those used to identify DRAM bandwidth problems. In the Summary window, use the
Bandwidth Utilization Histogram and select Interconnect in the Bandwidth Domain drop-down menu.

If you select the Interconnect Incoming/Outgoing Non-Data categories in the Bandwidth Domain drop-
down menu, the histogram displays the bandwidth utilized by hardware generated and system traffic like
protocol packet headers, snoop requests and responses, and others:

 1 Intel® VTune™ Profiler User Guide

212

NOTE
Interconnect bandwidth analysis is supported by the VTune Profiler for Intel microarchitecture code
name Ivy Bridge EP and later.

Switch to the Bottom-up tab and select the Bandwidth Domain / Bandwidth Utilization type /
Function / Call Stack grouping level. Expand the Interconnect domain grid row and then expand the
High utilization type row to see all functions that were executing when the system Interconnect bandwidth
utilization was high:

Intel® VTune™ Profiler User Guide 1

213

You can also select areas with the high Interconnect bandwidth utilization in the Timeline view and filter in by
this selection:

After the filter is applied, the grid view below the Timeline pane shows what was executing during that time
range.

Analyze Source
When you identified a critical function, double-click it to open the Source/Assembly window and analyze the
source code. The Source/Assembly window displays hardware metrics per code line for the selected
function.

To view the Source/Assembly data for memory objects:

1. Select the ../Function / Memory Object /.. grouping level (the Function granularity should precede
the Memory Object granularity) in the Bottom-up window.

2. Expand a function and double-click a memory object under this function.

 1 Intel® VTune™ Profiler User Guide

214

The Source/Assembly window opens displaying metrics per function source lines where accesses to
the selected memory object happened.

NOTE

• For information on processor event, see Intel Processor Event Reference.
• For information on the performance tuning for HPC-computers using the event-based sampling

collection, see Tuning Guides and Performance Analysis Papers.
• For information on performance improvement opportunities with NUMA hardware, see Optimizing

Applications for NUMA.

See Also
Source Code Analysis

VTune Profiler Cookbook: False Sharing
VTune Profiler Cookbook: Frequent DRAM Accesses

Parallelism Analysis Group
The Parallelism analysis group introduces analysis
types based on applications that are compute-
sensitive. They can be used as a starting point for
overall application performance analysis before
moving on to more targeted analysis types.

Compute-intensive application analysis includes the following analysis types:

• Threading focuses on a particular target, shows how well your application is threaded for the existing
number of logical CPU cores, identifies functions that took the most CPU time to execute and the
synchronization objects that might cause ineffective CPU usage.

• HPC Performance Characterization evaluates compute-sensitive or throughput applications for floating
point operation and memory efficiency. It can be used as a starting point for understanding overall
application performance.

Threading Analysis
Use the Threading analysis to identify how efficiently
an application uses available processor compute cores
and explore inefficiencies in threading runtime usage
or contention on threading synchronization that makes
threads waiting and prevents effective processor
utilization.

NOTE

• Threading analysis combines and replaces the Concurrency and Locks and Waits analysis types
available in previous versions of Intel® VTune™ Profiler.

• Intel® VTune™ Profiler is a new renamed version of Intel® VTune™ Amplifier.

Intel® VTune™ Profiler uses the Effective CPU Utilization metric as a main measurement of threading
efficiency. The metric is built on how an application utilizes the available logical cores. For throughput
computing, it is typical to load one logical core per physical core.

The following aspects of Threading Analysis provide possible reasons for poor CPU utilization:

• Thread count: a quick glance at the application thread count can give clues to threading inefficiencies,
such as a fixed number of threads that might prevent the application from scaling to a larger number of
cores or lead to thread oversubscription

Intel® VTune™ Profiler User Guide 1

215

https://www.intel.com/content/www/us/en/developer/articles/guide/processor-specific-performance-analysis-papers.html
https://www.intel.com/content/dam/develop/external/us/en/documents/3-5-memmgt-optimizing-applications-for-numa-184398.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/3-5-memmgt-optimizing-applications-for-numa-184398.pdf
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/false-sharing.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/frequent-dram-accesses.html

• Wait time (trace-based or context switch-based): analyze threads waiting on synchronization objects or
I/O

• Spin and overhead time: estimate threading runtime overhead or the impact of spin waits (busy or active
waits)

The Threading Analysis provides two collection modes with major differences in thread wait time collection
and interpretation:

• User-Mode Sampling and Tracing, which can recognize synchronization objects and collect thread wait
time by objects using tracing. This is helpful in understanding thread interaction semantics and making
optimization changes based on that data. There are two groups of synchronization objects supported by
Intel VTune Profiler: objects usually used for synchronization between threads (such as Mutex or
Semaphore) and objects associated with waits on I/O operations (such as Stream).

• Hardware Event-Based Sampling and Context Switches, which collects thread inactive wait time based on
context switch information. Even though there is not a thread object definition in this case, the
problematic synchronization functions can be found by using the wait time attributed with call stacks with
lower overhead than the previous collection mode. The analysis based on context switches also shows
thread preemption time, which is useful in measuring the impact of thread oversubscription on a system.

 1 Intel® VTune™ Profiler User Guide

216

How It Works: User-Mode Sampling and Tracing
With user-mode sampling and tracing collection, VTune Profiler instruments threading and blocking API
intercepting the calls during runtime and building thread interaction flow detecting synchronization objects.
Using User-mode Sampling and Tracing Collection analysis mode you can estimate the impact each
synchronization object has on the application and understand how long the application had to wait on each
synchronization object, or in blocking APIs. The analysis shows the thread interaction with execution flow
transition from one thread to another with releasing and accruing synchronization objects on the timeline
view.

If this mode brings significant overhead in the application runtime, try the Hardware Event-Based Sampling
and Context Switches mode, which offers a less intrusive method of wait time collection.

How It Works: Hardware Event-Based Sampling and Context Switches
Multitask operating systems execute all software threads in time slices (thread execution quanta). In the
Hardware Event-Based Sampling and Context Switches mode, the profiler gains control whenever a thread
gets scheduled on and then off a processor (that is, at thread quantum borders). This mode also determines
a reason for thread inactivation, which includes an explicit request for synchronization or thread quantum
expiration (when the operating system scheduler preempts the current thread to run a higher-priority thread
instead).

The time during which a thread remains inactive is measured and called Inactive Wait Time. Inactive Wait
Time is differentiated based on the reason for inactivity:

• Inactive Sync Wait Time is caused by a request for synchronization
• Preemption Wait Time is caused by preemption

Since context switch information is collected with call stacks, it is possible to explore reasons of Inactive Wait
Time by wait functions with their call paths. The Hardware Event-Based Sampling and Context Switches
mode shows the places in the code where the wait was induced by a synchronization object or I/O operation.

Intel® VTune™ Profiler User Guide 1

217

The Hardware Event-Based Sampling and Context Switches mode is based on the hardware event-based
sampling collection and analyzes all the processes running on your system at the moment, providing context
switching data on whole system performance. On Linux* systems, Inactive Wait Time Collection is available
in driverless Perf*-based collection usage with kernel version 4.4 or later. Inactive Time reasons are available
in kernel 4.17 and later.

NOTE
On 32-bit Linux* systems, the VTune Profiler uses a driverless Perf*-based collection for the hardware
event-based sampling mode.

Configure and Run Analysis
To configure options for the Threading analysis:

Prerequisites: Create a project and specify an analysis target.

1. Click the

(standalone GUI)/

(Visual Studio IDE) Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From HOW pane, click the

Browse button and select Threading.
3. Configure the collection options.

User-Mode
Sampling and
Tracing mode

Select to enable the user-mode sampling and tracing collection for
synchronization object analysis. This collection mode uses a fixed sampling
interval of 10ms. If you need to change the interval, click the Copy button
and create a custom analysis configuration. For intervals less than 10ms, use
the Hardware Event-Based Sampling and Context Switches mode.

Hardware Event-
Based Sampling
and Context
Switches mode

Select to enable hardware event-based sampling and context switches
collection.

You can configure the CPU sampling interval, ms to specify an interval (in
milliseconds) between CPU samples. Possible values for thehardware event-
based sampling mode are 0.01-1000. 1 ms is used by default.

NOTE
When changing collection options, pay attention to the Overhead diagram on the
right. It dynamically changes to reflect the collection overhead incurred by the
selected options.

Details button Expand/collapse a section listing the default non-editable settings used for
this analysis type. If you want to modify or enable additional settings for the
analysis, you need to create a custom configuration by copying an existing
predefined configuration. VTune Profiler creates an editable copy of this
analysis type configuration.

 1 Intel® VTune™ Profiler User Guide

218

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE
To run Threading Analysis from the command line for this configuration, use the

Command Line button at the bottom.

4. Click the

Start button to run the analysis.

View Data
The Threading analysis results appear in the Threading Efficiency viewpoint, which consists of the following
windows/panes:

• Summary window displays statistics on the overall application execution, identifying CPU time and
processor utilization.

• Bottom-up window displays hotspot functions in the bottom-up tree, CPU time and CPU utilization per
function.

• Top-down Tree window displays hotspot functions in the call tree, performance metrics for a function only
(Self value) and for a function and its children together (Total value).

• Caller/Callee window displays parent and child functions of the selected focus function.
• Platform window provides details on CPU and GPU utilization, frame rate, memory bandwidth, and user

tasks (if corresponding metrics are collected).

What's Next
1. Start on the result Summary window to explore the Effective CPU utilization of your application and

identify reasons for underutilization connected with synchronization, parallel work arrangement
overhead, or incorrect thread count. Click links associated with flagged issues to be taken to more
detailed information. For example, clicking a sync object name in the Top Waiting Objects table takes
you to that object in the Bottom-up window.

2. Analyze thread integration synchronization objects with wait and signal stacks and transitions on the
timeline. Explore CPU time spent in threading runtimes to classify inefficiencies in their use.

3. Modify your code to remove CPU utilization bottlenecks and improve the parallelism of your application.

Concentrate your tuning on objects with long Wait time where the system is poorly utilized (red bars)
during the wait. Consider adding parallelism, rebalancing, or reducing contention. Ideal utilization
(green bars) occurs when the number of running threads equals the number of available logical cores.

4. Re-run the analysis to verify your optimization with the comparison mode and identify more possible
areas for improvement.

For more information and interpretation tips, see Threading Efficiency View.

See Also
Threading Efficiency View

collect
 threading vtune option

HPC Performance Characterization Analysis

Intel® VTune™ Profiler User Guide 1

219

Threading Efficiency View
Use the Intel® VTune™ Profiler's Threading Efficiency
viewpoint to identify causes of poor CPU utilization
such as inefficient synchronization.

Use the following workflow to analyze results collected by the Threading analysis type:

1. Define a performance baseline
2. Examine wait time, spin and overhead time, and thread count metrics
3. Review the timeline
4. Analyze the application source code
5. Explore other analysis types for further diagnosis and optimization

Define a Performance Baseline
Start with analyzing the application-level data provided in the Summary window for this analysis result. Use
the Elapsed time value as a baseline for comparison of results before and after optimization.

Explore the Spin Time, Overhead Time, Wait Time, and Total Thread Count to identify the main cause
of performance issues.

 1 Intel® VTune™ Profiler User Guide

220

Wait Time
A high thread wait time can cause poor CPU utilization. One common problem in parallel applications is
threads waiting too long on synchronization objects that are on the critical path of application execution (for
example, locks). Parallel performance suffers when waits occur while cores are under-utilized. Threading
analysis helps to analyze thread wait time and find synchronization bottlenecks.

Explore the Bottom-up window to identify the most performance critical synchronization objects. Although it
varies, often there are non-interesting threads waiting for a long time on objects infrequently. Usually you
are recommended to focus your tuning efforts on the waits with both high Wait Time and Wait Count values,
especially if they have poor utilization/concurrency.

By default, the synchronization objects are sorted by Wait time. You can view the time distribution per
utilization level by clicking the

button at the Wait Time by Utilization column header to expand the column.

To identify the highest contributing stack for the synchronization objects selected in the Bottom-up or Top-
down Tree panes, use the navigation buttons

on the stack pane. The contribution bar shows the contribution of the currently visible stack to the overall
time spent by the selected synchronization objects. You can also use the drop-down list in the Call Stack
pane to view data for different types of stacks.

You should try to eliminate or minimize the Wait Time for the synchronization objects with the highest Wait
Time (or longest red bars, if the bar format is selected) and Wait Count values.

In Hardware Event-based Sampling and Context Switches mode, sort functions by Inactive Sync Wait
Time. Use the Caller/Callee pane to figure out the call sites in the application that calls a wait function with
high Inactive Sync Wait Time.

Spin and Overhead Time
Threading analysis shows how much time the application spends in threading runtimes either because of
busy waits or overhead on parallel work arrangement. The goal is to minimize CPU cycles that are spent
either on active wait or task scheduling. Look at the call paths for functions with higher spin and overhead
time of application execution and follow the advice of flagged issues to reduce the time.

Intel® VTune™ Profiler User Guide 1

221

NOTE
The spin time shown in Spin and Overhead Time section might be included into wait time based on
user-level sampling and tracing.

Thread Count
Threading analysis will show time an application spends in oversubscription by flagging when the application
is running more threads than the number of logical cores on the machine. Running an excessive number of
threads can cause a higher CPU time because some of the threads may be waiting on others to complete or
time may be wasted on context switches. Another common issue is running with a fixed number of threads,
which can cause performance degradation when running on a platform with a different number of cores. For
example, running with a significantly lower number of threads than the number of cores available can cause
higher application elapsed time.

Use the Total Thread Count metric available on the Summary window to determine if your application has
thread oversubscription or could benefit from increased threading.

In Hardware Event-based Sampling and Context Switches mode, use the Preemption Wait Time metric to
estimate the impact of oversubscription. The higher the metric value on worked threads, the higher the
impact of oversubscription on the application performance. Note that thread preemption can also be
triggered by a conflict with other applications or kernel threads running on a system.

Review the Timeline
The Timeline pane at the bottom of the Bottom-up/Top-down Tree windows shows the thread behavior in
your application and how CPU utilization metrics are changing over time. Analyze the data, select the
problem area, and zoom in to selection using the context menu options. VTune Profiler calculates the overall
CPU Utilization metric as the sum of CPU time per each thread of the Threads area. Maximum CPU
Utilization value is equal to [number of processor cores] x 100%.

To understand what your application was doing during a particular time frame, select this range on the
timeline, right-click and choose Zoom In and Filter In by Selection. VTune Profiler will display functions or
sync objects used during this time range.

For User-mode Sampling and Tracing collection mode, select the Transitions option on the timeline to
explore thread interactions.

 1 Intel® VTune™ Profiler User Guide

222

For Hardware Event-based Sampling and Context Switches mode, the timeline is helpful in exploring inactive
waits. Select an inactive time area on the timeline to display the wait stack on the stack pane that
corresponds to the context switch.

Analyze Source
Double-click the hottest synchronization object (with the highest Wait Time and Wait Count values) to view
its related source code file in the Source/Assembly window. From the Timeline pane, you can double-click
the transition line to open the call site for this transition. You can open the code editor directly from the
VTune Profiler and edit your code.

Explore Other Analysis Types
• Run the comparison analysis to understand the performance gain you obtain after your optimization.
• Run Microarchitecture Exploration analysis to identify hardware issues affecting the performance of your

application.

See Also
Analyze Performance

Source Code Analysis

Intel® VTune™ Profiler User Guide 1

223

View Stacks

HPC Performance Characterization Analysis
Use the HPC Performance Characterization analysis to
identify how effectively your compute-intensive
application uses CPU, memory, and floating-point
operation hardware resources.

How It Works
The HPC Performance Characterization analysis type can be used as a starting point for understanding the
performance aspects of your application. Additional scalability metrics are available for applications that use
Intel OpenMP* or Intel MPI runtime libraries.

During HPC Performance Characterization analysis, the Intel® VTune™ Profiler data collector profiles your
application using event-based sampling collection. OpenMP analysis metrics for Intel OpenMP runtime library
are based on User API instrumentation enabled in the runtime library.

Typically the collector will gather data for a specified application, but it can collect system-wide performance
data with limited detail if required.

 1 Intel® VTune™ Profiler User Guide

224

NOTE
Vectorization and GFLOPS metrics are supported on Intel® microarchitectures formerly code named Ivy
Bridge, Broadwell, and Skylake. Limited support is available for Intel® Xeon Phi™ processors formerly
code named Knights Landing. The metrics are not currently available on 4th Generation Intel
processors. Expand the Details section on the analysis configuration pane to view the processor
family available on your system.

The analysis can be run from within the VTune Profiler GUI or from the command line.

NOTE
Intel® VTune™ Profiler is a new renamed version of Intel® VTune™ Amplifier.

Configure and Run Analysis
To configure options for the HPC Performance Characterization analysis:

Prerequisites: Create a project.

1. Click the

(standalone GUI)/

(Visual Studio IDE)Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From HOW pane, click the

Browse button and select HPC Performance Characterization.
3. Configure the following options:

CPU sampling
interval, ms field

Specify an interval (in milliseconds) between CPU samples.

Possible values - 0.01-1000.

The default value is 1.

Collect stacks
check box

Enable advanced collection of call stacks and thread context switches.

The option is disabled by default.

Analyze memory
bandwidth check
box

Collect the data required to compute memory bandwidth.

The option is enabled by default.

Evaluate max
DRAM bandwidth
check box

Evaluate maximum achievable local DRAM bandwidth before the collection
starts. This data is used to scale bandwidth metrics on the timeline and
calculate thresholds.

The option is enabled by default.

Analyze OpenMP
regions check box

Instrument and analyze OpenMP regions to detect inefficiencies such as
imbalance, lock contention, or overhead on performing scheduling, reduction
and atomic operations.

Intel® VTune™ Profiler User Guide 1

225

The option is enabled by default.

Details button Expand/collapse a section listing the default non-editable settings used for
this analysis type. If you want to modify or enable additional settings for the
analysis, you need to create a custom configuration by copying an existing
predefined configuration. VTune Profiler creates an editable copy of this
analysis type configuration.

NOTE
You may generate the command line for this configuration using the

Command Line button at the bottom.

4. Click the

Start button to run the analysis.

View Data
Use the HPC Performance Characterization viewpoint to review the following:

• Effective Physical Core Utilization: Explore application parallel efficiency by looking at physical core
utilization by the application code execution. Look for scalability problems involving the use of serial time
versus parallel time, tuning potential for OpenMP regions, and MPI imbalance.

• Memory Bound: Evaluate whether the application is memory bound. To understand deeper problems, run
the Memory Access Analysis to identify specific memory objects causing issues.

• Vectorization: Determine if floating-point loops are bandwidth bound or vectorized. For bandwidth bound
loops/functions, run the Memory Access Analysis to reduce bandwidth consumption. For vectorization
optimization opportunities, use the Intel Advisor to run a vectorization analysis.

• Intel® Omni-Path Fabric Usage: Identify performance bottlenecks caused by reaching the interconnect
limits.

Use the Analyzing an OpenMP* and MPI Application tutorial to review basic steps for tuning a hybrid
application. The tutorial is available from the Intel Developer Zone at https://www.intel.com/
content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/current/overview.html.

See Also
HPC Performance Characterization View

Cookbook: OpenMP* Code Analysis Method
Syntax

HPC Performance Characterization View

Use the HPC Performance Characterization viewpoint to estimate CPU usage, memory efficiency, and floating-
point utilization for compute-intensive or throughput applications. Compute-intensive or throughput
applications should use hardware resources efficiently for the duration of their elapsed time. Use the HPC
Performance Characterization analysis as a starting point for optimizing application performance and runtime.

Follow these steps to interpret the performance data provided in the HPC Performance Characterization
viewpoint:

1. Define a Performance Baseline

 1 Intel® VTune™ Profiler User Guide

226

https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html

2. Determine Optimization Opportunities
3. Analyze Source
4. Analyze Process/Thread Affinity
5. Explore Other Analysis Types

Tip
To review basic steps for tuning a hybrid application, follow the Analyzing an OpenMP* and MPI
Application tutorial .

1. Define a Performance Baseline
Start with exploring the Summary window that provides general information on your application execution.
Key areas for optimization include the elapsed time and floating-point operation per second counts (single
precision, double precision, and legacy x87). Red text indicates an area of potential optimization. Hover over
a flag to learn more about how to improve your code.

Use the Elapsed Time and GFLOPS values as a baseline for comparison of versions before and after
optimization.

Intel® VTune™ Profiler User Guide 1

227

https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/current/overview.html

2. Determine Optimization Opportunities
Review the Summary window to find the key optimization opportunities for your application. Performance
metrics that can be improved are marked in red. Issues identified could include Effective Physical Core
Utilization, Memory Bound, Vectorization, or a combination of these. The following sections provide
suggested next steps for each performance aspect:

• Topology, Memory, and Cross-Socket Bandwidth
• CPU Utilization
• GPU Utilization
• Memory Bound
• Vectorization

Topology, Memory, and Cross-Socket Bandwidth

Start your performance analysis in the Summary window of the HPC Performance Characterization
viewpoint. Here, the Platform Diagram displays system topology and utilization metrics for DRAM, Intel®
Ultra Path Interconnect (Intel® UPI) links, and physical cores.

Sub-optimal application topology can result in induced DRAM and Intel® QuickPath Interconnect (Intel® QPI)
or Intel® Ultra Path Interconnect (Intel® UPI) cross-socket traffic. These incidents can limit performance.

NOTE
The platform diagram is available for:

• All client platforms.
• Server platforms based on Intel® microarchitecture code named Skylake, with up to four sockets.
• Server platforms based on Intel® microarchitecture code named Sapphire Rapids.

High Bandwidth Memory Data in Platform Diagram

For server platforms based on Intel® microarchitecture code named Sapphire Rapids, the Platform Diagram
also includes information about High Bandwidth Memory (HBM). Use this information to distinguish from
DRAM-specific utilization in the diagram.

For example, this diagram shows information about HBM mode utilization, where the system has no DRAM.

 1 Intel® VTune™ Profiler User Guide

228

Here is an example of the Platform Diagram data in a system that has both HBM and DRAM.

If you selected the Evaluate max DRAM bandwidth option in your analysis configuration, the Platform
Diagram shows the average DRAM utilization. Otherwise, the diagram shows the average DRAM bandwidth.

The Average UPI Utilization metric displays UPI utilization in terms of transmit. Irrespective of the number
of UPI links that connect a pair of packages, the Platform Diagram shows a single cross-socket connection, .
If there are several links, the diagram displays the maximum value.

On top of each socket, the Average Physical Core Utilization metric indicates the utilization of physical
cores by computations of the application under analysis.

Once you examine the topology and utilization information in the diagram, focus on other sections in the
Summary window and then switch to the Bottom-up window.

CPU Utilization

Intel® VTune™ Profiler User Guide 1

229

• Explore the Effective Physical Core Utilization metric as a measure of the parallel efficiency of the
application. A value of 100% means that the application code execution uses all available physical cores.
If the value is less than 100%, it is worth looking at the second level metrics to discover reasons for
parallel inefficiency.

• Learn about opportunities to use the logical cores. In some cases, using logical cores leads to increases in
application concurrency and overall performance improvements.

This table provides additional CPU utilization information for specific applications or hardware configurations.

Application or Architecture Type Notes and Recommendations

Certain Intel® processors like Intel® Xeon Phi™ or
Intel Atom®, or systems where Intel Hyper-
Threading Technology (Intel HT Technology) is OFF
or absent

The metric breakdown between physical and logical
core utilization is not available. In these cases, a
single Effective CPU Utilization metric is
displayed to show parallel execution efficiency.

Applications that do not use OpenMP* or MPI
runtime libraries

• Review the Effective CPU Utilization
Histogram, which displays the Elapsed Time of
your application, broken down by CPU utilization
levels.

 1 Intel® VTune™ Profiler User Guide

230

Application or Architecture Type Notes and Recommendations

• Use the data in the Bottom-up and Top-down
Tree windows to identify the most time-
consuming functions in your application by CPU
utilization. Focus on the functions with the
largest CPU time and low CPU utilization level as
your candidates for optimization (for example,
parallelization).

Applications with Intel OpenMP* • Compare the serial time to the parallel region
time. If the serial portion is significant, consider
options to minimize serial execution, either by
introducing more parallelism or by doing
algorithm or microarchitecture tuning for
sections that seem unavoidably serial. For high
thread-count machines, serial sections have a
severe negative impact on potential scaling
(Amdahl's Law) and should be minimized as
much as possible. Look at serial hotspots to
define candidates for further parallelization.

• Review the OpenMP Potential Gain to
estimate the efficiency of OpenMP parallelization
in the parallel part of the code. The Potential
Gain metric estimates the elapsed time between
the actual measurement and an idealized
execution of parallel regions, assuming perfectly
balanced threads and zero overhead of the
OpenMP runtime on work arrangement. Use this
data to understand the maximum time that you
may save by improving OpenMP parallelism. If
Potential Gain for a region is significant, you can
go deeper and select the link on a region name
to navigate to the Bottom-up window
employing an OpenMP Region dominant
grouping and the region of interest selection.

• Consider running Threading analysis when there
are multiple locks used in one parallel construct
to find the performance impact of a particular
lock.

MPI applications Review the MPI Imbalance metric that shows the
CPU time spent by ranks spinning in waits on
communication operations, normalized by number
of ranks on the profiling node. The metric issue
detection description generation is based on
minimal MPI Busy Wait time by ranks. If the
minimal MPI Busy wait time by ranks is not
significant, then the rank with the minimal time
most likely lies on the critical path of application
execution. In this case, review the CPU utilization
metrics for this rank.

Intel® VTune™ Profiler User Guide 1

231

Application or Architecture Type Notes and Recommendations

Hybrid MPI + OpenMP applications The sub-section MPI Rank on Critical Path shows
OpenMP efficiency metrics like Serial Time (outside
of any OpenMP region), Parallel Region time, and
OpenMP Potential Gain. If the minimal MPI Busy
Wait time is significant, it can be a result of
suboptimal communication schema between ranks
or imbalance triggered by another node. In this
case, use Intel® Trace Analyzer and Collector for in
depth analysis of communication schema.

GPU Utilization

GPU utilization metrics display when:

• Your application makes use of a GPU.
• Your system is configured to collect GPU data. See Set Up System for GPU Analysis.

Under Elapsed Time, the GPU section presents an overview of how your application offloads work to the
GPU.

• The GPU Stack Utilization metric indicates if the GPU was idle at any point during data collection. A
value of 100% implies that your application offloaded work to the GPU throughout the duration of data
collection. Anything lower presents an opportunity to improve GPU utilization. The representation of GPU
utilization as the number of used GPU stacks provides context in terms of hardware.

• The GPU Accumulated Time metric indicates the sum total of times spent by GPU stacks which had at
least one execution thread scheduled. If there are multiple GPU stacks available in the system, the GPU
Accumulated Time may be larger than the Elapsed Time .

• The IPC Rate metric indicates the average number of instructions per cycle processed by the two FPU
pipelines of Intel ®Integrated Graphics. To have your workload fully utilize the floating-point capability of
the GPU, the IPC Rate should be closer to 2.

Next, look into the GPU Stack Utilization section. Here, you can understand if your workload can use the
GPU more efficiently.

 1 Intel® VTune™ Profiler User Guide

232

Ideally, your GPU stack utilization should be 100%. If the GPU Stack Utilization metric is <100%, there
were cycles where the GPU had no execution threads scheduled.

• EU State breaks down the activity of GPU execution units. Check here to see if they were stalled or idle
when processing your workload.

• Occupancy is a measure of the efficiency of scheduling the GPU thread. A value below 100%
recommends that you tune the sizes of the work items in your workload. Consider running the GPU
Offload Analysis. This provides an insight into computing tasks running on the GPU as well as additional
GPU-related performance metrics.

If your application offloads code via Intel OpenMP*, check the Offload Time section:

• The Offload Time metric displays the total duration of the OpenMP offload regions in your workload. If
Offload Time is below 100%, consider offloading more code to the GPU.

• The Compute, Data Transfer, and Overhead metrics help you understand what constitutes the Offload
Time. Ideally, the Compute portion should be 100%. If the Data Transfer component is significant, try
to transfer less data between the host and the GPU.

In the Top OpenMP Offload Regions section, review the breakdown of offload and GPU metrics by OpenMP
offload region. Focus on regions that take up a significant portion of the Offload Time.

The names of the OpenMP offload regions use this format:

<func_name>omptarget$region:dvc=<device_number>@<file_name>:<line_number>
where:

• func_name is the name of the source function where the OpenMP target directive is declared.
• device_number is the internal OpenMP device number where the offload was targeted.
• file_name and line_number constitute the source location of the OpenMP target directive.

When you compile your OpenMP application, the func_name, file_name, and line_number fields require you
to pass debug information options to the Intel Compiler. If debug information is absent, these fields get
default values.

Field Compiler Options to Enable Default Value

Linux OS Windows OS

line_number -g /Zi 0

func_name -g /Zi unknown

file_name -g -mllvm -parallel-
source-info=2

/Zi -mllvm -parallel-
source-info=2

unknown

Intel® VTune™ Profiler User Guide 1

233

For applications that use OpenMP offload, the Bottom-up window displays additional information.

• Group by OpenMP Offload Region. In this grouping, the grid displays:

• OpenMP Offload Time metrics
• Instance Count
• GPU metrics

• The timeline view displays ruler markers that indicate the span of OpenMP Offload Regions and
OpenMP Offload Operations within those regions.

Memory Bound

• A high Memory Bound value might indicate that a significant portion of execution time was lost while
fetching data. The section shows a fraction of cycles that were lost in stalls being served in different cache
hierarchy levels (L1, L2, L3) or fetching data from DRAM. For last level cache misses that lead to DRAM, it
is important to distinguish if the stalls were because of a memory bandwidth limit since they can require
specific optimization techniques when compared to latency bound stalls. VTune Profiler shows a hint about
identifying this issue in the DRAM Bound metric issue description. This section also offers the percentage
of accesses to a remote socket compared to a local socket to see if memory stalls can be connected with
NUMA issues.

•

• A high L2 Hit Bound or L2 Miss Bound value indicates that a high ratio of cycles were spent handing
L2 hits or misses.

 1 Intel® VTune™ Profiler User Guide

234

• The L2 Miss Bound metric does not take into account data brought into the L2 cache by the hardware
prefetcher. However, in some cases the hardware prefetcher can generate significant DRAM/MCDRAM
traffic and saturate the bandwidth. The Demand Misses and HW Prefetcher metrics show the
percentages of all L2 cache input requests that are caused by demand loads or the hardware
prefetcher.

• A high DRAM Bandwidth Bound or MCDRAM Bandwidth Bound value indicates that a large
percentage of the overall elapsed time was spent with high bandwidth utilization. A high DRAM
Bandwidth Bound value is an opportunity to run the Memory Access analysis to identify data
structures that can be allocated in high bandwidth memory (MCDRAM), if it is available.

• The Bandwidth Utilization Histogram shows how much time the system bandwidth was utilized by a
certain value (Bandwidth Domain) and provides thresholds to categorize bandwidth utilization as High,
Medium and Low. The thresholds are calculated based on benchmarks that calculate the maximum value.
You can also set the threshold by moving sliders at the bottom of the histogram. The modified values are
applied to all subsequent results in the project.

• Switch to the Bottom-up window and review the Memory Bound columns in the grid to determine
optimization opportunities.

• If your application is memory bound, consider running a Memory Access analysis for deeper metrics and
the ability to correlate these metrics with memory objects.

Vectorization

• The Vectorization metric represents the percentage of packed (vectorized) floating point operations. 0%
means that the code is fully scalar while 100% means the code is fully vectorized. The metric does not
take into account the actual vector length used by the code for vector instructions. As a result, if the code
is fully vectorized and uses a legacy instruction set that loaded only half a vector length, the Vectorization
metric still shows 100%.

Low vectorization means that a significant fraction of floating point operations are not vectorized. Use
Intel® Advisor to understand possible reasons why the code was not vectorized.

Intel® VTune™ Profiler User Guide 1

235

The second level metrics allow for rough estimates of the size of floating point work with particular
precision and see the actual vector length of vector instructions with particular precision. Partial vector
length can provide information about legacy instruction set usage and show an opportunity to recompile
the code with modern instruction set, which can lead to additional performance improvement. Relevant
metrics might include:

• Instruction Mix
• FP Arithmetic Instructions per Memory Read or Write

• The Top Loops/Functions with FPU Usage by CPU Time table shows the top functions that contain
floating point operations sorted by CPU time and allows for a quick estimate of the fraction of vectorized
code, the vector instruction set used in the loop/function, and the loop type.

Intel® Omni-Path Fabric Usage

Intel® Omni-Path Fabric (Intel® OP Fabric) metrics are available for analysis of compute nodes equipped with
Intel OP Fabric interconnect. They help to understand if MPI communication has bottlenecks connected with
reaching interconnect hardware limits. The section shows two aspects interconnect usage: bandwidth and
packet rate. Both bandwidth and packet rate split the data into outgoing and incoming data because the
interconnect is bi-directional. A bottleneck can be connected with one of the directions.

 1 Intel® VTune™ Profiler User Guide

236

• Outgoing and Incoming Bandwidth Bound metrics shows the percent of elapsed time that an
application spent in communication closer to or reaching interconnect bandwidth limit.

• Bandwidth Utilization Histogram shows how much time the interconnect bandwidth was utilized by a
certain value (Bandwidth Domain) and provides thresholds to categorize bandwidth utilization as High,
Medium, and Low.

• Outgoing and Incoming Packet Rate metrics shows the percent of elapsed time that an application
spent in communication closer to or reaching interconnect packet rate limit.

• Packet Rate Histogram shows how much time the interconnect packet rate was reached by a certain
value and provides thresholds to categorize packet rate as High, Medium, and Low.

3. Analyze Source
Double-click the function you want to optimize to view its related source code file in the Source/Assembly
window. You can open the code editor directly from the Intel® VTune™ Profiler and edit your code (for
example, minimizing the number of calls to the hotspot function).

4. Analyze Process/Thread Affinity
If the results show inefficient core utilization or NUMA effects, it can be helpful to know if and how threads
are pinned to processor cores.

The thread pinning or affinity can be applied by parallel runtimes (such as MPI), by using environment
variables, or by using APIs from parallel runtimes or the operating system. Use the knob Collect thread
affinity in the VTune Profiler GUI or -knob collect-affinity=true in the command line to activate
affinity collection for the HPC Performance Characterization analysis. With this option enabled it is possible to
generate a thread affinity command line report that shows thread pinning to sockets, physical cores, and
logical cores. Note that affinity information is collected at the end of the thread lifetime, so the resulting data
may not show the whole issue for dynamic affinity that is changed during the thread lifetime.

Intel® VTune™ Profiler User Guide 1

237

A preview HTML report is available to see process/thread affinity along with thread CPU execution and
remote accesses. Use the following command to generate the preview HTML report:

vtune -report affinity -format=html -r <result_dir>

NOTE
This is a PREVIEW FEATURE. A preview feature may or may not appear in a future production
release. It is available for your use in the hopes that you will provide feedback on its usefulness and
help determine its future. Data collected with a preview feature is not guaranteed to be backward
compatible with future releases.

 1 Intel® VTune™ Profiler User Guide

238

5. Explore Other Analysis Types
• Run a Memory Access analysis to view more detail about cache bound and memory bound issues affecting

the performance of your application.
• Use the Intel Advisor to analyze the application for vectorization optimization.

See Also
Analyze Performance

Viewing Source

Reference for Performance Metrics

Running HPC Performance Characterization Analysis from the Command Line

Input and Output Analysis
Use the Input and Output analysis of Intel® VTune™
Profiler to locate performance bottlenecks in I/O-
intensive applications at both hardware and software
levels.

The Input and Output analysis of Intel® VTune™ Profiler helps to determine:

• Platform I/O consumption by external PCIe devices and integrated accelerators:

• I/O bandwidth consumption, including Intel® Data Direct I/O Technology (Intel® DDIO) and Memory-
Mapped I/O traffic.

• Utilization efficiency of Intel® DDIO
• Memory bandwidth consumption.
• Intel® Ultra Path Interconnect (Intel® UPI) bandwidth consumption.
• Software data plane utilization.

The Input and Output analysis features two main types of performance metrics:

• Platform-level metrics — application-agnostic hardware event-based metrics.
• OS- and API-specific metrics — performance metrics for software data planes—DPDK and SPDK—and

the Linux* kernel I/O stack.

Linux* and FreeBSD* targets are supported.

NOTE
The full set of Input and Output analysis metrics is available on Intel® Xeon® processors only.

Intel® VTune™ Profiler User Guide 1

239

https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/effective-utilization-of-intel-ddio-technology.html
https://www.dpdk.org/
https://spdk.io/

Configure and Run Analysis

NOTE
On FreeBSD systems, the graphical user interface of VTune Profiler is not supported. You can still
configure and run the analysis from a Linux* or Windows* system using remote SSH capabilities, or
collect the result locally from the CLI. For more information on available options, see FreeBSD Targets.

1. Launch VTune Profiler and, optionally, create a new project.
2. Click the Configure Analysis button.
3. In the WHERE pane, select the target system to profile.
4. In the HOW pane, select Input and Output.
5. In the WHAT pane, specify your analysis target (application, process, or system).
6. Depending on your target app and analysis purpose, choose any of the configuration options described

in sections below.
7. Click Start to run the analysis.

VTune Profiler collects the data, generates a result, and opens the result with that displays data
according to configuration.

To run the Input and Output analysis from the command line, enter:

vtune -collect io [-knob <value>] -- <target> [target_options]
For details, see the io command line reference.

Platform-Level Metrics
To collect hardware event-based metrics, either load the Intel sampling driver or configure driverless
hardware event collection (Linux targets only).

IO Analysis
Configuration
Check Box

Features Prerequisites/Applicability

Analyze PCIe
traffic

Calculate inbound I/O (Intel® Data Direct I/O)
and outbound I/O (Memory-Mapped I/O)
bandwidth.

Available on server platforms..

The granularity of I/O bandwidth metrics
depends on CPU model, collector used,
and user privileges:

• Code names: Haswell, Broadwell.

• Granularity: by CPU socket
(package) in any case.

• Code names: Skylake, Cascade
Lake, Cooper Lake.

• Granularity:

• With sampling driver: I/O
device (external PCIe or
integrated accelerator).

• Driverless with root: I/O
device (external PCIe or
integrated accelerator).

• Driverless without root:
before kernel v5.10—CPU
socket; on kernels v5.10 and
newer—I/O device.

 1 Intel® VTune™ Profiler User Guide

240

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

IO Analysis
Configuration
Check Box

Features Prerequisites/Applicability

• Code names: Snow Ridge, Ice Lake

• Granularity:

• With sampling driver: I/O
device (external PCIe or
integrated accelerator).

• Driverless with root: I/O
device (external PCIe or
integrated accelerator).

• Driverless without root:
before kernel v5.14—CPU
socket; on kernels v5.14 and
newer—I/O device.

Calculate L3 hits and misses of inbound I/O
requests (Intel® DDIO hits/misses).

Available on server platforms based on
Intel® microarchitecture code named
Haswell and newer.

The granularity of inbound I/O request
L3 hit/miss metrics depends on CPU
model, collector used and user
privileges:

• Code names: Haswell, Broadwell.

• Granularity: by CPU socket
(package) in any case.

• Code names: Skylake, Cascade
Lake, Cooper Lake.

• Granularity:

• With sampling driver: set of
I/O devices1.

• Driverless with root: set of
I/O devices1.

• Driverless without root: CPU
socket (package).

• Code names: Snow Ridge, Ice Lake

• Granularity:

• With sampling driver: set of
I/O devices1.

• Driverless with root: set of
I/O devices1.

• Driverless without root: CPU
socket (package).

1—commonly, a set combines all devices
sharing the same 16 PCIe lanes.

Calculate average latency of inbound I/O
reads and writes, as well as CPU/IO conflicts.

Available on server platforms based on
Intel® microarchitecture code named
Skylake and newer.

Intel® VTune™ Profiler User Guide 1

241

IO Analysis
Configuration
Check Box

Features Prerequisites/Applicability

The granularity of latency and CPU/IO
conflicts metrics depends on CPU model,
collector used and user privileges:

• Code names: Skylake, Cascade
Lake, Cooper Lake.

• Granularity:

• With sampling driver: set of
I/O devices1.

• Driverless with root: set of
I/O devices1, 2.

• Driverless without root: CPU
socket (package)2.

• Code names: Snow Ridge, Ice Lake

• Granularity:

• With sampling driver: set of
I/O devices1.

• Driverless with root: set of
I/O devices1.

• Driverless without root: CPU
socket (package).

1—commonly, a set combines all devices
sharing the same 16 PCIe lanes.
2—average inbound I/O read latency is
not available in driverless collection on
Skylake, Cascade Lake, Cooper Lake
servers.

Locate MMIO
accesses

Locate code that induces outbound I/O traffic
by accessing device memory through the
MMIO address space.

Available on server platforms based on
Intel® microarchitecture code named
Skylake and newer.

• This option is not available in Profile
System mode.

• This option is available on Linux
systems only.

Analyze Intel® VT-
d

Calculate performance metrics for Intel®

Virtualization Technology for Directed I/O
(Intel VT-d).

Available on server platforms based on
Intel® microarchitecture code named Ice
Lake and newer.

The Intel VT-d metrics granularity
depends on collector used and user
privileges:

• Code names: Snow Ridge, Ice Lake

• Granularity:

 1 Intel® VTune™ Profiler User Guide

242

IO Analysis
Configuration
Check Box

Features Prerequisites/Applicability

• With sampling driver: set of
I/O devices1.

• Driverless with root: set of
I/O devices1.

• Driverless without root:
before kernel v5.14—CPU
socket; on kernels v5.14 and
newer—set of I/O devices1.

1—commonly, a set combines all devices
sharing the same 16 PCIe lanes.

Analyze memory
and cross-socket
bandwidth

Calculate DRAM, Persistent Memory, and
Intel® Ultra Path Interconnect (Intel® UPI) or
Intel® QuickPath Interconnect (Intel® QPI)
bandwidth.

While DRAM bandwidth data is always
collected, persistent memory bandwidth
and Intel® UPI / Intel® QPI cross-socket
bandwidth data is only collected when
applicable to the system.

Evaluate max
DRAM bandwidth

Evaluate the maximum achievable local
DRAM bandwidth before the collection
starts.

This data is used to scale bandwidth
metrics on the Platform Diagram and
timeline and to calculate thresholds.

Not available on FreeBSD systems.

OS- and API-Level Metrics

IO Analysis Configuration Check Box Prerequisites/Applicability

DPDK Make sure DPDK is built with VTune Profiler support
enabled.

When profiling DPDK as FD.io VPP plugin, modify
the DPDK_MESON_ARGS variable in build/
external/packages/dpdk.mk with the same flags
as described in Profiling with VTune section.

Not available for FreeBSD targets. Not available in
system-wide mode.

SPDK Make sure SPDK is built using the --with-vtune
advanced build option.

When profiling in Attach to Process mode, make
sure to set up the environment variables before
launching the application.

Not available in Profile System mode.

Kernel I/O To collect these metrics, VTune Profiler enables
FTrace* collection that requires access to debugfs.
On some systems, this requires that you

Intel® VTune™ Profiler User Guide 1

243

http://doc.dpdk.org/guides/prog_guide/profile_app.html#profiling-with-vtune
https://fd.io/
http://doc.dpdk.org/guides/prog_guide/profile_app.html#profiling-with-vtune

IO Analysis Configuration Check Box Prerequisites/Applicability

reconfigure your permissions for the
prepare_debugfs.sh script located in the bin
directory, or use root privileges.

Not available for FreeBSD targets.

Analyze Platform Performance Understand the platform-level metrics provided by the Input and
Output analysis of Intel® VTune™ Profiler.
Analyze DPDK Applications Use the Input and Output analysis of Intel® VTune™ Profiler to profile
DPDK applications and collect batching statistics for polling threads performing Rx and event
dequeue operations.
Analyze SPDK Applications Use the Input and Output analysis of Intel® VTune™ Profiler to profile
SPDK applications and estimate SPDK Effective Time and SPDK Latency, and identify under-
utilized throughput of an SPDK device.
Analyze Linux Kernel I/O Use the Input and Output analysis of Intel® VTune™ Profiler to match
user-level code to I/O operations executed by the hardware.
io Command Line Analysis

Analyze Platform Performance
Understand the platform-level metrics provided by the
Input and Output analysis of Intel® VTune™ Profiler.

The Input and Output analysis provides platform-level metrics designed to:

• Analyze platform I/O traffic on per-I/O-device basis, whether the I/O device is an external PCIe device or
an integrated accelerator.

• Analyze efficiency of Intel® Data Direct I/O technology (Intel® DDIO) utilization.
• Analyze Intel® Virtualization Technology for Directed I/O (Intel® VT-d) utilization.
• Monitor DRAM and persistent memory bandwidth consumption.
• Identify I/O performance issues potentially caused by inefficient remote socket accesses.
• Identify sources of outbound I/O (MMIO) traffic.

To get this information, start the analysis with these options enabled:

Analyze Topology and Hardware Resource Utilization
Once the data collection finishes, VTune Profiler opens the default Summary window.

Start your investigation with the Platform Diagram section of the Summary window. The Platform
Diagram presents system topology and utilization metrics for I/O and Intel® UPI links, DRAM, persistent
memory, and physical cores.

 1 Intel® VTune™ Profiler User Guide

244

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/overview.html

Here is an example of a Platform Diagram for a two-socket server with an active network interface card
(NIC) on socket 1 and active Intel® QuickData Technology (CBDMA) on socket 0:

This is a Platform Diagram for a single-socket server with 8 active NVMe SSDs, network interface card, and
persistent memory:

Intel® VTune™ Profiler User Guide 1

245

NOTE
You can observe the Platform Diagram in server platforms based on Intel® microarchitectures code
named Skylake (with up to four sockets) and Sapphire Rapids.

I/O devices are shown with short names that indicate the PCIe bus and device numbers. Full device name,
link capabilities, and status are shown in the device tooltip. Hover over the device image to see detailed
device information.

The Platform Diagram highlights device status issues that may be a reason of limited throughput. A
common issue is that the configured link speed/width does not match the maximum speed/width of the
device.

When device capabilities are known and the maximum physical bandwidth can be calculated, the device link
is attributed with the Effective Link Utilization metric that represents the ratio of bandwidth consumed on
data transfers to the available physical bandwidth. This metric does not account for protocol overhead (TLP
headers, DLLPs, physical encoding) and reflects link utilization in terms of payloads. Thus, it cannot reach
100%. However, this metric can give a clue on how far from saturation the link is. Maximum theoretical
bandwidth is calculated for device link capabilities as shown in the device tooltip.

The Platform Diagram shows the Average DRAM Utilization when the Evaluate max DRAM bandwidth
checkbox is selected in the analysis configuration. Otherwise, it shows the average DRAM bandwidth.

If the system is equipped with persistent memory, the Platform Diagram shows the Average Persistent
Memory Bandwidth.

The Average UPI Utilization metric reveals UPI utilization in terms of transmit. The Platform Diagram
shows a single cross-socket connection, regardless of how many UPI links connect a pair of packages. If
there is more than one link, the maximum value is shown.

The Average Physical Core Utilization metric, displayed on top of each socket, indicates the utilization of
physical cores by computations of the application being analyzed.

Once you examine topology and utilization, drill down into the details to investigate platform performance.

High Bandwidth Memory Data in Platform Diagram

For server platforms based on Intel® microarchitecture code named Sapphire Rapids, the Platform Diagram
also includes information about High Bandwidth Memory (HBM). Use this information to distinguish from
DRAM-specific utilization in the diagram.

For example, this diagram shows information about HBM mode utilization, where the system has no DRAM.

 1 Intel® VTune™ Profiler User Guide

246

Here is an example of the Platform Diagram data in a system that has both HBM and DRAM.

Analyze Platform I/O Bandwidth
To explore I/O traffic processing on the platform, start your investigation with the PCIe Traffic Summary
section of the Summary window. These top-level metrics reflect the total Inbound and Outbound I/O traffic:

• Inbound PCIe Bandwidth is induced by I/O devices—whether external PCIe devices and/or integrated
accelerators—that write to and read from the system memory. These reads and writes are processed by
the platform through the Intel® Data Direct I/O (Intel® DDIO) feature.

• Inbound PCIe Read — the I/O device reads from the platform memory.
• Inbound PCIe Write — the I/O device writes to the platform memory.

• Outbound PCIe Bandwidth is induced by core transactions targeting the memory or registers of the I/O
device. Typically, the core accesses the device memory through the Memory-Mapped I/O (MMIO) address
space.

• Outbound PCIe Read — the core reads from the registers of the device.
• Outbound PCIe Write — the core writes to the registers of the device.

The granularity of Inbound and Outbound PCIe Bandwidth metrics depends on CPU model, collector
used, and user privileges. For details, see the Platform-Level Metrics table.

You can analyze the Inbound and Outbound PCIe Bandwidth over time on a per-device basis using the
timeline in the Bottom-up or the Platform tabs:

Intel® VTune™ Profiler User Guide 1

247

Analyze Efficiency of Intel® Data Direct I/O Utilization
To understand whether your application utilizes Intel® DDIO efficiently, explore the second level metrics in
the PCIe Traffic Summary section.

The L3 Hit/Miss Ratios for Inbound I/O requests reflect the proportions of requests made by I/O devices
to the system memory that hit/miss the L3 cache. For a detailed explanation of Intel® DDIO utilization
efficiency, see the Effective Utilization of Intel® Data Direct I/O Technology Cookbook recipe.

NOTE
L3 Hit/Miss metrics are available for Intel® Xeon® processors code named Haswell and newer.

The Average Latency metric of the Inbound PCIe read/write groups shows an average amount of time
the platform spends on processing inbound read/write requests for a single cache line.

 1 Intel® VTune™ Profiler User Guide

248

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/effective-utilization-of-intel-ddio-technology.html

The CPU/IO conflicts ratio shows a portion of Inbound I/O write requests that experienced contention for a
cache line between the IO controller and some other agent on the CPU, which can be a core or another IO
controller. These conflicts are caused by the simultaneous access to the same cache line. Under certain
conditions, such access may cause the IO controller to lose ownership of this cache line. This forces the IO
controller to reacquire the ownership of this cache line. Such issues can occur in applications that use the
polling communication model, resulting in suboptimal throughput and latency. To resolve this, consider tuning
the Snoop Response Hold Off option of the Integrated IO configuration of UEFI/BIOS (option name may
vary depending on platform manufacturer).

NOTE
Average Latency for inbound I/O reads/writes and CPU/IO Conflicts metrics are available on Intel®
Xeon® processors code named Skylake and newer.

The granularity of DDIO efficiency metrics—second-level metrics for Inbound I/O bandwidth—depends on
CPU model, collector used, and user privileges. For details, see the Platform-Level Metrics table.

You can get a per-device breakdown for Inbound and Outbound Traffic, Inbound request L3 hits and
misses, Average latencies, and CPU/IO Conflicts using the Bottom-up pane with the Package /
M2PCIe or Package / IO Unitgrouping:

Analyze Utilization of Intel® Virtualization Technology for Directed I/O
To understand how your workload utilizes the Intel® Virtualization Technology for Directed I/O (Intel VT-d),
explore Intel® VT-d section of the result Summary tab. Intel VT-d enables addresses remapping for
Inbound I/O requests.

NOTE
Intel VT-d metrics are available starting with server platforms based on Intel® microarchitecture code
named Ice Lake.

Intel® VTune™ Profiler User Guide 1

249

The top-level metric shows the average total Address Translation Rate.

The IOTLB (I/O Translation Lookaside Buffer) is an address translation cache in the remapping hardware unit
that caches effective translations from virtual addresses, used by devices, to host physical addresses. IOTLB
lookups happen on address translation requests. The IOTLB Hit and IOTLB Miss metrics reflect the ratios of
address translation requests hitting and missing the IOTLB.

The next-level metrics for IOTLB misses are:

• Average IOTLB Miss Penalty, ns — average amount of time spent on handling an IOTLB miss. Includes
looking up the context cache, intermediate page table caches and page table reads (page walks) on a
miss, which turn into memory read requests.

• Memory Accesses Per IOTLB Miss — average number of memory read requests (page walks) per
IOTLB miss.

The granularity of Intel VT-d metrics depends on CPU model, collector used, and user privileges. For details,
see the Platform-Level Metrics table. When prerequisites are met, Intel VT-d metrics can be viewed per sets
of I/O devices—PCIe devices and/or integrated accelerators. Each set includes all devices handled by the
single I/O controller, which commonly serves 16 PCIe lanes. Switch to the Bottom-up window and use
Package / IO Unit grouping:

Analyze MMIO Access
Outbound I/O traffic visible in the PCIe Traffic Summary section of the Summary tab is caused by
cores writing to and reading from memory/registers of I/O devices.

 1 Intel® VTune™ Profiler User Guide

250

Typically, cores access I/O device memory through the Memory-Mapped I/O (MMIO) address space. Each
load or store operation targeting the MMIO address space that an I/O device is mapped to causes outbound
I/O read or write transactions respectively. When performed through the usual load and store instructions,
such memory accesses are quite expensive, since they are affected by the I/O device access latency.
Therefore, such accesses should be minimized to achieve high performance. The latest Intel architectures
incorporate direct store instructions (MOVDIR*) which may enable high rate for MMIO writes, usually used for
job submission or "doorbell rings".

Enable the Locate MMIO accesses option during analysis configuration to detect the sources of outbound
traffic. Use the MMIO Access section to locate functions performing MMIO Reads and MMIO Writes that
target specific PCIe devices.

Use the Bottom-up pane to locate sources of memory-mapped PCIe device accesses. Explore the call stacks
and drill down to source and assembly view:

Double click on the function name to drive into source code or assembly view to locate the code responsible
for MMIO reads and writes at source line level:

Intel® VTune™ Profiler User Guide 1

251

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

NOTE
MMIO access data is collected when the Locate MMIO accesses check box is selected. However,
there are some limitations:

• This feature is only available starting with server platforms based on the Intel® microarchitecture
code name Skylake.

• Only Attach to Process and Launch Application collection modes are supported. When running
in the Profile System mode, this option only reveals functions performing reads from uncacheable
memory.

Analyze Memory, Persistent Memory, and Cross-Socket Bandwidth
Use the Platform tab to correlate I/O traffic with DRAM, PMEM (persistent memory) and cross-socket
interconnect bandwidth consumption:

VTune Profiler provides per-channel breakdown for DRAM and PMEM bandwidth:

 1 Intel® VTune™ Profiler User Guide

252

Two metrics are available for Intel® UPI traffic:

• UPI Utilization Outgoing – ratio metric that shows UPI utilization in terms of transmit.
• UPI Bandwidth – shows detailed bandwidth information with breakdown by data/non-data.

You can get a breakdown of UPI metrics by UPI links. See the specifications of your processor to determine
the number of UPI links that are enabled on each socket of your processor.

UPI link names reveal the topology of your system by showing which sockets and UPI controllers they are
connected to.

Below is an example of a result collected on a four-socket server powered by Intel® processors with
microarchitecture code named Skylake. The data reveals significant UPI traffic imbalance with bandwidth
being much higher on links connected to socket 3:

Intel® VTune™ Profiler User Guide 1

253

Cookbook: PCIe Traffic in DPDK Apps
Cookbook: Effective Utilization of Intel® Data Direct I/O Technology

Analyze DPDK Applications
Use the Input and Output analysis of Intel® VTune™
Profiler to profile DPDK applications and collect
batching statistics for polling threads performing Rx
and event dequeue operations.

NOTE
To profile a DPDK application using VTune Profiler, make sure DPDK is built with VTune Profiler options
enabled. See the DPDK guide for more information.

When profiling DPDK as FD.io VPP plugin, modify DPDK_MESON_ARGS variable in build/external/
packages/dpdk.mk with the same flags as described in Profiling with VTune section.

DPDK statistics collection is not supported for FreeBSD* targets and is not available in Profile System mode.

Analyze Rx Batch Statistics
Start with the Summary tab and explore the DPDK Rx Batch Statistics histogram to get summary
statistics for packet batches retrieving and to get a full characterization of core utilization on Rx. The
histogram is available for each polling thread associated with a specific Rx queue:

 1 Intel® VTune™ Profiler User Guide

254

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/pcie-traffic-in-dpdk-apps.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/effective-utilization-of-intel-ddio-technology.html
http://doc.dpdk.org/guides/prog_guide/profile_app.html#profiling-with-vtune
https://fd.io/
http://doc.dpdk.org/guides/prog_guide/profile_app.html#profiling-with-vtune

Analyze Rx Spin Time
While the polling loop is running on a core, the CPU Time metric for this core is always close to 100%,
regardless of how many loop cycles DPDK spends in an idle state. Therefore, the CPU Time metric cannot be
used to reliably identify how the core is utilized on packet retrieval. For this polling model, a better utilization
indicator might be the Rx Spin Time value, which is the ratio of wasted polling loop cycles. Wasted cycles
are loop iterations during which DPDK does not receive any packets.

The DPDK Rx Spin Time metric shows the ratio of polling cycles fetching no packets, or the number
rte_eth_rx_burst() calls that returned zero packets, to the total number of polling loop cycles:

DPDK Rx Spin Time =
Num of calls that return 0 packets

Total num of calls

Use the Platform tab to explore the DPDK Rx Spin Time metric on the timeline at per-thread basis:

To learn more about core utilization in DPDK applications, see the corresponding cookbook recipe.

Analyze DPDK Event Dequeue Statistics
Use the Input and Output analysis to collect DPDK eventdev dequeue batch statistics and analyze eventdev
pipeline configuration efficiency.

Start your investigation with the DPDK Events Dequeue Statistics section of the Summary tab:

Intel® VTune™ Profiler User Guide 1

255

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/core-utilization-in-dpdk-apps.html

This histogram shows batching statistics for packet (event) dequeue operation from the DPDK eventdev
library. It provides statistics for each eventdev port, representing each worker thread that polls the event
device. Explore the histogram to identify inhomogenous load distribution, oversubscribed, or underutilized
worker threads.

Analyze DPDK Event Dequeue Spin Time
The DPDK Event Dequeue Spin Time metric represents the ratio of empty dequeue cycles, or the number
of rte_event_dequeue_burst() calls that have returned zero events, with respect to the total number of
dequeue calls:

DPDK Event Dequeue Spin Time =
Num of calls that return 0 packets

Total num of dequeue calls

Navigate to the Platform tab to explore the DPDK Event Dequeue Spin Time metric on the timeline. Per-
worker dequeue statistics reveal details about load balancing, which enables you to analyze pipeline
configuration efficiency and to identify underlying pipeline bottlenecks.

To learn more about the DPDK eventdev pipeline, see the DPDK Event Device Profiling Cookbook recipe.

Cookbook: PCIe Traffic in DPDK Apps
Cookbook: Core Utilization in DPDK Apps
Cookbook: DPDK Event Device Profiling

 1 Intel® VTune™ Profiler User Guide

256

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/dpdk-eventdev-profiling.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/pcie-traffic-in-dpdk-apps.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/core-utilization-in-dpdk-apps.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/dpdk-eventdev-profiling.html

Analyze SPDK Applications
Use the Input and Output analysis of Intel® VTune™
Profiler to profile SPDK applications and estimate
SPDK Effective Time and SPDK Latency, and identify
under-utilized throughput of an SPDK device.

NOTE
To enable VTune Profiler capabilities, make sure SPDK is built using the --with-vtune=<vtune-
install-dir> advanced build option.

When profiling in Attach to Process mode, make sure to set up the environment variables before
launching the application.

Not available in Profile System mode.

SPDK Effective Time
Start your investigation with the Summary window that displays overall SPDK performance statistics,
grouped by executed operation types.

The SPDK Effective Time metric shows the amount of time the application spent performing any activity,
excluding polling for I/O operation completion:

SPDK Ef f ective Time = CPU Elapsed Time − IO Wait Time

To analyze this metric on a per-thread basis, use the Bottom-up or Platform tabs:

Intel® VTune™ Profiler User Guide 1

257

Analyze SPDK Throughput
Use the SPDK Throughput Utilization histogram of the Summary tab to understand utilization of specific
storage devices managed by SPDK:

 1 Intel® VTune™ Profiler User Guide

258

You can use the timeline in the Platform tab to correlate areas of SPDK throughput utilization with SPDK I/O
operations and to get a breakdown of PCIe traffic per physical device:

Intel® VTune™ Profiler User Guide 1

259

Analyze SPDK Latency
Explore the SPDK Latency histogram of the Summary tab to understand how much time the SPDK
application spends experiencing certain I/O operation latency on a per-device basis.

Latency =
Sample Duration

Total Number of IOPs in Sample

 1 Intel® VTune™ Profiler User Guide

260

Analyze Linux Kernel I/O
Use the Input and Output analysis of Intel® VTune™
Profiler to match user-level code to I/O operations
executed by the hardware.

This collection mode uses hardware event-based sampling collection and system-wide Ftrace* collection to
provide a consistent view of the storage system combined with hardware events, as well as an easy-to-use
method to match user-level source code to I/O operations executed by the hardware.

NOTE
This analysis actively relies on the data provided by the kernel block driver sub-system. If your
platform utilizes a non-standard block driver sub-system, such as in the case of using user-space
storage drivers, I/O metrics will not be available in this analysis type.

VTune Profiler provides the following system-wide metrics for the kernel I/O analysis:

• I/O Wait — this system-wide metric represents the amount of time during which the CPU cores were idle
due to threads being in an I/O wait state.

• I/O Queue Depth — this metric shows the number of I/O requests submitted to the storage device. If
the number of requests in a queue is zero, this means that there are no requests scheduled, and the disk
is not utilized at all.

• I/O Data Transfer — this metric shows the number of bytes read from or written to the storage
device(s).

• Page Faults — this metric shows the number of page faults that have occurred on the system. It is
particularly useful when analyzing access to memory-mapped files.

• CPU Activity — this metric represents the portion of time the system spent in one of the following states:

• Idle state — the CPU core is idle

Intel® VTune™ Profiler User Guide 1

261

• Active state — the CPU core is executing a thread
• I/O Wait — the CPU core is idle, but there is a thread that could potentially be executed on this core

that is blocked by disk access.

All I/O metrics collected by VTune Profiler, such as I/O Wait Time, I/O Waits, and I/O Queue Depth, are
collected in a system-wide mode and are not target-specific.

Analyze I/O Wait Time
To analyze I/O Wait Time, start with the Summary window. This window provides a quick overview of the
target system performance and introduces the I/O Wait Time metric that helps you identify whether your
application is I/O-bound:

The I/O Wait Time metric represents a portion of time during which the threads are in I/O wait state while
the system has cores in idle state. In this case, the number of threads is not greater than the number of
idling cores. This aggregated I/O Wait Time metric is an integral function of the I/O Wait metric that is
available in the Timeline pane of the Bottom-up window.

To estimate how quickly storage requests are served by the kernel sub-system, see the Disk Input and
Output Histogram. Use the Operation Type drop-down menu to select the type of I/O operation you are
interested in. For example, for I/O writes, 2-4 storage requests executed within 0.06 seconds or more are
classified as slow by VTune Profiler:

To explore this type of I/O request in greater detail, switch to the Bottom-up window.

Analyze Slow I/O Requests
In the Bottom-up window, select an area of interest on the timeline, then use the Zoom In and Filter by
Selection context menu option. The Summary histogram is updated to show the data for the selected time
range.

For example, in this case, there were 2-4 slow write requests executed during the 6th second of application
execution:

 1 Intel® VTune™ Profiler User Guide

262

By zooming in on an area of interest, you can get a closer look at different metrics and understand the
reason behind high I/O wait time.

VTune Profiler collects the I/O Wait type of context switches caused by I/O accesses from the thread, and
provides a system-wide I/O Wait metric in the CPU Activity area. Use this data to identify imbalance
between I/O and compute operations.

System-wide I/O Wait shows the time during which the system cores were idle, but there were threads in a
context switch due to I/O access. Use this metric to estimate the dependency of performance on the storage
medium.

For example, an I/O Wait value of 100% means that all cores of the system are idle, but there are threads
blocked by I/O requests. To solve this issue, change the logic of the application to run compute threads in
parallel with I/O tasks. Alternatively, consider using faster storage.

An I/O Wait value of 0% could mean one of the following:

• Regardless of the number of threads blocked on storage access, all CPU cores are actively executing
application code.

• No threads are blocked on storage access.

Explore the I/O Queue Depth area to see thee number of storage requests submitted to the storage
device. Spikes correspond to the maximum number of requests. Zero-value gaps on the I/O Queue Depth
chart correspond to points in application run when storage was not utilized at all.

To identify the exact points in time when slow I/O packets were scheduled for execution, enable the Slow
markers for the I/O Queue Depth metric:

To identify points of high bandwidth, analyze the I/O Data Transfer area that shows thee number of bytes
read from or written to the storage device.

Analyze Call Stack for I/O Functions
VTune Profiler instruments all user-space I/O functions. This enables you to correlate slow I/O requests with
instrumented user-space activities. You can do that by examining the full call stack that points to the exact
API invocation.

Intel® VTune™ Profiler User Guide 1

263

To view a Task Time call stack for a particular I/O call, select the required I/O API marker on the timeline
and explore the stack in the Call Stack pane:

Accelerators Analysis Group
The Accelerators group introduces analysis types
that monitor CPU, GPU, FPGA, and NPU usage.

• Use the GPU Offload analysis to profile applications that use a Graphics Processing Unit (GPU) for
rendering, video processing, and computations. This analysis type helps you identify whether your
application is CPU or GPU bound.

• For GPU-bound applications, use the GPU Compute/Media Hotspots (preview) analysis type to see the GPU
kernel execution per code line. Identify performance issues caused by memory latency or inefficient kernel
algorithms.

• Use the CPU/FPGA Interaction analysis to explore FPGA utilization for each FPGA accelerator and identify
the most time-consuming FPGA computing tasks.

• Use the NPU Exploration analysis (preview) to profile and optimize artificial intelligence(AI) workloads
running on Intel architectures.

NOTE
A PREVIEW FEATURE may or may not appear in a future production release. While a preview feature
is available for your use, feedback about its usefulness will determine its availability in future releases.
Data collected with a preview feature is not guaranteed to be compatible with future releases.

Prerequisites:

• Install the sampling driver for hardware event-based sampling collection types. For Linux* and Android*
targets, if the sampling driver is not installed, VTune Profiler can work on Perf* (driverless collection).

 1 Intel® VTune™ Profiler User Guide

264

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

• To enable system-wide and uncore event collection, use root or sudo to set /proc/sys/kernel/
perf_event_paranoid to 0.

$ echo 0>/proc/sys/kernel/perf_event_paranoid
• To enable the collection of Ftrace events on a system where the Linux Ftrace subsystem is only accessible

for the root user, change system permissions using the prepare-debugfs-and-gpu-environment.sh
script with root privileges.

See Also
Optimize applications for Intel® GPUs with Intel® VTune Profiler
GPU Architecture Terminology for Intel® Xe Graphics
Optimize Your GPU Application with Intel oneAPI Base Toolkit
Offload Modeling Perspective in Intel® Advisor to estimate GPU offload overhead
 in Intel® Advisor to estimate GPU offload overhead

GPU Offload Analysis
Explore code execution on various CPU and GPU cores
on your platform, correlate CPU and GPU activity, and
identify whether your application is GPU or CPU
bound.

Run the GPU Offload analysis for applications that use a Graphics Processing Unit (GPU) for rendering, video
processing, and computations with explicit support of SYCL*, Intel® Media SDK and OpenCL™ software
technology.

The tool infrastructure automatically aligns clocks across all cores in the entire system so that you can
analyze some CPU-based workloads together with GPU-based workloads within a unified time domain.

This analysis enables you to:

• Identify how effectively your application uses SYCL or OpenCL kernels and explore them further with GPU
Compute/Media Hotspots analysis

• Analyze execution of Intel Media SDK tasks over time (for Linux targets only)
• Explore GPU usage and analyze a software queue for GPU engines at each moment of time

For the GPU Offload analysis, Intel® VTune™ Profiler instruments your code executing both on CPU and GPU.
Depending on your configuration settings, VTune Profiler provides performance metrics that give you an
insight into the efficiency of GPU hardware use. You can also identify next steps in your analysis.

Aspects of the GPU Offload Analysis
By default, the GPU Offload analysis enables the GPU Utilization option to explore GPU busyness over time
and understand whether your application is CPU or GPU bound. Consequently, if you explore the Timeline
view in the Graphics window, you may observe:

• The GPU is busy most of the time
• There are small idle gaps between busy intervals
• The GPU software queue is rarely decreased to zero

If these behaviors exist, you can conclude that your application is GPU bound.

Intel® VTune™ Profiler User Guide 1

265

https://www.intel.com/content/www/us/en/develop/articles/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html
https://www.intel.com/content/www/us/en/develop/articles/optimize-gpu-application-with-oneapi-base-toolkit.html
https://www.intel.com/content/www/us/en/docs/advisor/user-guide/current/model-offloading-to-a-gpu.html

If the gaps between busy intervals are big and the CPU is busy during these gaps, your application is CPU
bound.

But such obvious situations are rare and you need a detailed analysis to understand all dependencies. For
example, an application may be mistakenly considered GPU bound when the usage of GPU engines is
serialized (for example, when GPU engines responsible for video processing and for rendering are loaded in
turns). In this case, an ineffective scheduling on the GPU results from the application code running on the
CPU.

Configure the Analysis
On Windows systems, to monitor general GPU usage over time, run VTune Profiler as an Administrator.

• Set up your system for GPU analysis.
• For SYCL applications: make sure to compile your code with the -gline-tables-only and -fdebug-

info-for-profiling Intel oneAPI DPC++ Compiler options.
• Create a project and specify an analysis system and target.

Run the Analysis
1. Open the Configure Analysis window. Click the

button on the welcome screen (standalone version) or the

Configure Analysis(Visual Studio IDE) toolbar button.
2. Open the Analysis Tree from the HOW pane and select GPU Offload analysis from the Accelerators

group.

The GPU Offload analysis is pre-configured to collect GPU usage data and collect Processor Graphics
hardware events (Global Memory Accesses preset).

NOTE
If you have multiple Intel GPUs connected to your system, run the analysis on the GPU of your choice
or on all connected devices. For more information, see Analyze Multiple GPUs.

3. Configure these GPU analysis options:

• Use the Trace GPU programming APIs option to analyze SYCL, Level-Zero, OpenCL™, and Intel
Media SDK programs running on Intel Processor Graphics. This option may affect the performance of
your application on the CPU side.

• Use the Collect host stacks option to analyze call stacks executed on the CPU and identify critical
paths. You can also examine the CPU-side stacks for GPU computing tasks to investigate the
efficiency of your GPU offload. When results display, sort through SYCL*, Level-Zero, or OpenCL™
runtime call stacks by selecting a Call Stack mode in the filter bar.

• Use the Analyze CPU-GPU bandwidth option to display data transfers based on hardware events
on the timeline. This type of analysis requires Intel sampling drivers to be installed.

• For GPUs with Xe Link connections, use the Analyze Xe Link Usage option to examine the traffic
between GPU interconnects (Xe Link). This information can help you assess data flow between GPUs
and the usage of the Xe Link.

• Use the Show GPU performance insights to get metrics (based on the analysis of Processor
Graphics events) that help you estimate the efficiency of hardware usage and learn next steps. The
following Insights metrics are collected:

• The EU Array metric shows the breakdown of GPU core array cycles, where:

 1 Intel® VTune™ Profiler User Guide

266

• Active: The normalized sum of all cycles on all cores spent actively executing instructions.
Formula:

• Stalled: The normalized sum of all cycles on all cores spent stalled. At least one thread is
loaded, but the core is stalled for some reason. Formula:

• Idle: The normalized sum of all cycles on all cores when no threads were scheduled on a core.
Formula:

• The EU Threads Occupancy metric shows the normalized sum of all cycles on all cores and
thread slots when a slot has a thread scheduled.

• The Computing Threads Started metric shows the number of threads started across all EUs for
compute work.

4. Click Start to run the analysis.

Intel® VTune™ Profiler User Guide 1

267

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see
GPU Architecture Terminology for Intel® Xe Graphics.

Run from Command Line
Type this command:

$ vtune -collect gpu-offload [-knob <knob_name=knob_option>] -- <target>
[target_options]

NOTE
To generate the command line for any analysis configuration, use the Command Line button at the
bottom of the interface.

Once the GPU Offload Analysis completes data collection, the Summary window displays metrics that
describe:

• GPU usage
• GPU idle time
• Xe Link Usage
• The most active computing tasks that ran on the CPU host
• The most active computing tasks that ran on the CPU when the GPU was idle
• The most active computing tasks that ran on the GPU, along with occupancy information

 1 Intel® VTune™ Profiler User Guide

268

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

You also see Recommendations and guidance for next steps.

Analyze Multiple GPUs
If you connect multiple Intel GPUs to your system, VTune Profiler identifies all of these adapters in the
Target GPU pull down menu. Follow these guidelines:

• Use the Target GPU pulldown menu to specify the device you want to profile.

Intel® VTune™ Profiler User Guide 1

269

• The Target GPU pulldown menu displays only when VTune Profiler detects multiple GPUs running on the
system. The menu then displays the name of each GPU with the bus/device/function (BDF) of its adapter.
You can also find this information on your Windows (see Task Manager) or Linux (run lspci) system.

• If you do not select a GPU, VTune Profiler selects the most recent device family in the list by default.
• Select All devices to run the analysis on all of the GPUs connected to your system.
• Full compute set in Characterization mode is not available for multi-adapter/tile analysis.

Once the analysis completes, VTune Profiler displays summary results per GPU including tile information in
the Summary window.

Naming Convention for GPU Adapters
The results of GPU profiling analyses use aliases to refer to GPU adapters. .

• Aliases identify GPU adapters in the Summary, Grid, and Timeline sections of profiling results. The full
names of GPU adapters display in the Collection and Platform Information sections, along with BDF
details.

• A single alias identifies a GPU adapter for all results collected on the same machine.
• Aliases follow the naming convention GPU 0,GPU 1, and so on.
• The assignment of aliases happens in this order:

1. Intel GPU adapters, starting with the lowest PCI address
2.Non-Intel GPU adapters
3.Other software devices like drivers

The GPU Topology Diagram
When you run a GPU analysis across multiple Intel GPUs (or multi-stack GPUs) connected to your system,
the Summary window displays interconnections between these GPUs in the GPU Topology diagram. This
diagram contains cross-GPU information for a maximum of 2 sockets and 6 GPUs connected to the system.

The GPU Topology diagram displays topological information about the sockets (available for GPU connection)
as well as interconnect (Xe Link) connections between GPUs. You can identify GPUs in the GPU Topology
diagram by their Bus Device Function (BDF) numbers.

Hover over a GPU stack to see actively utilized links (highlighted in green) and corresponding bandwidth
metrics.

 1 Intel® VTune™ Profiler User Guide

270

Use the information presented here to see average data transferred:

• Through Xe Links
• Between GPU stacks
• Between GPUs and sockets

Analyze Xe Link Usage
For GPUs with Xe Link connections, when you check the option (before running the analysis) to analyze
interconnect (Xe Link) usage, the Summary window includes a section that displays the aggregated
bandwidth and traffic data through GPU interconnects (Xe Link). Use this information with the GPU Topology
diagram to detect any imbalances in the distribution of traffic between GPUs. See if some links are used more
frequently than others, and understand why this is happening.

Analyze Overtime Data

Along with the Xe Link usage information in the Summary window, the Platform window displays bandwidth
data over time.

Intel® VTune™ Profiler User Guide 1

271

Use this information to:

• Match traffic data with kernels or code execution.
• See the bandwidth during any time of the execution of the application.
• Understand how the use of Xe Links improves the performance of your application.
• Verify if the Xe Links reached the bandwidth expected during application execution.

Analyze Data Transfer Between Host and Device
To understand the efficiency of data transfer between the CPU host and GPU device, see metrics in the
Summary and Graphics windows.

The Summary window displays the total time spent on computing tasks as well as the execution time per
task. The difference indicates the amount of time spent on data transfers between host and device. If the
execution time is lower than the data transfer time, this indicates that your offload schema could benefit
from optimization.

In the Summary window, look for offload cost metrics including Host-to-Device Transfer and Device-to-
Host Transfer. These metrics can help you locate unnecessary memory transfers that reduce performance.

In the Graphics window, see the Total Time by Device Operation Type column, which displays the total
time for each computation task.

The total time is broken down into:

 1 Intel® VTune™ Profiler User Guide

272

• Allocation time
• Time for data transfer from host to device
• Execution time
• Time for data transfer from device to host

This breakdown can help you understand better the balance between data transfer and GPU execution time.
The Graphics window also displays in the Transfer Size section, the size of the data transfer between host
and device per computation task.

Computation tasks with sub-optimal offload schemas are highlighted in the table with details to help you
improve those schemes.

Examine Energy Consumption by your GPU
In Linux environments, when you run the GPU Offload analysis on an Intel® Iris® X e MAX graphics discrete
GPU, you can see energy consumption information for the GPU device. To collect this information, make sure
you check the Analyze power usage option when you configure the analysis.

NOTE Energy consumption metrics do not display in GPU profiling analyses that scan Intel® Iris® X e

MAX graphics on Windows machines.

Once the analysis completes, see energy consumption data in these sections of your results.

Intel® VTune™ Profiler User Guide 1

273

In the Graphics window, observe the Energy Consumption column in the grid when grouped by
Computing Task. Sort this column to identify the GPU kernels that consumed the most energy. You can also
see this information mapped in the timeline.

Tune for Power Usage

When you locate individual GPU kernels that consume the most energy, for optimum power efficiency, start
by tuning the top energy hotspot.

Tune for Processing Time

If your goal is to optimize GPU processing time, keep a check on energy consumption metrics per kernel to
monitor the tradeoff between performance time and power use.

Move the Energy Consumption column next to Total Time to make this comparison easier.

You may notice that the correlation between power use and processing time is not direct. The kernels that
compute the fastest may not be the same kernels that consume the least amounts of energy. Check to see if
larger values of power usage correspond to longer stalls/wait periods.

Support for SYCL* Applications using oneAPI Level Zero API
This section describes support in the GPU Offload analysis for SYCL applications that run OpenCL or oneAPI
Level Zero API in the back end. VTune Profiler supports version 1.0.4 of the oneAPI Level Zero API.

Support Aspect SYCL application with OpenCL as
back end

SYCL application with Level Zero
as back end

Operating System Linux OS

Windows OS

Linux OS

Windows OS

Data collection VTune Profiler collects and shows GPU
computing tasks and the GPU computing
queue.

VTune Profiler collects and shows GPU
computing tasks and the GPU
computing queue.

Data display VTune Profiler maps the collected GPU
HW metrics to specific kernels and
displays them on a diagram.

VTune Profiler maps the collected
GPU HW metrics to specific kernels
and displays them on a diagram.

Display Host side API
calls

Yes Yes

 1 Intel® VTune™ Profiler User Guide

274

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/dpc-l0-switch.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/dpc-l0-switch.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/dpc-l0-switch.html

Support Aspect SYCL application with OpenCL as
back end

SYCL application with Level Zero
as back end

Source Assembler for
computing tasks

Yes Yes

Support for DirectX Applications
This section describes support available in the GPU analysis to trace Microsoft® DirectX* applications running
on the CPU host. This support is available in the Launch Application mode only.

Support Aspect DirectX Application

Operating system Windows OS

API version DXGI, Direct3D 11, Direct3D 12, Direct3D 11 on 12

Display host side API calls Yes

Direct Machine Learning (DirectML) API Yes

Device side computing tasks No

Source Assembler for computing tasks No

See Also
Optimize applications for Intel® GPUs with Intel® VTune Profiler
Offload and Optimize OpenMP* Applications with Intel Tools
GPU Architecture Terminology for Intel® Xe Graphics
Debug the DPC++ and OpenMP* Offload Process
OneTrace Tracing and Profiling Tool for Data Parallel C++ (DPC++)

GPU Compute/Media Hotspots Analysis (Preview)
Analyze the most time-consuming GPU kernels,
characterize GPU usage based on GPU hardware
metrics, identify performance issues caused by
memory latency or inefficient kernel algorithms, and
analyze GPU instruction frequency per certain
instruction types.

NOTE
This is a PREVIEW FEATURE. A preview feature may or may not appear in a future production
release. It is available for your use in the hopes that you will provide feedback on its usefulness and
help determine its future. Data collected with a preview feature is not guaranteed to be backward
compatible with future releases.

Use the GPU Compute/Media Hotspots analysis to:

• Explore GPU kernels with high GPU utilization, estimate the effectiveness of this utilization, identify
possible reasons for stalls or low occupancy and options.

• Explore the performance of your application per selected GPU metrics over time.
• Analyze the hottest SYCL* standards or OpenCL™ kernels for inefficient kernel code algorithms or incorrect

work item configuration.

The GPU Compute/Media Hotspots analysis is a good next step if you have already run the GPU Offload
analysis and identified:

• a performance-critical kernel for further analysis and optimization;

Intel® VTune™ Profiler User Guide 1

275

https://www.intel.com/content/www/us/en/develop/articles/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/offload-optimize-openmp-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/current/debugging-the-dpc-and-openmp-offload-process.html
https://github.com/intel/pti-gpu/tree/master/tools/onetrace

• a performance-critical kernel that it is tightly connected with other kernels in the program and may slow
down their performance.

How It Works: Intel Graphics Render Engine and Hardware Metrics
A GPU is a highly parallel machine where an array of small cores, or execution units (EUs), do graphical or
computational work. Each EU simultaneously runs several lightweight threads. When one of these threads is
picked up for an execution, it can hide stalls in the other threads if the other threads are stalled waiting for
data from memory or other units.

To use a full potential of the GPU, applications should enable the scheduling of as many threads as possible
and minimize idle cycles. Minimizing stalls is also very important for graphics and general purpose computing
GPU applications.

VTune Profiler can monitor Intel Graphics hardware events and display metrics about integral GPU resource
usage over a sampled period, for example, ratio of cycles when EUs were idle, stalled, or active as well as
statistics on memory accesses and other functional units. If the VTune Profiler traces GPU kernel execution, it
annotates each kernel with GPU metrics.

The scheme below displays metrics collected by the VTune Profiler across different parts of the Intel®
Processor Graphics Gen9:

 1 Intel® VTune™ Profiler User Guide

276

https://www.intel.com/content/dam/develop/external/us/en/documents/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/the-compute-architecture-of-intel-processor-graphics-gen9-v1d0.pdf

GPU metrics help identify how efficiently GPU hardware resources are used and whether any performance
improvements are possible. Many metrics are represented as a ratio of cycles when the GPU functional
unit(s) is in a specific state over all the cycles available for a sampling period.

Configure the Analysis
• Make sure you set up the system and enable required permissions for GPU analysis.
• For SYCL applications: make sure to compile your code with the -gline-tables-only and -fdebug-

info-for-profiling Intel oneAPI DPC++ Compiler options.
• Create a project and specify an analysis system and target.

Run the Analysis
1. Click the

(standalone GUI)/

(Visual Studio IDE) Configure Analysis toolbar button to open the Configure Analysis window .
2. Click anywhere in the title bar of the HOW pane. Open the Analysis Tree and select GPU Compute/

Media Hotspots (Preview) analysis from the Accelerators group. This analysis is pre-configured to
collect GPU usage data, analyze GPU task scheduling and identify whether your application is CPU or
GPU bound.

NOTE
If you have multiple Intel GPUs connected to your system, run the analysis on the GPU of your choice
or on all connected devices. For more information, see Analyze Multiple GPUs.

3. Choose and configure one of these analysis modes:

• Characterization
• Source analysis

4. Optionally, narrow down the analysis to specific kernels you identified as performance-critical (stalled or
time-consuming) in the GPU Offload analysis, and specify them as Computing tasks of interest to
profile. If required, modify the Instance step for each kernel, which is a sampling interval (in the
number of kernels). This option helps reduce profiling overhead.

Intel® VTune™ Profiler User Guide 1

277

5. (Optional) To collect data on energy consumption, check the Analyze power usage option. This
feature is available when you profile applications in a Linux environment and use an Intel® Iris® X e MAX
graphics discrete GPU.

6. For GPUs with interconnect (Xe Link) connections, use the Analyze Xe Link Usage option to examine
the traffic between GPU interconnects (or Xe links). This information can help you assess data flow
between GPUs and the usage of their interconnects.

7. Click Start to run the analysis.

Run from Command Line
To run the GPU Compute/Media Hotspots analysis from the command line, type:

vtune -collect gpu-hotspots [-knob <knob_name=knob_option>] -- <target>
[target_options]

NOTE
To generate the command line for this configuration, use the Command Line... button at the bottom.

Analyze Multiple GPUs
If you connect multiple Intel GPUs to your system, VTune Profiler identifies all of these adapters in the
Target GPU pulldown menu. Follow these guidelines:

• Use the Target GPU pulldown menu to specify the device you want to profile.
• The Target GPU pulldown menu displays only when VTune Profiler detects multiple GPUs running on the

system. The menu then displays the name of each GPU with the bus/device/function (BDF) of its adapter.
You can also find this information on your Windows (see Task Manager) or Linux (run lspci) system.

• If you do not select a GPU, VTune Profiler selects the most recent device family in the list by default.
• Select All devices to run the analysis on all of the GPUs connected to your system.
• Full compute set in Characterization mode is not available for multi-adapter/tile analysis.

Once the analysis completes, VTune Profiler displays summary results per GPU including tile information in
the Summary window.

Analysis Results
Once the GPU Compute/Media Hotspots Analysis completes data collection, the Summary window displays
metrics that describe:

• GPU time
• Occupancy
• Peak occupancy you can expect with the existing computing task configuration
• The most active computing tasks that ran on the GPU

 1 Intel® VTune™ Profiler User Guide

278

Intel® VTune™ Profiler User Guide 1

279

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see
GPU Architecture Terminology for Intel® Xe Graphics.

Analysis Results for Multiple GPUs

When you profile an application running on multiple Intel® GPUs, the Summary window of the GPU
Compute/Media Hotspots Analysis displays results by grouping GPUs of the same Intel microarchitecture.
Each architecture group then contains metric information for that group.

For each architecture group, you can see the values for these metrics:

• Occupancy
• GPU L3 Bandwidth Bound

For every adapter in an architecture group, you can also see the values for the XVE Array Active/Stalled/Idle
metrics.

Naming Convention for GPU Adapters
The results of GPU profiling analyses use aliases to refer to GPU adapters. .

• Aliases identify GPU adapters in the Summary, Grid, and Timeline sections of profiling results. The full
names of GPU adapters display in the Collection and Platform Information sections, along with BDF
details.

• A single alias identifies a GPU adapter for all results collected on the same machine.
• Aliases follow the naming convention GPU 0,GPU 1, and so on.
• The assignment of aliases happens in this order:

1. Intel GPU adapters, starting with the lowest PCI address
2.Non-Intel GPU adapters
3.Other software devices like drivers

The GPU Topology Diagram
When you run a GPU analysis across multiple Intel GPUs (or multi-stack GPUs) connected to your system,
the Summary window displays interconnections between these GPUs in the GPU Topology diagram. This
diagram contains cross-GPU information for a maximum of 2 sockets and 6 GPUs connected to the system.

 1 Intel® VTune™ Profiler User Guide

280

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

The GPU Topology diagram displays topological information about the sockets (available for GPU connection)
as well as interconnect (Xe Link) connections between GPUs. You can identify GPUs in the GPU Topology
diagram by their Bus Device Function (BDF) numbers.

Hover over a GPU stack to see actively utilized links (highlighted in green) and corresponding bandwidth
metrics.

Use the information presented here to see average data transferred:

• Through Xe Links
• Between GPU stacks
• Between GPUs and sockets

Intel® VTune™ Profiler User Guide 1

281

Analyze Xe Link Usage
For GPUs with Xe Link connections, when you check the option (before running the analysis) to analyze
interconnect (Xe Link) usage, the Summary window includes a section that displays the aggregated
bandwidth and traffic data through GPU interconnects (Xe Link). Use this information with the GPU Topology
diagram to detect any imbalances in the distribution of traffic between GPUs. See if some links are used more
frequently than others, and understand why this is happening.

Analyze Bandwidth Data Over Time

Along with the Xe Link usage information in the Summary window, the Platform window displays bandwidth
data over time.

Use this information to:

• Match traffic data with kernels or code execution.
• See the bandwidth during any time of the execution of the application.
• Understand how the use of Xe Links improves the performance of your application.
• Verify if the Xe Links reached the bandwidth expected during application execution.

 1 Intel® VTune™ Profiler User Guide

282

Configure Characterization Analysis
Use the Characterization configuration option to:

• Monitor the Render and GPGPU engine usage (Intel Graphics only)
• Identify the loaded parts of the engine
• Correlate GPU and CPU data

When you select the Characterization radio button, you can select platform-specific presets of GPU metrics.
With the exception of the Dynamic Instruction Count preset, all other presets collect the following data about
the activity of Execution Units (EU):

• EU Array Active
• EU Array Stalled
• EU Array Idle
• Computing Threads Started
• Thread Occupancy
• Core Frequency

Each preset introduces additional metrics:

• The Overview metric set includes additional metrics that track general GPU memory accesses such as
Memory Read/Write Bandwidth and XVE pipelines utilization. These metrics can be useful for both
graphics and compute-intensive applications.

• The Global Memory Accesses metric group includes additional metrics that show the bandwidth
between the GPU and system memory as well as bandwidth between GPU stacks. The farther a memory
level is located from an XVE, the greater the impact on its performance by unnecessary access operations
to the memory level.

• The LSE/SLM Accesses metric group includes metrics which cover the XVE to L1 cache traffic. This
metric group requires two application runs to collect information.

• The HDC Accesses metric group includes metrics which measure the traffic between XVE and L3, that is
passing by the L1 cache.

• The Full Compute metric group is a combination of all of the other event sets. Therefore, it requires
multiple application runs.

• The Dynamic Instruction Count metric group counts the execution frequency of specific classes of
instructions. With this metric group, you also get an insight into the efficiency of SIMD utilization by each
kernel.

NOTE
You can run the GPU Compute/Media Hotspots analysis in Characterization mode for Windows*and
Linux* targets. However, for all presets (with the exception of the Dynamic Instruction Count
preset), you must have root/administrative privileges to run the GPU Compute/Media Hotspots
analysis in Characterization mode.

Alternatively, on Linux* systems, you can configure the system to allow further collections for non-
privileged users. To do this, in the bin64 folder of your installation directory, run the prepare-
debugfs-and-gpu-environment.sh script with root privileges.

Additional Data for Characterization Analysis
Use the Trace GPU programming APIs option to analyze SYCL, OpenCL™, or Intel Media SDK programs
running on Intel Processor Graphics. This option may affect the performance of your application on the CPU
side.

For SYCL or OpenCL applications, identify the hottest kernels and the GPU architecture block that contains a
performance issue for a particular kernel.

Intel® VTune™ Profiler User Guide 1

283

For Intel Media SDK programs, examine the execution of Intel Media SDK tasks on the timeline. Correlate
this data with GPU usage at each instant.
Usage Considerations:

• For OpenCL kernels, you can run the characterization analysis for Windows and Linux targets running on
Intel Graphics.

• The Intel Media SDK program analysis is available for Windows and Linux targets running on Intel
Graphics.

• The characterization analysis supports the Launch Application and Attach to Process target types
only.

• The Level Zero runtime does not support the Attach to Process target type.
• When profiling OpenCL kernels in the Attach to Process mode, if you attached to a process when the

computing queue is already created, VTune Profiler does not display data for the OpenCL kernels in this
queue.

• To collect the data required to compute memory bandwidth, use the Analyze memory bandwidth
option . For this analysis, install Intel sampling drivers first.

• Use the GPU sampling internal, ms field to specify an interval (in milliseconds) between GPU samples
for GPU hardware metrics collection. By default, VTune Profiler uses an interval of 1ms.

Configure Source Analysis
In the Source Analysis, VTune Profiler helps you identify performance-critical basic blocks, issues caused by
memory accesses in the GPU kernels.

When you select the Source Analysis radio button, the configuration pane expands a drop-down menu
where you can select a profiling mode to specify a type of issues you want to analyze:

• Basic Block Latency option helps you identify issues caused by algorithm inefficiencies. In this mode,
VTune Profiler measures the execution time of all basic blocks. Basic block is a straight-line code sequence
that has a single entry point at the beginning of the sequence and a single exit point at the end of this
sequence. During post-processing, VTune Profiler calculates the execution time for each instruction in the
basic block. So, this mode helps understand which operations are more expensive.

• Memory Latency option helps identify latency issues caused by memory accesses. In this mode, VTune
Profiler profiles memory read/synchronization instructions to estimate their impact on the kernel
execution time. Consider using this option, if you ran the GPU Compute/Media Hotspots analysis in the
Characterization mode, identified that the GPU kernel is throughput or memory-bound, and want to
explore which memory read/synchronization instructions from the same basic block take more time.

In the Basic Block Latency or Memory Latency profiling modes, the GPU Compute/Media Hotspots
analysis uses these metrics:

• Estimated GPU Cycles: The average number of cycles spent by the GPU executing the profiled
instructions.

• Average Latency: The average latency of the memory read and synchronization instructions, in cycles.
• GPU Instructions Executed per Instance: The average number of GPU instructions executed per one

kernel instance.
• GPU Instructions Executed per Thread: The average number of GPU instructions executed by one

thread per one kernel instance.

If you enable the Instruction count profiling mode, VTune Profiler shows a breakdown of instructions
executed by the kernel in the following groups:

 1 Intel® VTune™ Profiler User Guide

284

Control Flow group if, else, endif, while, break, cont, call, calla, ret, goto, jmpi,
brd, brc, join, halt and mov, add instructions that explicitly change the ip
register.

Send & Wait group send, sends, sendc, sendsc, wait

Int16 & HP Float |
Int32 & SP Float |
Int64 & DP Float
groups

Bit operations (only for integer types): and, or, xor, and others.

Arithmetic operations: mul, sub, and others; avg, frc, mac, mach, mad,
madm.

Vector arithmetic operations: line, dp2, dp4, and others.

Extended math operations.

Other group Contains all other operations including nop.

In the Instruction count mode, the VTune Profiler also provides Operations per second metrics calculated
as a weighted sum of the following executed instructions:

• Bit operations (only for integer types):

• and, not, or, xor, asr, shr, shl, bfrev, bfe, bfi1, bfi2, ror, rol - weight 1
• Arithmetic operations:

• add, addc, cmp, cmpn, mul, rndu, rndd, rnde, rndz, sub - weight 1
• avg, frc, mac, mach, mad, madm - weight 2

• Vector arithmetic operations:

• line - weight 2
• dp2, sad2 - weight 3
• lrp, pln, sada2 - weight 4
• dp3 - weight 5
• dph - weight 6
• dp4 - weight 7
• dp4a - weight 8

• Extended math operations:

• math.inv, math.log, math.exp, math.sqrt, math.rsq, math.sin, math.cos (weight 4)
• math.fdiv, math.pow (weight 8)

NOTE
The type of an operation is determined by the type of a destination operand.

View Data
VTune Profiler runs the analysis and opens the data in the GPU Compute/Media Hotspots viewpoint
providing various platform data in the following windows:

• Summary window displays overall and per-engine GPU usage, percentage of time the EUs were stalled or
idle with potential reasons for this, and the hottest GPU computing tasks.

• Graphics window displays CPU and GPU usage data per thread and provides an extended list of GPU
hardware metrics that help analyze accesses to different types of GPU memory. For GPU metrics
description, hover over the column name in the grid or right-click and select the What's This Column?
context menu option.

Intel® VTune™ Profiler User Guide 1

285

Support for SYCL* Applications using oneAPI Level Zero API
This section describes support in the GPU Compute/Media Hotspots analysis for SYCL applications that run
OpenCL or oneAPI Level Zero API in the back end. VTune Profiler supports version 0.91.10 of the oneAPI
Level Zero API.

Support Aspect SYCL application with OpenCL as
back end

SYCL application with Level Zero
as back end

Operating System Linux OS

Windows OS

Linux OS

Windows OS

Data collection VTune Profiler collects and shows GPU
computing tasks and the GPU computing
queue.

VTune Profiler collects and shows GPU
computing tasks and the GPU
computing queue.

Data display VTune Profiler maps the collected GPU
HW metrics to specific kernels and
displays them on a diagram.

VTune Profiler maps the collected
GPU HW metrics to specific kernels
and displays them on a diagram.

Display Host side API
calls

Yes Yes

Source Assembler for
computing tasks

Yes Yes

Instrumentation for
GPU code (Source
Analysis option or
Dynamic Instruction
Count
characterization
option)

Yes Yes

NOTE
For a use case on profiling a SYCL application running on an Intel GPU, see Profiling a SYCL App
Running on a GPU in the Intel® VTune Profiler Performance Analysis Cookbook .

Support for DirectX Applications
This section describes support available in the GPU analysis to trace Microsoft® DirectX* applications running
on the CPU host. This support is available in the Launch Application mode only.

Support Aspect DirectX Application

Operating system Windows OS

API version DXGI, Direct3D 11, Direct3D 12, Direct3D 11 on 12

Display host side API calls Yes

Direct Machine Learning (DirectML) API Yes

Device side computing tasks No

Source Assembler for computing tasks No

 1 Intel® VTune™ Profiler User Guide

286

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-compiler-dev-guide-and-reference/top/optimization-and-programming-guide/dpc-l0-switch.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/configuration-recipes/profiling-dpc-application.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/configuration-recipes/profiling-dpc-application.html

See Also
Optimize applications for Intel® GPUs with Intel® VTune Profiler
Offload and Optimize OpenMP* Applications with Intel Tools
Run Roofline Insights Perspective with Intel® Advisor
GPU Architecture Terminology for Intel® Xe Graphics
Optimize Your GPU Application with Intel oneAPI Base Toolkit
GPU Compute/Media Hotspots View

EU Array Stalled/Idle

Set Up System for GPU Analysis

Rebuild and Install the Kernel for GPU Analysis

Intel® Media SDK Program Analysis

GPU OpenCL™ Application Analysis

GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Problem: No GPU Utilization Data Is Collected

GPU Compute/Media Hotspots View
Use the GPU Compute/Media Hotspots viewpoint in
Intel® VTune™ Profiler to analyze how your GPU-bound
code is utilizing GPU and CPU resources.

Depending on the profiling mode selected for the GPU Compute/Media Hotspots analysis, you can explore
your GPU-side code performance from different perspectives:

• Run the analysis in Characterization mode to see performance issues for the code offloaded to the GPU:

• Analyze Memory Accesses and XVE Pipeline Utilization using GPU hardware events.
• Analyze GPU Instruction Execution

• Run the analysis in Source Analysis mode to find the most expensive operations and explore instruction
execution:

• Example: Basic Block Latency Profiling
• Example: Memory Latency Profiling

• Analyze Xe Vector Engine (XVE) Stalls
• Examine Energy Consumption by your GPU

Analyze Memory Accesses and XVE Pipeline Utilization
Use the Characterization mode to start analyzing GPU-bound applications. This mode is enabled by default
in the configuration of the GPU Compute/Media Hotspots analysis.

In the Summary window, the Hottest GPU Computing Task section displays the most time-consuming
GPU tasks.

Intel® VTune™ Profiler User Guide 1

287

https://www.intel.com/content/www/us/en/develop/articles/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/offload-optimize-openmp-applications.html
https://www.intel.com/content/www/us/en/docs/advisor/user-guide/current/analyze-gpu-roofline.html)
https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html
https://www.intel.com/content/www/us/en/develop/articles/optimize-gpu-application-with-oneapi-base-toolkit.html

Click on one of these tasks and see detailed information in the Graphics tab. Learn more about GPU
hardware metrics that were collected for the hotspot. By default, this is the Overview set of metrics.

The following figure is an example of a Full Compute analysis when you run GPU analysis on Intel® Data
Center GPU Max Series (codenamed Ponte Vecchio). Your own results may vary, depending on the
configuration of your analysis and choice of hardware.

 1 Intel® VTune™ Profiler User Guide

288

The Memory Hierarchy Diagram shows the GPU hardware metrics that are mapped for a task you select in
the table below it. The diagram updates dynamically to reflect the metrics of the current selection in the
table.

Display Options for Memory Hierarchy Diagram

Right click on the Memory Hierarchy Diagram and open Show Data As to change the display :

• The default view is Bandwidth. This shows the memory bandwidth.
• The Total Size view is useful when you know the amount of data transfer that was supposed to happen

through the compute task. Significantly large numbers indicate inefficiency.
• In the Percentage of Bandwidth Maximum Value view, see if the kernel was limited by maximum

bandwidth on any of the links.

Platform Tab

The Platform tab displays a view over time of:

• CPU threads
• Compute runtime API called by the application

Intel® VTune™ Profiler User Guide 1

289

• GPU compute tasks
• GPU hardware metrics

Use this visual display to identify irregularities.

Analyze GPU Instruction Execution
If you enabled the Dynamic Instruction Count preset as part of the Characterization analysis
configuration, the Graphics tab shows a breakdown of instructions executed by the kernel in the following
groups:

 1 Intel® VTune™ Profiler User Guide

290

Control Flow group if, else, endif, while, break, cont, call, calla, ret, goto, jmpi,
brd, brc, join, halt and mov, add instructions that explicitly change the ip
register.

Send group send, sends, sendc, sendsc

Synchronization
group

wait

Int16 & HP Float |
Int32 & SP Float |
Int64 & DP Float
groups

Bit operations (only for integer types): and, or, xor, and others.

Arithmetic operations: mul, sub, and others; avg, frc, mac, mach, mad,
madm.

Vector arithmetic operations: line, dp2, dp4, and others.

Extended math operations: math.sin, math.cos, math.sqrt, and others.

Other group Contains all other operations including nop.

NOTE
The type of an operation is determined by the type of a destination operand.

In the Graphics tab, VTune Profiler also provides the SIMD Utilization metric. This metric helps identify
kernels that underutilize the GPU by producing instructions that cause thread divergence. A common cause of
low SIMD utilization is conditional branching within the kernel, since the threads execute all of the execution
paths sequentially, with each thread executing one path while the other threads are stalled.

To get additional information, double-click the hottest function to open the source view. Enable both the
Source and Assembly panes to get a side-by-side view of the source code and the resulting assembly code.
You can then locate the assembly instructions with low SIMD Utilization values and map them to specific lines
of code by clicking on the instruction. This allows you to determine and optimize the kernels that do not meet
your desired SIMD Utilization criteria.

Intel® VTune™ Profiler User Guide 1

291

NOTE For information on the Instruction Set Architecture (ISA) of Intel® Iris® Xe MAX Graphics, see
the Intel® Iris® Xe MAX Graphics Open Source Programmer's Reference Manual.

Analyze Source
In the Source Analysis mode for the GPU Compute/Media Hotspots analysis, you can analyze a kernel of
interest for basic block latency or memory latency issues. To do this, in the Graphics tab, expand the kernel
node and double-click the function name. VTune Profiler redirects you to the hottest source line for the
selected function:

The GPU Compute/Media Hotspots analysis provides a full-scale analysis of the kernel source per code line.
The hottest kernel code line is highlighted by default.

To view the performance statistics on GPU instructions executed per kernel instance, switch to the Assembly
view:

 1 Intel® VTune™ Profiler User Guide

292

https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-dg1-vol02a-commandreference-instructions.pdf

NOTE
If your OpenCL kernel uses inline functions, make sure to enable the Inline Mode on the filter toolbar
to have a correct attribution of the GPU Cycles per function. See examples.

Example: Basic Block Latency Profiling
You have an OpenCL kernel that performs compute operations:

__kernel void viete_formula_comp(__global float* data)
{
 int gid = get_global_id(0);
 float c = 0, sum = 0;

 for (unsigned i = 0; i < 50; ++i)
 {
 float t = 0;
 float p = (i % 2 ? -1 : 1);
 p /= i*2 + 1;
 p /= pown(3.f, i);
 p -=c;

 t = sum + p;
 c = (t - sum) - p;
 sum = t;
 }
 data[gid] = sum * sqrt(12.f);
}

To compare these operations, run the GPU In-kernel profiling in the Basic block latency mode and double-
click the kernel in the grid to open the Source view:

The Source view analysis highlights the pown() call as the most expensive operation in this kernel.

Example: Memory Latency Profiling
You have an OpenCL kernel that performs several memory reads (lines 14, 15 and 20):

 __kernel void viete_formula_mem(__global float* data)
{
 int gid = get_global_id(0);
 float c = 0;

 for (unsigned i = 0; i < 50; ++i)
 {
 float t = 0;
 float p = (i % 2 ? -1 : 1);
 p /= i*2 + 1;
 p /= pown(3.f, i);
 p -=c;

 t = data[gid] + p;

Intel® VTune™ Profiler User Guide 1

293

 c = (t - data[gid]) - p;

 data[gid] = t;
 }
 data[gid] *= sqrt(12.f);
}

To identify which read instruction takes the longest time, run the GPU In-kernel Profiling in the Memory
latency mode:

The Source view analysis shows that the compiler understands that each thread works only with its own
element from the input buffer and generates the code that performs the read only once. The value from the
input buffer is stored in the registry and reused in other operations, so the compiler does not generate
additional reads.

Analyze XVE Stalls
Whenever your GPU is not fully employed, use available guidance for Xe Vector Engines (XVEs) to understand
reasons for stalled or idle behavior in some of your GPU stacks.

NOTE The inclusion of XVE stall reasons in the results of the GPU Compute/Media Hotspots analysis
happens only for Intel® Data Center GPU Max Series devices (code named Ponte Vecchio).

First, run the GPU Compute/Media Hotspots analysis in Characterization mode. Select the Overview option
in this mode.

Once the analysis completes, check the Summary tab of the viewpoint. The XVE Array Stalled/Idle table
displays a list of those Xe Vector Engines (XVEs) that remained in the stalled (received computing tasks but
did not execute them) or idle (never received computing tasks) states when the profiling happened. Both of
these cases present areas for improvement and better use of available hardware.

For a GPU stack with high values of the XVE Array Stalled metric, your next step is to run the GPU Compute/
Media Hotspots analysis in the Source Analysis mode.

In the Source Analysis mode, select the Stall Reasons option before you repeat the analysis.

When the analysis completes, see the Hottest GPU Computing Tasks table. Here, you can find a list of the
busiest functions sorted in order by Total Time.

 1 Intel® VTune™ Profiler User Guide

294

For computing tasks that caused an XVE stall, you can learn about the various reasons that contributed to
the stall.

Click on a function and switch to the Graphics view to see a distribution of stall counts. Make sure to select
the Computing Task/Function grouping in the Graphics view to locate the stalls for each computing task.

Reasons for XVE Stalls

There may be several possible reasons for a stall in your Xe Vector Engine (XVE). The following table
describes these reasons:

Reason for XVE Stall Explanation

Active At least one instruction is dispatching into a pipeline.

Control The percentage of stalls when the instruction was waiting
for a Branch unit to become available.

Dist or Acc The percentage of stalls when the instruction was waiting
for a Distance or Architecture Register File (ARF)
dependency to resolve.

Instruction Fetch The percentage of stalls when the XVE was waiting for an
instruction to be returned from the instruction cache.

Pipe The percentage of stalls when the instruction won
arbitration but could not be dispatched into a Floating-
Point or Extended Math unit. This can occur due to a bank
conflict with the General Registry File (GRF).

SBID The percentage of stalls when the instruction was waiting
for a Software Scoreboard dependency to resolve.

Send The percentage of stalls when the instruction was waiting
for a Send unit to become available.

Intel® VTune™ Profiler User Guide 1

295

Reason for XVE Stall Explanation

Synchronization The percentage of stalls when the instruction was waiting
for a thread synchronization dependency to resolve.

Other The percentage of stalls when other factors stalled the
execution of the instruction.

Examine Energy Consumption by your GPU
In Linux environments, when you run the GPU Compute/Media Hotspots analysis on an Intel® Iris® X e MAX
graphics discrete GPU, you can see energy consumption information for the GPU device. To collect this
information, make sure you check the Analyze power usage option when you configure the analysis.

Once the analysis completes, see energy consumption data in these sections of your results.

In the Graphics window, observe the Energy Consumption column in the grid when grouped by
Computing Task. Sort this column to identify the GPU kernels that consumed the most energy. You can also
see this information mapped in the timeline.
Tune for Power Usage

When you locate individual GPU kernels that consume the most energy, for optimum power efficiency, start
by tuning the top energy hotspot.
Tune for Processing Time

If your goal is to optimize GPU processing time, keep a check on energy consumption metrics per kernel to
monitor the tradeoff between performance time and power use.

Move the Energy Consumption column next to Total Time to make this comparison easier.

 1 Intel® VTune™ Profiler User Guide

296

You may notice that the correlation between power use and processing time is not direct. The kernels that
compute the fastest may not be the same kernels that consume the least amounts of energy. Check to see if
larger values of power usage correspond to longer stalls/wait periods.

NOTE Energy consumption metrics do not display in GPU profiling analyses that scan Intel® Iris® X e

MAX graphics on Windows machines.

See Also
Hotspots Report
 from command line

View Data on Inline Functions

Offload and Optimize OpenMP* Applications with Intel Tools
Optimize applications for Intel® GPUs with Intel® VTune Profiler
Optimize Your GPU Application with Intel oneAPI Base Toolkit

CPU/FPGA Interaction Analysis
Use the CPU/FPGA Interaction analysis to assess the
balance between CPU and FPGA in systems with FPGA
hardware that run SYCL or OpenCL™ applications.

Use the CPU/FPGA Interaction analysis to assess FPGA performance of executed kernels, overall time for
memory transfers between the CPU and FPGA, and wait time impact on CPU and FPGA workloads.

Intel® VTune™ Profiler collects these FPGA device metrics:

Intel® VTune™ Profiler User Guide 1

297

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/offload-optimize-openmp-applications.html
https://www.intel.com/content/www/us/en/develop/articles/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html
https://www.intel.com/content/www/us/en/develop/articles/optimize-gpu-application-with-oneapi-base-toolkit.html

• Global Bandwidth
• Stalls
• Occupancy
• Activity
• Idle

Configure and Run Analysis
Follow this procedure to configure options for the CPU/FPGA Interaction analysis:

Prerequisites:

• To obtain device side information from the FPGA when profiling, make sure you specify the profile flag for
the compile operation:

To compile Use Specify

OpenCL Applications Intel® FPGA SDK for OpenCL™
Offline Compiler

-profile option

SYCL Applications Intel® oneAPI DPC++/C++
Compiler

-Xsprofile option

For other compiler options (exclusive to OpenCL profiling), see the FPGA Programming Guide.
• Create a VTune Profiler project.

1. Click the

(standalone GUI)/

(Visual Studio IDE)Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. In the WHAT pane,

• Specify the host executable in the Application bar.
• If applicable, specify arguments for the host application as Application parameters.

3. In the HOW pane, click the

Browse button.

• Select CPU/FPGA Interaction analysis type from the Accelerators group.
• Enter the CPU sampling interval in milliseconds.
• Specify if the collection should include CPU call stacks.

 1 Intel® VTune™ Profiler User Guide

298

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html

• Specify a source for the FPGA profiling data:

• OpenCL Profiling API - This source profiles only the host application.
• AOCL Profiler - This source profiles the host application as well as the design on your FPGA.

NOTE
To generate the command line for this configuration, use the

Command Line button.

4. Click the

Start button to run the analysis.

Import FPGA Data collected with Profiler Runtime Wrapper
If you collected FPGA profiling data with the Profiler Runtime Wrapper in the format of a profile.json file,
you can also import it to the VTune Profiler project.

To speed up the loading of the collected data, copy the profile.json to an empty folder and import that
folder instead of the entire compilation directory.

See the FPGA Optimization Guide for information on generating the profiling data with the Profiler Runtime
Wrapper (oneAPI applications only).

View Data
The CPU/FPGA Interaction analysis results appear in the CPU/FPGA Interaction viewpoint. The viewpoint
contains these windows:

• The Summary window displays statistics on the overall application execution, identifying CPU time and
processor utilization, and execution time for SYCL or OpenCL kernels. Double click a kernel in the Bottom-
up view to see detailed performance data through the Source view.

• The Bottom-up window displays functions in the Bottom-up tree, CPU time and CPU utilization per
function. Click the functions or kernels in this view to see the Source view.

• The Platform window displays over-time metric and performance data for SYCL or OpenCL kernels,
memory transfers, CPU context switches, FPU utilization, and CPU threads with SYCL or OpenCL kernels.

What's Next
Use the CPU/FPGA Interaction viewpoint to review the following:

• FPGA Utilization: Look at the FPGA Top Compute Tasks on the Summary window for a list of kernels
running on the FPGA. The Bottom-up window shows the Total and Average execution time for every
kernel.

• Memory Transfers: Look at the Data Transferred column on the Bottom-up window or the Computing
Queue rows on the Platform window to view SYCL or OpenCL kernels and memory transfers.

• Workload Impact: The Context Switch Time metric on the Summary window shows how much time
was spent in CPU context switches. Context switches can also be seen on the Platform tab as they
occurred during application execution.

See Also
fpga-interaction Command Line Analysis

CPU/FPGA Interaction View

Intel® VTune™ Profiler User Guide 1

299

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

CPU/FPGA Interaction View

Use the CPU/FPGA Interaction viewpoint to assess FPGA performance of executed kernels, overall time for
memory transfers between the CPU and FPGA, and how well a workload is balanced between the CPU and
FPGA.

To interpret the performance data provided in the CPU/FPGA Interaction viewpoint, you may follow the steps
below:

1. Define a Performance Baseline
2. Assess FPGA Utilization
3. Review Memory Transfers
4. Determine Workload Impact
5. Review FPGA device metrics
6. Analyze channel depth
7. Analyze loops
8. Analyze Source of the host application part
9. Analyze Source of the kernel running on FPGA device

Define a Performance Baseline
Start with exploring the Summary window that provides general information on your application execution.
Key areas for optimization include application execution time, tasks with high CPU or FPGA time, and kernel
execution time.

Use the Elapsed Time value as a baseline for comparison of versions before and after optimization.

Assess FPGA Utilization
Look at the FPGA Top Compute Tasks list on the Summary window for a list of kernels running on the
FPGA.

Switch to the Bottom-up window and use the Computing Task Purpose / Source Computing Task
(FPGA) grouping to view the hotspots for kernels.

 1 Intel® VTune™ Profiler User Guide

300

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html

Tip
You can click a task from the FPGA Top Compute Tasks list to be taken to that task on the Bottom-
up window.

Review the FPGA Utilization timeline, which shows how many kernels and transfers are executing at the
same time on the FPGA.

Review Memory Transfers
Look at the Data Transferred column on the Bottom-up window or the Computing Queue rows on the
Platform window to view the FPGA kernels and memory transfers.

Determine Workload Impact
The Context Switch Time metric on the Summary window shows the amount of time the CPU spent in
context switches. Switch to the Platform window and hover over the timeline to view the reason for the
context switch. In some cases, CPU context switches may represent CPU waits for the FPGA. Look at the
FPGA Utilization line to identify times when the CPU may have been waiting on the FPGA and vice versa.
For instance, when there is no FPGA activity, but CPU activity is high, it is likely that the FPGA is waiting for
the CPU to complete a preparation step.

Review FPGA Device Metrics
Switch to the Bottom-up window to analyze Stalls, Global Bandwidth and Occupancy metrics and see
how efficiently your kernels run on the FPGA device.

Intel® VTune™ Profiler User Guide 1

301

Analyze the Idle % metrics values to understand the percentage of cycles when there were no valid work-
items executing or stalling the memory or channel instruction. The Activity % metric shows the percentage
of cycles a predicated channel or memory instruction is enabled.

Analyze Channel Depth
In the Bottom-up window, locate the Average and Maximum Channel Depth information for selected
instances. If required, adjust the channel depth for your needs.

If the channel is full all the time, the write side of the channel is working faster than the read side, and the
channel will be stalling in the write kernel. If the channel is mostly empty, the read side is likely to be
stalling, and if the channel is bigger than 32 bits deep, you can reduce it in size without a performance hit.

Analyze Loops
Analyze the occupancy for profiled loops:

 1 Intel® VTune™ Profiler User Guide

302

Analyze Source of the Host Application Part
Double-click the function you want to optimize to view its related source code file in the Source/Assembly
window. You can open the code editor directly from the Intel® VTune™ Profiler and edit your code (for
example, minimizing the number of calls to the hotspot function).

Analyze Source of the Kernel Running on an FPGA Device
Double-click the kernel to see FPGA device metrics per the kernel source lines. Use the Source view to see
what channels and memories cause most stalls and how much data they transfer.

See Also
Analyze Performance

Source Code Analysis

Reference

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

NPU Exploration Analysis (Preview)
Use the NPU Exploration analysis to profile and
optimize artificial intelligence(AI) workloads running
on Intel architectures.

A Neural Processing Unit(NPU) can accelerate the performance of AI workloads that have been explicitly
offloaded onto it by an operating system. NPUs are uniquely designed to improve the performance of AI and
machine-learning(ML) workloads. Use the Intel® Distribution of OpenVINO™ toolkit to offload popular ML

Intel® VTune™ Profiler User Guide 1

303

https://www.intel.com/content/www/us/en/docs/programmable/683521/22-4/eol.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html

models (like speech or image recognition tasks) to Intel NPUs. Then use the NPU Exploration analysis to
profile AI and ML workloads. Collect performance data and optimize the performance of these AI/ML
applications.

NOTE
This is a PREVIEW FEATURE. A preview feature may or may not appear in a future production
release. It is available for your use in the hopes that you will provide feedback on its usefulness and
help determine its future. Data collected with a preview feature is not guaranteed to be backward
compatible with future releases.

NPU Data Collection Modes
When you run the NPU Exploration Analysis, Intel® VTune™ Profiler can collect hardware metrics about NPU
performance in one of two ways:

• Time-based mode
• Query-based mode

This table captures the differences between the two collection modes so you can make the best choice for
your workload.

Time-based mode Query-based mode

How it works Intel® VTune™ Profiler collects
metrics system-wide, similar to
CPU uncore metrics.

Intel® VTune™ Profiler collects
metrics for each instance of a
Level Zero inference. Metrics are
collected system-wide but data
collection is closely tied to the
inference. The collection starts
immediately before each
inference and stops immediately
after.

Size of typical workload Large Small

Execution time of instance >5 ms <5 ms

Sampling interval Specify value between 0.1 ms
and 1000 ms

N/A

Benefits Use this mode for larger
workloads. Optimize applications
with reasonable efficiency and
reduced overhead.

Use this mode for smaller
workloads. Optimize application
more efficiently, even if runtime
is longer. Examine effectively if
your workload is DDR memory
bound.

Usage considerations Less overhead for application.
This mode requires Level Zero
backend to be installed, with
normal NPU drivers. However, the
mode does not require the
application to use Level Zero to
collect metrics, except for
computing tasks.

More overhead for application.
This mode requires the
application to use Level Zero for
the backend.

 1 Intel® VTune™ Profiler User Guide

304

Configure and Run Analysis
1. In the Accelerators group of the Analysis Tree in the VTune Profiler user interface, select NPU

Exploration (preview).
2. In the WHAT pane, specify the path to the AI/ML application in the Application bar.
3. If necessary, specify relevant Application parameters as well.
4. In the HOW pane, select a Collection mode.
5. Specify a sampling interval.

6. Click the

Start button to run the analysis.

Run from Command Line

To run the NPU Exploration analysis from the command line, type:

$ vtune -collect npu [-knob <knob_name=knob_option>] -- <target> [target_options]

NOTE
To generate the command line for any analysis configuration, use the Command Line button at the
bottom of the interface.

Once VTune Profiler completes data collection, the results of the NPU Exploration analysis appear in the NPU
Exploration viewpoint.

See Also
NPU Exploration View

npu

Intel® VTune™ Profiler User Guide 1

305

NPU Exploration View

Use the NPU Exploration viewpoint to assess and optimize the performance of AI or ML workloads on Intel
Neural Processing Units (NPU).

When the NPU Exploration analysis executes, Intel® VTune™ Profiler collects NOC metric set data about the
DDR bandwidth between the NPU and DDR memory. Once data collection completes, Intel® VTune™ Profiler
prepares the results and displays them in the Summary window.

NPU Exploration Summary
The Summary window displays NPU performance data starting with these sections:

• NPU Device Load - This section indicates the amount of data transferred between the NPU and DDR
memory.

• NPU Top Compute Tasks - This section captures the total amount of time when tasks got executed on
the VPU.

Next, see the list of Top Tasks to review the various host tasks which offloaded work onto the NPU.

 1 Intel® VTune™ Profiler User Guide

306

NPU Exploration Bottom-up Window
Continue your examination of host tasks by switching to the Bottom-up window. In the Grouping pull down
menu, select the Task Domain / Task Type / Function / Call Stack grouping.

See the execution of device tasks from the instant they started. This is the instant when the task was
appended to the Computing Queue.

In the Computing Queue section, the portion of the graph above the dotted line indicates duration when
the task was executed on the NPU.

The portion of the graph below the dotted line indicates the duration for which the task was waiting in the
queue for execution on the NPU. Tasks are removed from the Computing Queue when they finish executing
on the NPU.

See Also
Analyze Performance

Source Code Analysis

Reference

Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide

Intel® VTune™ Profiler User Guide 1

307

https://www.intel.com/content/www/us/en/docs/programmable/683521/22-4/eol.html

Platform Analysis Group
The Platform Analysis group contains the System
Overview analysis to monitor system behavior and
power usage.

System Overview analysis is a driverless event-based sampling analysis that monitors the general behavior
of your target system. Use this analysis to identify platform-level factors that limit performance, including
power usage and throttling.

NOTE Starting with the 2023.2 release of Intel® VTune™ Profiler, the Platform Profiler analysis type
is not available in the GUI or command line.

• To collect platform behavior data using the 2023.2 or newer versions of VTune Profiler, use the
standalone Platform Profiler collector. You can then visualize collected data with the Platform
Profiler server. See Platform Analysis for more information.

• To continue using the Platform Profiler analysis type, switch to a version of VTune Profiler older than
2023.2. You can then follow procedures described in Platform Profiler Analysis.

Prerequisites:

• For best results, install the sampling driver for hardware event-based sampling collection types. For
Linux* and Android* targets, if the sampling driver is not installed, VTune Profiler can work on Perf*
(driverless collection).

• To enable system-wide and uncore event collection, use root or sudo to set /proc/sys/kernel/
perf_event_paranoid to 0.

$ echo 0>/proc/sys/kernel/perf_event_paranoid

System Overview Analysis
Use a platform-wide System Overview analysis to
monitor a general behavior of your target system and
identify platform-level factors that limit performance.

The System Overview analysis supports the following profiling modes:

• Hardware Event-Based Sampling serves as an entry-point analysis to identify how effectively your code
utilizes CPU, GPU, DRAM, I/O, and PCIe.

• Hardware Tracing (Linux* and Android* targets) analyzes your code at the microsecond level and helps
identify a cause of latency issues.

You can also use the System Overview analysis to get power usage data for your system, with a breakdown
of power usage by socket and DRAM module.

Hardware Event-Based Sampling Mode
In this mode, you can capture overall CPU, GPU, and I/O resources utilization and see recommendations for
next steps. Use this mode as an entry-level analysis to triage system performance issues.

 1 Intel® VTune™ Profiler User Guide

308

https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/platform-profiler-analysis.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

For Linux targets, the System Overview analysis collects the following Ftrace* events: sched, freq, idle,
workq, irq, softirq.

For Android targets, the System Overview analysis collects the following events:

• Atrace* events: input, view, webview, audio, video, camera, hal, res, dalvik
• Ftrace events: sched, freq, idle, workq, filesystem, irq, softirq, sync, disk

Intel® VTune™ Profiler User Guide 1

309

Hardware Tracing Mode (Linux and Android Targets)
Use this mode to capture CPU core activities at the microsecond level and detect unusual behavior.

Prerequisites:

• To enable system-level analysis for this mode, consider setting the /proc/sys/kernel/
perf_event_paranoid value to 0 or less.

• To see the kernel module and its symbols, set /proc/sys/kernel/kptr_restrict to 0.
• Make sure there is a disk space on both target and host systems. Depending on the number of CPU cores,

the amount of collected data may reach 1GB per second.
• Make sure your kernel version is 4.3 or higher.
• This mode is available for platforms based on Intel® microarchitectures code named Skylake and newer.

In the hardware tracing mode, you can do the following:

• Analyze user/kernel mode transitions and interrupts
• Explore execution of unexpected processes or system services
• Measure particular stages of workload execution without static instrumentation
• Analyze CPU core activities at the microsecond level
• Analyze a kernel/driver or application module by measuring exact CPU time with a nanosecond precision
• Triage latency issues resulted from:

• changes in the execution code flow
• preemption by another process
• resource sharing issues
• page faults
• power consumption issues caused by unexpected wake-ups

NOTE

• This analysis requires a direct access to the hardware. It does not work inside a Guest VM.
• In most cases, the collection overhead in this mode is less than 10%. It can be higher if your

application is IO or DRAM bound.
• The Hardware Tracing mode does not require sampling drivers.

Configure and Run Analysis
To configure options for the System Overview analysis:

Prerequisites: Create a project.

1. Click the

Configure Analysis button on Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From HOW pane, click the

Browse button and select System Overview.
3. Select Hardware Tracing or Hardware Event-Based Sampling mode.

For the Hardware Tracing mode, you can also enable the Analyze interrupts option.

With the default Hardware Tracing configuration, Intel® VTune™ Profiler stops the data collection when
a 1GB data limit is reached. You can change this limit in the Advanced section of the WHAT pane:

 1 Intel® VTune™ Profiler User Guide

310

4. In the HOW pane, check options if you are interested in examining power usage or understanding
reasons for throttling behavior.

5. Click the

Start button to run the analysis.

VTune Profiler collects the data, generates a rxxxso result, and opens it in the default System Overview
viewpoint.

NOTE
To run this analysis from the command line, use the

Command Line button at the bottom.

Intel® VTune™ Profiler User Guide 1

311

Power Usage Analysis
Use the power consumption analysis capabilities of the System Overview analysis to get energy consumption
characterization for your system.

To collect power usage data, check the Analyze power usage checkbox in the HOW pane of the Configure
Analysis window. Then run the analysis.

Once the data collection is finished, see the Energy Consumption section of the Summary window.

This section shows the total power consumed by the system during data collection, as well as the breakdown
by CPU package and DRAM module.

Switch to the Platform window to get a detailed view of power consumption over time. You can correlate
different metrics, such as DRAM bandwidth, CPU frequency, and CPU utilization, with the amount of power
consumed by each device.

 1 Intel® VTune™ Profiler User Guide

312

NOTE
On the timeline, device power is represented in millijoules per second, which is physically equivalent to
milliwatts.

Intel® VTune™ Profiler User Guide 1

313

Throttling Analysis
If your CPU is operating at temperatures outside safe thermal limits, you may observe a significant drop in
CPU frequency as the system attempts to stabilize. The drop in frequency to restore safe CPU operating
temperature can result in significant performance loss. Run the System Overview analysis to analyze factors
that can cause the CPU to throttle in this way.

In the HOW pane of the Configure Analysis window, check the Analyze throttling reasons checkbox.
Then run the analysis.

Once the data collection is finished, see the CPU Throttling Reasons section in the Summary window.

Switch to the Platform window to see a breakdown of throttling events according to the reasons causing
them.

 1 Intel® VTune™ Profiler User Guide

314

CPU Throttling Reasons:

Use this information to understand throttling behavior and make necessary changes to your system
configuration. In this table, frequency refers to the processor core frequency.

Reason Description

PROCHOT Frequency has dropped below the OS frequency due to assertion of
external PROCHOT.

THERMAL Frequency has dropped below the OS frequency due to a thermal event.

RSR-LIMIT Frequency has dropped below the OS frequency due to a Residency State
Regulation Limit violation.

RATL Frequency has dropped below the OS frequency due to a Running
Average Thermal Limit violation.

OTHER Frequency has dropped below the OS frequency due to electrical or other
constraints.

PBM-PL1 Frequency has dropped below the OS frequency due to package/
platform-level power limiting PL1.

PBM-PL2 Frequency has dropped below the OS frequency due to package/
platform-level power limiting PL2/PL3.

MAX-TURBO-LIMIT Frequency has dropped below the OS frequency due to multi-core turbo
limits.

TURBO-ATTENUATION Frequency has dropped below the OS frequency due to turbo transition
attenuation. This can cause performance degradation due to frequent
changes in operating ratio.

For more information about these reasons, see the Intel®64 and IA-32 Architectures Software Development
Manual.

See Also
Analyze Interrupts

Intel® VTune™ Profiler User Guide 1

315

https://www.intel.com/content/dam/develop/external/us/en/documents/335592-sdm-vol-4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/335592-sdm-vol-4.pdf

Analyze Latency Issues

Task Analysis

Cookbook: Profiling Hardware without Sampling Drivers

Linux* and Android* Kernel Analysis
 configuration

collect system-overview
vtune option for command line analysis

Analyze Interrupts

If you configured your collection to monitor IRQ Ftrace* events either by using the System Overview analysis
type or custom analysis, the Intel® VTune™ Profiler analyzes code performance inside IRQs and displays
interrupts statistics in the default Hardware Events viewpoint. Follow the steps below to analyze the collected
interrupt data:

• Identify most critical interrupt handlers.
• Analyze slow interrupts on the timeline.

Prerequisites
Analysis of interrupts requires access to the Linux Ftrace subsystem in /sys/kernel/debug/tracing.
Typically, it is only accessible for the root user.

To analyze interrupts, either run the analysis as root, or edit permissions for /sys/kernel/debug/tracing
as described in the Limitations section of the Linux* and Android* Kernel Analysis topic.

Identify Critical Interrupt Handlers
Start your analysis with the Summary window that provides overall interrupt handlers statistics in the
following sections:

• Top Interrupt Handlers that shows the most active interrupt handlers sorted by Interrupt Time.

Clicking an interrupt handler in the list opens the grid view grouped by Interrupt/Interrupt Duration
Type/Function/Call Stack level.

• Interrupt Duration Histogram that shows a distribution of interrupt handler instances per duration
types defined by the VTune Profiler. High number of slow instances may signal a performance bottleneck.
Use the drop-down menu to view data for different interrupt handlers.

 1 Intel® VTune™ Profiler User Guide

316

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

When you identified a slow interrupt in the Summary window, you may switch to the Event Count tab
sorted by the Interrupt/.. level, locate this interrupt, expand the hierarchy to view a function where slow
interrupts occurred, and double-click the function to explore its source code in the Source view.

Analyze Slow Interrupts on the Timeline
Switch to the Platform tab in the Hardware Events viewpoint to analyze CPU utilization, GPU usage and
power consumption during your code execution and correlate this data with the time frames when slow
interrupts occurred. You may enable the Slow Interrupts markers on the timeline, select a time frame with
slow interrupts and zoom in to the selected region for detailed analysis:

Intel® VTune™ Profiler User Guide 1

317

See Also
Linux* and Android* Kernel Analysis
 for IRQ event collection

Window: Platform

 1 Intel® VTune™ Profiler User Guide

318

Analyze Latency Issues
Run the System Overview analysis in the Hardware
Tracing mode to identify what caused latency issues in
your application execution.

The System Overview viewpoint for Hardware Tracing collection provides the following data:

• system-wide statistics over time with the microsecond granularity
• module boundaries on the timeline
• function names for module entry points
• Active/Idle thread time
• interrupts on the timeline
• user-mode and kernel-mode execution times for modules and module entry points

You can use this data to:

• Explore the impact of interrupts on the application Elapsed Time
• Analyze thread activity at the microsecond level
• Explore kernel activity

Explore the Impact of Interrupts on the Application Elapsed Time
Open the Platform window to explore interrupts on the timeline view. The Interrupt Count chart provides
a quick overview of the number of interrupts triggered during execution.

Locate the interrupt-intensive regions and zoom in. Hover over a module name to see the Module Entry
Pont that discovers a cause for an interrupt. For example, a page fault:

Intel® VTune™ Profiler User Guide 1

319

Or a timer interrupt:

Analyze Thread Activity at the Microsecond Level
Hardware Tracing analysis enables you to analyze data at a high granularity level. This could be particularly
useful, for example, to debug a network workload with a one-second duration between requests:

Zoom in to a single request. For example, the ping application measures and prints 250µs as reply time:

You can go deeper and analyze execution of each module:

Scheduler is becoming active after idle.

recvmsg is used to sleep for 1 second.

 1 Intel® VTune™ Profiler User Guide

320

A new message is sent.

Iptable driver is active.

Network driver takes just 332 nanoseconds.

do_idle is executed.

Explore Kernel Activity
The OS Scheduling Impact and OS Kernel Activity charts highlight regions where the system has
performed multiple context switches and kernel-mode entries.

Locate a region with multiple context switches or high kernel activity and zoom in to investigate. For
example, in this case the operating system has rescheduled a thread multiple times due to various reasons,
including preemption and synchronization. Hover over the markers to get additional details and to determine
the root cause of the issue.

Intel® VTune™ Profiler User Guide 1

321

In the grid pane of the Platform window, use the Process / Module / Module Entry Point grouping to
get a detailed view of user-mode and kernel activity. Expand a module and study the module entry points to
determine the amount of time spent by the module in the kernel mode.

You can also examine the number and frequency of Kernel-mode Entries caused by a specific module and
function to determine the performance impact of kernel activity.

Hardware Tracing collection is more precise than event-based sampling and provides all the modules
executed with their precise time.

 1 Intel® VTune™ Profiler User Guide

322

See Also
Analyze Interrupts

Platform Analysis
Use Intel® VTune™ Profiler-Platform Profiler to get a holistic view of system behavior. You can then perform
system characterization on a deployed system that runs a full load over an extended period of time.

With Intel® VTune™ Profiler-Platform Profiler, you can get insights into these aspects:

• Platform configuration
• Utilization
• Performance
• Imbalances related to compute, memory, storage, IO, and interconnects

You can use Platform Profiler to conduct a coarse-grained, system-level analysis. Use the collected data to
triage and characterize your system for a particular workload. This method differs from the System
Overview Analysis in some important ways:

Aspect System Overview Analysis Analysis using Platform
Profiler

Type of analysis Fine-grained Coarse-grained
Coverage Hardware and software Hardware only
Type of workload Light workloads (runtime around a few minutes) Heavy workloads (runtime

running to several hours)

For heavy workloads with long runtimes, run Platform Profiler to ensure that you use available hardware in
the most optimal way.

Platform Profiler consists of a command line data collector and a server implementing a RESTful interface to
a time-series database. The collector ships with the VTune Profiler package. You can run Platform Profiler on
Windows* and Linux* systems.

Platform Analysis Workflow
Here is the basic workflow to use this application:

1. Configure the collector environment.
2. Start Platform Profiler.
3. After data collection, stop Platform Profiler.
4. Import the collected data into Intel® VTune™ Profiler-Platform Profiler server.
5. View the collected data.

Configure the Collector Environment
When you configure your environment for the first time, you must have root/Administrator privilege.

To set up your environment, run vpp-collect-vars.

• For a Linux OS, source vpp-collect-vars.sh in the server directory.

$ source /opt/intel/oneapi/vtune/latest/vpp/collect/vpp-collect-vars.sh
• For a Windows OS, run the vpp-collect-vars.cmd script in the server directory.

$ C:\Program Files (x86)\Intel\oneAPI\vtune\latest\vpp\collector\vpp-collect-vars.cmd
Next, create the Platform Profiler server virtual Python* environment. At the command prompt, type:

$ vpp-server-config

Intel® VTune™ Profiler User Guide 1

323

Start Platform Profiler
1. In the command window, type:

$ vpp-collect start -c 'data collection comment'
where the comment argument is optional.

2. If you want to insert marks in the data metrics timeline, run:

vpp-collect mark 'optional comment'

Stop Platform Profiler
When you have finished collecting data, run this command to stop Platform Profiler:

vpp-collect stop
After data collection completes, Platform Profiler compresses the results into a .tgz (Linux) or .zip
(Windows) file whose name contains the name of the target system and a date/time stamp.

Import Collected Data
Next, you import the collected data into Platform Profiler server. Use the Platform Profiler server to examine a
performance overview of system behavior. Understand platform-level configuration, utilization and imbalance
issues related to compute, memory, storage, IO and interconnects.

1. To start, set up the environment for Platform Profiler server. When you configure your environment for
the first time, you must have root/Administrator privilege.

• For a Linux OS, source vpp-server-vars.sh in the server directory.

$ source /opt/intel/oneapi/vtune/latest/vpp/collect/vpp-server-vars.sh
• For a Windows OS, run the vpp-server-vars.cmd script in the server directory.

$ C:\Program Files (x86)\Intel\oneAPI\vtune\latest\vpp\server\vpp-server-vars.cmd
2. Next, create the virtual Python* environment for Platform Profiler server.

vpp-server config

NOTE
You can configure several command line options, if necessary:

Option Purpose

--webserver-port PORT Change the default port (originally 6543) on
which the Platform Profiler web server listens for
connections.

--database-port PORT Change the default port (originally 8086) on
which the database server of the Platform
Profiler listens for connections.

--data-dir PATH Change the default directory where the Platform
Profiler data is stored.

--reset-passphrase Display the server password prompt so that it
can be changed.

--quiet Silence all prompts and accept the default data
directory.

 1 Intel® VTune™ Profiler User Guide

324

3. Start the Platform Profiler server using default settings. Run this command:

vpp-server start
4. In the Server Settings dialog box, specify a directory for storage and/or authentication if necessary.

5. Open a web browser to the address and port number of the server instance of Intel® VTune™ Profiler-
Platform Profiler. For example, in the address bar of the web browser, type:

localhost:6543
6. Enter your passphrase for the database and click Login. You can also create a new folder to store the

imported results and then click on the folder name to open it.

7. Once you log in, go to the View Results tab and click the Upload button.

Intel® VTune™ Profiler User Guide 1

325

8. After the data import completes, you can view results by clicking on the results name.

View Collected Data
After data collection and import, VTune Profiler server displays information in three areas:

• The Platform Configuration Diagram - Use this diagram to get quick metrics for each subsystem
(socket, core, memory, disk, etc.).

• An interactive timeline - Filter on a smaller range of collection time.
• Detailed performance charts

Start with the platform configuration diagram to see configuration details and key metrics. Hover over
component icons to see additional details for a component.

 1 Intel® VTune™ Profiler User Guide

326

There are several views to help you visualize and interpret the collected data. A good starting point is the
Overview, which you can select from the Select View pulldown menu.

Intel® VTune™ Profiler User Guide 1

327

Hover over here to see information about the
system used for data collection.

See different views for information on sockets,
cores, memory, and storage devices.

Hover over here to see additional information about
the platform configuration. Click on specific
elements to switch views.

Filter the data for a specific time range.

Undo or reset a zoom level.

 1 Intel® VTune™ Profiler User Guide

328

See summary information about CPU and memory
utilization.

See performance information over time. Click and
drag to select and zoom into a specific time range.

Next Steps
• Consider whether an upgrade to hardware components (CPU, memory, storage, network) could improve

performance. After you install new hardware, repeat the platform analysis and compare performance
between the older and newer components.

• Analyze the collected data to determine the most prevalent performance bottlenecks and the most
impacted components. If a specific portion of the workload is causing performance issues, consider
running the following analysis types using VTune Profiler using a targeted collection interval (seconds
instead of hours):

• Microarchitecture Exploration: Identify issues with CPU utilization, cache, or memory
• Memory Access: Identify memory issues
• Input and Output: Identify storage usage issues

Hybrid CPU Analysis
Understand how to use Intel® VTune™ Profiler to run
analyses on hybrid CPUs with several types of cores.

A hybrid CPU combines several types of cores on the same die. For example, Intel® microarchitectures code
named Alder Lake have two types of cores - Performance cores (P-Cores) and Efficient Cores(E-Cores). When
you profile applications that run on hybrid CPUs, use these techniques to conduct a good performance
analysis.

Group by Core Type
When you run hardware event-based sampling analysis, VTune Profiler detects the various types of CPU cores
and provides you with an option to group or filter the profiling results by Core Type entity. Use this grouping
to understand:

• The time spent by the application on each core type
• What portion of the code was executed in a certain location
• Moments when transitions happened

Group by Core Type in Grid
In the grid view in the Bottom-up window, select one of the groupings that feature 'Core Type'. For example,
this table displays grouping by Core Type / Physical Core / Logical Core / Function / Call Stack.

Intel® VTune™ Profiler User Guide 1

329

You can also create your own grouping and include the 'Core Type' entity in it. To do this, use the Customize
Grouping dialog box from the Grouping pulldown menu and select your combination of entities.

 1 Intel® VTune™ Profiler User Guide

330

Group by Core Type in Timeline
You can also use the timeline view to group data by Core Type. To do this, select one of the available
groupings (from the pulldown menu) that contain the Core Type entity. This example shows the Process /
Core Type grouping in the timeline.

Metrics for Hybrid CPUs
When you profile applications on hybrid platforms, several metrics in the Summary window display data per
core type as well as data that is aggregated across all core types.

Microarchitecture Exploration Metrics
This image displays the metric hierarchy in the results of a Microarchitecture Exploration analysis. The data is
displayed per core type for hybrid processors.

Intel® VTune™ Profiler User Guide 1

331

Use this hierarchical display of data to analyze microarchitecture bottlenecks in P-Cores and E-Cores. You will
also find a similar breakdown by core type in other analysis types (Memory Access or HPC Performance
Characterization) since they share some of the same metrics.

Source Code Analysis
For better understanding of a performance problem,
associate a hotspot with the source code and exact
machine instruction(s) that caused this hotspot.

Prerequisites
Intel® VTune™ Profiler provides accurate source analysis if your code is compiled with the debug information
and debug information is written correctly in the binary file (for Linux* targets) or debug information file/
symbol file (for Windows* targets).

 1 Intel® VTune™ Profiler User Guide

332

Access Source View
To open the source/assembly code of a specific item, either double-click the selected item in the grid view/
Call Stack/Timeline pane, or select the View Source option from the context menu:

Depending on the route you used to access the Source view, the data representation on the panes may
slightly differ:

• If you access the Source view by clicking a function in the grid, the VTune Profiler opens the source at the
hottest (with the highest value of the metric selected for hotspot navigation) line of this function in the
Source/Assembly pane.

• When you click a call stack function, the VTune Profiler opens the source highlighting the call site (location
where a function call is made) at the top of the call stack. The call site is marked with the yellow arrow

Intel® VTune™ Profiler User Guide 1

333

 1 Intel® VTune™ Profiler User Guide

334

.
• If you click a wait in the Timeline pane, the VTune Profiler opens a wait function highlighting the waiting

call site. If you double-click a transition (for Threading data), it highlights the signaling call site.

Analyze Code
The Source/Assembly window opens in a separate tab:

Source/Assembly toggle buttons. By default, depending on the symbol information availability,
the VTune Profiler opens one of the panes: Source or Assembly. But you can use the toggle Source
and Assembly buttons on the toolbar to manage the view and enable both of them if required/
possible.

The content displayed on the Source and Assembly panes is correlated. When you select an
element on one pane, another pane scrolls to the corresponding elements and highlights them.

NOTE

• One source code line may have one or more related assembly instructions while one
instruction has only one related code line.

• Synchronization is possible only if the debug line information is available for the selected
function.

Hotspot navigation buttons. Typically, the VTune Profiler opens the source code highlighting the
most performance critical code line based on the key metric set up for this analysis. To go further and
freely navigate between code lines that have the highest metric value (hotspots), use these buttons
toolbar:

- Go to the code line that has the maximal metric value.

- Go to the previous (by metric value) hotspot line.

- Go to the next (by metric value) hotspot line.

- Go to the code line that has the minimal metric value.

Intel® VTune™ Profiler User Guide 1

335

The Source pane shows your code written on a high-level programming language, for example, C, C
++, or Fortran. The Source pane opens if the symbol information for the selected function is
available.

Hotspot navigation metric column. By default, the source view navigation is based on the key
analysis metric like the CPU Time for the Hotspots analysis. Such a metric column is highlighted. To
change the hotspot navigation metric, right-click the required column and select Use for Hotspot
Navigation command from the context menu.

The Assembly pane displays disassembled code. This code shows the exact order of the assembly
instructions executed by the processor. Instructions on the Assembly pane are grouped into basic
blocks. To get help on a particular instruction, select it in the grid, right-click and choose Instruction
Reference from the context menu.

For better navigation in the Assembly pane, you may select one of the available granularity levels in
the Assembly grouping drop-down menu: Address, Basic Block/Address, or Function Range/
Basic Block/Address. VTune Profiler updates the Assembly view grouping the instructions into
collapsible nodes according to the selected hierarchy.

If there is no correct debug information, or symbol file is unavailable, the assembly data may be
incorrect. In this case, the VTune Profiler uses heuristics to define function boundaries in the binary
module.

Heat map markers. Use the blue markers to the right of the vertical scroll bar to quickly identify the
hotspot lines (based on the hotspot navigation metric). To view a hotspot, move the scroll bar slider
to the marker. The bright blue marker (

 1 Intel® VTune™ Profiler User Guide

336

) indicates a hot line for the function you drilled down into. Light blue markers (

Intel® VTune™ Profiler User Guide 1

337

) indicate hot lines for other functions.

Edit Source
When tuning your target, you may need to modify the source code. VTune Profiler enables you to open the
source files for editing directly from the Source/Assembly window.

To launch the source editor:

1. In the Source pane, select a line you want to edit.
2. Right-click the line and select Edit Source from the context menu, or click the Open Source File

Editor

button on the Source/Assembly toolbar.

Your source code opens in the code editor set in your system as default. For example, on Linux the
code editor is defined in the EDITOR environment variable (for example, vi) or VISUAL environment
variables (for example, gedit, emacs). Depending on the editor application, the code may open exactly
on the selected line.

After editing your code, rebuild your target and re-run the VTune Profiler analysis on the modified version to
compare the performance results before and after optimization.

NOTE
The Source/Assembly analysis is not supported for the source code using the #line directive.

See Also
Debug Information for Linux* Application Binaries

Debug Information for Windows* Application Binaries

 1 Intel® VTune™ Profiler User Guide

338

Debug Information for Windows* System Libraries

View Source Objects from Command Line

Compare Source Code

Custom Analysis
Create a new custom analysis type based on available
predefined analysis configurations.

To create and run a new custom analysis type:

Prerequisites: Make sure a VTune Profilerproject is created.

1. Click the

(standalone GUI)/

(Visual Studio IDE) Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. From the HOW pane, click the

Browse button and choose an analysis type to customize, for example: Threading.
3. Click the

Copy button.

VTune Profiler creates an editable copy of the selected configuration and adds it to the Custom
Analysis section.

4. Manage the custom configuration using the following controls:

Enable an editable mode for the configuration and specify the following analysis identifiers:

• Analysis name: Enter/edit a name of this custom analysis type.
• Command line name: Enter/edit a name of the custom analysis type that will be used as an

identifier when analyzing the project from the command line. Keep it short for your convenience.
• Analysis identifier: Specify a shorthand identifier to be appended to the name of each result

produced by this analysis type. For example, adding the tr identifier for the Threading analysis
result produces the following result name: r000tr, where 000 is the result number.

• Comments: Provide a short meaningful description of the analysis type you create. This information
may help you easily identify the analysis type specifics later.

Intel® VTune™ Profiler User Guide 1

339

Customize a copy of the selected analysis.

Delete the custom analysis.

Configuration options available for a new custom configuration depend on the original analysis you
customize.

5. Click the Start button to run the analysis.

See Also
Custom Analysis Options

runsa/runss Custom Command Line Analysis

Custom Analysis Options

If you create a copy of a predefined analysis type, a new custom configuration inherits all options available
for the original analysis and makes them editable.

This is a list of all available custom configuration options (knobs) in the alphabetical order:

A B CDE F G H I J K LM N O P Q R STU V W X Y Z

A

Analyze I/O waits
check box

Analyze the percentage of time each thread and CPU spends in I/O wait state.

Analyze interrupts
check box

Collect interrupt events that alter a normal execution flow of a program. Such
events can be generated by hardware devices or by CPUs. Use this data to
identify slow interrupts that affect your code performance.

Analyze loops check
box

Extend loops analysis to collect advanced loops information, such as
instructions set usage and display analysis results by loops and functions.

Analyze memory
bandwidth check box

Collect events required to compute memory bandwidth.

Analyze memory
consumption check
box (for Linux targets
only)

Collect and analyze information about memory objects with the highest
memory consumption.

Analyze memory
objects check box (for
Linux* targets only)

Enable the instrumentation of memory allocation/de-allocation and map
hardware events to memory objects.

Analyze OpenMP
regions check box

Instrument the OpenMP* regions in your application to group performance data
by regions/work-sharing constructs and detect inefficiencies such as imbalance,
lock contention, or overhead on performing scheduling, reduction, and atomic
operations. Using this option may cause higher overhead and increase the
result size.

Analyze PCIe
bandwidth check box

Collect the events required to compute PCIe bandwidth. As a result, you will be
able to analyze the distribution of the read/write operations on the timeline and
identify where your application could be stalled due to approaching the
bandwidth limits of the PCIe bus.

 1 Intel® VTune™ Profiler User Guide

340

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html

A

In the Device class drop-down menu, you can choose a device class where
you need to analyze PCIe bandwidth: processing accelerators, mass storage
controller, network controller, or all classes of the devices (default).

NOTE
This analysis is possible only on the Intel microarchitecture code name
Haswell EP and later.

Analyze power usage
check box

Track power consumption by processor over time to see whether it can cause
CPU throttling.

Analyze Processor
Graphics hardware
events drop-down
menu

Analyze performance data from Intel HD Graphics and Intel Iris Graphics
(further: Intel Graphics) based on the predefined groups of GPU metrics.

Analyze system-wide
context switches
check box

Analyze detailed scheduling layout for all threads on the system and identify
the nature of context switches for a thread (preemption or synchronization).

Analyze user tasks,
events, and counters
check box

Analyze tasks, events, and counters specified in your code via the ITT API. This
option causes a higher overhead and increases the result size.

Analyze user
histogram check box

Analyze the histogram specified in your code via the Histogram API. This option
increases both overhead and result size.

Analyze user
synchronization check
box

Enable User synchronization API profiling to analyze thread synchronization.
This option causes higher overhead and increases result size.

C

Chipset events field Specify a comma-separated list of chipset events (up to 5 events) to monitor
with the hardware event-based sampling collector.

Collect context
switches check box

Analyze detailed scheduling layout for all threads in your application, explore
time spent on a context switch and identify the nature of context switches for a
thread (preemption or synchronization).

NOTE
The types of the context switches (preemption or synchronization) cannot be
identified if the analysis uses Perf* based driverless collection.

Collect CPU sampling
data menu

Choose whether to collect information about CPU samples and related call
stacks.

Collect highly
accurate CPU time
check box (for Windows
targets only)

Obtain more accurate CPU time data. This option causes more runtime
overhead and increases result size. Administrator privileges are required.

Intel® VTune™ Profiler User Guide 1

341

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

C

Collect I/O API data
menu

Choose whether to collect information about I/O calls and related call stacks.
This analysis option helps identify where threads are waiting or enables you to
compute thread concurrency. The collector instruments APIs, which causes
higher overhead and increases result size.

Collect Parallel File
System counters
check box

Enable collection of the Parallel File System counters to analyze Lustre* file
system performance statistics, including Bandwidth, Package Rate, Average
Packet Size, and others.

Collect signalling API
data menu

Choose whether to collect information about synchronization objects and call
stacks for signaling calls. This analysis option helps identify synchronization
transitions in the timeline and signalling call stacks for associated waits. The
collector instruments signalling APIs, which causes higher overhead and
increases result size.

Collect stacks check
box

Enable advanced collection of call stacks and thread context switches to
analyze performance, parallelism, and power consumption per execution path.

Collect
synchronization API
data menu

Choose whether to collect information about synchronization wait calls and
related call stacks. This analysis option helps identify where threads are
waiting or enables you to compute thread concurrency. The collector
instruments APIs, which causes higher overhead and increases result size.

Collect thread affinity
check box

Analyze thread pinning to sockets, physical cores, and logical cores. Identify
incorrect affinity that utilizes logical cores instead of physical cores and
contributes to poor physical CPU utilization.

NOTE
Affinity information is collected at the end of the thread lifetime, so the resulting
data may not show the whole issue for dynamic affinity that is changed during the
thread lifetime.

CPU Events table • Specify hardware events to collect using the check boxes in the first
column. By default, the table lists all events available for the target platform
with events used for the original analysis configuration pre-selected. You
may use the Search functionality to find events of interest. To get more
details on an event, select it in the table and click the Explain button.

• Modify the Sample After value for an event to control the number of events
after which the VTune Profiler interrupts the event data collection. The
Sample After value depends on the target duration. Based on the duration
value, the VTune Profiler adjusts the Sample After value with a multiplier.

CPU sampling
interval, ms field

Specify an interval between collected CPU samples in milliseconds.

D

Disable alternative
stacks for signal
handlers check box
(available for Linux
targets)

Disable using alternative stacks for signal handlers. Consider this option for
profiling standard Python 3 code on Linux.

 1 Intel® VTune™ Profiler User Guide

342

E

Enable driverless
collection check box

Use driverless Perf*-based hardware event-based collection when possible.

Evaluate max DRAM
bandwidth check box

Evaluate maximum achievable local DRAM bandwidth before the collection
starts. This data is used to scale bandwidth metrics on the timeline and
calculate thresholds.

Event mode drop-down
list

Limit event-based sampling collection to USER (user events) or OS(system
events) mode. By default, all event types are collected.

G

GPU Profiling mode
drop-down menu

Select a profiling mode to either characterize GPU performance issues based on
GPU hardware metric presets or enable a source analysis to identify basic
blocks latency due to algorithm inefficiencies, or memory latency due to
memory access issues.

Use the Computing task of interest table to specify the kernels of interest
and narrow down the GPU analysis to specific kernels minimizing the collection
overhead. If required, modify the instance step for each kernel, which is a
sampling interval (in the number of kernels).

GPU sampling
interval, ms field

Specify an interval between GPU samples.

GPU Utilization check box
(for Linux* targets
available with Intel HD
Graphics and Intel Iris®

Graphics only)

Analyze GPU usage and identify whether your application is GPU or CPU bound.

L

Limit PMU collection
to counting check box

Enable to collect counts of events instead of default detailed context data for
each PMU event (such as code or hardware context). Counting mode
introduces less overhead but gives less information.

Linux Ftrace events /
Android framework
events field

Use the kernel events library to select Linux Ftrace* and Android* framework
events to monitor with the collector. The collected data show up as tasks in the
Timeline pane. You can also apply the task grouping level to view performance
statistics in the grid.

M

Managed runtime
type to analyze menu

Choose a type of the managed runtime to analyze. Available options are:

• for Windows targets: combined Java* and .NET* analysis; combined
Java, .NET and Python* analysis; Python only analysis

• for Linux targets: Java only analysis; combined Java and Python analysis;
Python only analysis

Minimal memory
object size to track,
in bytes spin box (for
Linux targets only)

Specify a minimal size of memory allocations to analyze. This option helps
reduce runtime overhead of the instrumentation.

Intel® VTune™ Profiler User Guide 1

343

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

P

Profile with Hardware
Tracing check box

Enable driver-less hardware tracing collection to explore CPU activities of your
code at the microsecond level and triage latency issues.

S

Stack size, in bytes
field

Specify the size of a raw stack (in bytes) to process. Unlimited size value in
GUI corresponds to 0 value in the command line. Possible values are numbers
between 0 and 2147483647.

Stack type drop-down
menu

Choose between software stack and hardware LBR-based stack types. Software
stacks have no depth limitations and provide more data while hardware stacks
introduce less overhead. Typically, software stack type is recommended unless
the collection overhead becomes significant. Note that hardware LBR stack
type may not be available on all platforms.

Stack unwinding
mode menu

Choose whether collection requires online (during collection) or offline (after
collection) stack unwinding. Offline mode reduces analysis overhead and is
typically recommended.

Stitch stacks check
box

For applications using Intel® oneAPI Threading Building Blocks(oneTBB) or
OpenMP* with Intel runtime libraries, restructure the call flow to attach stacks
to a point introducing a parallel workload.

T

Trace GPU
Programming APIs
check box

Capture the execution time of OpenCL™ kernels, SYCL tasks and Intel Media
SDK programs on a GPU, identify performance-critical GPU tasks, and analyze
the performance per GPU hardware metrics.

U

Uncore sampling
interval, ms field

Specify an interval (in milliseconds) between uncore event samples.

Use precise
multiplexing check
box

Enable a fine-grain event multiplexing mode that switches events groups on
each sample. This mode provides more reliable statistics for applications with a
short execution time. You can also consider applying the precise multiplexing
algorithm if the MUX Reliability metric value for your results is low.

NOTE
You may generate the command line for this configuration using the Command Line... button at the
bottom.

See Also
collect-with
vtune option to configure custom analysis from command line

Highly Accurate CPU Time Data Collection
Configure the Intel® VTune™ Profiler on Windows* OS
to get highly accurate CPU time data in the user-mode
sampling and tracing results.

 1 Intel® VTune™ Profiler User Guide

344

By default, the VTune Profiler detects CPU time based on the OS scheduler tick granularity. As a result, the
CPU time values may be inaccurate for targets that execute in short quanta less than the OS scheduler tick
interval (for example, frame-by-frame computation in video decoders).

Accurate collection of CPU time information is available for the user-mode sampling and tracing analysis
types (Hotspots and Threading) and enabled by default in the predefined analysis configurations when you
run both the VTune Profiler and your application to analyze with administrator privileges.

To collect more accurate CPU time information, the VTune Profiler uses the Event Tracing for Windows* (ETW)
capability. For example, without ETW, a sample is taken every 10ms. For each sample, the OS is queried for
the amount of time the thread executed and the difference is calculated between the samples, resulting in
the delta. The information returned by the OS via this mechanism has a coarse granularity. VTune Profiler
totals the deltas and displays it in the user interface. However, with ETW enabled, the VTune Profiler can filter
out any time spent executing other threads and accurately calculate time for monitored threads within each
10ms sample based on the context switch information acquired from ETW. Based on this additional
information, the CPU time metric calculated for the function/thread will be more accurate.

VTune Profiler needs exclusive access to the Microsoft* NT Kernel Logger. Therefore, only one VTune Profiler
collection can run in this mode on the system and no other tools can use the service. If the VTune Profiler
cannot get access to the NT Kernel Logger, the collection will continue with this mode disabled.

This type of collection takes more processing time and disk space. VTune Profiler may generate up to 5 MB of
temporary data per minute per logical CPU depending on the system configuration and the profiled target.

Enabling or disabling the accurate CPU time collection depends on what is executing on the system during
data collection and the structure of your application. In specific cases, there may be about a 3% variation
between "normal" and "highly accurate" CPU time. But, there are corner cases where the difference could be
as high as 30% or 40%. If the thread is executing, but happens to be inactive every 10ms that a sample is
taken without ETW, the results would grossly misrepresent the execution time. Or, if the thread is mostly
inactive, but runs exactly on the frequency of the 10ms samples, it may appear to consume large amounts of
time, when in reality it does not. The best thing to do is to test it yourself, if possible. That is, collect the Baic
Hotspots data with and without this option on and compare the resulting data. This can tell you if running
without the highly accurate CPU time option produces results accurate enough to direct your optimization
efforts, or if you need to have Administrative privileges so that you can enable this option. However, if you
are restricted from using highly accurate CPU time because of your corporation's policies, you can, in
general, be confident that analysis of your application's performance is valid using "normal" Hotspots data
collection.

To disable highly accurate CPU time collection for custom analysis:

1. Create a new custom analysis (based on an existing configuration such as Hotspots or Threading).
2. Deselect the Collect highly accurate CPU time option.

See Also
knob
 accurate-cpu-time-detection option

Warnings about Accurate CPU Time Collection

Custom Analysis Options

Hardware Event List
If required, edit a list of PMU events monitored by the
Intel® VTune™ Profiler for your processor by modifying
an existing or creating a new hardware event-based
sampling (EBS) analysis configuration.

To add events:

1. In the HOW pane, select an existing hardware event-based analysis (for example, Microarchitecture
Exploration) and click the

Intel® VTune™ Profiler User Guide 1

345

Copy button to create a custom copy of this configuration.

The new analysis type shows up under the Custom Analysis group in the HOW pane.
2. From the list of PMU events supported for the current platform, select the events you want the VTune

Profiler to monitor in your new configuration.

You may select an event and click the Explain... button at the bottom to open the Intel Processor
Event Reference and read more details on the selected event.

To filter in/out the event list for particular event(s), specify search keywords (applied to both the Event
Name and Event Description columns) in the Filter field.

NOTE
Usually precise events have a _PS postfix (for example, UOPS_RETIRED.RETIRE_SLOTS_PS) and/or a
clear indication (Precise Event) in the Event Description column.

3. Click Start to run your new analysis configuration.

NOTE
You may configure the VTune Profiler to monitor all the events in a single collection run using event
multiplexing or allow multiple runs to collect more precise event data.

See Also
Custom Analysis Options

 1 Intel® VTune™ Profiler User Guide

346

knob
event-config option to specify events from CLI

Hardware Event Skid
Event skid is the recording of an event not exactly on
the code line that caused the event.

Event skids may even result in a caller function event being recorded in the callee function.

Event skid is caused by a number of factors:

• The delay in propagating the event out of the processor's microcode through the interrupt controller
(APIC) and back into the processor.

• The current instruction retirement cycle must be completed.
• When the interrupt is received, the processor must serialize its instruction stream which causes a flushing

of the execution pipeline.

Intel® processors support accurate event location for some events. These events are called precise events.

Caution
The event skid affects the accuracy of your analysis results. When the grouping level is very small (for
example, instruction, source line, or basic block), the Intel® VTune™ Profiler attributes performance
results incorrectly. For example, when row A induces a problem, row B shows up as a hotspot. If
different CPU events in the formula of a hardware event-based metric have different skids, the VTune
Profiler may attribute data to different blocks, which makes all metrics invalid. This type of issue
typically does not show up at the function granularity.

Example: Interpreting Jump and Call Instructions
Events that happen in the execution time of the jmp or call instruction, may appear on an instruction that is
one or two instructions away from original jmp/ call in the execution flow. In this example, the mov
instruction at the top of the loop is not responsible for the 1.02% of the events because the mov instruction is
the target of the branch at the bottom of the loop. The real source of the events is the jmp instruction at the
bottom of the loop.

Event % Instructions

1.02% top_of_loop: mov ...
... (any number of lines)
end_of_loop: jnz <to someplace>
jmp top_of_loop

See Also
Hardware Event-based Sampling Collection

Understanding How General Exploration Works in Intel® VTune™ Profiler

Instructions Retired Event
The Instructions Retired is an important hardware
performance event that shows how many instructions
were completely executed.

Modern processors execute much more instructions that the program flow needs. This is called a speculative
execution. Instructions that were "proven" as indeed needed by the program execution flow are "retired".

In the Core Out Of Order pipeline leaving the Retirement Unit means that the instructions are finally
executed and their results are correct and visible in the architectural state as if they execute in-order:

Intel® VTune™ Profiler User Guide 1

347

https://www.intel.com/content/www/us/en/developer/articles/technical/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe.html

Retirement and write back of state to visible registers is only done for instructions and uops that are on the
correct execution path. Instructions and uops of incorrectly predicted paths are flushed upon identification of
the misprediction and the correct paths are then processed. Retirement of the correct execution path
instructions can proceed when two conditions are satisfied:

• The uops associated with the instruction to be retired have completed, allowing the retirement of the
entire instruction, or in the case of instructions that generate very large number of uops, enough to fill the
retirement window.

• Older instructions and their uops of correctly predicted paths have retired.

Intel® VTune™ Profiler monitors the Instructions Retired event for all analysis types based on the hardware
event-based sampling (EBS), also known as Performance Monitoring Counter (PMC) analysis in the sampling
mode. The Instructions Retired event is also part of the basic Clockticks per Instructions Retired (CPI) metric
that shows how much latency affected an application execution.

For performance analysis, you may check how many instructions started their execution in OOO pipeline
(ISSUED counter or EXECUTED counter) and compare the number with the count of retired operations. High
difference shows that CPU does a lot of useless work and uses excess power.

See Also
Hardware Event-Based Sampling Collection

Hardware Event Skid

Precise Events
Precise events are events for which the exact
instruction addresses that caused the event are
available.

 1 Intel® VTune™ Profiler User Guide

348

You can configure these events to collect extended information, the values of all the registers evaluated at
the IP of the interrupt, on IA-32 and Intel® 64 architecture systems. For example, on Intel Core™ 2 processor
family, an L2 load miss that retrieves a cacheline can be identified with the
MEM_LOAD_RETIRED.L2_LINE_MISS event. The register values and the disassembly allows the
reconstruction of the linear address of the memory operation that caused the event.

Check the HOW configuration pane in the Configure Analysis window to make sure the events you use are
precise. Usually precise events have a _PS postfix (for example, MEM_LOAD_RETIRED.FB_HIT_PS) in the
Description column as follows:

See Also
Hardware Event-based Sampling Collection

HOW: Analysis Types

Linux* and Android* Kernel Analysis
Use an event library provided in the Custom Analysis
configuration to select Linux* Ftrace* and Android*
framework events to monitor with the event-based
sampling collector.

To choose events from the library:

1. Create a new hardware event-based sampling analysis type.

The new analysis type shows up under Custom Analysis in the HOW pane of the Configure Analysis
window.

2. In the new custom configuration, use the Linux Ftrace events or Android framework events area
to specify events for monitoring a system behavior:

Intel® VTune™ Profiler User Guide 1

349

For example, for KVM guest OS profiling consider selecting the following Linux Ftrace events to track
IRQ injection process: kvm, irq, sofirq and workq.

The collected data shows up as tasks in the default viewpoint. Start with the Summary window to identify
the most time-consuming tasks in the Top Tasks section. Analyze task duration statistics presented by task
type in the Task Duration histogram:

 1 Intel® VTune™ Profiler User Guide

350

Use the sliders to set up thresholds for high and slow task instances.

Clicking a task in the Top Tasks section opens the Bottom-up window grouped by tasks. To analyze tasks
over time, switch to the Platform window:

Intel® VTune™ Profiler User Guide 1

351

Limitations
On some systems, the Linux Ftrace subsystem, located in the debugfs partition in /sys/kernel/debug/
tracing, may be accessible for the root user only. In this case, the VTune Profiler provides an error
message: Ftrace collection is not possible due to a lack of credentials. Root privileges are required. To enable
Ftrace events collection on such a system, you may either run the VTune Profiler with root privileges or
change permissions manually by using the chown command under the root account, for example:

$ chown -R <user>:<group> /sys/kernel/debug/tracing
You can automate this process by using the prepare_debugfs.sh script located in the bin directory. The
script mounts debugfs, changes permissions to a desired group, and updates the install boot script to apply
this change automatically on the system startup. To execute this script, make sure to use root privileges.

To change permissions automatically with the prepare_debugfs.sh script, enter:

$./install/bin64/prepare-debugfs.sh [option]
where [option] is one of the following:

Option Description

-h | --help Display usage information.

-i | --
install

Configure the autoload debugfs boot script and install it in the appropriate system
directory.

-c | --check Mount without options, script will configure debugfs and check permissions.

-u | --
uninstall

Uninstall a previously installed debugfs boot script and revert configuration.

-g | --group
<group>

Specify group other than vtune.

-r | --revert Revert debugfs configuration.

 1 Intel® VTune™ Profiler User Guide

352

Option Description

-b | --batch Run in a non-interactive mode (exiting in case of already changed permissions) without
options. The script will configure debugfs.

See Also
Custom Analysis

Task Analysis

Analyze Interrupts

knob
 atrace-config/ftrace-config option for CLI

Problem: No GPU Utilization Data Is Collected

Sampling Interval
Configure the amount of wall-clock time the Intel®
VTune™ Profiler waits before collecting each sample
(sampling interval).

The sampling interval is used to calculate the target number of samples and the Sample After value (SAV).
Increasing the sampling interval may be useful for profiles with long durations or profiles that create large
results. Typically, the size of the collected result is affected with such factors as duration, thread and core
counts, selected analysis type, additional collection knobs, and application behavior.

You may change the default sampling interval as follows:

1. Click the

(standalone GUI)/

(Visual Studio* IDE) Configure Analysis button on the VTune Profiler toolbar.
2. Select a predefined analysis type from the HOW pane or create a custom analysis type.
3. Use the CPU sampling interval, ms field to specify the required interval.

For user-mode sampling and tracing types, specify a number (in milliseconds) between 1 and 1000.
Default: 10ms. For hardware event-based sampling types, specify a number between 0.01 and 1000.
Default: 1ms.

NOTE
For hardware event-based sampling types, the sampling interval serves as a simple SAV multiplier so
that the default interval value of 1ms just leaves the SAV intact. The sampling interval value of 0.1ms
divides the SAV for all events by 10 making them overflow 10 times more frequently. The sampling
interval value of 10ms multiplies the SAV for all events by 10 making them overflow 10 times less
frequently.

To determine an appropriate sampling interval, consider the duration of the collection, the speed of your
processors, and the amount of software activity. For instance, if the duration of sampling time is more than
10 minutes, consider increasing the sampling interval to 50 milliseconds. This reduces the number of
interrupts and the number of samples collected and written to disk. The smaller the sampling interval, the
larger the number of samples collected and written to disk.

The minimal value of the sampling interval for the user-mode sampling and tracing collection depends on the
system:

Intel® VTune™ Profiler User Guide 1

353

• 10 milliseconds for Windows* systems with a single CPU
• 15 milliseconds for Windows* systems with multi-core CPUs
• 10 milliseconds for Linux* 2.4 kernels
• 1,2,4 milliseconds for new Linux >= 2.6 kernels depending on the vendor

NOTE
For driverless Perf*-based data collection on the targets running under Xen Hypervisor, the VTune
Profiler automatically sets the sampling interval to 0 to switch to the integrated Perf sampling interval.
This configuration provides more precise performance statistics in the hypervisor environment.

See Also
knob sampling-interval
vtune option

Sample After Value
For a custom event-based sampling data collection,
set up the Sample After Value (SAV) that is a
frequency with which the Intel® VTune™ Profiler
interrupts the processor to collect a sample during
hardware event-based data collection. SAV is
measured as the number of events it takes to trigger
a sample collection.

A Sample After Value that is too small causes the sampling interrupts to occur too frequently, which can lead
to performance degradation and system instability. VTune Profiler enforces a floor value to prevent such a
behavior. The recommended value is 1000 samples per second per processor.

VTune Profiler sets the Sample After value for hardware events automatically. For predefined hardware-level
analysis types, the Sample After value is displayed in the Configure Analysis window > HOW pane. You
cannot edit the Sample After value provided in the table for each event. But during the data collection the
VTune Profiler may adjust it by a multiplier. The multiplier depends on the sampling interval value specified in
the HOW pane.

To edit the default Sample After value, you need to create a custom hardware event-based analysis type
(based on an existing type), add events, if required, and edit a Sample After value in the events table by
selecting it as follows:

See Also
Custom Analysis Options

 1 Intel® VTune™ Profiler User Guide

354

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Running runsa/runss Custom Analysis from the Command Line

Energy Analysis
Use Intel® SoC Watch and Intel® VTune™ Profiler to collect and analyze power and energy consumption
metrics. You can collect data on Windows, Linux, or Android systems. Use this data to identify system
behaviors that waste energy.

Get Snapshot through Intel® VTune™ Profiler
In the snapshot view, you can observe package power consumption over time when you run any analysis
type in Intel® VTune™ Profiler. This option is available when you run VTune Profiler on Windows, Linux, or
Android systems.

1. On the VTune Profiler welcome screen, click Configure Analysis.
2. In the HOW pane, select an analysis type. In this example, we use the Hotspots analysis.
3. Customize a copy of the analysis. Click this icon:

4. Select options as necessary.
5. At the bottom of the analysis type, check Analyze power usage.

6. Click Start(

) to run the analysis.

When the analysis completes, VTune Profiler displays package power usage information (collected by Intel®
SoC Watch) in the Platform tab.

Intel® VTune™ Profiler User Guide 1

355

Track package power usage to see if the CPU is likely to enter a throttling phase. If that happens, you can
run a throttling analysis to explore possible causes.

For detailed information about using Intel SoC Watch, see the Energy Analysis User Guide.

Run Energy Analysis
To analyze the power consumption of your Android*,
Windows*, or Linux* platform, run the Intel® SoC
Watch collector and view the results using Intel VTune
Profiler.

Using the data visualization provided by Intel VTune Profiler, along with the detailed reports generated by
Intel SoC Watch, a user can measure, debug, and optimize system power consumption. Data collection can
occur on the system where Intel VTune Profiler is installed or on a remote target system.

Prerequisites: The Intel SoC Watch collector is installed on the target system. For detailed instructions on
configuring your environment, see the Installation section of the Intel SoC Watch Release Notes for your
target system's operating system. The latest Intel SoC Watch documents are available online at the Intel
Developer Zone site. You can also find a copy on the target system in the product's documentation directory
after extracting the Intel SoC Watch package.

1. Set up the scenario to be analyzed for energy usage and run the data collection using Intel SoC Watch,
including the option to write a result file that can be imported to VTune Profiler (-f vtune). Data
collection can occur on an idle system or run concurrently with a workload that is started at any time
before or during the collection.

 1 Intel® VTune™ Profiler User Guide

356

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/platform-analysis-group/throttling-analysis.html
https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/oneapi-soc-watch.html

NOTE Users in Linux environments do not require root privileges to run energy analysis. Once your
system administrator installs VTune Profiler sampling drivers and configures them with the necessary
permissions, users without root privileges can collect energy data when profiling with VTune Profiler.
On Windows systems, you must have administrator privileges to collect data on energy consumption.

For example, to run a collection for 1 minute (-t 60), gather data about how much time the CPU
spends in low power states (-f cpu-cstate), include trace data (-m), and store the reports in a
specified directory location with the specified file name (-o results/test), you would use:

socwatch -t 60 -f cpu-cstate -m -o results/test -r vtune
The import file is saved to the results directory as test.pwr.

For detailed descriptions of options and the different metrics that can be collected, see the Getting
Started section of the Intel SoC Watch User's Guide (Linux and Android | Windows).

Tip

• Use feature group names as a shorthand for specifying several features (metrics) that should be
collected at the same time. For instance, -f sys collects many commonly used metrics, including
low power state residency for CPU, GPU, and devices, CPU temperature and frequency, and
memory bandwidth.

• Use the --help option to discover all of the available metrics that can be collected on the system
(found under feature and feature group names) as well as other options for controlling data
collection and reporting.

2. If running on a remote target system, copy the import file to the system where VTune Profiler is
installed. The import file has a (*.pwr) extension, such as results/test.pwr from the example
command.

3. Launch VTune Profiler.
4. Open

or create

a project.
5. Click the

Import Result button on the toolbar and browse to the import file that you copied from the target
system.

When the import completes, the Platform Power Analysis viewpoint opens automatically.

See Also
Interpret Energy Analysis Data with Intel® VTune™ Profiler

Run Command Line Analysis

Intel® VTune™ Profiler User Guide 1

357

https://www.intel.com/content/www/us/en/content-details/671090/intel-soc-watch-for-linux-and-android-os-user-s-guide.html
https://www.intel.com/content/www/us/en/content-details/671133/intel-soc-watch-for-windows-os-user-s-guide.html

View Energy Analysis Data with Intel® VTune™ Profiler

NOTE
Collecting energy analysis data with Intel® SoC Watch is available for target Android*, Windows*, or
Linux* devices. Import and viewing of the Intel SoC Watch results is supported with any version of the
VTune Profiler.

After you collect energy analysis data on your target system, using the Intel® SoC Watch collector, you can
import a result file (*.pwr) to Intel® VTune™ Profiler on your host system, and view Platform Power analysis
data with the following windows. The windows that appear depend on which metrics are collected:

• Summary Window displays a summary of the data collected. This window is a good starting point for
identifying energy issues.

• Correlate Metrics window displays timelines for all collected data in the same time scale. This window is a
good starting point for identifying energy issues.

• Bandwidth window displays the DDR SDRAM memory events and bandwidth usage over time.
• Core Wake-ups window displays wake-up events that caused the core to switch from a sleep state to an

active state.
• CPU C/P States window displays CPU sleep state and processor frequency data correlated. The data is

displayed according to the hierarchy for the platform on which the data was collected, and over time.
• Graphics C/P States window displays graphics sleep state, and P-state data collected. The data is

displayed by device and over time.
• NC Device window displays the different D0ix sleep states for North Complex devices, overall counts and

over time.
• SC Device window displays the different D0ix sleep states for South Complex devices, overall counts and

over time.
• Thermal Sample window displays the temperature readings from the cores and SoC.
• Timer Resolution (Windows* OS only) displays the timer resolution and requests to change it, including

the process requesting the change.
• Wakelocks window (Android* OS only) displays wakelock data indicating why the system can or cannot

enter the ACPI S3 (Suspend-To-RAM) state.

View Component Rows in the Timeline Pane
Some rows can expand and reveal component rows. Look for an arrow next to the row name, as in the
timeline shown below.

 1 Intel® VTune™ Profiler User Guide

358

https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html

Zoom in on a Specific Section in the Timeline
Click and drag horizontally across the rows to select a time interval within the total collection. Release the
mouse button to see a list of options for zooming in on this interval. Zoom In and Filter In by Selection is
particularly useful because it will not only zoom, but also recalculate all of the grid’s summary data based on
the current selection. Once a filter has been applied in one tab it will persist across all tabs within that
viewpoint, highlighting the selected time interval on each tab. Right-click and select Remove All Filters to
restore the original grid and clear the selection from the timeline.

See Also
Android* Targets
Remote Linux Target Setup

Collecting Data Remotely on Android* from Command Line

Search Directories

Manage Data Views

Interpret Energy Analysis Data with Intel® VTune™ Profiler
Identify causes of energy waste on target systems by
opening your energy analysis results with Intel VTune
Profiler.

NOTE
Collecting energy analysis data with Intel® SoC Watch is available for target Android*, Windows*, or
Linux* devices. Import and viewing of the Intel SoC Watch results is supported with any version of the
VTune Profiler.

Intel® VTune™ Profiler User Guide 1

359

https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html

After you collect energy analysis data on your target system, using the Intel® SoC Watch collector, you can
import a result file (*.pwr) to Intel® VTune™ Profiler on your host system. Energy analysis data is opened in
the Platform Power analysis viewpoint.

To interpret the performance data provided during the energy analysis, you may follow the steps below:

1. Analyze overall statistics.
2. Identify cores with the highest time spent in C0 state.

Analyze Overall Statistics
Use the Summary window to view statistics on the overall collection run time execution per power analysis
metrics. Viewing the top statistics and histograms for a particular metric is a good starting point. Focus on
decreasing the causes of core wake-up and increasing the time that the core spends in the higher sleep
states.

For example, this Top Core C-State by State diagram shows that the core was awake for approximately 10
seconds of the total collection time (time in CC0 state). Use the Profiled Entity drop-down to view the C-
state data for other cores. Explore the histogram to analyze the time spent in each sleep state.

Tip
Click the Details link next to the table or graph title on the Summary tab to view more information
about that metric in another tab.

Identify Cores with Highest Time Spent in C0 States
Switch to the C-State Residency/Wakeups window and the Core C-State tab to identify cores with the highest
time spent in the active C0 state. Spending more time in deeper sleep states (C1-Cn) provides greater power
savings.

 1 Intel® VTune™ Profiler User Guide

360

By default, VTune Profiler displays data grouped by core and sorted by CPU time spent in the deepest C-state
in the ascending order. For the example below, over 30% of the time was spent in the CC0 active state for
both cores.

Use the timeline view to understand when state transitions occur. Hover over a chart point to view the sleep
states details for the particular moment of time. The deeper the color of the chart, the deeper the sleep state
of the CPU. Select a region of the graph and zoom into the selection to see detailed sleep state transitions.

Intel® VTune™ Profiler User Guide 1

361

See Also
Viewing Source

Code Profiling Scenarios
Explore end-to-end performance analysis scenarios for
managed code profiling and applications using Intel®
runtime libraries:

• Java* Code Analysis
• Python* Code Analysis
• Intel® Threading Building Blocks Code Analysis
• MPI Code Analysis
• OpenSHMEM* Code Analysis with Fabric Profiler
• GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics
• Frame Data Analysis
• Task Analysis

NOTE
For additional use cases, explore the Intel® VTune™ Profiler Performance Analysis Cookbook.

 1 Intel® VTune™ Profiler User Guide

362

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/overview.html

See Also
Command Line Usage Scenarios

Java* Code Analysis
Use the Intel® VTune™ Profiler to analyze Java*
applications executed with Oracle* or OpenJDK*
(Linux* only).

Even though Java code execution is handled with a Managed Runtime Environment, it can be as ineffective in
terms of data management as in programs written using native languages. For example, if you are conscious
about performance of your data mining Java application, you need to take into consideration your target
platform memory architecture, cache hierarchy and latency of access to memory levels. From the platform
microarchitecture point of view, profiling of Java applications is similar to profiling of native applications but
with one major difference: to see performance metrics against their program source code, the profiling tool
must be able to map metrics of the binary code either compiled or interpreted by the JVM back to the original
source code in Java or C/C++.

VTune Profiler provides a low-overhead analysis of the JIT compiled code that is available for both user-mode
sampling and tracing and hardware event-based sampling analysis types. The analysis of the interpreted Java
methods is limited.

To enable the Java code analysis with the Intel® VTune™ Profiler and interpret data:

• Configure Java data collection.

• Launch Application
• Attach to Process
• Linux* only: Attach to Process Running under Low-privilege Account

• Identify hottest methods.
• Analyze stacks for mixed code.
• Analyze hardware metrics.
• Understand limitations.

Configuring Java Data Collection
To configure your performance analysis for Java code, you may use either GUI or command line (vtune)
configuration. You may run Java code analysis using one of the following modes:

To configure Java analysis in the Launch Application mode:

1. Embed your java command in a batch file or executable script.

For example, create a run.bat file on Windows* or run.sh file on Linux* with the following command:

Windows:

> java.exe -Xcomp -Djava.library.path=native_lib\ia32 -cp C:\Design\Java\mixed_stacks
MixedStacksTest 3 2

Linux:

$ java -Xcomp -Djava.library.path=native_lib/ia32 -cp /home/Design/Java/mixed_stacks
MixedStacksTest 3 2

2. Create a project.
3. In the Configure Analysis window > WHERE pane, specify your analysis system, for example, Local

Host.
4. In the WHAT pane, choose the Application to Launch target type.
5. In the Application field, specify a path to this run file . For example, on Linux:

Intel® VTune™ Profiler User Guide 1

363

6. In the Advanced section, select the Auto Managed code profiling mode and enable the Analyze child
processes option.

Similarly, you can configure an analysis with the VTune Profiler command line interface, vtune. For example,
for the Hotspots analysis on Linux run the following command line:

$ vtune -collect hotspots -- run.sh
or directly:

$ vtune -collect hotspots -- java -Xcomp -Djava.library.path=native_lib/ia32 -cp home/Design/
Java/mixed_stacks MixedStacksTest 3 2

To configure Java analysis in the Attach to Process mode:

In case your Java application needs to run for some time or cannot be launched at the start of this analysis,
you may attach the VTune Profiler to the standalone Java process. On Linux, you can also attach the VTune
Profiler to a C/C++ application with an embedded JVM instance for hardware event-based sampling analysis
types. To do this, select the Attach to Process target type in the WHAT pane and specify the java process
name or PID.

You may use the command line interface to attach the analysis to the Java process. For example, the
following command attaches the Hotspots analysis to the Java process:

$ vtune -collect hotspots -target-process java
The following command line example attaches the Hotspots analysis to the Java process by its PID:

$ vtune -collect hotspots -target-pid 1234

NOTE The dynamic attach mechanism is supported only with the Java Development Kit (JDK).

To configure Java analysis in the Attach to Process mode under Low-privilege Account (Linux*
Only):

For hardware event-based sampling analysis types, you can attach the VTune Profiler running under the
superuser account to a Java process or a C/C++ application with embedded JVM instance running under a
low-privileged user account. For example, you may attach the VTune Profiler to Java based daemons or
services.

To do this, run the VTune Profiler under the root account, select the Attach to Process target type and
specify the java process name or PID.

 1 Intel® VTune™ Profiler User Guide

364

Identifying Hottest Methods
You may run the Hotspot analysis to get a list of the hottest methods along with their timing metrics and call
stacks. The workload distribution over threads is also displayed in the Timeline pane. Thread naming helps
to identify where exactly the most resource consuming code was executed. For example, on Linux*:

Analyzing Stacks for Mixed Code
If you are pursuing maximum performance on a platform, consider writing and compiling performance critical
modules of your Java project in native languages like C or even assembly. This way of programming helps to
employ powerful CPU resources like vector computing (implemented via SIMD units and instruction sets). In
this case, compute-intensive functions become hotspots in the profiling results, which is expected as they do
most of the job. However, you might be interested not only in hotspot functions, but in identifying locations
in Java code these functions were called from via a JNI interface. Tracing such cross-runtime calls in the
mixed language algorithm implementations could be a challenge.

To analyze mixed code profiling results, the VTune Profiler is "stitching" the Java call stack with the
subsequent native call stack of C/C++ functions. The reverse call stacks stitching works as well. For
example, on Windows*:

Native
function

Mixed native/Java call stack

Native
module

Compiled methods in the Java call stack

NOTE
Due to inlining during the compilation stage, some functions may not appear in the stack by default.
Make sure to select the Show inline functions option for the Inline Mode on the filter bar.

Analyzing Hardware Metrics
VTune Profiler also provides an advanced profiling option of optimizing Java applications for the CPU
microarchitecture utilized in your platform. Although Java and JVM technology is intended to free a developer
from hardware architecture specific coding, once Java code is optimized for the current Intel
microarchitecture, it will most probably keep this advantage for future generations of CPUs. You may use the
hardware event-based sampling data collection that monitors hardware events in the CPU's pipeline and can
identify coding pitfalls limiting the most effective execution of instructions in the CPU. The CPU metrics are
available and can be displayed against the application modules, functions, and Java code source lines. You
may also run the hardware event-based sampling collection with stacks when you need to find out a call path
for a function called in a driver or middleware layer in your system.

Intel® VTune™ Profiler User Guide 1

365

Limitations
VTune Profiler supports analysis of Java applications with some limitations:

• System-wide profiling is not supported for managed code.
• The JVM interprets some rarely called methods instead of compiling them for the sake of performance.

VTune Profiler does not recognize interpreted Java methods and marks such calls as !Interpreter in the
restored call stack.

If you want such functions to be displayed in stacks with their names, force the JVM to compile them by
using the -Xcomp option (show up as [Compiled Java code] methods in the results). However, the
timing characteristics may change noticeably if many small or rarely used functions are being called
during execution.

• When opening source code for a hotspot, the VTune Profiler may attribute events or time statistics to an
incorrect piece of the code. It happens due to JDK Java VM specifics. For a loop, the performance metric
may slip upward. Often the information is attributed to the first line of the hot method's source code. In
the example below, a real hotspot line consuming most CPU time is line 35.

• Consider events and time mapping to the source code lines as approximate.
• For the Hotspots analysis type in the user-mode sampling mode, the VTune Profiler may display only a

part of the call stack. To view the complete stack on Windows, use the -Xcomp additional command line
JDK Java VM option that enables the JIT compilation for better quality of stack walking.

To view the complete stack on Linux, use additional command line JDK Java VM options that change
behavior of the Java VM:

• Use the -Xcomp additional command line JDK Java VM option that enables the JIT compilation for
better quality of stack walking.

• On Linux* x86, use client JDK Java VM instead of the server Java VM: either explicitly specify -client,
or simply do not specify -server JDK Java VM command line option.

• On Linux x64, specify -XX:-UseLoopCounter command line option that switches off on-the-fly
substitution of the interpreted method with the compiled version.

 1 Intel® VTune™ Profiler User Guide

366

• Java application profiling is supported for the Hotspots and Microarchitecture analysis types. Support for
the Threading analysis is limited as some embedded Java synchronization primitives (which do not call
operating system synchronization objects) cannot be recognized by the VTune Profiler. As a result, some
of the timing metrics may be distorted.

• There are no dedicated libraries supplying a user API for collection control in the Java source code.
However, you may want to try applying the native API by wrapping the __itt calls with JNI calls.

See Also
Enable Java* Analysis on Android* System

Stitch Stacks for Intel® oneAPI Threading Building Blocks or OpenMP* Analysis

Python* Code Analysis
Explore performance analysis options provided by the
Intel® VTune™ Profiler for Python* applications to
identify the most time-consuming code sections and
critical call paths.

VTune Profiler supports the Hotspots, Threading, and Memory Consumption (Linux only) analyses for
Python* applications through the Launch Application mode. For example, when your application does
excessive numerical modeling, you need to know how effectively it uses available CPU resources. A good
example of the effective CPU usage is when the calculating process spends most time executing native
extension and not interpreting Python glue code.

To get the maximum performance out of your Python application, consider using native extensions, such as
NumPy or writing and compiling performance critical modules of your Python project in native languages,
such as C or even assembly. This will help your application take advantage of vectorization and make
complete use of powerful CPU resources.

To analyze the Python code performance with the VTune Profiler and interpret data:

• Configure Python data collection
• Identify hot spots
• Understand limitations

Configure Python Data Collection
Configure VTune Profiler through the GUI or command-line (vtune) interface to analyze the performance of
your Python code.

In the GUI:

1. Click the

Configure Analysis button on the toolbar.

The Configure Analysis window opens.
2. Choose a target system and target type, like Local Host and Launch Application.

NOTE
You can profile Windows* and Linux* target systems only.

3. In the WHERE pane, provide these details:

• In the Application field, enter the path to the installed Python interpreter.

Intel® VTune™ Profiler User Guide 1

367

• In the Application parameters field, enter the path to your Python script.

NOTE
If you specify a relative path to your Python script, VTune Profiler completely resolves the full function
or method names for the imported modules only. The names inside the main script are not resolved.
To avoid this, specify the absolute path to your Python script.

• In the Advanced settings, in the Managed code profiling mode drop-down menu, select Auto. This
way, VTune Profiler automatically detects the type of target executable (managed or native) and
switches to the corresponding mode.

• If necessary, select Analyze child processes to collect data on processes launched by the target
process.

NOTE
When you attach the VTune Profiler to the Python process, make sure you initialize the Global
Interpreter Lock (GIL) inside your script before you start the analysis. If GIL is not initialized, the
VTune Profiler collector initializes it only when a new Python function is called.

4. If your Python application should run before you start profiling or if you cannot run the application at
the start of the analysis, attach VTune Profiler to the Python process. To do this, in the WHAT pane,
select the Attach to Process target type. Specify the Python process name or PID.

5. In the HOW pane on the right, select the Hotspots, Threading, or Memory Consumption analysis
type.

6. If necessary, configure these options or use their default settings:

User-Mode
Sampling mode

Select to enable the user-mode sampling and tracing collection for hotspots
and call stack analysis (formerly known as Basic Hotspots). This collection
mode uses a fixed sampling interval of 10ms. If you need to change the
interval, click the Copy button and create a custom analysis configuration.

Show additional
performance
insights check box

Get additional performance insights, such as vectorization, and learn next
steps. This option collects additional CPU events, which may enable the
multiplexing mode.

The option is enabled by default.

 1 Intel® VTune™ Profiler User Guide

368

Details button Expand/collapse a section listing the default non-editable settings used for
this analysis type. If you want to modify or enable additional settings for the
analysis, you need to create a custom configuration by copying an existing
predefined configuration. VTune Profiler creates an editable copy of this
analysis type configuration.

7. Click Start to run the analysis.

Identifying Hot Spots
Hotspots analysis in the user-mode sampling mode helps identify sections of your Python code that take a
long time to execute (hotspots), along with their timing metrics and call stacks. It also displays the workload
distribution over threads in the Timeline pane.

By default, the VTune Profiler uses the Auto managed code profiling mode, that enables you to view and
analyze mixed stacks for Python/C++ applications. In the example below, you can see a native hotspot Intel®
oneAPI Math Kernel Library(oneMKL) function on the left pane. The mixed call stack analysis on the right
pane reveals a Python black_scholes function that actually calls the hotspot function:

Double-click the black_scholes function on the Call Stack pane to open the source view on call site line
66:

To view call stacks only inside your Python code, filter out Python core and system functions by selecting
Only user functions option for the Call Stack Mode on the filter bar.

Python Code Profiling Considerations
• Profiling support exists for Python distribution 2.6 and newer versions.
• If you use Python extensions that compile Python code to the native language (JIT, C/C++), VTune

Profiler may show incorrect analysis results. Consider using JIT Profiling API to solve this problem.
• You can profile Python code on Windows and Linux target systems.
• In some cases, VTune Profiler may not resolve full names of Python functions and modules on Windows

OS. However, the source information displays properly. You can view the source directly from viewpoints
in VTune Profiler.

• The Timeline pane does not always display proper thread names.
• If your application has very low stack depth, which includes called functions and imported modules, the

VTune Profiler does not collect Python data. Consider using deeper calls to enable the profiling.

Intel® VTune™ Profiler User Guide 1

369

• When collecting data remotely, VTune Profiler may not resolve full function or method names, and display
the source code of your Python script. To solve this problem for Linux targets, copy the source files to a
directory on your host system with a path identical to the path on your target system before running the
analysis.

See Also
knob
 mrte-type=python option

Hotspots View

Memory Consumption and Allocations View

Intel® Threading Building Blocks Code Analysis
Use the Intel® VTune™ Profiler for performance
analysis of application targets using Intel® oneAPI
Threading Building Blocks(oneTBB).

If you used the Intel® Runtime libraries in your application, you can run:

• Hotspots and Threading analysis to explore the application parallelization efficiency based on oneTBB
parallel or synchronization constructs.

• Threading analysis to get detailed information on oneTBB synchronization objects that limited the parallel
performance of your multithreaded application.

NOTE
Using Intel C++ compiler is recommended to get more comprehensive diagnostics from the VTune
Profiler.

Start exploration of oneTBB parallelization efficiency with Hotspots. Look at the Effective CPU Utilization
Histogram to see the parallelization level of your application. Note that the histogram reflects the
parallelization levels of your application based on the effective time spent subtracting time spent in threading
runtimes.

If you see a significant portion of your elapsed time spent with Idle or Poor CPU utilization, explore the Top
Hotspots table. Flagged oneTBB functions might mean that the application spends CPU time in the oneTBB
runtime because of parallel inefficiencies like scheduling overhead or imbalance. To discover the reason,
hover over the flag.

The Bottom-up tab can give you more details about synchronization or overhead in particular oneTBB
constructs. Expand the Spin Time and Overhead Time columns in the grid to determine why a particular
oneTBB runtime function had a higher than usual execution time. oneTBB runtime functions are flagged when
they consume more than 5% of the CPU time.

For example, an oneTBB runtime function with a high Scheduling value may indicate that your application has
threading work divided into small pieces, which leads to excessive scheduling overhead as the application
calls to the runtime. You can resolve this issue by increasing the threading chunk size.

 1 Intel® VTune™ Profiler User Guide

370

If there is an idle wait time when the oneTBB runtime does not burn the CPU on synchronization, it is useful
to run the Threading analysis to explore synchronization bottlenecks that can prevent effective CPU
utilization. VTune Profiler recognizes all types of Intel TBB synchronization objects. If you assign a meaningful
name to an object you create in the source code, the VTune Profiler recognizes and represents it in the Result
tab. For performance reasons, this functionality is not enabled by default in oneTBB headers. To make the
user-defined objects visible to the VTune Profiler, recompile your application with
TBB_USE_THREADING_TOOLS set to 1.

To display an overhead introduced by oneTBB library internals, the VTune Profiler creates a pseudo
synchronization object TBB Scheduler that includes all waits from the oneTBB runtime libraries.

See Also
Cookbook: OpenMP* Code Analysis Method

Threading Efficiency View

Cookbook: Scheduling Overhead in oneTBB Apps

MPI Code Analysis
Explore using Intel® VTune™ Profiler command line
interface (vtune) for profiling an MPI application.

Parallel High Performance Computing (HPC) applications often rely on multi-node architectures of modern
clusters. Performance tuning of such applications must involve analysis of cross-node application behavior as
well as single-node performance analysis. Intel® Parallel Studio Cluster Edition includes such performance
analysis tools as Application Performance Snapshot, Intel Trace Analyzer and Collector, and Intel VTune
Profiler that can provide important insights to help in MPI application performance analysis. For example:

• Application Performance Snapshot provides a quick MPI application performance overview.
• Intel Trace Analyzer and Collector explores message passing interface (MPI) usage efficiency with

communication hotspots, synchronization bottlenecks, load balancing, etc.
• Intel VTune Profiler focuses on intra-node performance with threading, memory, and vectorization

efficiency metrics.

NOTE
The version of the Intel MPI library included with the Intel Parallel Studio Cluster Edition makes an
important switch to use the Hydra process manager by default for mpirun. This provides high
scalability across the big number of nodes.

This topic focuses on how to use the VTune Profiler command line tool to analyze an MPI application. Refer to
the Additional Resources section below to learn more about other analysis tools.

Use the VTune Profiler for a single-node analysis including threading when you start analyzing hybrid codes
that combine parallel MPI processes with threading for a more efficient exploitation of computing resources.
HPC Performance Characterization analysis is a good starting point to understand CPU utilization, memory
access, and vectorization efficiency aspects and define the tuning strategy to address performance gaps. The
CPU Utilization section contains the MPI Imbalance metric, which is calculated for MPICH-based MPIs. Further
steps might include Intel Trace Analyzer and Collector to look at MPI communication efficiency, Memory
Access analysis to go deeper on memory issues, Microarchitecture Exploration analysis to explore
microarchitecture issues, or Intel Advisor to dive into vectorization tuning specifics.

Use these basic steps required to analyze MPI applications for imbalance issues with the VTune Profiler:

1. Configure installation for MPI analysis on Linux host.
2. Configure and run MPI analysis with the VTune Profiler.

Intel® VTune™ Profiler User Guide 1

371

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/intel-tbb-scheduling-overhead.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/get-started-application-snapshot/current/overview.html

3. Control collection with the MPI_Pcontrol function.
4. Resolve symbols for MPI modules.
5. View collected data.

Explore additional information on MPI analysis:

• MPI implementations supported by VTune Profiler
• MPI system modules recognized by VTune Profiler
• Analysis limitations
• Additional resources

Configure Installation for MPI Analysis on Linux* Host
For MPI application analysis on a Linux* cluster, you may enable the Per-user Hardware Event-based
Sampling mode when installing the Intel Parallel Studio Cluster Edition. This option ensures that during the
collection the VTune Profiler collects data only for the current user. Once enabled by the administrator during
the installation, this mode cannot be turned off by a regular user, which is intentional to preclude individual
users from observing the performance data over the whole node including activities of other users.

After installation, you can use the respective vars.sh files to set up the appropriate environment (PATH,
MANPATH) in the current terminal session.

Configure MPI Analysis with the VTune Profiler
To collect performance data for an MPI application with the VTune Profiler, use the command line interface
(vtune). The collection configuration can be completed with the help of the target configuration options in
the VTune Profiler user interface. For more information, see Arbitrary Targets Configuration.

Usually, MPI jobs are started using an MPI launcher such as mpirun, mpiexec, srun, aprun, etc. The
examples provided use mpirun. A typical MPI job uses the following syntax:

mpirun [options] <program> [<args>]
VTune Profiler is launched using <program> and your application is launched using the VTune Profiler
command arguments. As a result, launching an MPI application using VTune Profiler uses the following
syntax:

mpirun [options] vtune [options] <program> [<args>]
There are several options for mpirun and vtune that must be specified or are highly recommended while
others can use the default settings. A typical command uses the following syntax:

mpirun -n <n> -l vtune -quiet -collect <analysis_type> -trace-mpi -result-dir
<my_result> my_app [<my_app_options>]
The mpirun options include:

• <n> is the number of MPI processes to be run.
• -l option of the mpiexec/mpirun tools marks stdout lines with an MPI rank. This option is recommended,

but not required.

The vtune options include:

• -quiet / -q option suppresses the diagnostic output like progress messages. This option is
recommended, but not required.

• -collect <analysis type> is an analysis type you run with the VTune Profiler. To view a list of
available analysis types, use VTune Profiler-help collect command.

• -trace-mpi adds a per-node suffix to the result directory name and adds a rank number to a process
name in the result. This option is required for non-Intel MPI launchers.

• -result-dir <my_result> specifies the path to a directory in which the analysis results are stored.

 1 Intel® VTune™ Profiler User Guide

372

If a MPI application is launched on multiple nodes, VTune Profiler creates a number of result directories per
compute node in the current directory, named as my_result.<hostname1>, my_result.<hostname2>, ...
my_result.<hostnameN>, encapsulating the data for all the ranks running on the node in the same
directory. For example, the Hotspots analysis (hardware event-based sampling mode) run on 4 nodes collects
data on each compute node:

mpirun -n 16 –ppn 4 –l vtune -collect hotspots -k sampling-mode=hw -trace-mpi -result-dir
my_result -- my_app.a

Each process data is presented for each node they were running on:

my_result.host_name1 (rank 0-3)
my_result.host_name2 (rank 4-7)
my_result.host_name3 (rank 8-11)
my_result.host_name4 (rank 12-15)

If you want to profile particular ranks (for example, outlier ranks defined by Application Performance
Snapshot), use selective rank profiling. Use multi-binary MPI run and apply VTune Profiler profiling for the
ranks of interest. This significantly reduces the amount of data required to process and analyze. The
following example collects Memory Access data for 2 out of 16 processes with 1 rank per node:

export VTUNE_CL=vtune -collect memory-access -trace-mpi -result-dir my_result
mpirun -host myhost1 -n 7 my_app.a : -host myhost1 -n 1 $VTUNE_CL -- my_app.a :-host myhost2 -n
7 my_app.a : -host myhost2 -n 1 $VTUNE_CL -- my_app.a

Alternatively, you can create a configuration file with the following content:

config.txt configuration file
-host myhost1 -n 7 ./a.out
-host myhost1 -n 1 vtune -quiet -collect memory-access -trace-mpi -result-dir my_result ./a.out
-host myhost2 -n 7 ./a.out
-host myhost2 -n 1 vtune -quiet -collect memory-access -trace-mpi -result-dir my_result ./a.out

To run the collection using the configuration file, use the following command:

mpirun -configfile ./config.txt
If you use Intel MPI with version 5.0.2 or later you can use the -gtool option with the Intel MPI process
launcher for easier selective rank profiling:

mpirun -n <n> -gtool "vtune -collect <analysis type> -r <my_result>:<rank_set>"
<my_app> [my_app_options]
where <rank_set> specifies a ranks range to be involved in the tool execution. Separate ranks with a
comma or use the "-" symbol for a set of contiguous ranks.

For example:

mpirun -gtool "vtune -collect memory-access -result-dir my_result:7,5" my_app.a
Examples:

1. This example runs the HPC Performance Characterization analysis type (based on the sampling driver),
which is recommended as a starting point:

mpirun -n 4 vtune -result-dir my_result -collect hpc-performance -- my_app [my_app_options]
2. This example collects the Hotspots data (hardware event-based sampling mode) for two out of 16

processes run on myhost2 in the job distributed across the hosts:

mpirun -host myhost1 -n 8 ./a.out : -host myhost2 -n 6 ./a.out : -host myhost2 -n 2 vtune -
result-dir foo -c hotspots -k sampling-mode=hw ./a.out

As a result, the VTune Profiler creates a result directory in the current directory foo.myhost2 (given
that process ranks 14 and 15 were assigned to the second node in the job).

Intel® VTune™ Profiler User Guide 1

373

3. As an alternative to the previous example, you can create a configuration file with the following
content:

config.txt configuration file
-host myhost1 -n 8 ./a.out
-host myhost2 -n 6 ./a.out
-host myhost2 -n 2 vtune -quiet -collect hotspots -k sampling-mode=hw -result-dir foo ./a.out

and run the data collection as:

mpirun -configfile ./config.txt
to achieve the same result as in the previous example: foo.myhost2 result directory is created.

4. This example runs the Memory Access analysis with memory object profiling for all ranks on all nodes:

mpirun n 16 -ppn 4 vtune -r my_result -collect memory-access -knob analyze-mem-objects=true -
my_app [my_app_options]

5. This example runs Hotspots analysis (hardware event-based sampling mode) on ranks 1, 4-6, 10:

mpirun –gtool "vtune -r my_result -collect hotspots -k sampling-mode=hw : 1,4-6,10" –n 16 -ppn 4
my_app [my_app_options]

NOTE
The examples above use the mpirun command as opposed to mpiexec and mpiexec.hydra while
real-world jobs might use the mpiexec* ones. mpirun is a higher-level command that dispatches to
mpiexec or mpiexec.hydra depending on the current default and options passed. All the listed
examples work for the mpiexec* commands as well as the mpirun command.

Control Collection with Standard MPI_Pcontrol Function
By default, VTune Profiler collects statistics for the whole application run. In some cases, it is important to
enable or disable the collection for a specific application phase. For example, you may want to focus on the
most time consuming section or disable collection for the initialization or finalization phases. This can be
done with VTune Profiler instrumentation and tracing technology (ITT). Starting with the Intel VTune Profiler
2019 Update 3 version, VTune Profiler provides ability to control data collection for MPI application with the
help of standard MPI_Pcontrol function.

Common syntax:

• Pause data collection: MPI_Pcontrol(0)
• Resume data collection: MPI_Pcontrol(1)
• Exclude initialization phase: Use with the VTune Profiler-start-paused option by adding the

MPI_Pcontrol(1) call right after initialization code completion. Unlike with ITT API calls, using the
MPI_Pcontrol function to control data collection does not require a link to a profiled application with a
static ITT API library and therefore changes in the build configuration of the application.

Resolve Symbols for MPI Modules
After data collection, the VTune Profiler automatically finalizes the data (resolves symbols and converts them
to the database). It happens on the same compute node where the command line collection was executing.
So, the VTune Profiler automatically locates binary and symbol files. In cases where you need to point to
symbol files stored elsewhere, adjust the search settings using the -search-dir option:

mpirun -np 128 vtune -q -collect hotspots -search-dir /home/foo/syms ./a.out

View Collected Data
Once the result is collected, you can open it in the graphical or command line interface of the VTune Profiler.

 1 Intel® VTune™ Profiler User Guide

374

To view the results in the command line interface:

Use the -report option. To get the list of all available VTune Profiler reports, enter VTune
Profiler-help report.

To view the results in the graphical interface:

Click the

menu button and select Open > Result... and browse to the required result file (*.vtune).

Tip
You may copy a result to another system and view it there (for example, to open a result collected on
a Linux* cluster on a Windows* workstation).

VTune Profiler classifies MPI functions as system functions similar to Intel® oneAPI Threading Building Blocks
(oneTBB) and OpenMP* functions. This approach helps you focus on your code rather than MPI internals.
You can use the VTune Profiler GUI Call Stack Mode filter bar combo box and CLI call-stack-mode option to
enable displaying the system functions and thus view and analyze the internals of the MPI implementation.
The call stack mode User functions+1 is especially useful to find the MPI functions that consumed most of
CPU Time (Hotspots analysis) or waited the most (Threading analysis). For example, in the call chain main()
-> foo() -> MPI_Bar() -> MPI_Bar_Impl() -> ..., MPI_Bar() is the actual MPI API function you use
and the deeper functions are MPI implementation details. The call stack modes behave as follows:

• The Only user functions call stack mode attributes the time spent in the MPI calls to the user function
foo() so that you can see which of your functions you can change to actually improve the performance.

• The default User functions+1 mode attributes the time spent in the MPI implementation to the top-level
system function - MPI_Bar() so that you can easily see outstandingly heavy MPI calls.

• The User/system functions mode shows the call tree without any re-attribution so that you can see
where exactly in the MPI library the time was spent.

NOTE
VTune Profiler prefixes the profile version of MPI functions with P, for example: PMPI_Init.

VTune Profiler provides oneTBB and OpenMP support. Use these thread-level parallel solutions in addition to
MPI-style parallelism to maximize the CPU resource usage across the cluster, and to use the VTune Profiler to
analyze the performance of that level of parallelism. The MPI, OpenMP, and oneTBB features in the VTune
Profiler are functionally independent, so all usual features of OpenMP and oneTBB support are applicable
when looking into a result collected for an MPI process. For hybrid OpenMP and MPI applications, the VTune
Profiler displays a summary table listing top MPI ranks with OpenMP metrics sorted by MPI Busy Wait from
low to high values. The lower the Communication time is, the longer a process was on a critical path of MPI
application execution. For deeper analysis, explore OpenMP analysis by MPI processes laying on the critical
path.

Example:

This example displays the performance report for functions and modules analyzed for any analysis type. Note
that this example opens per-node result directories (result_dir.host1, result_dir.host2) and groups
data by processes -mpi ranks encapsulated in the per-node result:

vtune -R hotspots -group-by process,function -r result_dir.host1
vtune -R hotspots -group-by process,module -r result_dir.host2

Intel® VTune™ Profiler User Guide 1

375

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html

MPI Implementations Support
You can use the VTune Profiler to analyze both Intel MPI library implementation and other MPI
implementations. But beware of the following specifics:

• Linux* only: Based on the PMI_RANK or PMI_ID environment variable (whichever is set), the VTune
Profiler extends a process name with the captured rank number that is helpful to differentiate ranks in a
VTune Profiler result with multiple ranks. The process naming schema in this case is <process_name>
(rank <N>). To enable detecting an MPI rank ID for MPI implementations that do not provide the
environment variable, use the -trace-mpi option.

• For the Intel MPI library, the VTune Profiler classifies MPI functions/modules as system functions/modules
(the User functions+1 option) and attributes their time to system functions. This option may not work
for all modules and functions of non-Intel MPI implementations. In this case, the VTune Profiler may
display some internal MPI functions and modules by default.

• You may need to adjust the command line examples in this help section to work for non-Intel MPI
implementations. For example, you need to adjust command lines provided for different process ranks to
limit the number of processes in the job.

• An MPI implementation needs to operate in cases when there is the VTune Profiler process (vtune)
between the launcher process (mpirun/ mpiexec) and the application process. It means that the
communication information should be passed using environment variables, as most MPI implementations
do. VTune Profiler does not work on an MPI implementation that tries to pass communication information
from its immediate parent process.

MPI System Modules Recognized by the VTune Profiler
VTune Profiler uses the following regular expressions in the Perl syntax to classify MPI implementation
modules:

• impi\.dll
• impid\.dll
• impidmt\.dll
• impil\.dll
• impilmt\.dll
• impimt\.dll
• libimalloc\.dll
• libmpi_ilp64\.dll

NOTE
This list is provided for reference only. It may change from version to version without any additional
notification.

Analysis Limitations
• Intel VTune Profiler does not support MPI dynamic processes like the MPI_Comm_spawn dynamic process

API.

Additional Resources
For more details on analyzing MPI applications, see the Intel Parallel Studio Cluster Edition and online MPI
documentation at https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-
documentation.html. For information on installing VTune Profiler in a cluster environment, see the Intel
VTune Profiler Installation Guide for Linux.

There are also other resources available online that discuss usage of the VTune Profiler with other Parallel
Studio Cluster Edition tools:

 1 Intel® VTune™ Profiler User Guide

376

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-documentation.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library-documentation.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/linux.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/linux.html

• Tutorial: Analyzing an OpenMP* and MPI Application available from https://www.intel.com/
content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/2020/overview.html

• Hybrid applications: Intel MPI Library and OpenMP at https://www.intel.com/content/www/us/en/
developer/articles/technical/hybrid-applications-mpi-openmp.html

See Also
Cookbook: Profiling MPI Applications
Specify Search Directories from Command Line
 from command line

HPC Performance Characterization Analysis

HPC Performance Characterization View

OpenSHMEM* Code Analysis with Fabric Profiler
Fabric Profiler (preview feature) is a performance tool
that you can use to identify detailed characteristics of
the runtime behavior for an OpenSHMEM application.

NOTE
This is a PREVIEW FEATURE. A preview feature may or may not appear in a future production
release. It is available for your use in the hopes that you will provide feedback on its usefulness and
help determine its future. Data collected with a preview feature is not guaranteed to be backward
compatible with future releases.

The application consists of two parts:

• Data collector monitors application and network behavior while the OpenSHMEM application is running.
• Analyzer is a collection of tools that runs on a Linux* or Windows* workstation after the application has

completed. These tools display profiling results with interactive features that allow you to explore a
multitude of communication-centric behaviors.

NOTE
The Fabric Profiler tool is distributed as part of Intel® VTune™ Profiler. Full documentation of the tool,
examples, and pre-collected trace files are available in the Fabric Profiler package.

Set Up the Data Collector
The Fabric Profiler data collector is implemented as a library that intercepts the OpenSHMEM calls of the
application and monitors network activity. It populates binary trace files with this information.

Prerequisites: Load the esp module by running: module load esp. The data collector package is installed
in the ESP_ROOT environment variable .

The data collector requires two third party libraries:

• PAPI is used to gather system metrics at runtime. To add PAPI to your environment you may need to run
module load papi, or download it from https://icl.utk.edu/papi/ and build it.

• OTF2 is used to generate trace files. You can obtain OTF2 at score-p.org.

Set Up the Analyzer
The analyzer is a collection of MATLAB* programs that run in the MATLAB runtime environment. They read
the trace files and display results.

Intel® VTune™ Profiler User Guide 1

377

https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/2020/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/tutorial-vtune-itac-mpi-openmp/2020/overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-applications-mpi-openmp.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-applications-mpi-openmp.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-mpi-applications.html
https://icl.utk.edu/papi/
https://github.com/score-p/

Prerequisites: You must have the MATLAB Runtime Environment to install the analyzer. This is a free
download available at https://www.mathworks.com/products/compiler/mcr.html. Select a version that is
R2018a(9.4) or newer.

The analyzer is located in the release directory in esp/bin/analyzer. It is a MATLAB program named
fabric_profiler_v100.

To start the analyzer, run the fpro script.

Fabric Profiler Workflow
In the Fabric Profiler workflow, you perform these steps:

1. Build and run an application using the data collector.
2. Generate trace files.
3. View trace files using the analyzer.

Build and Run an Application
Once you have installed Fabric Profiler on a Linux or Windows machine, complete these steps to build and run
an application.

1. Define Fabric Profiler regions in the source code.

A named region is highlighted in analyzer displays and improves analysis.

a. Include the header file esp.h.
b. Mark regions of interest:

esp_enter("<region_name>");
 exit_exit("<region_name>");

c. Rebuild the application.

NOTE You cannot nest or interleave regions.

2. Build a statically-linked application with Fabric Profiler instrumentation.

When you load the Fabric Profiler module (esp), environment variables define important flags for you.
Use these variables to link the Fabric Profiler data collector library into your code before the SHMEM
library.

For example, to build the fixed-round example (from the examples directory) using Cray SHMEM,
type:

CC -static -o fixed-round $ESP_CFLAGS fixed-round.c $ESP_LDFLAGS $ESP_LDADD
Make sure you adhere to these changes from your normal build:

• Use the C++ compiler, even if the C-language application does not require it. The data collector
library uses C++ and will not link without it.

• Use $ESP_CFLAGS to add the path to esp.h. It also adds -g which improves the quality of the trace
files.

• Use $ESP_LDFLAGS to add the path to the data collector library.
• Use $ESP_LDADD to add the data collector library.

3. Build a dynamically-linked application with Fabric Profiler instrumentation.

Fabric Profiler uses LD_PRELOAD at run-time to link in the data collector library before the SHMEM
library. Therefore, you do not need to rebuild your application unless you added Fabric Profiler regions
to your source code.

 1 Intel® VTune™ Profiler User Guide

378

https://www.mathworks.com/products/compiler/matlab-runtime.html

For example, the fixed-round.c application (in the examples directory) is written in C. Unlike the
case of static linking above, you do not need to use the C++ compiler to build this C-language
application for use with Fabric Profiler instrumentation.

cc -o fixed-round $ESP_CFLAGS fixed-round.c -dynamic
$ESP_CFLAGS sets the path to esp.h and adds -g.

4. Run an application with Fabric Profiler instrumentation.

a. The data collector library uses the PAPI library and the OTF2 library. If you are using the shared
library, you may need to run module load papi, or add PAPI to your library paths. You can
download OTF2 at score-p.org.

b. Load the Fabric Profiler module:

module load esp
c. There are many Fabric Profiler configuration parameters. The module sets them to default values

which are sufficient when you run your application for the first time. The configuration parameters
are described in a separate section.

d. For a dynamic application, add the data collector library to the LD_PRELOAD variable.

For example:

export LD_PRELOAD=$ESP_ROOT/lib/libesp.so:$LD_PRELOAD
 srun --export=LD_PRELOAD,ALL <rest of srun command>

If you have loaded the esp module, the environment variable ESP_LIB contains the path to
libesp.so. See the sample job scripts *.slurm and *.lsf in the examples directory.

Generate Trace Files
Once you run the data collector, it monitors the execution of your application as well as network activity. It
writes trace files when the application has finished executing. Add 10% to your wall time for writing output to
the trace files.

1. See the application output to verify successful code instrumentation by the data collector. To verify,
check these actions:

a. Ensure that the ESP_VERBOSITY_LEVEL environment variable is set to 1 and not 0.
b. Call shmem_init. The start banner of Fabric Profiler displays.
c. Call shmem_finalize. The stop banner of Fabric Profiler displays.

If the ESP_VERBOSITY_LEVEL environment variable is set correctly and the banners do not display on
function call, contact esp-support@intel.com for further assistance.

2. Merge the trace files.

The Fabric Profiler banner lists the path to the trace files. To merge traces, run esp_merge_traces.sh
script:

$ESP_ROOT/bin/esp_merge_traces.sh \
<path to application executable> <path to trace directory> <number of PEs>

3. Copy the trace files in the root level of the traces directory to the machine where you have installed the
analyzer.

View Trace Files using the Analyzer
There are five types of analyzers which read trace files. All of them are located in esp/bin/analyzer in the
Fabric Profiler package. The analyzers are:

• espba - Barrier analyzer
• espfbla - Function backlog analyzer
• espla - Function latency analyzer

Intel® VTune™ Profiler User Guide 1

379

https://github.com/score-p/

• espmsa - Message straggler analyzer
• espr - A report that contains a summary of results

You can use the traces generated in the previous step or open pre-collected sample traces from esp/
examples/samples/trace. Each of these traces corresponds to a SHMEM application in the esp/examples
directory.

NOTE
espr is a general report that summarizes all of the trace data in HTML format. Each sample application
in the examples directory includes this report so you can view the report for the sample application
without running the SHMEM application or MATLAB runtime. The esp/examples/samples/html
directory contains files named {app name}_{number of PEs}.htmland associated directories named
{app name}_{number of PEs}_html_files. Open the HTML file in a browser to view the report
generated by the analyzer from the corresponding trace files in esp/examples/output/samples/
trace.

Contents of Trace Files

During the operation of Fabric Profiler, when your application calls shmem_finalize, the data collector writes
five trace files that contain information about application behavior.

Trace File Format Contents

{trace-file-prefix}.uc1.func Binary Information about every profiled SHMEM function
call. Each process writes out a separate function
trace file. After job completion, the individual
function trace files are merged into a single file
with the esp/bin/collector/
esp_merge_traces.sh script. The merged file is
required by the analyzers.

{trace-file-prefix}.uc1.hfi Binary When the SHMEM application is running, Fabric
Profiler monitors send and receive counters on the
host fabric interface card. The HFI file contains
these time-stamped counter values.

{trace-file-
prefix}.uc1.profile

Binary When the SHMEM application is running, Fabric
Profiler monitors system performance counters and
gathers system information. This data is written to
the profile file. Each process writes out a separate
profile file. When the job completes, the individual
profile trace files are merged into a single file with
the esp/bin/collector/esp_merge_traces.sh
script. The merged file is required by the analyzers.

{trace-file-prefix}.uc1.put Binary Fabric Profiler monitors the amount of data injected
into the network with each shmem_put call and the
destination node for each put operation. The put
file contains these values.

{trace-file-prefix}.uc1.ev.txt Text The environment file is a list of all environment
variables defined at SHMEM application run-time.

Types of Analyzers

 1 Intel® VTune™ Profiler User Guide

380

This table describes each analyzer in the Fabric Profiler package, along with associated operations that you
can perform.

Analyzer Type Name Purpose Suggested Operations

espba Barrier Trace
Analyzer

Reads the function trace
file and displays barrier
wait times for each
barrier call in the source
code for each PE.

• Take any of these
measurements:

• PE wait time
• PE arrival time
• Node wait density
• PE percent Late
• PE Outlier Late

• Vary the threshold.
• Restrict your results to a

specific lexical occurrence (a
particular source code line
containing a barrier)

espfbla Fabric Backlog
Analyzer

Reads the put trace file
and correlates that with
the HFI trace file to
visualize fabric backlog at
any point in time.

• Select "Show Region Bounds"
and choose regions of interest.
If the SHMEM code defined code
regions, the temporal regions
are highlighted on the graph of
network backlog against time.

• Select an individual node to
display its associated backlog.

• View injection and or ejection
backlog (requested less actual)

• Injection requested, data
sent off-node by this node in
the application

• injection actual, data sent
into network by the HFI

• Ejection requested, data sent
by other nodes in application
to this node

• Ejection actual, data
received from network
according to HFI

• Zoom and pan to bring areas
into focus.

• Try offset adjustment modes.
• Switch between toggle and rate

displays.
• Use the data cursor. Click on the

widget first. Next clock
anywhere on the plot to see
data values for that point.

espla Function (latency)
Trace Analyzer

Reads the function trace
file and displays function
latency for all
instrumented SHMEM
calls. Trace files that

• Select individual function calls
to display latency hot spots for
each call.

Intel® VTune™ Profiler User Guide 1

381

Analyzer Type Name Purpose Suggested Operations

contain ~100,000s of
function calls can take
several minutes to
complete. The default
display shows composite
PE wait time for all calls
at each point in time.

• If the application defined Fabric
Profiler regions, click View
Regions. Choose regions to
highlight temporal spans on the
graph which represent those
regions of code.

• Switch to the communications
matrix. This visualizes the
volume of data sent from each
PE to every other PE.

• Use the zoom, pan and data
cursor widgets (under File and
Help menus) to drill into the
display data.

• Experiment with the threshold
controls for frequency, high
value, and low value.

espmsa Message Straggler
Analyzer

Reads the function trace
file and correlates the
activity in the trace file
with network activity in
the HFI trace file.

espr Analyzer Report A non-interactive report
that gathers information
about a SHMEM
application run and
displays it in HTML
format. The report can
take several minutes to
be completed. When
completed, the HTML
report is saved in the
same location as the
profile trace file, with a
matching file name.

Use the File menu to select the
profile trace file for a particular
application run.

GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics
Use the Intel® VTune™ Profiler to profile graphics
applications and correlate activities on both the CPU
and GPU.

Consider following these steps for GPU analysis with the VTune Profiler:

1. Set up your system for GPU analysis.
2. Run the GPU Offload analysis to identify whether your application is GPU bound and how effectively

your code is offloaded to the GPU.
3. Run the GPU Compute/Media Hotspots analysis for detailed analysis of the GPU-bound application with

explicit support of SYCL, Intel® Media SDK, and OpenCL™ software technology:

• Analyze GPU hardware metrics
• Explore execution of OpenCL™ kernels
• Explore execution of Intel Media SDK tasks

 1 Intel® VTune™ Profiler User Guide

382

• Investigate execution of SYCL computing tasks

(supported with VTune Profiler 2021)

NOTE
You may also configure a custom analysis to collect GPU usage data. To do this, select the GPU
Utilization option in the analysis configuration. This option introduces the least overhead during the
collection, while the Analyze Processor Graphics hardware events adds medium overhead, and
the Trace GPU Programming APIs option adds the biggest overhead.

Analyze GPU Usage for GPU-Bound Applications
If you already identified that your application or some of its stages are GPU bound, run the GPU Compute/
Media Hotspots analysis in the Characterization mode to see whether GPU engines are used effectively and
whether there is some room for improvement. Such an analysis is possible with hardware metrics collected
by the VTune Profiler for the Render and GPGPU engine of the Intel Graphics.

Explore GPU Hardware Metrics

GPU hardware metrics can provide you with a next level of details to analyze GPU activity and identify
whether any performance improvements are possible. You may configure the GPU Compute/Media Hotspots
analysis to collect the following types of GPU event metrics on the Render and GPGPU engine of Intel
Graphics:

• Overview (default) group analyzes general activity of GPU execution units, sampler, general memory,
and cache accesses;

• Compute Basic (with global/local memory accesses) group analyzes accesses to different types of
GPU memory;

• Compute Extended (for Intel® Core™ M processors and higher)
• Full Compute group combines metrics from the Overview and Compute Basic presets and presents

them in the same view, which helps explore the reasons why the GPU execution units were waiting. To
use this event set, make sure to enable the multiple runs mode in the target properties.

Start with the Overview events group and then move to the Compute Basic (global/local memory
accesses) group. Compute Basic metrics are most effective when you analyze computing work on a GPU
with the GPU Utilization events option enabled (default for the GPU Compute/Media Hotspots analysis),
which allows you to correlate GPU hardware metrics with an exact GPU load.

When the data is collected, explore the EU Array Stalled/Idle section of the Summary window to identify
the most typical reasons why the execution units could be waiting.

Depending on the event preset you used for the configuration, the VTune Profiler analyzes metrics for stalled/
idle executions units. The GPU Compute/Media Hotspots analysis by default collects the Overview preset
including the metrics that track general GPU memory accesses, such as Sampler Busy and Sampler Is
Bottleneck, and GPU L3 bandwidth. As a result, the EU Array Stalled/Idle section displays the Sampler
Busy section with a list of GPU computing tasks with frequent access to the Sampler and hottest GPU
computing tasks bound by GPU L3 bandwidth:

If you select the Compute Basic preset during the analysis configuration, VTune Profiler analyzes metrics that
distinguish accessing different types of data on a GPU and displays the Occupancy section. See information
about GPU tasks with low occupancy and understand how you can achieve peak occupancy:

Intel® VTune™ Profiler User Guide 1

383

If the peak occupancy is flagged as a problem for your application, inspect factors that limit the use of all
the threads on the GPU. Consider modifying your code with corresponding solutions:

Factor responsible for Low Peak Occupancy Solution

SLM size requested per workgroup in a computing
task is too high

Decrease the SLM size or increase the Local size

Global size (the number of working items to be
processed by a computing task) is too low

Increase Global size

 1 Intel® VTune™ Profiler User Guide

384

Factor responsible for Low Peak Occupancy Solution

Barrier synchronization (the sync primitive can
cause low occupancy due to a limited number of
hardware barriers on a GPU subslice)

Remove barrier synchronization or increase the
Local size

If the occupancy is flagged as a problem for your application, change your code to improve hardware thread
scheduling. These are some reasons that may be responsible for ineffective thread scheduling:

• A tiny computing task could cause considerable overhead when compared to the task execution time.
• There may be high imbalance between the threads executing a computing task.

Intel® VTune™ Profiler User Guide 1

385

The Compute Basic preset also enables an analysis of the DRAM bandwidth usage. If the GPU workload is
DRAM bandwidth-bound, the corresponding metric value is flagged. You can explore the table with GPU
computing tasks heavily using the DRAM bandwidth during execution.

If you select the Full Compute preset and multiple run mode during the analysis configuration, the VTune
Profiler will use both Overview and Compute Basic event groups for data collection and provide all types of
reasons for the EU array stalled/idle issues in the same view.

NOTE
To analyze Intel® HD Graphics and Intel® Iris® Graphics hardware events, make sure to set up your
system for GPU analysis

To analyze GPU performance data per HW metrics over time, open the Graphics window, and focus on the
Timeline pane. List of GPU metrics displayed in the Graphics window depends on the hardware events
preset selected during the analysis configuration.

The example below shows the Overview group of metrics collected for the GPU bound application:

The first metric to look at is GPU Execution Units: EU Array Idle metric. Idle cycles are wasted cycles. No
threads are scheduled and the EUs' precious computational resources are not being utilized. If EU Array
Idle is zero, the GPU is reasonably loaded and all EUs have threads scheduled on them.

In most cases the optimization strategy is to minimize the EU Array Stalled metric and maximize the EU
Array Active. The exception is memory bandwidth-bound algorithms and workloads where optimization
should strive to achieve a memory bandwidth close to the peak for the specific platform (rather than
maximize EU Array Active).

Memory accesses are the most frequent reason for stalls. The importance of memory layout and carefully
designed memory accesses cannot be overestimated. If the EU Array Stalled metric value is non-zero and
correlates with the GPU L3 Misses, and if the algorithm is not memory bandwidth-bound, you should try to
optimize memory accesses and layout.

Sampler accesses are expensive and can easily cause stalls. Sampler accesses are measured by the
Sampler Is Bottleneck and Sampler Busy metrics.

Explore Execution of OpenCL™ Kernels

 1 Intel® VTune™ Profiler User Guide

386

If you know that your application uses OpenCL software technology and the GPU Computing Threads
Dispatch metric in the Timeline pane of the Graphics window confirms that your application is doing
substantial computation work on the GPU, you may continue your analysis and capture the timing (and other
information) of OpenCL kernels running on Intel Graphics. To run this analysis, enable the Trace GPU
Programming APIs option during analysis configuration. The GPU Compute/Media Hotspots analysis
enables this option by default.

The Summary view shows OpenCL kernels running on the GPU in the Hottest GPU Computing Tasks
section and flags the performance-critical kernels. Clicking such a kernel name opens the Graphics window
grouped by Computing Task (GPU) / Instance. You may also want to group the data in the grid by the
Computing Task. VTune Profiler identifies the following computing task purposes: Compute (kernels),
Transfer (OpenCL routines responsible for transferring data from the host to a GPU), and Synchronization
(for example, clEnqueueBarrierWithWaitList).

The corresponding columns show the overall time a kernel ran on the GPU and the average time for a single
invocation (corresponding to one call of clEnqueueNDRangeKernel), working group sizes, as well as
averaged GPU hardware metrics collected for a kernel. Hover over a metric column header to read the metric
description. If a metric value for a computing task exceeds a threshold set up by Intel architects for the
metric, this value is highlighted in pink, which signals a performance issue. Hover over such a value to read
the issue description.

Analyze and optimize hot kernels with the longest Total Time values first. These include kernels characterized
by long average time values and kernels whose average time values are not long, but they are invoked more
frequently than the others. Both groups deserve attention.

To view details on OpenCL kernels submission and analyze the time spent in the queue, explore the
Computing Queue data in the Timeline pane of the Graphics or Platform window.

Explore Execution of Intel Media SDK Tasks

If you enabled both the GPU Utilization and Trace GPU Programming APIs options for the Intel Media
SDK program analysis, use the Graphics window to correlate data for the Intel Media SDK tasks execution
with the GPU software queue data.

Intel® VTune™ Profiler User Guide 1

387

Analyze GPU Kernels Per Code Line
You can run the GPU Compute/Media Hotspots Analysis in the Code-Level Analysis mode to narrow down
you GPU analysis to a specific hot GPU kernel identified with the GPU Offload analysis. This analysis helps
identify performance-critical basic blocks or issues caused by memory accesses in the GPU kernels providing
performance statistics per code line/assembly instruction:

See Also
Intel® Media SDK Program Analysis
 (Linux* only)

Configure GPU Analysis from Command Line

Error Message: Cannot Collect GPU Hardware Metrics

Rebuild and Install the Kernel for GPU Analysis

GPU OpenCL™ Application Analysis

If you identified with the Intel® VTune™ Profiler that your application is GPU-bound and your application uses
OpenCL™ software technology, you may enable the Trace GPU Programming APIs configuration option for
your custom analysis to identify how effectively your application uses OpenCL kernels. By default, this option
is enabled for the GPU Compute/Media Hotspots and GPU Offload analyses. To explore the performance of
your OpenCL application, use the GPU Compute/Media Hotspots viewpoint.

Follow these steps to explore the data provided by the VTune Profiler for OpenCL application analysis:

1. Explore summary statistic:

• Analyze GPU usage.
• Identify why execution units (EUs) were stalled or idle.
• Identify OpenCL kernels overutilizing both Floating Point Units (FPUs).

 1 Intel® VTune™ Profiler User Guide

388

2. Analyze hot GPU OpenCL kernels.
3. Correlate OpenCL kernels data with GPU metrics.
4. Explore the computing queue.
5. Analyze source and assembly code.

Explore Summary Statistics
Start your data analysis with the Summary window that provides application-level performance statistics.
Typically, you focus on the primary baseline, which is the Elapsed Time metric that shows the total time
your target ran:

You can correlate this data with the GPU Time used by GPU engines while your application was running:

If the GPU Time takes a significant portion of the Elapsed Time (95.6%), it clearly indicates that the
application is GPU-bound. You see that 94.4% of the GPU Time was spent on the OpenCL kernel execution.

For OpenCL applications, the VTune Profiler provides a list of OpenCL kernels with the highest execution time
on the GPU:

Mouse over the flagged kernels to learn what kind of performance problems were identified during their
execution. Clicking such a kernel name in the list opens the Graphics window grouped by computing tasks,
sorted by the Total Time, and with this kernel selected in the grid.

Depending on the GPU hardware events preset you used during the analysis configuration, the VTune Profiler
explores potential reasons for stalled/idle GPU execution units and provides them in the Summary. For
example, for the Compute Basic preset, you may analyze GPU L3 Bandwidth Bound issues:

Intel® VTune™ Profiler User Guide 1

389

Or potential occupancy issues:

In this example, EU stalls are caused by GPU L3 high bandwidth. You may click the hottest kernels in the list
to switch to the Graphics view, drill down to the Source or Assembly views of the selected kernel to
identify possible options for cache reuse.

If your application execution takes more than 80% of collection time heavily utilizing floating point units, the
VTune Profiler highlights such a value as an issue and lists the kernels that overutilized the FPUs:

You can switch to the Timeline pane on the Graphics tab and explore the distribution of the GPU EU
Instructions metric that shows the FPU usage during the analysis run:

Analyze Hot GPU OpenCL Kernels
To view detailed information about all OpenCL kernels running on the GPU, switch to the Graphics window.
By default, the grid data is grouped by Computing Task / Instance that shows Compute tasks only. Data
collected for program units outside any OpenCL computing tasks are attributed to the [Outside any task]
entry.

In the Computing Task columns explore the overall time a kernel ran on the GPU and the average time for
a single invocation (corresponding to one call of clEnqueueNDRangeKernel), working group sizes, as well
as averaged GPU hardware metrics collected for a kernel. Hover over a metric column header to read the
metric description. If a metric value for a computing task exceeds a threshold set up by Intel architects for
the metric, this value is highlighted in pink, which signals a performance issue. Hover over such a value to
read the issue description.

In the example below, the Accelerator_Intersect kernel took the most time to execute (53.398s). The
GPU metrics collected for this workload show high L3 Bandwidth usage spent in stalls when executing this
kernel. For compute bound code it indicates that the performance might be limited by cache usage.

 1 Intel® VTune™ Profiler User Guide

390

Analyze and optimize hot kernels with the longest Total Time values first. These include kernels characterized
by long average time values and kernels whose average time values are not long, but they are invoked more
frequently than the others. Both groups deserve attention.

If a kernel instance used the OpenCL 2.0 Shared Virtual Memory (SVM), the VTune Profiler detects it and,
depending on your hardware, displays the SVM usage type as follows:

• Coarse-Grained Buffer SVM: Sharing occurs at the granularity of regions of OpenCL buffer memory
objects. Cross-device atomics are not supported.

• Fine-Grained Buffer SVM: Sharing occurs at the granularity of individual loads and stores within
OpenCL buffer memory objects. Cross-device atomics are optional.

• Fine-Grained System SVM: Sharing occurs at the granularity of individual loads/stores occurring
anywhere within the host memory. Cross-device atomics are optional.

Every clCreateKernel results in a line in the Compute category. If two different kernels with the same
name (even from the same source) were created with two clCreateKernel calls (and then invoked through
two or more clEnqueueNDRangeKernel), two lines with the same kernel name appear in the table. If they
are enqueued twice with a different global or local size or different sets of SVM arguments, they are also
listed separately in the grid.

Correlate OpenCL Kernels Data with GPU Metrics
In the Graphics window, explore the Timeline pane > Platform tab to analyze OpenCL kernels execution
over time.

OpenCL APIs (for example, clWaitForEvents) show up on the Thread area as tasks:

Intel® VTune™ Profiler User Guide 1

391

https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html

Correlate GPU metrics and OpenCL kernels data:

NOTE
GPU hardware metrics are available if you enabled the Analyze Processor Graphics events option
for Intel® HD Graphics or Intel® Iris® Graphics. To collect these metrics, make sure to set up your
system for GPU analysis.

You may find it easier to analyze your OpenCL application by exploring the GPU hardware metrics per GPU
architecture blocks. To do this, choose the Computing Task grouping level in the Graphics window, select
an OpenCL kernel of interest and click the Memory Hierarchy Diagram tab in the Timeline pane. VTune
Profiler updates the architecture diagram for your platform with performance data per GPU hardware metrics
for the time range the selected kernel was executed.

 1 Intel® VTune™ Profiler User Guide

392

Currently this feature is available starting with the 4th generation Intel® Core™ processors and the Intel®
Core™ M processor, with a wider scope of metrics presented for the latter one.

Intel® VTune™ Profiler User Guide 1

393

NOTE
You can right-click the Memory Hierarchy Diagram, select Show Data As and choose a format of
metric data representation:

• Total Size
• Bandwidth (default)
• Percent of Bandwidth Maximum Value

Explore the Computing Queue
To view details on OpenCL kernels submission, in particular distinguish the order of submission and
execution, and analyze the time spent in the queue, zoom in and explore the Computing Queue data in the
Timeline pane. You can click a kernel task to highlight the whole queue to the execution displayed at the top
layer. Kernels with the same name and size show up in the same color.

VTune Profiler displays kernels with the same name and size in the same color. Synchronization tasks are
marked with vertical hatching

. Data transfers, OpenCL routines responsible for transferring data from the host system to a GPU, are
marked with cross-diagonal hatching

.

NOTE
In the Attach mode if you attached to a process when the computing queue is already created, VTune
Profiler will not display data for the OpenCL kernels in this queue.

Analyze Source and Assembly Code
You may select a computing task of interest in the grid view, double-click it to open the Source/Assembly
window and analyze the code for the selected kernel (with source files available).

 1 Intel® VTune™ Profiler User Guide

394

Analyze the assembler code provided by your compiler for the OpenCL kernel, estimate its complexity,
identify issues, match the critical assembly lines with the affected source code, and optimize, if possible. For
example, if you see that some code lines were compiled into a high number of assembly instructions,
consider simplifying the source code to decrease the number of assembly lines and make the code more
cache-friendly.

Explore GPU metrics data per computing task in the Graphics window and drill down to the Source/
Assembly view to explore instructions that may have contributed to the detected issues. For example, if you
identified the Sampler Busy or Stalls issues in the Graphics window, you may search for the send
instructions in the Assembly pane and analyze their usage since these instructions often cause frequent
stalls and overload the sampler. Each send/sends instruction is annotated with comments in square brackets
that show a purpose of the instruction, such as data reads/writes (for example, Typed/Untyped Surface
Read), accesses to various architecture units (Sampler, Video Motion Estimation), end of a thread
(Thread Spawner), and so on. For example, this sends instruction is used to access the Sampler unit:

0x408 260 sends (8|M0) r10:d r100 r8 0x82 0x24A7000 [Sampler, msg-length:1, resp-
length:4, header:yes, func-control:27000]

NOTE

• Source/Assembly support is available for OpenCL programs with sources and for kernels created
with IL (intermediate language), if the intermediate SPIR-V binary was built with the -gline-
tables-only -s <cl_source_file_name> option.

• The Source/Assembly analysis is not supported for the source code using the #line directive.
• If your OpenCL kernels use inline functions, you can enable the Inline Mode filter bar option to view

inline functions in the grid and analyze them in the Source view.

See Also
GPU Compute/Media Hotspots Analysis (Preview)

OpenCL™ Kernel Analysis Metrics Reference

GPU Metrics Reference

Intel® Media SDK Program Analysis
Use Intel® VTune™ Profiler to enable analysis of Intel®
Media SDK tasks execution over time.

Prerequisites:

To analyze the Intel Media SDK tasks execution, make sure to do the following:

• Windows* OS: Install the latest Intel Graphics driver from https://www.intel.com/content/www/us/en/
download-center/home.html

• Linux* OS: Install the Intel® Media SDK and check that your system is configured for GPU analysis. For
remote collection, configure your target Linux system.

• If you are running the analysis on a Windows machine, register your GPU Event Trace for Windows
(ETW) so that you can see packet details of the execution of the MediaSDK program. At the command
line, type:

<vtune>\bin64\amplxe-gpuetwreg.exe -s

Intel® VTune™ Profiler User Guide 1

395

https://www.intel.com/content/www/us/en/download-center/home.html
https://www.intel.com/content/www/us/en/download-center/home.html
https://github.com/Intel-Media-SDK/MediaSDK

To configure the Intel Media SDK program analysis, do the following:

1. Configure your target for analysis.

• For the Attach to Process and Profile System target types, enable MFX tracing.
2. Enable tracing Intel Media SDK programs and run the analysis.

Configure Target
Launch the VTune Profiler with root privileges and configure analysis for your Intel Media SDK target.

For the Launch Application mode, follow the standard project setup and analysis target setup process and
specify your application or a script as a target. VTune Profiler automatically sets environment variables and,
on Linux, creates an .mfx_trace configuration file for Intel Media SDK program analysis.

For the Attach To Process and Profile System modes, the .mfx_trace is not created by the VTune
Profiler automatically, which makes the Intel Media SDK program analysis incomplete. You need to manually
enable MFX tracing as follows:

1. Configure the system to include ITT traces to the result.

For Linux:

export INTEL_LIBITTNOTIFY32=/opt/intel/oneapi/vtune/latest/lib32/runtime/
libittnotify_collector.so
export INTEL_LIBITTNOTIFY64=/opt/intel/oneapi/vtune/latest/lib64/runtime/
libittnotify_collector.so

For Windows:

set INTEL_LIBITTNOTIFY32=C:\Program Files (x86)\Intel\oneAPI\vtune\latest\bin32\runtime
\ittnotify_collector.dll
set INTEL_LIBITTNOTIFY64=C:\Program Files (x86)\Intel\oneAPI\vtune\latest\bin64\runtime
\ittnotify_collector.dll

2. On Linux, before running the analysis, generate the .mfx_trace file:

echo "Output=0x30" > $HOME/.mfx_trace
chmod +r $HOME/.mfx_trace

If, for some reason, settings in this file are different from the settings specified in the VTune Profiler project,
the .mfx_trace settings will prevail and re-write the VTune Profiler project settings.

Run Analysis
1. Click the

Configure Analysis button on the VTune Profiler toolbar.
2. In the HOW pane, select an analysis type for Intel Media SDK program profiling, for example: GPU

Compute/Media Hotspots analysis, GPU Offload analysis, or a custom analysis.
3. Make sure the Trace GPU Programming APIs option is selected.
4. Optionally: For custom analysis, select the GPU Utilization option.

For the GPU Compute/Media Hotspots and GPU Offload analysis types, this option is enabled by default.
5. Click Start to launch the analysis.

When the data collection completes, the VTune Profiler opens the result in the default viewpoint. Start with
the Graphics window to analyze the CPU workload during the execution of the Intel Media SDK tasks.

See Also
GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

 1 Intel® VTune™ Profiler User Guide

396

Configure GPU Analysis from Command Line

knob enable-gpu-runtimes
 to enable Intel Media SDK program analysis from command line

Frame Data Analysis
Explore frame analysis options provided by the Intel®
VTune™ Profiler, which are especially useful for
identifying a long latency activity.

You may use the Frame API to mark the start and finish of the code regions executed repeatedly (frames) in
such applications as simulators with a time step loop, computations with a convergence loop, game
applications computing next graphics frame, and so on. VTune Profiler analyzes the marked code regions and
identifies bottlenecks in your application caused by slow or fast frame rate. To interpret the performance data
provided during the frames analysis, you may follow the steps below:

1. Analyze summary frames statistics.
2. Analyze the timeline.
3. Identify the hotspot code sections.

Analyze Summary Frames Statistics
Click the Summary tab to open the Summary window and analyze the Frames Rate Histogram. Hover
over a bar to see the total number of frames in your application executed with a specific frame rate. High
number of slow or fast frames signals a performance bottleneck.

VTune Profiler automatically sets up thresholds for slow and fast frame rate. But you may change them, if
needed, by dragging the slider at the bottom of the histogram. The thresholds you set will be automatically
applied to all subsequent results for this project.

Switch to the Bottom-up window and group the data in the grid by Frame Domain/Frame Duration
Type/Function/Call Stack:

Intel® VTune™ Profiler User Guide 1

397

This grouping displays frame analysis metrics including the Frame Time that is the wall time during which
frames were active. Focus on the frames with the highest Frame Time values. Expand a frame domain node
to see frames grouped by frame duration. You may select slow frames, right-click and select Filter In by
Selection to filter out all the data other than slow frames in this domain. Then you may group the data back
by Function/Call Stack to see the functions that took most of the time in these slow frames:

Analyze the Timeline
In the Bottom-up window, analyze the frame data represented in the Timeline pane. If you filtered the grid
by slow frames, the Timeline data is also automatically filtered to display data for the selected frames:

 1 Intel® VTune™ Profiler User Guide

398

The scale area displays frame markers. Hovering over a marker opens a tooltip with details on frame
duration, frame rate and so on.

The Frame Rate band displays how the frame rate is changing over time. To understand the cause of the
bottleneck, identify sections with the Slow or Fast frame types and analyze the CPU Utilization data. For
example, you may detect the Slow frame rate for the section with the poor CPU utilization or thread
contention. In this case, you may parallelize the code to utilize CPU resources more effectively or optimize
the thread management.

To identify a hotspot function containing the critical frame from the Timeline view, select the range with the
Slow or Fast frame rate. VTune Profiler highlights the selected frame in the Bottom-up grid.

Identify the Hotspot Code Sections
Double-click a critical function executing a slow/fast frame to view its source code. By default, the VTune
Profiler highlights the code line in this function that took the most CPU time to execute.

Task Analysis
Focus your performance analysis on a task - program
functionality performed by a particular code section.

Use the Intel® VTune™ Profiler to analyze the following types of tasks:

• ITT API tasks: Analyze performance of particular code regions (tasks) if your target uses the Task API to
mark task regions and you enabled the Analyze user tasks, events and counters option during the
analysis type configuration

• Platform tasks: Analyze tasks enabled for analysis of Ftrace* events, Atrace* events, Intel Media SDK
programs, OpenCL™ kernels, and so on.

Enabling Task Analysis
Prerequisites:

• Use the ITT Task API to insert calls in your code and define the tasks.
• Configure your analysis target.

1. Click the

(standalone GUI)/

Intel® VTune™ Profiler User Guide 1

399

(Visual Studio IDE) Configure Analysis button on the VTune Profiler toolbar.
2. Choose the analysis type from the HOW pane.
3. Select the Analyze user tasks, events, and counters option.
4. Click the Start button to run the analysis.

VTune Profiler collects data detecting the marked tasks.

Analyze the collected results to identify the task regions and task duration versus application performance
over time.

To interpret the data provided during the user task analysis, you may use the following options:

• Identify most critical tasks.
• Analyze slow tasks per function.
• Analyze tasks per threads.

Identify Most Critical Tasks
Start exploring the collected data with the Summary window where the Top Tasks section provides a list of
tasks that took most of the time to execute.

If you collected data for Ftrace/Atrace tasks using the System Overview or a custom analysis with Ftrace/
Atrace events selected, the Summary window also provides the Task Duration Histogram that helps you
identify slow tasks:

 1 Intel® VTune™ Profiler User Guide

400

Use the Task Type drop-down list to switch between different tasks and analyze their duration. Based on the
thresholds set up for the task duration, you can understand whether the duration of the selected task is
acceptable or slow.

Analyze Slow Tasks per Function
Click a task type in the Top Tasks section to switch to the grid view (for example, Bottom-up or Event
Count) grouped by the Task Type granularity. The task selected in the Summary window is highlighted.
For example, for ITT API tasks collected during the Threading analysis the Bottom-up grid view is grouped
by Task Type/Function/Call Stack:

In the example above, the func4_task task has the longest duration - 2.923 seconds. You may expand the
node to see the function this task belongs to. Double-click the function to analyze the source code in the
Source view.

For Ftrace/Atrace tasks collected during the System Overview analysis, you may select the Task Type/Task
Duration Type/Function/Call Stack granularity and explore functions executed while a slow task instance
was running. You may double-click the function to open its source code and analyze the most time-
consuming source lines.

Intel® VTune™ Profiler User Guide 1

401

Analyze Tasks per Threads
To analyze a duration of each task instance, explore the Timeline view:

User tasks are shown on the timeline with yellow markers. Hover over a task marker for task execution
details. In the example above, the func2_task started at the 3.4th second of the application execution on
the thread threadstartex (TID: 8684) and lasted for 3.002 seconds.

If you collected platform-wide metrics, you may switch to the Platform window and identify threads
responsible for particular tasks. Each task shows up in the Thread section as a separate layer.

For Ftrace/Atrace tasks, the Platform view provides an option to enable Slow Tasks markers and explore
the CPU utilization, GPU usage and power consumption at the moment of slow tasks execution:

If several tasks were executed on a thread in parallel, a stack of tasks is displayed.

See Also
Pane: Timeline

Switch Viewpoints

Linux* and Android* Kernel Analysis
 to configure Systrace*/FTrace* tasks

Intel® Media SDK Program Analysis
 to see Intel Media SDK tasks on the timeline

Examples of CSV Format and Imported Data
 displayed as tasks

 1 Intel® VTune™ Profiler User Guide

402

Instrumentation and Tracing Technology APIs

View Instrumentation and Tracing Technology (ITT) API Task Data in Intel® VTune™ Profiler

Control Data Collection
Explore options to run, stop, cancel, or pause your
performance analysis with Intel® VTune™ Profiler.

Run Analysis from Standalone Interface
To run an analysis:

1. Create/open a VTune Profiler project.

From the Configure Analysis window:

• Specify an analysis system from the WHERE pane.
• Specify an analysis target from the WHAT pane.
• Select an analysis type from the HOW pane.

2. At the bottom of the Configure Analysis window, click the

Start button to run the analysis.

To pause the analysis at the application start and then manually resume it when required, click the

Start Paused button.

NOTE
The Start button may be disabled if you either did not specify the analysis target or selected the
analysis type that is not supported by your processor.

Run Analysis from the Microsoft Visual Studio* IDE
1. Open your target in Visual Studio.
2. Build your target in the Release mode in the development environment of your choice.
3. Click the

Configure Analysis button on the VTune Profiler toolbar to choose and configure an analysis type in
the Configure Analysis window.

4. At the bottom of the Configure Analysis window, click the

Start button to run the analysis.

To pause the analysis at the application start and then manually resume it when required, click the

Start Paused button.

Stop/Cancel the Analysis
When you run the analysis, the command toolbar at the bottom of the Configure Analysis window is
updated with a set of buttons for managing the data collection.

• To stop the analysis, click the

Stop button or press Ctrl-C.

Intel® VTune™ Profiler User Guide 1

403

VTune Profiler stops collecting data and opens the analysis result.
• To cancel the analysis, click the

Cancel button.

VTune Profiler stops collecting data and displays the warning message: Collection was cancelled by the
user. The data cannot be displayed.

Open Analysis Results
VTune Profiler analyzes the target, finalizes the result, and opens the collected data in the default viewpoint.
The data collection results (*.vtune file) show up in the Solution Explorer (for the VTune Profiler integrated
into Visual Studio)/Project Navigator (standalone) under the project folder, in the alphabetical order. For
executable files imported to the Visual Studio project, the data result node appears at the solution level.
Double-click a result to open the collected data in the default viewpoint.

NOTE

• You can provide a meaningful name for the result (for example, application name) for better
identification. To do this, select the result, right-click and choose Rename. The file extension
*.vtune cannot be changed.

• To change the result name template or the default directory for result location, go to Tools >
Options (or Options... in the standalone interface menu) and select Intel VTune Profilerversion
> Result Location from the left pane of the Options dialog box.

• You may program hot keys to start/stop a particular analysis. For more details, see http://
software.intel.com/en-us/articles/using-hot-keys-in-vtune-amplifier-xe/.

See Also
Pause Data Collection

Generate Command Line Configuration from GUI

VTune Profiler Filenames and Locations

Finalization

Finalization

Finalization is the process by which Intel® VTune™ Profiler converts the collected data to a database,
resolving symbol information, and pre-computes data to make further analysis more efficient and responsive.
VTune Profiler finalizes data automatically when data collection completes.

VTune Profiler provides three basic finalization modes:

• Full mode is used to perform the finalization on unchanged sampling data on the target system. This
mode takes the most time and resources to complete, but produces the most accurate results.

• Fast (default) mode is used to perform the finalization on the target system using algorithmically reduced
sampling data. This greatly reduces the finalization time with a negligible impact on accuracy in most
cases.

• Deferred mode is used to collect the sampling data and calculate the binary checksums to perform the
finalization on another machine. After data collection completes, you can finalize and open the analysis
result on the host system. This mode may be useful for profiling applications on targets with limited
computational resources, such as IoT devices, and finalizing the result later on the host machine.

 1 Intel® VTune™ Profiler User Guide

404

http://software.intel.com/en-us/articles/using-hot-keys-in-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/using-hot-keys-in-vtune-amplifier-xe/

• None option is used to skip finalization entirely and to not calculate the binary checksums. You can also
finalize this result later, however, you may encounter certain limitations. For example, if the binaries on
the target system have changed or have become unavailable since the sampling data collection, binary
resolution may produce an inaccurate or missing result for the affected binary.

Modify the Finalization Mode
By default, the Fast finalization mode is used for any analysis configuration. If you need to change it, do the
following:

1. Click the

Configure Analysis button.
2. From the WHERE pane, click the

Browse button, choose a target system and specify required details.
3. From the WHAT pane, click the

Browse to choose an appropriate target type.
4. Expand the Advanced section on the WHAT pane and scroll down to select the required finalization

mode, for example: Deferred to use another system.

NOTE
When the analysis result is collected and open, you can always check the used finalization mode in the
Summary view > Collection and Platform Info section.

Re-Finalize Results
You may want to re-finalize a result to:

• update symbol information after changes in the search directories settings
• resolve the number of [Unknown]-s in the results

Beware that re-finalization can lead to wrong results if you do not have the original binaries for your target
on the machine performing the re-finalization; for example, if you recompiled the target. The re-finalization
deletes the old database and then picks up the newer versions of the binaries. Since the collector raw data
does not contain a binary checksum, the VTune Profiler does not know when a binary has changed and
attempts to resolve the symbols matching the old addresses against the new binary. As a result, the VTune
Profiler may unwind stacks incorrectly and resolve samples to the wrong functions. To avoid this, make sure
you configured the search directories to use the correct files.

By default, the VTune Profiler saves the raw collector data after finalization. You may choose to remove these
data to reduce the size of the result file if you do not plan to re-finalize this result in the future. To remove
the raw collector data, from the Microsoft Visual Studio* menu go to Tools > Options > Intel VTune
Profiler <version> > General pane and select the Remove raw collector data after result finalization
option. To remove the raw collector data in the standalone interface, click the

menu button and select Options... > General.

Intel® VTune™ Profiler User Guide 1

405

To re-finalize a result in the Microsoft Visual Studio* IDE, select the result in the Solution Explorer, right-click
and select Re-resolve and Open.

To re-finalize a result in the standalone VTune Profiler interface:

1. Click the

menu button and select Open > Result....

The Select Result dialog box opens.
2. Navigate to the required result *.vtune file you want to re-finalize and click OK.

The selected result opens in the default viewpoint.
3. Click the Analysis Configuration tab.
4. Click the

Re-resolve button on the command bar.

Intel® VTune™ Profiler repeats result finalization. If you updated the list of search directories in the Binary/
Symbol Search or Source Search dialog boxes, the VTune Profiler uses the latest version of these
directories to search for supporting binary/source/symbol files.

See Also
finalization-mode
vtune option

Search Directories

Pause Data Collection
You can configure the analysis run to launch the application but start collecting data after some delay or
pause the data collection in the middle of the application execution. This is useful if you do not want to
include all the warm-up activities in the analysis results or you want the data collection to start when a
specific event occurs (for example, message box or mouse click). Intel® VTune™ Profiler provides several
options to pause and resume your analysis:

• Start running an application with the data collection paused, and then manually resume the data
collection when required.

• Use the Pause/Resume button to pause the data collection at any time of application execution.
• Use the Pause/Resume API to insert calls into your code to start and stop the analysis.

Start Data Collection Paused, Then Manually Resume
To manually start and resume the analysis, do the following:

1. Create/open a project.
2. Click the

Configure Analysis button on the toolbar.

The New Amplifier Result result tab opens.
3. Specify and configure your analysis target on the WHAT pane.
4. Switch to the HOW pane and click the Browse button to select and configure, if required, an analysis

type.
5. Click the

Start Paused button on the command bar.

 1 Intel® VTune™ Profiler User Guide

406

VTune Profiler runs the application. The Start Paused button is replaced with the Resume button.
6. Click the Resume button on the command bar to start data collection.

Use the Pause/Resume Button to Pause at Any Time of Application Execution
1. Click the Start button on the command bar to run the selected analysis.

When analysis starts running, the command bar is updated with a set of analysis management buttons.
2. When you need to pause the collection, click the Pause button on the command bar.

VTune Profiler collects no data but your application keeps running. The Start button on the command
bar is replaced with the Resume button.

3. When you need to resume the data collection, click the Resume button on the command bar.

VTune Profiler continues collecting data.

Use the Pause/Resume API to Insert Calls into Your Code to Start and Stop the Analysis
To get details on using the Pause/Resume API, see the Collection Control API topic.

When the data collection is complete, the VTune Profiler displays paused regions in the Timeline pane as
follows:

See Also
start-paused vtune option
Problem: Unexpected Paused Time

Toolbar: Configure Analysis

Limit Data Collection
Specify a predefined amount of data to collect by
setting up the expected result size or collection time.

This prevents from collecting a large amount of data that may slow down the data processing. For example,
it may happen when running Threading Analysis on frequently contended applications or when analyzing long
profiles.

Typically, the default maximum amount of raw data used by the Intel® VTune™ Profiler for the result file is
enough to identify a problem.

When the data size limit is reached and the data collection is suspended, click the

Stop button on the command toolbar at the bottom of the Configure Analysis window. VTune Analyzer
proceeds with the analysis of the collected data. If you want to extend the data collection for your target
application for future analysis runs, you may modify the default size limit for collected data as follows:

1. Click the

Intel® VTune™ Profiler User Guide 1

407

Configure Analysis button on the VTune Profiler toolbar.
2. Select a required target system from the WHERE pane and a target type from the WHAT pane.
3. From the Advanced section of the WHAT pane, use the Limit collected data by group of options and

choose any of the following mechanisms:

• Result size from collection start, MB: Set the maximum possible result size (in MB) to collect.
VTune Profiler will start collecting data from the beginning of the target execution and suspend data
collection when the specified limit for the result size is reached. For unlimited data size, specify 0.

• Time from collection end, sec: Set the timer enabling the analysis only for the last seconds
before the target run or collection is terminated. For example, if you specified 2 seconds as a time
limit, the VTune Profiler starts the data collection from the very beginning but saves the collected
data only for the last 2 seconds before you terminate the collection.

Limiting data collection to the beginning or end of the target execution reduces the size of the raw data
gathered by the VTune Profiler and enables you to quickly start analyzing collection results. If you want
to keep the default data size limit but continue collecting data on the next portion of the target
execution, run the analysis after a delay using the Start Paused option.

See Also
Set Up Analysis Target

data-limit
vtune option

ring-buffer
vtune option

Manage Analysis Duration from Command Line

Generate Command Line Configuration from GUI
Use the Intel® VTune™ Profiler to automatically
generate a command line for an analysis configuration
and copy this line to the buffer for running from a
terminal window. You can use this approach to run the
generated command line configuration on a different
system.

To generate and apply a command line configuration:

Prerequisites: Set up your project.

1. Run the VTune Profiler graphical interface.
2. Click the

(standalone GUI)/

(Visual Studio IDE)Configure Analysis toolbar button to choose and configure your analysis.

The Configure Analysis window opens.
3. From the HOW pane, choose a predefined or custom analysis type and configure the required settings.
4. Click the

Command Line button at the bottom of the window.

The Copy Command Line to Clipboard dialog box opens providing the command line required to
launch the selected analysis type configuration. Options with default values are hidden.

 1 Intel® VTune™ Profiler User Guide

408

For predefined analysis types, the -collect <analysis-type> option is applied:

For custom analysis types, the -collect-with <collector-type> option is applied:

5. Click the Copy button to copy the command line to the clipboard.
6. Paste the copied command line to the shell.
7. Optionally, edit the application data in the command line as required.

If you analyze a remote application from the local host, make sure to:

• Set up your remote Linux or Android target system for data collection.
• Specify the correct path to the remote application in the command line.
• Use the -target-system=<system_details> option to specify your remote target address (for

Linux) or device name (for Android). For example:

host>./vtune -target-system=ssh:user@hostName -collect hotspots -- myapp
8. Press Enter to launch the analysis from the command line.

VTune Profiler collects the data and saves the result to the analysis result directory under your working
directory.

9. Open your data collection result file in the GUI or as a text-based command line report.

NOTE
To enable analyzing the source code, make sure to copy the required symbol/source files from your
remote machine and update the search directories in the Binary/Symbol Search or Source Search
dialog boxes.

See Also
Collect Data on Remote Linux* Systems from Command Line

target-system
vtune option

Intel® VTune™ Profiler Command Line Interface

Manage Data Views

Intel® VTune™ Profiler User Guide 1

409

Minimize Collection Overhead
Explore configuration options provided by the Intel®
VTune™ Profiler that incur collection overhead and
increase the result size.

If required, consider disabling or modifying these options either by editing the predefined analysis
configuration or by creating a new custom analysis type:

Hotspots Sampling Mode
When you select the Hotspots analysis, you can choose between the User-Mode Sampling (higher overhead)
and Hardware Event-Based Sampling (lower overhead). The Overhead diagram on the right adjusts to your
settings and shows how each of them impacts on the collection overhead:

Collect Context Switches
This option enables collection of thread context switches for hardware event-based sampling collection and is
available in a custom hardware event-based sampling analysis configuration.

To disable/modify this option for custom analysis:

From GUI:

1. In the Configure Analysis window > HOW pane, click the Browse button and select the Custom
Analysis > your_custom_analysis type.

2. In the custom analysis configuration, de-select the Collect context switches option.

From CLI:

Use the -knob enable-stack-collection=false option. For example:

vtune -collect-with runsa -knob enable-stack-collection=false -knob event-
config=CPU_CLK_UNHALTED.REF_TSC:sa=1800000,CPU_CLK_UNHALTED /home/test/sample

Sampling Interval
This option configures the amount of wall-clock time the VTune Profiler waits before collecting each sample.
The smaller the Sampling Interval, the larger the number of samples collected and written to the disk. The
minimal value of the sampling interval depends on the system:

• 10 milliseconds for systems with a single CPU
• 15 milliseconds for systems with multi-core CPUs

To disable/modify the sampling interval value:

From GUI:

1. In the Configure Analysis window > HOW pane, click the Browse button and select an analysis type,
for example, Hotspots and use the Hardware Event-based Sampling mode.

2. For the CPU sampling interval, ms option, specify a required value.

From CLI:

 1 Intel® VTune™ Profiler User Guide

410

Use the -knob sampling-interval=<value> option. For example:

vtune -collect-with runss -knob sampling-interval=100 -knob cpu-samples-mode=stack -knob signals-
mode=stack -knob waits-mode=stack -knob io-mode=stack /home/test/sample

Stack Size
This option is used to specify the size of a raw stack (in bytes) to process during hardware event-based
sampling collection. Zero value means unlimited size. Possible values are numbers between 0 and
2147483647.

To disable/modify this option:

From GUI:

1. In the Configure Analysis window > HOW pane, click the Browse button and select the Custom
Analysis > your_custom_analysis type.

2. In the custom configuration, decrease the Stack size, in bytes value.

From CLI:

Use the -stack-size option, for example:

vtune -collect-with runsa -knob enable-stack-collection=true -knob stack-size=8192 -knob enable-
call-counts=true -app-working-dir /home/samples/nqueens_fortran -- /home/samples/nqueens_fortran/
nqueens_parallel

See Also
Custom Analysis

knob
vtune option

stack-size
vtune option

Import External Data
Correlate interval or discrete data provided by an
external collector with the regular data provided by
the Intel® VTune™ Profiler.

For example, you can see how the data captured from SoCs or peripheral devices (camera, touch screen,
sensors, and so on) correlate with VTune Profiler metrics collected for your analysis target.

VTune Profiler can load and process the following data types:

• Interval data with start time and end time
• Samples with a set of counters

Data may be optionally bound to process and thread ID.

To add external performance statistics to a VTune Profiler result:

1. Launch a custom data collector in parallel with the selected VTune Profiler analysis type.
2. Convert the collected data to the CSV format and import it to the VTune Profiler.

Launch a Custom Data Collector
Collect custom performance data using one of the following modes:

• Application mode: You can leverage the statistics collected by your target application to enhance the
VTune Profiler analysis. For example, a part of your application has many instances executed many times
in one run and some of these instances exhibit a performance problem. You can retrieve time frames
where problems occur from your application log file and supply this data to the VTune Profiler.

Intel® VTune™ Profiler User Guide 1

411

• Custom collector mode: If you cannot/do not want to collect statistics directly by your application
during the VTune Profiler analysis, you may either create a custom collector or use an existing external
collector (for example, ftrace, ETW, logcatthat) and launch it from the VTune Profiler. To enable this
mode, configure a VTune Profiler analysis type to use the Custom collector option and specify a command
starting your external collector.

Convert Custom Data to the CSV Format and Import It to VTune Profiler
To import the externally collected data to the VTune Profiler:

1. Convert the collected custom data to a csv file with a predefined structure.

To do this for the custom collector mode, you need to configure the collector to output the data in the
required CSV format using the VTUNE_HOSTNAME environment variable that identifies the name of the
current host required for the csv file format. For the application mode, you may identify the hostname
from the Computer name field provided in the Summary window for your result, or from the summary
command line report.

2. Import the csv file to the VTune Profiler result using any of the following options:

in GUI:

a. Open the VTune Profiler result that was launched in parallel with the external data collection.
b. Open the Analysis Target tab, or Analysis Type tab.
c. Click the Import from CSV button on the command toolbar on the left.

The Choose a File to Import dialog box opens.
d. Navigate to the required csv file and click Open. You may import several csv files at a time.

NOTE
Importing a csv file to the VTune Profiler result does not affect symbol resolution in the result. For
example, you can safely import a csv file to a result located on a system where module and debug
information is not available.

in CLI: use the import option as follows:

vtune -r <existing result dir> -import <path to csv file>
VTune Profiler processes the data gathered by its own collectors and the external application and
provides an integrated picture of your code performance in its standard data views, such as the
Timeline pane, Bottom-up pane and others.

NOTE
If you develop a custom collector yourself, you may use the VTUNE_DATA_DIR environment variable to
make your collector identify the VTune Profiler result directory and automatically save the custom
collection result (in the CSV format) to this directory. In this case, external statistics will be imported
to the VTune Profiler result automatically.

See Also
Use a Custom Collector

Create a CSV File with External Data

custom-collector
vtune option

 1 Intel® VTune™ Profiler User Guide

412

Use a Custom Collector
Extend a standard Intel® VTune™ Profiler performance
analysis and launch a custom data collector directly
from the VTune Profiler.

Your custom collector can be an application you analyze with the VTune Profiler or a collector that can be
launched with the VTune Profiler.

To use a custom collector with the VTune Profiler and correlate the collected data:

1. Configure the custom collector .
2. Launch the custom collector.

Configure the Custom Collector
VTune Profiler sets several environment variables that can be used by a custom collector to manage the data
collection and collected results:

Environment
Variable Provided
by VTune Profiler

Enables Custom Collector To Do This

AMPLXE_DATA_DIR Identify a path to the VTune Profiler analysis result. The custom collector uses this
path to save the output csv file and make it accessible for the VTune Profiler that
adds the csv data to the native VTune Profiler result.

AMPLXE_HOSTNAME Identify the full hostname of the machine where data was collected. The hostname
is a mandatory part of the csv file name.

AMPLXE_COLLECT_
CMD

Manage a custom data collection. The custom collector may receive the values
listed below. After any of these commands the custom collector should exit
immediately and return control to the VTune Profiler.

NOTE
For each command, the custom collector will be re-launched.

start Start custom data collection. If required, the custom collector may
create a background process.

stop Stop data collection (background process), convert data to a csv file,
copy it to the result directory (specified by AMPLXE_DATA_DIR) and
return control to the VTune Profiler.

pause Temporarily pause data collection. This value is optional.

resume Resume data collection after pause. This value is optional.

AMPLXE_COLLECT_
PID

Identify a Process ID of the application to analyze. VTune Profiler sets this
environment variable to the PID of the root target process. The custom collector
may use it, for example, to filter the data.

VTune Profiler sets this variable to the process only when profiling in the Launch
Application or Attach to Process mode. For system-wide profiling, the value is
empty. When your profiled application spawns a tree of processes, the
AMPLXE_COLLECT_PID variable points to the PID of the launched or attached

Intel® VTune™ Profiler User Guide 1

413

Environment
Variable Provided
by VTune Profiler

Enables Custom Collector To Do This

process. This is important to know in case of using a script to launch a workload
since you may need to use your own means to pass the child process PID to the
custom collector.

The templates below demonstrate an interaction between the VTune Profiler and a custom collector:

Example in Python:

import os

def main():
 cmd = os.environ['AMPLXE_COLLECT_CMD']
 if cmd == "start":
 path = os.environ['AMPLXE_DATA_DIR']
 #starting collection of data to the given directory
 elif cmd == "stop":
 pass #stopping the collection and making transformation of own data to CSV if necessary

main()
Example in Windows CMD shell:

if '%AMPLXE_COLLECT_CMD%' == 'start' goto start
if '%AMPLXE_COLLECT_CMD%' == 'stop' goto stop
echo Invalid command
exit 1

:start
rem Start command in non-blocking mode
start <my collector command to start the collection> '%AMPLXE_DATA_DIR%'\data_file.csv
exit 0

:stop
<my collector command to stop the collection>
exit 0

Launch the Custom Collector
To launch a custom collector from the VTune Profiler GUI:

1. Click the

Configure Analysis button on the toolbar.

The Configure Analysis window opens.
2. Make sure the correct target system and target type are selected in the WHERE and WHAT panes.
3. In the Advanced section of the WHAT pane, edit the Custom collector field to add a command

launching your external collector, for example:

• on Windows*: python.exe C:\work\custom_collector.py
• on Linux*: python home/my_collectors/custom_collector.py

4. From the HOW pane, select the required analysis type, for example, Hotspots.
5. Configure available analysis options as you need.

 1 Intel® VTune™ Profiler User Guide

414

6. Click the Start button to launch the VTune Profiler analysis and collect custom data in parallel.

VTune Profiler does the following:

a. Launches the target application, if any, in the suspended mode.
b. Launches the custom collector in the attach (or system-wide) mode.
c. Switches the application to the active mode and starts profiling.

If your custom collector cannot be launched in the attach mode, the collection may produce incomplete
data.

To launch a custom collector from the command line:

Use the -custom-collector=<string> option.

Command Line Examples:

This example runs Hotspots analysis in the default user-mode sampling mode and also launches an external
script collecting custom statistics for the specified application:

Windows:

vtune -collect hotspots -custom-collector="python.exe C:\work\custom_collector.py" -- notepad.exe
Linux:

vtune -collect hotspots -custom-collector="python /home/my_collectors/custom_collector.py" --
my_app

This example runs VTune Profiler event-based sampling collector and also uses an external system collector
to identify product environment variables:

Windows:

vtune -collect-with runsa -custom-collector="set | find \"AMPLXE\"" -- notepad.exe
Linux:

vtune -collect-with runsa -custom-collector="set | find \"AMPLXE\"" -- my_app

NOTE
If you use your target application as a custom collector, you do not need to apply the Custom
collector option but make sure your application uses the following variables:

• AMPLXE_DATA_DIR environment variable to identify a path to the VTune Profiler result directory and
save the output csv file in this location.

• AMPLXE_HOSTNAME environment variable to identify the name of the current host and use it for the
csv file name.

See Also
Import External Data

Create a CSV File with External Data

Cookbook: Core Utilization in DPDK Apps tracing with the custom collector
 tracing with the custom collector

Intel® VTune™ Profiler Command Line Interface

Intel® VTune™ Profiler User Guide 1

415

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/core-utilization-in-dpdk-apps.html

Create a CSV File with External Data

Intel® VTune™ Profiler can process and integrate performance statistics collected externally with a custom
сollector or with your target application in parallel with the native VTune Profiler analysis. To achieve this,
provide the collected custom data as a csv file with a predefined structure and save this file to the VTune
Profiler result directory.

VTune Profiler can load and process the following data types:

• Interval data with start time and end time
• Samples with a set of counters

To make the VTune Profiler interpret the custom statistics from the csv file, make sure the file format meets
the following requirements:

File Name
csv filename should specify the hostname where your custom collector gathered the data, following these
format requirements:

Filename format:[user-defined]-hostname-<hostname-of-system>.csv
Where:

• [user-defined] is an option string, for example, describing the type of data collected
• -hostname- is a required text that must be specified verbatim
• <hostname-of-system> is the name of the system where the data is collected. If you use a custom

collector you can retrieve the hostname by using the VTUNE_HOSTNAME environment variable. If you
create a CSV file to import into an existing result, you can either refer to the Summary window that
provides the required hostname in the Collection and Platform Info section > Computer name, or
check the corresponding vtunesummary report: vtune -r <result> -R summary.

Example:phases-hostname-octagon53.csv

NOTE
If the hostname in the csv file name is not specified or specified incorrectly, the VTune Profiler
displays the imported data with the following limitations:

• Event timestamps are represented in the UTC format.
• Only global data (not attributed to specific threads/processes) are displayed.

Format for Interval Values
Interval data may be optionally bound to a thread ID. VTune Profiler represents data not bound to a
particular thread (there are no TID values in the csv file) as frames. Data bound to a thread (there are TID
values in the csv file) is represented as tasks .

For imported interval values, use 5 columns, where the order of columns is important:

name,start_tsc.[QPC|CLOCK_MONOTONIC_RAW|RDTSC|UTC],end_tsc,[pid],[tid]

Column Name Description

name Name of an event.

start_tsc.
[QPC|
CLOCK_MONOTON
IC_RAW|RDTSC|
UTC]

Event start timestamp. This column name has a QPC|CLOCK_MONOTONIC_RAW, RDTSC
or UTC suffix that indicates the type of a timestamp counter:

 1 Intel® VTune™ Profiler User Guide

416

Column Name Description

• Specify QPC (QueryPerformanceCounter) on Windows* OS if the performance
counter is used and specify CLOCK_MONOTONIC_RAW on Linux* OS if
clock_gettime(CLOCK_MONOTONIC_RAW) is used.

• Specify RDTSC if the RDTSC counter is used. To obtain RDTSC:

• For Microsoft* Compiler and Intel® Compiler, use _rdtsc() intrinsic
• For GCC* compiler, copy the following function to your code and call it where

necessary:

#include <stdint.h>
int64_t rdtsc()
{
 int64_t tstamp;

#if defined(__x86_64__)
 asm("rdtsc\n\t"
 "shlq $32,%%rdx\n\t"
 "or %%rax,%%rdx\n\t"
 "movq %%rdx,%0\n\t"
 : "=g"(tstamp)
 :
 : "rax", "rdx");
#elif defined(__i386__)
 asm("rdtsc\n": "=A"(tstamp));
#else
#error NYI
#endif
 return tstamp;
}
• Specify UTC if date and time is used. Expected format is YYYY-MM-DD

hh:mm:ss.sssss, where the number of decimal digits is arbitrary.

end_tsc Event end timestamp.

pid Process ID, provided optionally. Absence of a value in this field does not affect how a
result is imported except for extremely rare cases when the following conditions are
all met:

• Thread ID is reused by the operating system within the collection time frame.
• Different threads with the same thread ID generate records for thecsv file.
• Timestamps are inaccurate and data may be attributed to more than one thread

with the same thread ID.

You may specify this field as an empty value within the data, or skip it from both file
header and data entirely.

tid Thread ID, provided optionally. If a value is specified in this field, the interval will be
interpreted as a Task; otherwise, interval will be interpreted and shown as a Frame.

You may specify this field as an empty value within the data, or skip it from both file
header and data entirely.

Examples

Format for Discrete Values
You can import two types of discrete values:

Intel® VTune™ Profiler User Guide 1

417

• Cumulative data type (for example, distance, hardware event count), specified with the .COUNT suffix in
the csv file

• Instantaneous data type (for example, power consumption, temperature), specified with the .INST suffix
in the csv file

The following format is required:

tsc.[QPC|CLOCK_MONOTONIC_RAW|RDTSC|UTC],CounterName1.COUNT|INST[,CounterName2.COUNT|
INST],[pid],[tid]

Column Name Description

tsc.[QPC|
CLOCK_MONOTON
IC_RAW|RDTSC|
UTC]

Event start timestamp. This column has a QPC|CLOCK_MONOTONIC_RAW, RDTSC, or
UTC suffix that indicates the type of a timestamp counter:

• Specify QPC (QueryPerformanceCounter) on Windows* OS if the performance
counter is used and specify CLOCK_MONOTONIC_RAW on Linux* OS if
clock_gettime(CLOCK_MONOTONIC_RAW) is used.

• Specify RDTSC if the RDTSC counter is used. Use __rdtsc() intrinsic to obtain
RDTSC on Windows. To obtain RDTSC on Linux, copy the following function to your
code and call it where necessary:

#include <stdint.h>
int64_t rdtsc()
{
 int64_t tstamp;

#if defined(__x86_64__)
 asm("rdtsc\n\t"
 "shlq $32,%%rdx\n\t"
 "or %%rax,%%rdx\n\t"
 "movq %%rdx,%0\n\t"
 : "=g"(tstamp)
 :
 : "rax", "rdx");
#elif defined(__i386__)
 asm("rdtsc\n", "=A"(tstamp));
#else
#error NYI
#endif
 return tstamp;
}
• Specify UTC if date and time is used. Expected format is YYYY-MM-DD

hh:mm:ss.sssss, where the number of decimal digits is arbitrary.

CounterName1 Name of the event. Each counter has a separate column. COUNT suffix is used to
specify a cumulative counter value. INST suffix is used to specify instantaneous
counter values.

pid Process ID, provided optionally. Absence of a value in this field does not affect how a
result is imported except for extremely rare cases when the following conditions are
all met:

• Thread ID is reused by the operating system within the collection time frame.
• Different threads with the same thread ID generate records for thecsv file.
• Timestamps are inaccurate and data may be attributed to more than one thread

with the same thread ID.

 1 Intel® VTune™ Profiler User Guide

418

Column Name Description

You may specify this field as an empty value within the data, or skip it from both file
header and data entirely.

tid Thread ID, provided optionally. If a value is specified in this field, the interval will be
interpreted as a Task; otherwise, interval will be interpreted and shown as a Frame.

You may specify this field as an empty value within the data, or skip it from both file
header and data entirely.

Examples

Additional Requirements
• Make sure each csv file contains only one table. If you need to load several tables, create several csv

files with one table per file.
• Use commas as value separators.
• Use RDTSC, UTC or performance counter (QueryPerformanceCounter on Windows OS and

CLOCK_MONOTONIC_RAW on Linux OS) to specify events timestamp.

See Also
Import External Data

Use a Custom Collector

Examples of CSV Format and Imported Data

import
vtune option

Import Linux Perf* Trace with VTune Profiler Metrics

If you have your own performance monitoring system based on Linux Perf (for example, as part of your date
center infrastructure) and cannot collect data with the Intel® VTune™ Profiler, you can still use the VTune
Profiler for data analysis as follows:

1. Select a VTune Profiler analysis type that is of interest to you.
2. Use VTune Profiler to get a set of Linux Perf options and apply them to a Perf collection on your target

system.
3. Import the generated Linux Perf trace into a VTune Profiler project and start analysis.

Select a VTune Profiler Analysis Type
VTune Profiler provides a rich set of predefined analysis types targeting particular performance problems.
Each analysis type contains a selected list of low-level performance events and high-level metrics based on
them. For example, Microarchitecture Exploration analysis collects all required PMU (Performance Monitoring
Unit) events from CPU cores needed for TMA methodology. The Memory Access analysis has a set of both
core and uncore PMU events needed for memory-related performance metrics (like DRAM bandwidth).

Using a native Linux Perf interface to collect all needed low-level PMU events may be complicated, so
consider reusing the VTune Profiler configuration targeted for Perf collection (driverless mode).

Run VTune Profiler to Get Linux Perf Options for Analysis
When the VTune Profiler runs a performance data collection in the driverless mode, it uses a Linux Perf
command line and logs it inside the result folder in the <result-folder>/data.0/perfcmd file. To get a
correct set of Perf options, do the following:

Intel® VTune™ Profiler User Guide 1

419

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

1. Install the VTune Profiler on any Linux system with a similar hardware configuration (the same CPU
family) as the system where real performance profiling is planned to be run.

2. Run a VTune Profiler analysis of your interest to generate perfcmd file with Perf options:

$ vtune-cl -r <result-folder> -collect <analysis-type> -finalization-mode=none -d 1
For example, for the Microarchitecture Exploration run:

vtune-cl -r bogus_result -collect uarch-exploration -finalization-mode=none -d 1
The <result-folder>/data.0/perfcmd file with all necessary Linux Perf options is generated.

NOTE

• You do not run any real workload here. The only purpose of this run is to generate the perfcmd
file.

• VTune Profiler license is not required for this step since you only collect data without opening it.

3. Open the perfcmd file and copy-paste its content to a Linux Perf command invocation on your real
target system.

NOTE
Your Perf tool should contain a patch from https://github.com/torvalds/linux/commit/
f92da71280fb8da3a7c489e08a096f0b8715f939#diff-809984534aa420619413fdf4c260605d. In Linux
kernel version >= 4.19, this patch is applied out of the box, in earlier versions you need to manually
apply it and recompile the Perf tool.

4. Run the Linux Perf configuration on your target system.

Import the Linux Perf Trace into a VTune Profiler Project
1. Create a VTune Profiler project or open an existing one.
2. Click the

Import Result toolbar button.

The Import File and Create a Result window opens.
3. Select Import a single file option and navigate to the Linux Perf trace file.

VTune Profiler imports the trace and opens the result in the default viewpoint. You may switch between
viewpoints to apply the most relevant. For example, use the Microarchitecture Exploration viewpoint for
the Microarchitecture Exploration analysis.

See Also
Set Up Project

Import Results and Traces into VTune Profiler GUI

Examples of CSV Format and Imported Data
Explore examples of the performance data gathered
with an external collector and imported into an Intel®
VTune™ Profiler project in the CSV format.

• Examples for importing interval data:

 1 Intel® VTune™ Profiler User Guide

420

• CSV file with the performance counter timestamp
• CSV file with the system counter timestamp
• CSV file with interval data bound to a process
• Command line report for imported interval data bound to a process
• CSV file with interval data not bound to a particular process
• Command line report for imported interval data not bound to a process

• Examples for importing discrete data:

• CSV file with the performance counter timestamp
• CSV file with the system counter timestamp
• CSV file with discrete data not bound to a particular process
• Command line report for imported discrete data

Examples for Importing Interval Data
Example 1: CSV File with the Performance Counter Timestamp

name,start_tsc.QPC,end_tsc,pid,tid
frame1,2,30,,
frame1,33,59,,
taskType1,3,43,1,1
taskType2,5,33,1,1
taskType1,46,59,1,1
taskType2,45,54,1,1

VTune Profiler will process data with missing PID and TID as frames. Data with the PID and TID specified will
be processed as tasks.

Example 2: CSV File with the System Counter Timestamp

name,start_tsc.UTC,end_tsc,pid,tid
Frame1,2013-08-28 01:02:03.0004,2013-08-28 01:02:03.0005,,
Task,2013-08-28 01:02:03.0004,2013-08-28 01:02:03.0005,1234,1235

Example 3: CSV File with Interval Data Bound to a Process

name,start_tsc.TSC,end_tsc,pid,tid
function1_task_type,419280823342846,419280876920231,12832,11644
function2_task_type,419280876920231,419281044717992,12832,11644
function1_task_type,419281044745822,419281102121452,12832,11644
function2_task_type,419281102121452,419281277898762,12832,11644
function1_task_type,419281277935812,419281342158661,12832,11644
function2_task_type,419281342158661,419281527040239,12832,11644

VTune Profiler processes this data as tasks (TID and PID values are specified) and displays the result in the
Platform window as follows:

Example 4: Command Line Report for Imported Interval Data Bound to a Process

Intel® VTune™ Profiler User Guide 1

421

In this example, the hotspots report shows counters bound to a specific process/thread grouped by tasks:

vtune -R hotspots -group-by=task -r my_result
vtune: Using result path 'my_result'
vtune: Executing actions 50 % Generating a report
Task Type CPU Time:Self Task Time:Self Overhead Time:Self Spin Time:Self Thread
Counter:victim_counter:Self Thread Counter:victim_counter_x2:Self
------------------ ------------- -------------- ------------------ --------------
--------------------------- ---------------------------------
[Outside any task] 0 0 0
0 0 2
ITT Task 0 0.009 0
0 2 6
victim_task 0 0.000 0
0 0 0
vtune: Executing actions 100 % done

Example 5: Interval Data Not Bound to a Particular Process

name,start_tsc.TSC,end_tsc,pid,tid
calibrating_frame,419743756747826,419747241283878,,
open_file_frame,419747251423510,419747504506086,,

VTune Profiler processes this data as frames (there are no TID and PID values specified) and displays the
result as follows:

With the VTune Profiler, you can easily correlate the frame data in the Timeline pane and grid view.

Example 6: Command Line Report for Imported Interval Data Not Bound to a Process

In this example, the hotspots report shows counters not bound to a specific thread/process grouped by
frame domain:

vtune -R hotspots -group-by=frame-domain -r my_result
vtune: Using result path 'my_result'
vtune: Executing actions 50 % Generating a report
Frame Domain Frame Time:Self Counter:global_counter:Self Counter:global_counter_x2:Self

 1 Intel® VTune™ Profiler User Guide

422

------------ --------------- --------------------------- -----------------------------
cuscol_frame 0.126 4 8
cuscol_utc_frame 0.126 4 8
vtune: Executing actions 100 % done

Examples for Importing Discrete Data
Example 1: CSV File with the Performance Counter Timestamp

tsc.QPC,MyCounter1.COUNT,MyCounter2.INST,pid,tid
2,1,3,1,1
5,2,5,1,1
10,3,3,1,1
23,10,7,1,1

Example 2: CSV File with the System Counter Timestamp

tsc.UTC,MyCounter1.COUNT,MyCounter2.COUNT,pid,tid
2013-08-28 01:02:03.0004,1234,,1234,1235
2013-08-28 01:02:03.0005,1234,,1234,1235
 2013-08-28 01:02:03.0006,,1000234,,

Example 3: CSV File with Discrete Data Not Bound to a Particular Process

tsc.TSC,global_inst_val1.INST,global_counterWIV.COUNT,pid,tid
78912463824135,3,6,,
78916553573577,6,9,,
78919519641325,3,12,,
78922574591880,6,18,,
78925599513489,3,21,,

VTune Profiler processes this data and displays the result as follows:

Intel® VTune™ Profiler User Guide 1

423

Discrete cumulative counter values, both thread-specific and global (not thread-specific), are provided in the
grid view and in the Timeline pane in yellow. Instantaneous counter values, thread-specific and global, are
displayed in blue in the Timeline pane only.

NOTE
To view global counter values in the grid, make sure to select a generic (not thread specific) grouping
level like Frame Domain/Frame/Function/Call Stack.

Example 4: Command Line Report for Imported Discrete Data

This example provides the hw-events report with external discrete data (counters) integrated into a VTune
Profiler hardware event-based sampling analysis result cl_result.vtune:

vtune -R hw-events -group-by=process -r my_result
vtune: Using result path 'my_result'
vtune: Executing actions 50 % Generating a report
Process Counter:victim_counter:Self Counter:victim_counter_x2:Self
--------------- --------------------------- ------------------------------
itt_and_csv.exe 2 4
vtune: Executing actions 100 % done

See Also
Import External Data

Create a CSV File with External Data

Use a Custom Collector

import
 option

Manage Data Views
When the analysis run is complete, the Intel® VTune™ Profiler generates a result that is automatically opened
in the default viewpoint. The location of the result files is specified in the Configure Analysis window.

A viewpoint typically contains the following elements:

Format Description

Result
Tab

This is a container of all other viewpoint elements. This tab has the same name as the VTune
Profiler result file. The result tab name uses the r@@@{at} format, where @@@ is an
incremented result number starting with 000 and at is the analysis type.

For example:

r004hs is the fifth result run in this project and provides data for the Hotspots (hs) analysis.
The Hotspots is the analysis type name. Hotspots by CPU Utilization is the name of the
viewpoint selected via the down arrow. Use this arrow to switch to other viewpoints available
for this analysis result.

 1 Intel® VTune™ Profiler User Guide

424

Format Description

Window
s

Each result tab includes a number of windows presenting colleted data from different
perspectives. Each window has a corresponding tab. To ease your navigation, some windows
are synchronized: when you select an element in a window, the same element is automatically
selected in other windows of the same viewpoint. The list of windows depends on the selected
viewpoint.

Each window has a corresponding context help topic available via F1 button or

icon.

NOTE Context help as part of this product help is available on the web only. You may also download
a copy of this help from the VTune Profiler documentation archive.

Panes Each window typically includes two or three panes, such as Call Stack pane, Timeline pane, and
others.

NOTE
For a brief overview on a particular viewpoint, click the question mark icon at the viewpoint name.

All the data views make your analysis more convenient and manageable with the following options:

Switch Viewpoints
Use a viewpoint, a pre-set configuration of Intel®
VTune™ Profiler's data views, to focus on specific
performance problems.

NOTE
By default, VTune Profiler shows no viewpoints, or a managed selection of viewpoints that may be
helpful for the specific analysis type. You can enable the display of all applicable viewpoints by
enabling the Show all applicable viewpoints option in the Options pane.

When you select a viewpoint, you select a set of performance metrics the Intel® VTune™ Profiler shows in the
windows of the result tab. To select the required viewpoint, click the down arrow:

Name of the analysis type you ran.

Name of the current viewpoint. Click the down arrow next to the viewpoint name to open a drop-down
menu with a choice of applicable viewpoints.

Intel® VTune™ Profiler User Guide 1

425

https://d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/

Context-sensitive help icon for the current viewpoint.

Viewpoint drop-down menu that displays a list of viewpoints available for the current analysis type.

Explore the table below to understand which viewpoints are available for each analysis type:

Viewpoint Description

Hotspots by CPU
Utilization

Helps identify hotspots - code regions in the application that consume a lot
of CPU time. CPU time is broken down into CPU utilization states: idle,
poor, fair, and good.

Threading Efficiency Shows how your multi-threaded application is utilizing available CPU cores
and helps identify the possible causes of ineffective utilization. Use this
view to find threads waiting too long on synchronization objects (locks) or
identify scheduling overhead.

Microarchitecture
Exploration

Helps identify where the application is not making the best use of available
hardware resources. This viewpoint displays metrics derived from hardware
events. The Summary window reports overall metrics for the entire
execution along with explanations of the metrics. From the Bottom-up
and Top-down Tree windows you can locate the hardware issues in your
application. Cells are highlighted when potential opportunities to improve
performance are detected. Hover over the highlighted metrics in the grid to
see explanations of the issues.

Hardware Events Displays statistics of monitored hardware events: estimated count and/or
the number of samples collected. Use this view to identify code regions
(modules, functions, code lines, and so on) with the highest activity for an
event of interest.

Memory Usage Helps understand how effectively your application uses memory resources
and identify potential memory access related issues like excessive access
to remote memory on NUMA platforms, hitting DRAM or Interconnect
bandwidth limit, and others. It provides various performance metrics for
both the application code and memory objects arrays.

HPC Performance
Characterization

Helps understand how effectively your application uses CPU, memory, and
floating-point operation resources. Use this view to identify scalability
issues for Intel OpenMP and MPI runtimes as well as next steps to increase
memory and FPU efficiency.

Input and Output Shows input/output data, CPU and bus utilization statistics correlated with
the execution of your target. Use this view to identify long latency of I/O
requests, explore call stacks for I/O functions, analyze slow I/O requests
on the timeline and identify imbalance between I/O and compute
operations.

GPU Compute/Media
Hotspots

Helps identify GPU tasks with high GPU utilization and estimate its
effectiveness. It is particularly useful for SYCL computing tasks, analysis of
the OpenCL™ kernels and Intel Media SDK tasks. Use this view to identify
the most time-consuming GPU computing tasks, analyze GPU tasks
execution over time, explore the GPU hardware metrics per GPU
architecture blocks, and so on.

FPGA Hotspots Helps identify the FPGA and CPU tasks with high utilization. Use this view
to assess FPGA time spent executing kernels, overall time for memory
transfers between the CPU and FPGA, and how well a workload is balanced
between the CPU and FPGA.

 1 Intel® VTune™ Profiler User Guide

426

Viewpoint Description

GPU Rendering Provides platform-wide CPU/GPU utilization and efficiency statistics
collected with GPU Rendering analysis (preview) including dedicated
support for the Xen virtualization platform.

Platform Power Analysis Helps identify where the application is generating idle and wake-up
behavior that can lead to inefficient use of energy. Where possible, it
provides data from both the OS and hardware perspective, such as the
detailed C-state residency report that shows the OS requested time in deep
sleep states compared to the actual residency the hardware indicated.

See Also
Interpret Energy Analysis Data with Intel® VTune™ Profiler

Analyze Performance

Control Window Synchronization
Correlate the data displayed in the Bottom-up
window for each program unit (bottom-up analysis)
and in the Top-down Tree window for an overall
impact of each element together with its callees (top-
down analysis).

The Top-down Tree window includes Self Time and Total Time columns for each data column in the
Bottom-up window:

In the Threading Efficiency example above, columns in the Top-down Tree window match the columns in
the Bottom-up window as follows:

Bottom-up Window Top-down Tree Window

Wait Time by Thread
Concurrency

Wait Time: Total by Thread Concurrency

Wait Time: Self by Thread Concurrency

Wait Count Wait Count: Total

Wait Count: Self

The Bottom-up window provides only Self type of data (function without callees). In the grid, Self time/
Count column headers do not have :suffix.

The Total type of data (function + all callees' Self data) is provided in the <data>:Total column and unique
to the Top-down Tree window. In the example above, these are the Wait Time:Total by Utilization and
Wait Count:Total columns.

Self time for a program unit in the Bottom-up window equals the sum of Self time values for the same
program unit in different call sequences in the Top-down Tree window.

Intel® VTune™ Profiler User Guide 1

427

See Also
Window: Bottom-up

Window: Top-down Tree

View Stacks

View Stacks
Manage the Intel® VTune™ Profiler view to display call
stacks for user and system functions and estimate an
impact of each stack on the performance metrics.

Intel VTune Profiler provides call stack information in the Call Stack pane, Bottom-up pane, Top-down
Tree, and Caller/Callee pane. You may use the following options to manage and analyze stacks in different
views:

• Change stack layout
• Navigate between stacks
• View stacks per metric
• View system functions in the stack
• View source for a stack function

Change Stack Layout
Manage the stack representation in the grid (Bottom-up or Top-down Tree pane) by using the

/

stack layout toolbar button.

The button dynamically changes according to the selected layout. For example, if the chain layout is selected
for the view, the button changes to show an option to choose a tree layout, and vice versa.

Chain layouts

are typically more useful for the bottom-up view:

While tree layouts

are more natural for the top-down view:

 1 Intel® VTune™ Profiler User Guide

428

NOTE
Chain layout in the Top-down Tree pane is possible only if there is no branching AND when all values
of data columns are the same for the parent and for the child.

Navigate Between Stacks
To view stacks for the selected program unit, estimate stack contribution, and identify the most performance-
critical stack, use the Call Stack pane and click the next/previous

/

arrows.

To view information on several stacks or program units, Ctrl-click to select these stacks or program units in
the Bottom-up or Top-down Tree pane. The Call Stack pane shows the highest contributing stack from all
the selected stacks, with the contribution calculated based on the sum of all selected stacks. All the stacks
related to the selection are added to the tab and you can navigate to them using the next/previous

/

arrows.

Note that though each stack in the Bottom-up pane corresponds to a call stack provided in the Call Stack
pane, the number of tree branches in the Bottom-up grid does not necessarily equal the number of stacks
in the Call Stack pane. Since the stack in the Bottom-up pane is function-based and the stacks in the Call
Stack pane are line-number-based, the number of stacks in these views may differ.

For example, in the screen capture below, the Bottom-up pane shows two stacks for the grid_intersect
function whereas the Call Stack pane shows that 17 stacks exist.

Intel® VTune™ Profiler User Guide 1

429

View Stacks per Metric
Use the drop-down menu in the Call Stack pane, to choose the stack type for the selected program unit.

For example, when a synchronization object is selected in the Threading analysis result, you can set the Call
Stack pane to show the stacks where that object was created, signaled or waited for.

View System Functions in the Stack
To control whether you need the system functions show up in the stacks in the grid and Call Stack pane, use
the Call Stack Mode menu provided on the filter toolbar.

View Source for a Stack Function
Hover over any item in the Call Stack pane to get information on the related source file and code line. To go
to that line, click the View Source hyperlink. The source file opens in the Source/Assembly window on the
code that generated the item in the selected row.

For example, in a Threading analysis result, if you double-click the topmost item of the Wait Time (Sync
Object Creation) stack, the related source file opens on the source line that created the corresponding
synchronization object.

If the source code is not found, you can either locate it manually, or open the Assembly pane for this
program unit.

If you select a system function, the Source/Assembly window opens the source file of the system function
if it is available. If not, it shows the disassembly for the binary file containing this system function.

 1 Intel® VTune™ Profiler User Guide

430

See Also
Window: Bottom-up

Pane: Call Stack

Metrics Distribution Over Call Stacks

Call Stack Mode
Use the Call Stack Mode filter bar menu to choose
how to show system functions in the stack.

By default, the Intel® VTune™ Profiler uses the User function + 1 mode and filters out all system functions
except for those directly called from user functions.

To view system functions (for example, kernel stacks) in the user function stacks, select the User/system
functions call stack mode :

Intel® VTune™ Profiler User Guide 1

431

To locate the call of the kernel function in the assembly code, double click the function in the Call Stack
pane.

NOTE
For more accurate kernel stack analysis on Linux targets, use the CONFIG_FRAME_POINTER=y option
for kernel configuration.

See Also
Enable Linux* Kernel Analysis

Debug Information for Windows* System Libraries

Toolbar: Filter

call-stack-mode
vtune option

inline-mode vtune option

Metrics Distribution Over Call Stacks

When interpreting the performance analysis results, you
can select an object in the grid and select a performance
metric in the drop-down menu of the Call Stack pane to:

• View stacks leading to the selected object
• Analyze the distribution of the selected performance

metric per stacks of the selected object. For example,
if the CPU Time metric is selected, the contribution

 1 Intel® VTune™ Profiler User Guide

432

bar shows a share of CPU time spent executing the
selected stack relative to the total CPU time spent
executing the selected function.

You can also select an object in the Timeline pane. In
this case, the Call Stack pane displays metric data for all
objects with the same stacks.

Depending on your analysis configuration, the following
metrics are available:

Use This Metric To Analyze This

CPU Time Time during which the CPU is actively executing your application on all cores.

Overhead and Spin
Time

Combined Overhead and Spin time calculated as CPU Time where call site type is
Overhead + CPU Time where call site type is Synchronization.

Wait Time Distribution of time when one thread is waiting for a signal from another thread.
For example, a thread that needs a lock that is currently held by another thread,
is waiting for the other thread to release the lock.

Wait Count Distribution of the number of times the corresponding system wait API was called.

Spin Time Distribution of Wait Time during which the CPU was busy.

Task Time (Task) Time spent within a task.

Context Switch
Time

Distribution of software thread inactive time due to a context switch, regardless of
its reason (Preemption or Synchronization), over different call stacks.

Context Switch
Count

Distribution of the amount of context switches, regardless of their reason
(Preemption or Synchronization), over different call stacks.

Preemption
Context Switch
Count

Distribution of the amount of context switches where the operating system task
scheduler switched a thread off a processor to run another, higher-priority thread.

Synchronization
Context Switch
Count

Distribution of the amount of context switches where a thread was switched off
because of making an explicit call to thread synchronization API or to I/O API.

Inactive Time Distribution of time during which a thread remained preempted from execution.

Event metric such as
Instructions
Retired, Clockticks,
LLC Miss, and
others

Distribution of a hardware event. Use this metric to identify stacks with the
highest contribution of the event count into the total event count collected for the
target.

Wait Time (Signal) Distribution of Wait Time by call stacks of a signaling thread that was releasing a
lock where the thread was waiting. Use this metric to identify signaling stacks
resulted in long waits to optimize algorithms of the signaling thread.

Wait Count
(Signal)

Distribution of Wait Count by call stacks of a signaling thread that was releasing a
lock where the thread was waiting. Use this metric to identify signaling stacks
resulted in the high number of waits.

Intel® VTune™ Profiler User Guide 1

433

Use This Metric To Analyze This

Spin Time (Signal) Distribution of Spin Time by call stacks of a signaling thread that was releasing a
lock where the thread was waiting. Use this metric to identify signaling stacks
resulted in long waits while the CPU is busy.

Wait Time (Sync
Object Creation)

Distribution of Wait Time by various object creations. For example, the currently
selected row in the grid may contain wait operations on various objects created in
different places of the program.

Wait Count (Sync
Object Creation)

Distribution of Wait Count by various object creations.

Spin Time (Sync
Object Creation)

Distribution of Spin Time by various object creations.

Loads (Memory
Allocation)

Distribution of the total number of loads in the stacks allocating memory objects.

Execution
(Computing Task
(GPU))

Distribution of time spent in the stacks to execute computing tasks. Use this
metric to identify most expensive operations for Offload.

Host-to-Device
Transfer
(Computing Task
(GPU))

Distribution of time spent in the stacks to transfer data from host to device. Use
this metric to identify most expensive operations for Offload.

Device-to-Host
Transfer
(Computing Task
(GPU))

Distribution of time spent in the stacks to transfer data from device to host. Use
this metric to identify most expensive operations for Offload.

NOTE
If a selected stack type is not applicable to a selected program unit, VTune Profiler uses the first
applicable stack type from the stack type list instead.

See Also
Pane: Call Stack

Group and Filter Data

Hardware Event-based Sampling Collection

Reference

Manage Grid Views
Explore the mechanisms provided by the Intel®
VTune™ Profiler to manage the data format, sort and
filter data in the grid views.

These features are available in all grid views that display collected performance data:

 1 Intel® VTune™ Profiler User Guide

434

To Do This Do This

Sort the table
by values in a
particular
column

Click any column header

. You can only sort by one column, however, a previous sorting may be kept for rows
with the same values on the current sorting.

Synchronize
the selected
data

Select a program unit of your interest in a grid or Timeline pane and the VTune Profiler
highlights the same unit in other panes/windows.

Re-group the
displayed data

Select the required granularity from the Grouping drop-down menu. The available
groups depend on the analysis type.

Expand/
Collapse data
in the column

Click the expand

/collapse

buttons in the data columns to expand the column by utilization such as poor, or OK
utilization, and by threads within the utilization definition.

Expand/
Collapse row
data

Click the expand

/collapse

buttons to show/hide the next level of grouping or call stack elements.

Change the
data
representation
format

Right-click the data column and select Show Data As > and select from the different
data format options. The data format you configure is used in all the windows.

Select rows Shift-click to select two or more consecutive rows. Ctrl-click to select two or more rows
that are not consecutive.

Filter the
content of the
window

• Use the drop-down controls in the Filter toolbar to filter data by the contribution of a
selected program unit. The percentage contribution depends on the filtering metric
selected by clicking the

Filter icon. In the example below, the analyze_locks process contributes 53.4% of
the Clockticks event count (default filtering metric for the hardware event-based
analysis) to the overall application Clockticks event count, so filtering the collected
data by this module causes the viewpoint to show 53.4 % of the overall Clockticks
data.

• Use the Filter In/Out by Selection options of the context menu. VTune Profiler
filters in/out the data based on the Total time of the selected item(s).

Filtering the data in one window applies the same filter to all the windows of that
viewpoint.

If you applied filters available on the Filter bar to the data already filtered with the Filter
In/Out by Selection context menu options, all filters are combined and applied
simultaneously.

Intel® VTune™ Profiler User Guide 1

435

To Do This Do This

View source/
assembly code

Select a program unit you need and double-click. If the source file is not found, the
assembly pane is displayed.

See Also
Window: Bottom-up

Window: Top-down Tree

Toolbar: Filter

Context Menu: Grid

Manage Timeline View
Explore filtering, sorting and grouping mechanisms
available in the Timeline pane in Intel® VTune™
Profiler.

To manage the Timeline pane, do the following:

To Do This Do This

Group the
data by
program units

Use the Timeline grouping menu to select a grouping level:

A grouping level depends on the analysis type. Selected grouping affects the metrics
provided in the Timeline pane. If some of the metrics are not supported for the selected
grouping, this data does not show up in the Timeline view and the legend is updated
accordingly.

Sort the data Right-click the list of threads/cores/CPUs (depending on the analysis type) and select
the required type of sorting from the Sort By content menu option:

• Row Start Time sorts the rows by the thread creation time.
• Row Label sorts the rows alphabetically.
• <Metric> sorts the rows by performance metric monitored for the selected

viewpoint, for example, CPU Time, Hardware Event Count, and others.
• Ascending sorts the program units in the ascending order by one of the categories

selected above.
• Descending sorts the program units in the descending order by one of the

categories selected above.

Re-order the
rows

Select the row you need, hold and drag it to the required position. Press SHIFT to select
multiple adjacent rows. Press CTRL to select multiple disjointed rows.

 1 Intel® VTune™ Profiler User Guide

436

To Do This Do This

Filter data Select the required program unit(s), right-click and choose from the context menu to
filter in or filter out the data in the view by the selected items. To go back to the default
view, select the Remove All Filters option.

Zoom in and
focus on a
particular
graph section

1. Drag and drop to select the range of interest.
2. Right-click and select Zoom In on Selection from the context menu.

To restore the timeline to the previous state, right-click and select Undo Previous
Zoom. To restore the timeline to the entire time interval (for example, after multiple
zooming operations), right-click and select Reset Zoom from the context menu or click
the

Reset Zoom button on the timeline toolbar.

Zoom in/Zoom
out the
timeline

Click the

Zoom In/

Zoom Out buttons on the timeline toolbar.

Change the
height of the
row

Right-click and select the Change Band Height option from the Timeline context menu
and select the required mode:

• Super Tiny mode fits all available rows (corresponding to program units such as
processes, threads, and so on) into the timeline area and display metric data in a
gradient fill. This mode is especially useful for results with multiple processes/threads
since it shows all the data in a compact way ("bird's-eye view") with no scroll bar. It
helps observe large numbers that are typical for high-end parallel applications and
easily recognize application phases and places of underutilization for further zooming/
filtering.

If there are more rows than pixels, then multiple rows can share a pixel, in which
case the pixel shows the maximum value. If you hover over a chart object, the tooltip
shows all of the rows assigned to a pixel separately. If you resize the window, the
timeline view is re-drawn and pixels are re-shared.

Intel® VTune™ Profiler User Guide 1

437

To Do This Do This

If there is data, the active ranges are colored: the more data associated with a pixel,
the more intense color is used for drawing. Otherwise, the band is shown in a black
background color.

For hierarchical data, the Super Tiny mode shows timeline data for the last level of
hierarchy aggregated by the upper levels. For example, for the Process/Thread
grouping you see threads data aggregated by process. Hover over a chart element to
view the full hierarchy listed in the tooltip.

NOTE
The Super Tiny display mode is available only for the HPC Performance
Characterization viewpoint.

• Normal mode sets the normal row height (about 16-18px). This mode shows charts,
time markers, row identification (threads), and transitions. Rows can be reordered.

• Rich mode sets the maximum row height (35-50px). This mode shows charts, charts
for nested tasks, time markers, row identification (threads), and transitions. Rows
can be reordered and their height can be manually adjusted.

Change the
measurement
units on the
time scale

Right-click, select the Show Time Scale As context menu option, and choose from the
following values:

• Elapsed Time (default)
• OS Timestamp
• CPU Timestamp

Open the
source view

Double-click the required transition/wait. VTune Profiler opens the Source or, if symbol
information is not available, Assembly pane and highlights the corresponding waiting/
signaling call site.

Synchronize
the selection
with other
panes

Select a thread/module of your interest. VTune Profiler automatically highlights the
program units (for example, functions) corresponding to the selected item in the
Bottom-up and Top-down Tree panes.

See Also
Pane: Timeline

Source Code Analysis

Group and Filter Data

 1 Intel® VTune™ Profiler User Guide

438

Change Threshold Values
If required, modify default thresholds (for example,
for CPU Utilization, concurrency, and frame rate
histograms) set up by the Intel® VTune™ Profiler based
on your system data.

These thresholds define Poor, OK, Ideal, and Over utilization categories for CPU usage and concurrency
metric data and Good, Slow, Fast frame quality categories for frame rate.

To change the default threshold settings:

1. Open the collected result in the Summary window.
2. Drag a slider in a histogram to change the ranges of the required category.

The Apply button shows up at the bottom.
3. Click the Apply button to apply your changes.

VTune Profiler applies these threshold changes to the data provided in all viewpoints/windows of the current
and subsequent results in this project.

See Also
Window: Summary

Set Up Analysis Target

Choose Data Format
Configure the format of presenting the performance
data in the grid views.

Intel® VTune™ Profiler User Guide 1

439

To configure the data format, right-click the column, select Show Data As > from the context menu and
choose between available options:

Use This Format To Do This

Bar Display a graphical indicator of the amount of CPU time spent on this row item (blue
bar) or the processor utilization during CPU or Wait time (composed bar). The longer
the bar, the higher the value.

Composed bar is available for the Threading analysis only.

Percent Display the amount of time calculated as the percentage of the cell value to the sum
of values in this column for the whole result (or to the non-filtered-out items if a
filter is applied). For the nested columns (for example, CPU Time > Idle), the sum
of values used in the formula is based on the top-level column values (for example,
CPU Time).

In the compare mode, the same formula is used for per-result columns (for
example: CPU Time:<result 1 name>, CPU Time:<result 2 name>). But for the
Difference column (for example: CPU Time:Difference), the percent value is
calculated as the cell value / sum of values in this column for the first result (or for
non-filtered-out items if a filter is applied).

Percent and Bar Display both the percent and a bar.

Time Display the amount of time the processor spent on this row item. The unit size (m,
s, ms) is added to each cell value.

Time and Bar Display both the amount of time and a bar.

Counts For the Threading Efficiency viewpoint, display the number of times the
corresponding system wait API was called. For the event-based sampling results,
display event count based on the number of samples collected. Event Counts =
Samples x Sample After value.

Counts and Bar Display both the counts and a bar.

Scientific Display performance values in the scientific notation. Typically this format is
recommended if a value is < 0.001.

Scientific and
Bar

Display both scientific notation and a bar.

Double For some viewpoints available for the hardware event-based sampling analysis
types, display the percentage of CPU cycles used by a program unit. For example,
1.533 means that 153% of CPU cycles were used to handle a particular hardware
issue during the execution of the selected program unit.

Double and Bar For some viewpoints available for the hardware event-based sampling analysis
types, display the percentage of CPU cycles used by a program unit and
corresponding graphical indicator.

Percent of
Collection Time

For some metrics (for example, OpenMP* and MPI metrics), display the Time value
as percent of Collection Time, which is the wall time from the beginning to the end
of collection, excluding Paused Time.

 1 Intel® VTune™ Profiler User Guide

440

NOTE
The values in the data columns are rounded. For items that are sums of several other items, such as a
function with several stacks, the rounded sums may differ slightly from the sum of rounded
summands.

For example:

Module / Function Time (exact) Time (rounded)

foo.dll 0.2468 0.247

foo() 0.1234 0.123

bar() 0.1234 0.123

The rounded values in the grid do not sum up exactly as (0.123 + 0.123) != 0.247.

See Also
CPU Metrics Reference

Group and Filter Data
Analyze the data collected with the Intel® VTune™
Profiler by filtering in areas of interest and grouping
the data by specific program units (modules,
functions, frame domains, and so on).

VTune Profiler provides powerful filtering mechanisms that enable you to focus on specific objects or time
regions. This helps you focus only on the areas of interest and at the same time speeds up the GUI response
when a smaller data set is processed.

Filter by Objects
To filter by particular program units (functions, modules, and so on), use any of the following options:

• Context menu options: Select objects of interest in the grid, right-click and choose the Filter In by
Selection context menu option to exclude all objects from the view other than the objects you selected.
And conversely, choosing the Filter Out by Selection hides the selected data. The filter bar at the
bottom is updated to show the percentage of the displayed data by a certain metric.

For example, you want to filter in the grid by the most time-consuming function sphere_intersect:

When the filter is applied, the filter bar shows that you see only 24.9% of the collected CPU Time data.

• Filter toolbar options: Select a program unit in the filtering drop-down menu (process, module, thread)
to filter out your grid and Timeline view for displaying the data for this particular program unit. For
example, if you select the analyze_locks process introducing 51.5% of the CPU Time, the result data
will display statistics for this module only and the filter bar provides an indicator that only 51354% of the
CPU Time data is currently displayed:

Intel® VTune™ Profiler User Guide 1

441

Filter by Time Regions
You can narrow down your analysis to particular regions on the timeline. For example, you may select an
area of interest on the Timeline pane in the GPU Compute/Media Hotspots viewpoint, right-click and select
the Zoom In by Selection or Zoom In and Filter In by Selection context menu option:

The context summary on the right will be updated for the selected time range and the filter toolbar will show
the percentage of the data (per the default metric for this viewpoint) displayed.

Group Data
You can organize a view to focus on the sequence of data you need using the Grouping menu. The available
groups depend on the analysis type and viewpoint:

For example, if you want to view the collected data for the modules you develop, you may select the
Module/Function/Call Stack granularity, identify the hottest functions in your modules, and then switch to
the Function/Thread/Logical Core/Call Stack granularity to see which CPUs your hot functions were
running on.

VTune Profiler provides a set of pre-configured granularities that could be semantically divided into the
following groups:

Groups
targeted for
analysis

Description

Basic Identify function hotspots and distinguish problem call stacks.

 1 Intel® VTune™ Profiler User Guide

442

Groups
targeted for
analysis

Description

For most viewpoints, Function level is the default. If application modules have debug
information, you can rely on functions shown as hotspots. When debug information is
incomplete or missing, you may see a number of <unknown> functions, or samples
collected on internal functions of a module might be attributed to adjacent exported
functions.

Examples:

Function/Call Stack

Source Function/Function/Call Stack for analyzing all instances of the inline and
JITed functions

Multi-threading
analysis

Analyze hotspots in multi-threaded applications from the function, OS (Threads) or HW
(Packages, Core, Threads) perspectives.

Examples:

Function/Thread/Logical Core/Call Stack for detecting anomalies of the function
execution on different threads

Function/Package/Logical Core/Thread/Call Stack for identifying Interconnect/
NUMA issues on multi-processor systems

Physical Core/Logical Core/Function/Call Stack for identifying specific hyper-
threading issues

Physical Core/Thread/Function/Call Stack and Thread/Physical Core/
Function for identifying issues caused by thread migration between cores

Frame analysis Identify slow and fast frames.

Examples:

Frame Domain/Frame Duration Type/Function/Call Stack

Frame Domain/Frame Duration Type/Frame/Function/Call Stack

OpenMP*
analysis

Identify hotspots called from OpenMP regions.

Examples:

OpenMP Region/OpenMP Barrier-to-Barrier Segment/Function/Call Stack for
identifying load imbalance between different segments

OpenMP Region/OpenMP Region Duration Type/Function/Call Stack for
analyzing fast/slow OpenMP region instances

GPU analysis Analyze the CPU activity while the GPU was either idle or executing some code

Examples:

Render and GPGPU Packet Stage / Function / Call Stack

Render and GPGPU Packet Stage / Thread / Function / Call Stack

Typically, you start your analysis with the Summary window where clicking an object of interest opens the
grid pre-grouped in the most convenient way for analysis.

If the pre-configured grouping levels do not suit your analysis purposes, you can create your own grouping
levels by clicking the

Intel® VTune™ Profiler User Guide 1

443

Customize Grouping button and configuring the Custom Grouping dialog box.

See Also
Filter and Group Command Line Reports
 from command line

Cookbook: OpenMP* Code Analysis Method

View Data on Inline Functions
Configure the Intel® VTune™ Profiler data view to
display the performance data per inline functions for
applications in the Release configuration.

Requirements
This option is supported if you compile your code using:

• Linux*:

• GCC* compiler 4.1 (or higher)
• Intel® oneAPI DPC++/C++ Compiler. The -debug:inline-debug-info option is enabled by default if

you compile with optimization level -O2 and higher, and if debugging is enabled with the -g option.
• Windows*:

• Intel® C++ Compiler Classic, with /debug:inline-debug-info option.
• Intel® oneAPI DPC++/C++ Compiler and Microsoft* Visual C++, with the /Zo option. The /Zo option is

enabled by default when you generate debug information with /Zi or /Z7.
• Any other compiler that can generate debug information for inline functions in the DWARF format on Linux

or Microsoft PDB format on Windows.
• JIT Profiling API is used for inline functions of JIT-compiled code.

View Inline Functions
To view data on inline functions, in the analysis result window, set the Inline Mode filer bar option to Show
inline functions. VTune Profiler will display inline functions (virtual frames) as regular functions.

To disable displaying inline functions, select Hide inline functions.

Example 1: Inline Mode for Hotspots Analysis
In this example, you enable the Show inline functions option for the Hotspots analysis. This mode shows a
full stack for the GetModelParams inline function:

 1 Intel® VTune™ Profiler User Guide

444

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html

You can select the Source Function/Function/Call Stack level in the Grouping menu to view all
instances of the inline function in one row.

If you double-click the GetModelParams inline function, you can identify the code line that took the most
CPU time and analyze the corresponding assembly code:

Example 2: Inline Mode for Hotspots analysis Disabled
When you select the Hide inline functions option on the filter bar for the same sample, the VTune Profiler
does not show the GetModelParams function in the Bottom-up view:

Intel® VTune™ Profiler User Guide 1

445

But if you double-click the main function entry and explore the source, you can see that all CPU time is
attributed to the code line where the GetModelParams inline function is called:

Example 3: Inline Mode for GPU Compute/Media Hotspots
By default, the Inline Mode for GPU Compute/Media Hotspots analysis is disabled. In this example, 100% of
GPU Cycles are attributed to the GPU_FFT_Global function:

 1 Intel® VTune™ Profiler User Guide

446

Double-clicking the GPU_FFT_Global source function opens the source view positioned on the code line
invoking this function with 95.3% of Estimated GPU Cycles attributed to it:

But if you select the Computing Task/Function/Call Stack or Computing Task/Source Function/Call
Stack grouping level and enable the Inline Mode for this view, you see that the GPU_FFT_Global function
took only 4.7% of the GPU Cycles, while four inline functions took the rest of cycles:

Double-click the hottest GPU_FftIteration function to analyze its source and assembly code:

See Also
Toolbar: Filter

inline-mode vtune option

Intel® VTune™ Profiler User Guide 1

447

Analyze Loops
Use the Intel® VTune™ Profiler to view a hierarchy of
the loops in your application call tree and identify code
sections for optimization.

To view and analyze loops in your application:

1. Create a custom analysis (for example, Loop Analysis) based on hardware event-based collection and
select the Analyze loops, Estimate call counts, and Estimate trip counts options.

2. Select the required filtering level from the Loop Mode drop-down menu on the Filter toolbar.

• Loops only: Display loops as regular nodes in the tree. Loop name consists of:

• start address of the loop
• number of the code line where this loop is created
• name of the function where this loop is created

• Loops and functions: Display both loops and functions as separate nodes.
• Functions only (default): Display data by function with no loop information.

VTune Profiler updates the grid according to the selected filtering level.
3. Analyze Self and Total metrics in the Bottom-up and Top-down Tree windows and identify the most

time-consuming loops.
4. Double-click a loop of interest to view the source code.

VTune Profiler opens a source file for the function with the selected loop. The code line creating the loop
is highlighted.

NOTE
You can see the code line information only if debug information for your function is available.

Examples
To identify the most time-consuming loop, select the Loops only mode in the Bottom-up window. By
default, loops with the highest CPU Time values show up at the top of the grid.

To identify the heaviest top-level loops, switch to the Top-down Tree window. The data in the grid is sorted
by the Total time metric displaying the hottest top-level loops first:

 1 Intel® VTune™ Profiler User Guide

448

See Also
Custom Analysis

loop-mode
vtune option

Toolbar: Filter

Stitch Stacks for Intel® oneAPI Threading Building Blocks or OpenMP* Analysis
Use the Stitch stacks option to restore a logical call
tree for Intel® oneAPI Threading Building
Blocks(oneTBB) or OpenMP* applications by catching
notifications from the runtime and attach stacks to a
point introducing a parallel workload.

Typically the real execution flow in the applications based on Intel® oneAPI Threading Building
Blocks(oneTBB) or OpenMP is very different from the code flow. During the user-mode sampling and tracing
analysis of an oneTBB -based application or an OpenMP application using Intel runtime libraries, the Intel®
VTune™ Profiler automatically enables the Stitch stacks option. To view the OpenMP or oneTBB objects
hierarchy, explore the data provided in the Top-down Tree pane.

NOTE

• To analyze a logically structured OpenMP call flow, make sure to compile and run your code with
the Intel® Compiler 13.1 Update 3 or higher (part of the Intel Composer XE 2013 Update 3).

• Stack stitching is available when you run the application from the VTune Profiler (the Launch
Application target type). It does not work when attaching to the application (the Attach to
Process target type).

You may want to disable stack stitching, for example, to minimize the collection overhead. To do this for your
predefined user-mode sampling and tracing analysis type (for example, Hotspots or Threading), you need to
create a new custom analysis configuration and deselect the Stitch stacks option in the Custom Analysis
configuration. You may use the same modified GUI analysis configuration for command line analysis. For this,
just click the Command Line… button in the Configure Analysis window and copy the generated
command line to run it from the terminal window. Alternatively, you can manually configure the command
line for a custom runss analysis using the knob stack-stitching=false option like this:

> vtune -collect-with runss -knob cpu-samples-mode=stack -knob stack-stitching=false -
knob mrte-type=java,dotnet,python -app-working-dir <path> -- <application>

Intel® VTune™ Profiler User Guide 1

449

In this case, the Top-down Tree pane (or top-down report) displays separate entries for OpenMP worker
threads.

Examples
Call stack in the Top-down Tree pane with the Stitch stacks option disabled:

Call stack in the Top-down Tree pane with the Stitch stacks option enabled (default behavior):

 1 Intel® VTune™ Profiler User Guide

450

See Also
Window: Top-down Tree

Cookbook: OpenMP* Code Analysis Method

Intel® Threading Building Blocks Code Analysis

knob
 stack-stitching=true

Search for Data
Use the Find button to search for data in the Bottom-
up, Top-down Tree, Source, or Assembly panes.

1. Do one of the following:
a. Click the

Find button on the toolbar.
b. Press CTRL-F keyword combination.
c. Right-click and select the Find option from the context menu.

The search bar opens.
2. Type in a search string.

All corresponding strings are highlighted in the grid.
3. Press Enter or click the Up/Down buttons to navigate between matches. Pressing SHIFT-Enter or the

Up button goes to the previous match.

Intel® VTune™ Profiler User Guide 1

451

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html

See Also
Context Menu: Grid

Context Menus: Source/Assembly Window

Manage Result Files
Customize settings for the results you collect with
Intel® VTune™ Profiler.

Configure Result Names
You can change the name of an existing result or configure the template of the result name, determining the
format of future analysis results.

To change the name of an existing result file in Microsoft Visual Studio * IDE:

1. Right-click the result in the Solution Explorer to open the result context menu.
2. Select Rename and edit the name in the Solution Explorer. Make sure to keep the .vtune extension.

You can do the same in the standalone version of the product, using the Rename Result context menu
option in the Project Navigator.

To change the default result name template:

1. Open the Result Location pane as follows:

• Visual Studio IDE: Go to Tools > Options > Intel VTune Profilerversion > Result Location
pane.

• Standalone interface: click the

menu button and select Options... > Intel VTune Profilerversion > Result Location pane.
2. In the Result name template text box, edit the text to configure the naming scheme for new analysis

results. By default, r@@@{at} scheme is used, where {at} is an analysis type (for example, hs for
Hotspots).

NOTE
Do not remove the @@@ part from the template. This is a placeholder enabling multiple runs of the
same analysis configuration.

Configure Result Location
For the product version integrated with the Microsoft Visual Studio*, analysis results, by default, are stored
in the Visual Studio project default location. For the standalone interface, the analysis result is located in a
subdirectory under the project directory. You can view the default location in the Advanced section of the
WHAT configuration pane.

To change the result location:

1. Click the

Configure Analysis toolbar button.

 1 Intel® VTune™ Profiler User Guide

452

The Configure Analysis window opens.
2. Choose the required target system and target type in the WHERE and WHAT panes.
3. Expand the Advanced options section and edit the Store result in (and create link file to) another

directory field to specify a directory of your choice.

All subsequent analysis results will be located under the folder you defined in this tab.

VTune Profiler Filenames and Locations
Intel® VTune™ Profiler generates the following file types:

• Analysis result files
• Analysis configuration files
• Project file

Installation Information
Whether you downloaded Intel® VTune™ Profiler as a standalone component or with the Intel® oneAPI Base
Toolkit, the default path for your <install-dir> is:

Operating System Path to <install-dir>

Windows* OS • C:\Program Files (x86)\Intel\oneAPI\
• C:\Program Files\Intel\oneAPI\

(in certain systems)

Linux* OS • /opt/intel/oneapi/ for root users
• $HOME/intel/oneapi/ for non-root users

macOS* /opt/intel/oneapi/

For OS-specific installation instructions, refer to the VTune Profiler Installation Guide.

Analysis Result Files

File Type Default Location

Result (*.vtune)
produced with preset
analysis type

The location of the result files is controlled by the user. The default location for
VTune Profiler is:

• On Linux: /root/intel/vtune/projects/[project directory]/
r@@@{at}

• On Windows:

• VTune Profiler Results\[project name]\r@@@{at} directory in the
solution directory (Visual Studio* IDE)

• %USERPROFILE%\My Documents\Profiler XE\Projects\[project
directory]\r@@@{at} directory (Standalone VTune Profiler GUI)

Result (*.vtune)
produced with a
custom analysis type

The location of the result files is controlled by the user. The default location for
the VTune Profiler is:

• On Linux: /root/intel/vtune/projects/[project directory]/r@@@
• On Windows:

• VTune Profiler Results\[project name]\r@@@ directory in the
solution directory (Visual Studio* IDE)

Intel® VTune™ Profiler User Guide 1

453

https://www.intel.com/content/www/us/en/develop/documentation/vtune-install-guide/top.html

File Type Default Location

• %USERPROFILE%\My Documents\Profiler XE\Projects\[project
directory]\r@@@ directory (Standalone VTune Profiler GUI)

To open a result from the standalone GUI, select Open > Result... from the menu and browse to the result
file. To open a result from Visual Studio, double-click the node in the Solution Explorer.

Analysis Configuration Files

File Type File Location

Preset analysis type (for
example, hotspots.cfg)

config/analysis_type in the product installation directory.

Custom analysis type (for
example, Hardware Event-
based Sampling Analysis
@@@.cfg, where @@@ is the
next available number)

Windows: %APPDATA%\intel\Profiler XE\analysis_type
Linux: /root/.intel/vtune/analysis_type

Project File

File Type File Location

Project (for example,
*.vtuneproj)

The filename is controlled by the system. However, the file location is
controlled by the user. The default location is:

• On Linux: /root/intel/vtune/projects/[project directory]
• On Windows:

• VTune Profiler Results\[project name] directory in the
solution directory (Visual Studio* IDE)

• Profiler XE\Projects\[project directory] directory
(Standalone Intel VTune Profiler GUI)

Examples
Run the Hotspots analysis and then run the Threading analysis. If you use the default naming convention and
result location, the VTune Profiler names and saves the results in the following manner:

• Standalone GUI Linux:

• /root/intel/vtune/projects/r000hs/r000hs.vtune
• /root/intel/vtune/projects/r001tr/r001tr.vtune

• Standalone GUI Windows:

• %USERPROFILE%\My Documents\Profiler XE\Projects\[project directory]\r000hs
\r000hs.vtune

• %USERPROFILE%\My Documents\Profiler XE\Projects\[project directory]\r001tr
\r001tr.vtune

• Visual Studio IDE:

• VTune Profiler Results\[project name]\r000hs\r000hs.vtune
• VTune Profiler Results\[project name]\r001tr\r000tr.vtune

where

 1 Intel® VTune™ Profiler User Guide

454

• hs is the Hotspots analysis type
• tr is the Threading analysis type

See Also
Pane: Options - Result Location

Import Results and Traces into VTune Profiler GUI
If you collect performance data either remotely with
the Intel® VTune™ Profiler command line interface or
with standalone collectors (such as SEP collector, Intel
SoC Watch collector, or Linux* Perf* collector), import
this data (result or trace) to the VTune Profiler project
to analyze it in the graphical interface.

To get ready for the import:

1. Create a VTune Profiler project for the data to be imported.
2. In the Configure Analysis window, click the

Search Sources/Binaries button at the bottom to specify search directories for the data to be
imported. When you open the Source/Assembly view for the collected data, the VTune Profiler
automatically applies binary/source search paths for proper symbol resolution.

NOTE
Make sure the search directories are accessible to the VTune Profiler. For example, if you are to import
the data collected remotely, you need to copy the sources and binaries to the host system where the
VTune Profiler is installed or make them available via a shared drive.

3. Select the Import option using any of the following options:

• From Microsoft Visual Studio* IDE: Open a project where you want to locate the imported result and
go to Tools > Intel® VTune™ Profilerversion > Import Result... .

• From standalone VTune Profiler interface: Open a project where you want to locate the imported
result, click the

menu button and select Import Result..., or click the

Import Result button on the toolbar.

The Import window opens.
4. Choose between two options:

• import an *.vtune result (a marker file with associated result directories) collected remotely with
the VTune Profiler command line interface;

• import a raw trace file collected by standalone collector tools.

Import Results
You can perform multiple collections on a remote system (with or without result finalization) with a full-
fledged VTune Profiler command line interface, copy the result directories to the host, and import the
result(s) into a VTune Profiler project.

To import result directories into a VTune Profiler project:

Intel® VTune™ Profiler User Guide 1

455

1. In the Import window, select the Import a result into the current project option.
2. Click the

browse button to navigate to the required directory.
3. If required, click the Search Sources/Binaries button on the right to view/modify the search

directories.
4. Click the Import button on the right.

VTune Profiler copies the result directory to the current project folder and result name appears in the
Project Navigator as a node of the current project.

NOTE
If you do not need to copy a result, select the Import via a link instead of a result copy option.
VTune Profiler will import the result via this link.

Import Raw Trace Data
You can also import performance trace files collected using:

• SEP Collector
• SoC Watch Collector
• Perf Collector

View the collected data in the VTune Profiler GUI.

You can import these data formats:

• *.tb6/*.tb7 (sampling raw data files collected with the low-level SEP collector)
• *.perf (Linux* Perf data files)
• *.csv (external data collection files in the predefined format)
• *.pwr (processed Intel SoC Watch files with energy analysis data)
• *.json (FPGA performance data collected with the Profiler Runtime Wrapper)

NOTE
For FPGA data collected with the Profiler Runtime Wrapper, you must import a folder with the
profile.json file. Use the Import multiple trace files from a directory option in the Import
window. See the section below on importing trace files into a VTune Profiler project.

Prerequisites for importing a *.perf file with event-based sampling data:

Run the Perf collection with the predefined command line options:

• For application analysis:

perf record -o <trace_file_name>.perf --call-graph dwarf -e cpu-cycles,instructions
<application_to_launch>

• For process analysis:

perf record -o <trace_file_name>.perf --call-graph dwarf -e cpu-cycles,instructions
<application_to_launch> -p <PID> sleep 15

where the -e option is used to specify a list of events to collect as -e <list of events>; --call-graph
option (optional) configures samples to be collected together with the thread call stack at the moment a
sample is taken. See Linux Perf documentation on possible call stack collection options (for example, dwarf)
and its availability in different OS kernel versions.

 1 Intel® VTune™ Profiler User Guide

456

https://www.intel.com/content/www/us/en/docs/oneapi-fpga-add-on/optimization-guide/current/overview.html

NOTE
The Linux kernel exposes Perf API to the Perf tool starting from version 2.6.31. Any attempts to run
the Perf tool on kernels prior to this version lead to undefined results or even crashes. See Linux Perf
documentation for more details.

To import trace files into a VTune Profiler project:

1. In the Import window, select the Import raw trace data option.
2. Click the

browse button to navigate to the required file.

To import multiple files, select the Import multiple trace files from a directory option.

NOTE
For FPGA data collected with the Profiler Runtime Wrapper, you need to use this option to import a
folder with the profile.json file. See the FPGA Optimization Guide for Intel® oneAPI Toolkits for
details on generating the profiling data.

3. If required, click the Search Sources/Binaries button on the right to view/modify the search
directories.

4. Click the Import button on the right.

VTune Profiler copies the trace file (or a directory with multiple traces) to the project directory, creates
an *.vtune result directory, finalizes the trace(s) in the directory, and imports it to the current project.
When you open the result in the VTune Profiler, it uses all applicable viewpoints to represent the data.

NOTE

• To reduce the size of the imported data, consider removing the copy of the trace file in the project
directory using the Remove raw collector data after resolving the result option available from
Options... > Intel VTune Profilerversion > General tab in the standalone interface menu

or from Tools > Options... > Intel VTune Profilerversion > General tab in Microsoft Visual
Studio* IDE. This option makes the result smaller but prevents future re-finalization.

• You can run a custom data collection (with a third-party collector or your own collection utility) in
parallel with the VTune Profiler analysis run, convert the collected data to a *.csv file and import
the this file to the VTune Profiler project using the Import from CSV GUI option or -import CLI
option. You may also choose to use the Custom collector option of the VTune Profiler to run your
custom collection directly from the VTune Profiler.

See Also
import
vtune option

Dialog Box: Binary/Symbol Search

Dialog Box: Source Search

Compare Results
Compare your analysis results before and after
optimization and identify a performance gain.

Use this feature on a regular basis for regression testing to quickly see where each version of your target has
better performance.

Intel® VTune™ Profiler User Guide 1

457

You can compare any results that have common performance metrics. Intel® VTune™ Profiler provides
comparison data for these common metrics only.

To compare two analysis results:

1. Click the

Compare Results button from the VTune Profiler toolbar.

The Compare Results window opens.

Option Description

Result 1 /
Result 2 drop-
down menu

Specify the results you want to compare. Choose the result of the current project
from the drop-down menu, or click the Browse button to choose a result from a
different project.

Swap Results
button

Click this button to change the order of the result files you want to compare.
Result 1 always serves as the basis for comparison.

Compare button Click this button to view the difference between the specified result files. This
button is only active if the selected results can be compared. Otherwise, an error
message is displayed.

2. Specify two results that you want to compare and click the Compare button.

A new result tab opens providing difference between the two results per performance metric.

The tab name combines the identifiers of two results. For example, the comparison of the Microarchitecture
Exploration analysis results r001ue and r005ue appears as r001ue-r005ue. The data views in the
comparison mode provide calculation of the difference between the two results in the order you originally
defined in the Compare Results window and as specified in the tab title.

You can compare performance statistics in the following views:

Use this view: To do this:

Summary window Analyze the difference in the overall application performance between two results
and the system/platform difference, if any. Start exploring the changes from the
Summary window and then move to the Bottom-up analysis to identify the
changes per program unit.

Bottom-up window Analyze the data columns of the two results and a new column with the difference
between these results for a function and its callers.

Event Count
window

Compare results and identify the difference in event count and performance per
hardware event-based metrics collected during event-based sampling analysis.

Top-Down Tree
window

Explore the performance difference between two collection runs for a function and
its callees.

Caller/Callee
window

Get a holistic picture of the performance changes before and after optimization by
comparing data for a function, its callers and callees.

Source/Assembly
window

Understand how differently input values, command line parameters, or compilation
options affect the performance when you are optimizing your target. Double-click a
program unit of your interest and compare the performance data for each line of the
source/assembly code.

See Also
Difference Report
 from command line

 1 Intel® VTune™ Profiler User Guide

458

Compare Source Code

To view the performance difference for the source/assembly code, open the results in the Bottom-up
compare mode and double-click the function you are interested in to view the performance values for each
line of its source/assembly code of both results and the difference between them.

If Then

The source and binary files are not modified and
the debug information is available

Compare performance for each source/assembly
code line.

The source and binary files are not modified but the
binaries are complied without the debug
information

Compare performance for each assembly
instruction.

The source files are not modified but the binary
files are re-compiled with different options

Compare performance for each source code line.

NOTE
When comparing the source code for binary files with
different checksum, only the Source pane is available.

The source and binary files are modified Intel® VTune™ Profiler cannot compare performance
for source/assembly code and displays an error
message.

Example
When you click the hotspot function in the Bottom-up window, the VTune Profiler opens the Source pane
that displays the CPU time data per each result and the difference between the results.

You see that the execution of the hottest line 64 took less CPU time in result r006hs.

See Also
Window: Compare Results

Compare Results

Source Code Analysis

View Comparison Data

Intel® VTune™ Profiler compares analysis results and displays difference in a separate result tab <result1>-
<result2> in the following windows:

• Summary window provides top-level difference for the analysis run.

Intel® VTune™ Profiler User Guide 1

459

• Bottom-up window displays difference for functions and their callers per metric.
• Top-down Tree window displays difference for functions and their callees per metric.
• Caller/Callee window displays difference for a selected function, their callers and callees per metric.

Comparing Recompiled Binary Files
By default, the VTune Profiler displays compared functions grouped by the Call Stack granularity, which is
based on function instances. But you may want to switch to the Source Function Stack grouping to get
more accurate comparison results in the following cases:

• You slightly changed the source and recompiled the code.
• You changed compilation options and recompiled the code.
• You are comparing results compiled and collected for different Intel microarchitectures

For example, your binary with a my_f function was modified with adding a new function my_f1 and new calls
of this function. As a result, my_f address has changed. If you compare the results before and after the
modification using the default Call Stack grouping, the VTune Profiler treats the same functions with
different addresses as separate instances and does not compare them:

When the data is aggregated by Source Function Stack, the VTune Profiler ignores start addresses and
compares functions by source file objects:

Bar Data Respresentation
If you chose the Bar format to display the performance data in the Bottom-up or Top-down Tree window,
the VTune Profiler calculates the bar size as follows:

 1 Intel® VTune™ Profiler User Guide

460

Result Data Column Difference Column

cell_data_value/
absolute_max_value_in_result_column

cell_data_value/
max(absolute_max_value_in__1st_result_column
,
absolute_max_value_in_corresponding_2nd_resu
lt_column)

Example: Calculation of the Bar Size

The table below provides an example on how the VTune Profiler calculates the bar size in the compare mode
based on the absolute max CPU time value and performance data per column:

CPU
Time:r001

CPU
Time:r002

CPU Time:Difference

Absolute max
value
(calculated by
the VTune
Profiler
internally but
not exposed in
the grid)

10s 20s 20s

Performance
data

1s 3s 2s

Bar size 1s/
max(10s,2
0s)

3s/
max(10s,2
0s)

2s/max(10s,20s)

See Also
Bottom-up Comparison

Comparison Summary

Top-down Tree Comparison

Difference Report
 from command line

Comparison Summary

When you click the Compare Results

button and select two results to compare, the Summary window shows the difference between these results.

NOTE

• You can compare any results that have common performance metrics. Intel® VTune™ Profiler will
provide comparison data for these common metrics only.

• Make sure to close the results before comparing them.

Data provided in the Summary window vary depending on the viewpoint.

Intel® VTune™ Profiler User Guide 1

461

Difference in the Application Performance per Metrics
In the compare mode, the first metrics section displays the difference in the performance metrics values
between the results you specified. In the example below, the VTune Profiler displays the Hotspots results
difference as result1_value - result2_value (shown in the result tab title).

You see that the code changes in the second result have slightly decreased the Elapsed time of the
application in comparison with the baseline (result1), though the CPU Time has increased from 19.645
seconds to 21.571 seconds.

Clicking a metric in this section opens the Bottom-up view sorted by this metric in the Difference column.

Difference in the Performance of Hotspot Objects
In the compare mode, the Top Hotspots section displays the difference in performance values per object
(object type depends on the viewpoint) between the results you specified. In the example below, the VTune
Profiler displays the CPU Time difference for the most time consuming functions as r000hs value - r004hs
value (see the result tab title).

For this example, the second result introduced slight degradation in CPU Time for the first and second
functions.

Performance Difference in Histograms
Depending on the viewpoint, the Summary window provides the histograms that show how certain metrics,
like the Thread Concurrency, CPU Utilization, or Frame rate, have changed for the specified results. Bars for
both results show up side by side. In the example below, the dark-blue bars correspond to the first result,
and the light-blue bars correspond to the second result. Hover over a bar to see the tooltip with the detailed
information:

 1 Intel® VTune™ Profiler User Guide

462

The chart shows that the Elapsed time spent within the Poor processor utilization level has slightly increased
with the second result. This means that the changes made for the second run have not optimized the
utilization of the processor cores but introduced a slight optimization reducing the total Elapsed time.

Difference in Collection and Platform Info
The Collection and Platform section shows whether the result size and platform data has changed.

NOTE
You can click the

Copy to Clipboard button next to any summary section and copy its content to the clipboard.

See Also
Compare Results

Bottom-up Comparison

Top-down Tree Comparison

Bottom-up Comparison

To view the difference before and after optimization for a function and its callers, click the Bottom-up sub-
tab for the comparison result you created using the Compare Results window.

In the compare mode, the Bottom-up window shows the data columns of the two results and a new column
showing the difference between the two results for each program unit. The difference is calculated as <Result
1 Value> - <Result 2 Value>.

Intel® VTune™ Profiler User Guide 1

463

Example: Comparison for Hotspots Analysis Results
The Bottom-up window displays the data columns for each result and a Difference column that calculates
the difference between the two results. By default, the Difference column is collapsed and displays the total
difference data per CPU time. You may click the double-arrow icon to expand the column and see comparison
data per utilization level.

CPU time specific difference is calculated as <Result 1 CPU time> - <Result 2 CPU time>, which is r000hs-
r004hs (see the tab title). Expand the first two columns to see the data used for the calculation.

For the grid_intersect function in this example, the difference is 3.961s - 4.470s = -0.138s of Poor CPU
utilization time, which means that serial CPU time has insignificantly increased after code modification
(Result 2).

See Also
Compare Results

Window: Bottom-up

Comparison Summary

Choose Data Format

Top-down Tree Comparison

To understand how your application call tree has changed after your optimization and see the difference in
performance metrics per function and its callees, click the Top-down Tree sub-tab and explore the Top-
down Tree window.

In the compare mode, the Top-down Tree window shows the data columns of the two results and a new
column showing the difference between the two results for each program unit. The difference is calculated as
<Result 1 Value> - <Result 2 Value>.

The Top-down Tree window in the compare mode supports two types of grouping levels:

• Function Stack granularity groups the data by function instances. Use the Start Address column to
identify different instances of the same source function or same loop.

 1 Intel® VTune™ Profiler User Guide

464

• Source Function Stack granularity groups the data by source functions. In this mode, all instances of
the same source function are aggregated into one function.

Example: Comparison for Hotspots Analysis Results
The function foo() is called from two places in your application, bar1() and bar2(). If you see that foo()
became slower in result 2, use the Top-down Tree window (compare mode) to check whether it became
slower when being called by bar1(), by bar2(), or both.

Tip
To compare results with stacks and without stacks, switch the Call Stack Mode filterbar option to
User/System functions to attribute performance data to functions where samples occurred.

See Also
Window: Top-down Tree

Bottom-up Comparison

Comparison Summary

Comparing Results

Intel® VTune™ Profiler Command Line Interface
Intel® VTune™ Profiler provides a command line interface called the vtune tool. This is especially useful for
remote analysis, scripted commands and conducting regular performance regression checks to monitor
software performance over time.

The vtune command line interface includes an extensive set of options that you can use to execute almost
every task that you handle through the GUI. You can initiate analysis via the command line, running it as a
background task or on a remote system, then view the result or generate a report at your convenience.

Use the vtune tool for these purposes:

• Collect performance analysis data for your target application using your specified analysis type and other
options.

• Generate reports from analysis results.
• Import data files collected remotely.
• Compare performance before and after optimization.

NOTE

• See the VTune Profiler CLI Cheat Sheet quick reference on VTune Profiler command line interface.
• To access the most current command line documentation for vtune, enter: vtune -help.
• When you perform a task through the VTune Profiler GUI, you can use the command generation

feature to display the corresponding command and save it for future use.
• You cannot create a project from the command line. You must use the GUI for this purpose.

See Also
vtune Command Syntax
vtune Actions
Run Command Line Analysis

Intel® VTune™ Profiler User Guide 1

465

https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-cheat-sheet.pdf

Work with Results from Command Line
 from the command line

Generate Command Line Reports

vtune Command Syntax
Use the following Intel® VTune™ Profiler vtune command syntax:

vtune <-action> [-action-option] [-global-option] [[--] <target> [target-options]]

vtune The name of the VTune Profiler command line tool.

<-action> The action to perform, such as collect or report.

[-action-option] Action-options modify behavior specific to the action. You can have
multiple action-options per action. Using an action-option that does
not apply to the action results in a usage error.

NOTE
Long names of the options can be abbreviated. If the option
consists of several words you can abbreviate each word, keeping
the dash between them. Make sure an abbreviated version
unambiguously matches the long name. For example, the -
option-name option can be abbreviated as -opt-name, -op-na,
-opt-n, or -o-n.

[-global-option] Global-options modify behavior in the same manner for all actions.
You can have multiple global-options per action.

[--] <target> The target application to analyze.

NOTE
You may use vtune to analyze remote targets running on regular
Linux* or Android* systems.

[target-options] Options for the application.

NOTE
See the VTune Profiler CLI Cheat Sheet quick reference on VTune Profiler command line interface.

Example
This example runs the Hotspots analysis for the sample target located at the /home/test/ directory on a
Linux* system, saves the analysis result in the r001hs subdirectory of the current directory, and displays
the default summary report.

vtune -collect hotspots -result-dir r001hs -quiet /home/test/sample
where:

• -collect is an action

 1 Intel® VTune™ Profiler User Guide

466

https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-cheat-sheet.pdf

• hotspots is an argument of the action
• -result-dir is an action-option
• r001hs is an argument of the action-option
• -quiet is a global-option
• sample is a target

See Also
vtune Actions

Run Command Line Analysis

Configure Analysis Options from Command Line

vtune Actions
The vtune command tool of the Intel® VTune™ Profiler supports different command options.

Actions

archive

collect Run the specified analysis type and collect data into a result.

collect-with Run a custom hardware event-based sampling or user-mode sampling
and tracing collection using your settings.

command Issue a command to a running collect action.

finalize Perform symbol resolution to finalize or re-resolve a result.

help Display brief explanations of command line arguments.

import Import one or more collection data files/directories.

report Generate a specified type of report from an analysis result.

version Display version information for the vtune tool.

NOTE
To access the most current command line documentation for an action, enter vtune -help
<action>, where <action> is one of the available actions. To see all available actions, enter vtune -
help.

Action Options
Action options define a behavior applicable to the specified action; for example, the -result-dir option
specifies the result directory path for the collect action.

NOTE
To access the list of available action options for an action, enter vtune -help <action>, where
<action> is one of the available actions. To see all available actions, enter vtune -help.

Intel® VTune™ Profiler User Guide 1

467

Action-Option Usage Rules:

• If opposing action-options are used on the same command line, the last specified action-option applies.
• An action-option that is redundant or has no meaning in the context of the specified action is ignored.
• Attempted use of an inappropriate action-option which would lead to unexpected behavior returns a usage

error.

Global Options
Global options define a behavior applicable to all actions; for example, the -quiet option suppresses non-
essential messages for all actions. You may have one or more global options per command.

NOTE
To access the list of available global options for an action, enter vtune -help <action>, where
<action> is one of the available actions. To see all available actions, enter vtune -help.

Get Information on Analysis Options
VTune Profiler offers many ways to get information on analysis options.

• VTune Profiler can re-use analysis configuration options set in the GUI version and command line version
of such a configuration. You can copy this command line to the clipboard and use it for the command line
analysis. To do this, use the Command Line... button in the Configure Analysis window. This also
works for custom analysis types.

• To get more information on an action, enter: vtune -help <action>. For example, this command
returns help for the collect-with action:

vtune -help collect-with
• For information on a specific analysis type, enter: vtune -help collect <analysis_type> or vtune -

help collect-with <analysis_type>. For example, this command returns help for the threading
analysis type:

vtune -help collect threading
• For information on a specific report, enter: vtune -help report <report_name>. For example, this

command returns help for the callstacks report:

vtune -help report callstacks

See Also
vtune Command Syntax

Option Descriptions and General Rules

Run Command Line Analysis

Default Installation Paths
Whether you downloaded Intel® VTune™ Profiler as a standalone component or with the Intel® oneAPI Base
Toolkit, the default path for your <install-dir> is:

Operating
System

Path to <install-dir>

Windows* OS • C:\Program Files (x86)\Intel\oneAPI\

 1 Intel® VTune™ Profiler User Guide

468

Operating
System

Path to <install-dir>

• C:\Program Files\Intel\oneAPI\
(in certain systems)

Linux* OS • /opt/intel/oneapi/ for root users
• $HOME/intel/oneapi/ for non-root users

macOS* /opt/intel/oneapi/

Run Predefined Analysis
The predefined analysis configurations already have most of the knobs (configuration options) set by default
for your convenience. To run a predefined performance analysis, use the -collect action:

vtune-collect <analysis_type> [-target-system=<system>] [-knob <knobName=knobValue>]
[--] <target>
where:

• <analysis_type> is the type of analysis to run. To see the list of available analysis types, enter:

vtune -help collect
• -target-system is an option targeted for remote analysis and specifies a remote Linux* system or a

Android* device
• -knob is a configuration option that modifies the analysis
• [knobName=knobValue] is the name of the specified knob and its value
• <target> is the path and name of the application to analyze. If you need to analyze a process, use the -

target-process or -target-pid option to specify the process name or ID. For a system-wide analysis,
no target specification is required.

Intel® VTune™Profiler supports the following predefined analysis types:

Analysis Type Description

performance-
snapshot

Get an overview of issues that affect application performance on your target
system.

hotspots Analyze application flow and identify sections of code that take a long time to
execute (hotspots).

anomaly-detection
(preview)

Identify performance anomalies in frequently recurring intervals of code like
loop iterations. Perform fine-grained analysis at the microsecond level.

threading Collect data on how an application is using available logical CPU cores, discover
where parallelism is incurring synchronization overhead, identify where an
application is waiting on synchronization objects or I/O operations, and discover
how waits affect application performance.

hpc-performance Identify opportunities to optimize CPU, memory, and FPU utilization for
compute-intensive or throughput applications. The HPC Performance
Characterization analysis type is a starting point for understanding the
performance landscape of your application. Use this analysis type to improve
application performance by increasing the number of floating-point operations
per second (GFLOPS) and reducing the overall application run time. The analysis
collects data related to CPU, memory, and FPU utilization. Additional scalability
metrics are available for applications that use OpenMP* or MPI runtime libraries.

Intel® VTune™ Profiler User Guide 1

469

Analysis Type Description

memory-consumption Analyze memory consumption by your Linux application, its distinct memory
objects and their allocation stacks.

uarch-exploration
(former general-
exploration)

Collect hardware events for analyzing a typical client application. This analysis
calculates a set of predefined ratios used for the metrics and facilitates
identifying hardware-level performance problems.

memory-access Identify memory-related issues, like NUMA problems and bandwidth-limited
accesses, and attribute performance events to memory objects (data
structures), which is provided due to instrumentation of memory allocations/de-
allocations and getting static/global variables from symbol information.

sgx-hotspots
(deprecated)

Analyze hotspots inside security enclaves for systems with the Intel® Software
Guard Extensions (Intel® SGX) feature enabled. This analysis type uses the
INST_RETIRED.PREC_DIST hardware event that emulates precise clockticks and
helps identify performance-critical program units inside enclaves.

tsx-exploration
(deprecated)

Collect events that help understand Intel® Transactional Synchronization
Extensions (Intel® TSX) behavior and causes of transactional aborts.

tsx-hotspots
(deprecated)

Monitor the UOPS_RETIRED.ALL_PS hardware event that emulates precise
clockticks and identify performance-critical program units inside transactions.

gpu-hotspots
(preview)

Identify Graphics Processing Unit (GPU) tasks with high GPU utilization and
estimate the effectiveness of this utilization. This analysis type is intended for
analysis of applications that use a GPU for rendering, video processing, and
computations with explicit support of Intel® Media SDK and OpenCL™ software
technology.

gpu-offload Explore code execution on various CPU and GPU cores on your platform,
correlate CPU and GPU activity, and identify whether your application is GPU or
CPU bound.

graphics-rendering
(preview)

Analyze the CPU/GPU utilization of your code running on the Xen virtualization
platform. Explore GPU usage per GPU engine and GPU hardware metrics that
help understand where performance improvements are possible. If applicable,
this analysis also detects OpenGL-ES API calls and displays them on the
timeline.

fpga-interaction Analyze the CPU/FPGA interaction issues via exploring OpenCL kernels running
on FPGA, identify the most time-consuming FPGA kernels.

io Monitor utilization of the IO subsystems, CPU and processor buses. This analysis
type uses the hardware event-based sampling collection and system-wide
Ftrace* collection (for Linux* and Android* targets)/ETW collection (Windows*
targets) to provide a consistent view of the storage sub-system combined with
hardware events and an easy-to-use method to match user-level source code
with I/O packets executed by the hardware.

system-overview Monitor a general behavior of your target system and identify platform-level
factors that limit performance.

Run Custom Analysis
If you need to run a modified version of the predefined analysis type, you may use the -collect-with
action option to specify a data collection type and required configuration options (knobs):

 1 Intel® VTune™ Profiler User Guide

470

vtune -collect-with <collection_type> [-target-system=<system>] [-knob
<knobName=knobValue>] [--] <target>
where

• <collection_type> is the type of analysis to run. To see the list of available collection types, enter:

vtune -help collect-with
• -target-system is an option targeted for remote analysis and specifies a remote Linux* system or a

Android* device
• <-knob> is an option that configures the analysis
• [knobName=knobValue] is the name of specified knob and its value
• <target> is the path and name of the application to analyze. If you need to analyze a process, use the -

target-process or -target-pid option to specify the process name or ID. For a system-wide analysis,
no target specification is required.

Intel® VTune™Profiler supports the following collection types:

Collector Description

runsa Profile your application using the counter overflow feature of the Performance
Monitoring Unit (PMU).

runss Profile the application execution and take snapshots of how that application utilizes
the processors in the system. The collector interrupts a process, collects the value of
all active instruction addresses and captures a calling sequence for each of these
samples.

Next Steps
When the collection is complete, the VTune Profiler saves the data as an analysis result in the default or
specified result directory. You can either view the result in the GUI or generate a formatted analysis report.

See Also
vtune Command Syntax

Generate Command Line Reports

Android* Targets

Set Up Remote Linux* Target

performance-snapshot Command Line Analysis

Use Performance Snapshot when you want to see a summary of issues affecting your application. This
analysis also includes recommendations for other analysis types that you can run next for a deeper
investigation.

Syntax
vtune -collect performance-snapshot [-knob <knobName=knobValue>] [--] <target>
Knobs:

• collect-memory-bandwidth
Collect the data required to compute memory bandwidth.

Default value : false
Possible values : true | false

Intel® VTune™ Profiler User Guide 1

471

• dram-bandwidth-limits
Evaluate maximum achievable local DRAM bandwidth before starting the collection. This data is used to
scale bandwidth metrics on the timeline and calculate thresholds.

Default value : true
Possible values : true | false

NOTE
For the most current information on available knobs (configuration options) for Performance Snapshot
analysis, enter:

vtune -help collect performance-snapshot

Example
This example shows how to run Performance Snapshot on a Linux* myApplication application:

vtune -collect performance-snapshot -- /home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also

Configure Analysis Options from Command Line

hotspots Command Line Analysis

Hotspots analysis helps understand application flow and identify sections of code that get a lot of execution
time (hotspots). A large number of samples collected at a specific process, thread, or module can imply high
processor utilization and potential performance bottlenecks. Some hotspots can be removed, while other
hotspots are fundamental to the application functionality and cannot be removed.

Intel® VTune™ Profiler creates a list of functions in your application ordered by the amount of time spent in
each function. It also can be configured to capture the call stacks for each of these functions so you can see
how the hot functions are called.

Use the -knob option to specify a collection mode for the Hotspots analysis:

• sampling-mode=sw - User-Mode Sampling (default) used for profiling:

• Targets running longer than a few seconds
• A single process or a process-tree
• Python and Intel runtimes

• sampling-mode=hw - Hardware Event-Based Sampling used for profiling:

• Targets running less than a few seconds
• All processes on a system, including the kernel

Syntax
vtune -collect hotspots -knob <knobName=knobValue> [--] <target>

 1 Intel® VTune™ Profiler User Guide

472

Knobs: sampling-mode, enable-stack-collection, sampling-interval, enable-
characterization-insights

NOTE
For the most current information on available knobs (configuration options) for the Hotspots analysis,
enter:

vtune -help collect hotspots

Example
This example shows how to run the Hotspots analysis in the user-mode sampling mode for a Linux*
myApplication:

vtune -collect hotspots -knob sampling-mode=sw -- /home/test/myApplication
This example shows how to run the Hotspots analysis in the hardware event-based sampling mode for a
Windows* myApplication:

vtune -collect hotspots -knob sampling-mode=hw -knob sampling-interval=1 -- C:\test
\myApplication.exe

NOTE
The hardware event-based sampling mode replaced the advanced-hotspots analysis starting with
VTune Amplifier 2019.

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Hotspots Analysis for CPU Usage Issues

Configure Analysis Options from Command Line

anomaly-detection Command Line Analysis

Use Anomaly Detection to identify performance anomalies in frequently recurring intervals of code like loop
iterations. Perform fine-grained analysis at the microsecond level.

NOTE
This is a PREVIEW FEATURE. A preview feature may or may not appear in a future production
release. It is available for your use in the hopes that you will provide feedback on its usefulness and
help determine its future. Data collected with a preview feature is not guaranteed to be backward
compatible with future releases.

Syntax
vtune -collect anomaly-detection [-knob <knobName=knobValue>] [--] <target>

Intel® VTune™ Profiler User Guide 1

473

Knobs:

• ipt-regions-to-load
Specify the maximum number (10-5000) of code regions to load for detailed analysis. To load details
efficiently, maintain this number at or below 1000.

Default value : 1000
Range : 10-5000

• max-region-duration
Specify the maximum duration (0.001-1000ms) of analysis per code region.

Default value : 100 ms
Range : 0.001-1000ms

NOTE
For the most current information on available knobs (configuration options) for Anomaly Detection
analysis, enter:

vtune -help collect anomaly-detection

Example
This example shows how to run Anomaly Detection analysis on a sample application called myApplication.
The analysis runs over 1000 code regions, analyzing each region for 300 ms.

vtune -collect anomaly-detection -knob ipt-regions-to-load=1000 -knob max-region-duration=300
-- /home/test/myApplication

If you want to transfer the collected data to a different system for analysis, you must archive the result by
moving all related binaries to the result folder. After Anomaly Detection analysis completes, run this
command:

vtune -archive -r <location_of_result>

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also

Configure Analysis Options from Command Line

threading Command Line Analysis

Threading analysis helps identify the cause of ineffective processor utilization and shows where your
application is not parallel. One of the most common problems is threads waiting too long on synchronization
objects (locks). Performance suffers when waits occur while cores are under-utilized.

NOTE
Threading analysis combines and replaces the Concurrency and Locks and Waits analysis types
available in previous versions of Intel® VTune™ Profiler.

 1 Intel® VTune™ Profiler User Guide

474

Threading analysis uses user-mode sampling and tracing collection. With this analysis you can estimate the
impact each synchronization object has on the application and understand how long the application had to
wait on each synchronization object, or in blocking APIs, such as sleep and blocking I/O.

There are two groups of synchronization objects supported by the Intel® VTune™ Profiler:

• objects usually used for synchronization between threads, such as Mutex or Semaphore
• objects associated with waits on I/O operations, such as Stream

Syntax
vtune -collect threading [-knob <knobName=knobValue>] [--] <target>
Knobs: sampling-interval

NOTE
For the most current information on available knobs (configuration options) for the Threading analysis,
enter:

vtune -help collect threading

Example
This example shows how to run the Threading analysis on a Linux* myApplication application:

vtune -collect threading -- /home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also

Configure Analysis Options from Command Line

memory-consumption Command Line Analysis

Use the Memory Consumption analysis for your Linux* native or Python* targets to explore memory
consumption (RAM) over time and identify memory objects allocated and released during the analysis run.

During Memory Consumption analysis, the VTune Profiler data collector intercepts memory allocation and
deallocation events and captures a call sequence (stack) for each allocation event (for deallocation, only a
function that released the memory is captured).

Syntax
vtune -collect memory-consumption [-knob <knobName=knobValue>] [--] <target>
Knobs: mem-object-size-min-thres.

Intel® VTune™ Profiler User Guide 1

475

NOTE
For the most current information on available knobs (configuration options) for the Memory
Consumption analysis, enter:

vtune -help collect memory-consumption

Example
This example shows how to run the Memory Consumption analysis on a Python test application:

vtune -collect memory-consumption -app-working-dir /usr/bin -- python /localdisk/sample/test.py

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Memory Consumption Analysis
 configuration from GUI

Memory Consumption and Allocations View

hpc-performance Command Line Analysis

Intel® VTune™Profiler introduces the HPC Performance Characterization analysis based on applications that are
compute-sensitive.

HPC Performance Characterization analysis helps identify opportunities to optimize CPU, memory, and FPU
utilization for compute-intensive or throughput applications. The HPC Performance Characterization analysis
type is a starting point for understanding the performance landscape of your application. Use this analysis
type to improve application performance by increasing the number of floating-point operations per second
(GFLOPS) and reducing the overall application run time. The analysis collects data related to CPU, memory,
and FPU utilization. Additional scalability metrics are available for applications that use OpenMP or MPI
runtime libraries.

Syntax
vtune -collect hpc-performance [-knob <knobName=knobValue>] [--] <target>
Knobs: sampling-interval, enable-stack-collection, collect-memory-bandwidth, dram-
bandwidth-limits, analyze-openmp, collect-affinity.

NOTE
For the most current information on available knobs (configuration options) for the HPC Performance
Characterization analysis, enter:

vtune -help collect hpc-performance

Example
The following example runs the HPC Characterization analysis on a Linux* application with enabled memory
bandwidth analysis:

vtune -collect hpc-performance -knob collect-memory-bandwidth=true ./home/test/myApplication

 1 Intel® VTune™ Profiler User Guide

476

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
HPC Performance Characterization Analysis

Configure Analysis Options from Command Line

uarch-exploration Command Line Analysis

Use the uarch-exploration value to launch the Microarchitecture Exploration analysis (formerly known as
General Exploration) that is a good starting point to triage hardware issues in your application. Once you
have used Hotspots analysis to determine hotspots in your code, you can perform Microarchitecture
Exploration analysis to understand how efficiently your code is passing through the core pipeline. During
Microarchitecture Exploration analysis, Intel® VTune™ Profiler collects a complete list of events for analyzing a
typical client application. It calculates a set of predefined ratios used for the metrics and facilitates identifying
hardware-level performance problems.

Syntax
vtune -collect uarch-exploration [-knob [knobName=knobValue]] [--] <target>
Knobs: collect-memory-bandwidth, pmu-collection-mode, dram-bandwidth-limits, sampling-
interval, collect-frontend-bound, collect-bad-speculation, collect-memory-bound,
collect-core-bound, collect-retiring.

By default, the Microarchitecture Exploration analysis runs in the detailed PMU collection mode and collects
sub-metrics for all top-level metrics: CPU Bound, Memory Bound, Front-End Bound, Bad Speculation, and
Retiring. If required, you may configure the knob option to disable collecting sub-metrics for a particular top-
level metric.

NOTE

• For the most current information on available knobs (configuration options) for the
Microarchitecture Exploration analysis, enter:

vtune -help collect uarch-exploration
• The general-exploration analysis type value is deprecated. Make sure to use the uarch-

exploration option instead.

Examples
This example runs the Microarchitecture Exploration analysis on a Linux* matrix app with enabled memory
bandwidth analysis:

vtune -collect uarch-exploration -knob collect-memory-bandwidth=true -- /home/test/matrix
This example runs the Microarchitecture Exploration analysis on a Windows matrix app in the low-overhead
summary profiling mode:

vtune -collect uarch-exploration -knob pmu-collection-mode=summary -- C:\samples\matrix.exe

Intel® VTune™ Profiler User Guide 1

477

This example runs the Microarchitecture Exploration analysis on a Linux matrix app in the default detailed
profiling mode but disables the collection of the sub-metrics for the Bad Speculation and Core Bound top-
level metrics:

vtune -collect uarch-exploration -knob collect-bad-speculation=false -knob collect-core-
bound=false -- /home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Microarchitecture Exploration Analysis for Hardware Issues

Configure Analysis Options from Command Line

memory-access Command Line Analysis

Memory Access analysis identifies memory-related issues, like NUMA problems and bandwidth-limited
accesses, and attributes performance events to memory objects (data structures), which is provided due to
instrumentation of memory allocations/de-allocations and getting static/global variables from symbol
information.

Syntax
vtune -collect memory-access [-knob <knobName=knobValue>] [--] <target>
Knobs: sampling-interval, analyze-mem-objects (Linux* targets only), mem-object-size-min-thres
(Linux targets only), dram-bandwidth-limits, analyze-openmp.

NOTE
For the most current information on available knobs (configuration options) for the Memory Access
analysis, enter:

vtune -help collect memory-access

Example
This example shows how to run the Memory Access analysis on a Linux* myApplication app, collect data
on dynamic memory objects, and evaluate maximum achievable local DRAM bandwidth before the collection
starts:

vtune -collect memory-access -knob analyze-mem-objects=true -knob dram-bandwidth-limits=true --
home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

 1 Intel® VTune™ Profiler User Guide

478

See Also
Memory Access Analysis for Cache Misses and High Bandwidth Issues

Configure Analysis Options from Command Line

tsx-exploration Command Line Analysis

NOTE
This analysis is deprecated in the GUI and available from command line only.

TSX Exploration analysis type uses hardware event-based sampling collection and is targeted for the Intel®
processors supporting Intel® Transactional Synchronization Extensions (Intel® TSX). This analysis type
collects events that help understand Intel® Transactional Synchronization Extensions behavior and causes of
transactional aborts.

Syntax
vtune -collect tsx-exploration [-knob <knobName=knobValue>] [--] <target>
Knobs: analysis-step, enable-user-tasks.

NOTE
For the most current information on available knobs (configuration options) for the TSX Exploration
analysis, enter:

vtune -help collect tsx-exploration

Example
This example shows how to run the TSX Exploration analysis on a Linux* myApplication with enabled user
tasks analysis:

vtune -collect tsx-exploration -knob enable-user-tasks=true -- /home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Configure Analysis Options from Command Line

tsx-hotspots Command Line Analysis

NOTE
This analysis is deprecated in GUI and available from command line only.

Intel® VTune™ Profiler User Guide 1

479

TSX Hotspots analysis type uses hardware event-based sampling collection and is targeted for the Intel®
processors supporting Intel® Transactional Synchronization Extensions (Intel® TSX). This analysis type uses
the UOPS_RETIRED.ALL_PS hardware event that emulates precise clockticks and helps identify performance-
critical program units inside transactions.

Syntax
vtune -collect tsx-hotspots [-knob <knobName=knobValue>] [--] <target>
Knobs: sampling-interval, enable-stack-collection.

NOTE
For the most current information on available knobs (configuration options) for the TSX Hotspots
analysis, enter:

vtune -help collect tsx-hotspots

Example
This example shows how to run the TSX Hotspots analysis on a Linux* myApplication with enabled call
stacks and thread context switches advanced collection:

vtune -collect tsx-hotspots -knob enable-stack-collection=true -- /home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Configure Analysis Options from Command Line

sgx-hotspots Command Line Analysis

NOTE
This analysis is deprecated in GUI and available from command line only.

SGX Hotspots analysis type is targeted for systems with Intel Software Guard Extensions (Intel SGX) feature
enabled. It uses the INST_RETIRED.PREC_DIST hardware event that emulates precise clockticks and helps
identify performance-critical program units inside security enclaves. Using the precise event is mandatory for
the analysis on the systems with the Intel SGX enabled because regular non-precise events do not provide a
correct instruction pointer and therefore cannot be attributed to correct modules.

Syntax
vtune -collect sgx-hotspots [-knob <knobName=knobValue>] [--] <target>
Knobs: sampling-interval, enable-user-tasks.

 1 Intel® VTune™ Profiler User Guide

480

NOTE
For the most current information on available knobs (configuration options) for the SGX Hotspots
analysis, enter:

vtune -help collect sgx-hotspots

Example
The following example shows how to run the SGX Hotspots Analysis on a Linux* myApplication:

vtune -collect sgx-hotspots -- /home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Configure Analysis Options from Command Line

gpu-hotspots Command Line Analysis

Use the gpu-hotspots value to launch the GPU Compute/Media Hotspots analysis to:

• Explore GPU kernels with high GPU utilization, estimate the effectiveness of this utilization, identify
possible reasons for stalls or low occupancy and options.

• Explore the performance of your application per selected GPU metrics over time.
• Analyze the hottest SYCL* standards or OpenCL™ kernels for inefficient kernel code algorithms or incorrect

work item configuration.

Configure Characterization Analysis
Use the Characterization configuration option to:

• Monitor the Render and GPGPU engine usage (Intel Graphics only)
• Identify the loaded parts of the engine
• Correlate GPU and CPU data

When you select the Characterization radio button, you can select platform-specific presets of GPU metrics.
With the exception of the Dynamic Instruction Count preset, all other presets collect the following data about
the activity of Execution Units (EU):

• EU Array Active
• EU Array Stalled
• EU Array Idle
• Computing Threads Started
• Thread Occupancy
• Core Frequency

Each preset introduces additional metrics:

• The Overview metric set includes additional metrics that track general GPU memory accesses such as
Memory Read/Write Bandwidth and XVE pipelines utilization. These metrics can be useful for both
graphics and compute-intensive applications.

Intel® VTune™ Profiler User Guide 1

481

• The Global Memory Accesses metric group includes additional metrics that show the bandwidth
between the GPU and system memory as well as bandwidth between GPU stacks. The farther a memory
level is located from an XVE, the greater the impact on its performance by unnecessary access operations
to the memory level.

• The LSE/SLM Accesses metric group includes metrics which cover the XVE to L1 cache traffic. This
metric group requires two application runs to collect information.

• The HDC Accesses metric group includes metrics which measure the traffic between XVE and L3, that is
passing by the L1 cache.

• The Full Compute metric group is a combination of all of the other event sets. Therefore, it requires
multiple application runs.

• The Dynamic Instruction Count metric group counts the execution frequency of specific classes of
instructions. With this metric group, you also get an insight into the efficiency of SIMD utilization by each
kernel.

NOTE
You can run the GPU Compute/Media Hotspots analysis in Characterization mode for Windows*and
Linux* targets. However, for all presets (with the exception of the Dynamic Instruction Count
preset), you must have root/administrative privileges to run the GPU Compute/Media Hotspots
analysis in Characterization mode.

Alternatively, on Linux* systems, you can configure the system to allow further collections for non-
privileged users. To do this, in the bin64 folder of your installation directory, run the prepare-
debugfs-and-gpu-environment.sh script with root privileges.

Configure Source Analysis
In the Source Analysis, VTune Profiler helps you identify performance-critical basic blocks, issues caused by
memory accesses in the GPU kernels.

• Basic Blocks Latency option helps you identify issues caused by algorithm inefficiencies. In this mode,
VTune Profiler measures the execution time of all basic blocks. Basic block is a straight-line code sequence
that has a single entry point at the beginning of the sequence and a single exit point at the end of this
sequence. During post-processing, VTune Profiler calculates the execution time for each instruction in the
basic block. So, this mode helps understand which operations are more expensive.

• Memory Latency option helps identify latency issues caused by memory accesses. In this mode, VTune
Profiler profiles memory read/synchronization instructions to estimate their impact on the kernel
execution time. Consider using this option, if you ran the GPU Compute/Media Hotspots analysis in the
Characterization mode, identified that the GPU kernel is throughput or memory-bound, and want to
explore which memory read/synchronization instructions from the same basic block take more time.

In the Basic Block Latency or Memory Latency profiling modes, the GPU Compute/Media Hotspots
analysis uses these metrics:

• Estimated GPU Cycles: The average number of cycles spent by the GPU executing the profiled
instructions.

• Average Latency: The average latency of the memory read and synchronization instructions, in cycles.
• GPU Instructions Executed per Instance: The average number of GPU instructions executed per one

kernel instance.
• GPU Instructions Executed per Thread: The average number of GPU instructions executed by one

thread per one kernel instance.

If you enable the Instruction count profiling mode, VTune Profiler shows a breakdown of instructions
executed by the kernel in the following groups:

 1 Intel® VTune™ Profiler User Guide

482

Control Flow group if, else, endif, while, break, cont, call, calla, ret, goto, jmpi,
brd, brc, join, halt and mov, add instructions that explicitly change the ip
register.

Send & Wait group send, sends, sendc, sendsc, wait

Int16 & HP Float |
Int32 & SP Float |
Int64 & DP Float
groups

Bit operations (only for integer types): and, or, xor, and others.

Arithmetic operations: mul, sub, and others; avg, frc, mac, mach, mad,
madm.

Vector arithmetic operations: line, dp2, dp4, and others.

Extended math operations.

Other group Contains all other operations including nop.

In the Instruction count mode, VTune Profiler also provides Operations per second metrics calculated as
a weighted sum of the following executed instructions:

• Bit operations (only for integer types):

• and, not, or, xor, asr, shr, shl, bfrev, bfe, bfi1, bfi2, ror, rol - weight 1
• Arithmetic operations:

• add, addc, cmp, cmpn, mul, rndu, rndd, rnde, rndz, sub - weight 1
• avg, frc, mac, mach, mad, madm - weight 2

• Vector arithmetic operations:

• line - weight 2
• dp2, sad2 - weight 3
• lrp, pln, sada2 - weight 4
• dp3 - weight 5
• dph - weight 6
• dp4 - weight 7
• dp4a - weight 8

• Extended math operations:

• math.inv, math.log, math.exp, math.sqrt, math.rsq, math.sin, math.cos (weight 4)
• math.fdiv, math.pow (weight 8)

NOTE
The type of an operation is determined by the type of a destination operand.

Syntax
vtune -collect gpu-hotspots [-knob <knobName=knobValue>] -- <target> [target_options]
Knobs: gpu-sampling-interval, profiling-mode, characterization-mode, code-level-analysis,
collect-programming-api, computing-task-of-interest, target-gpu.

NOTE
For the most current information on available knobs (configuration options) for the GPU Compute/
Media Hotspots analysis, enter:

vtune -help collect gpu-hotspots

Intel® VTune™ Profiler User Guide 1

483

Example
This example runs the gpu-hotspots analysis in the default characterization mode with the default
overview GPU hardware metric preset:

vtune -collect gpu-hotspots -knob enable-gpu-runtimes=true -- /home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Optimize applications for Intel® GPUs with Intel® VTune Profiler
GPU Compute/Media Hotspots Analysis (Preview)

Configure Analysis Options from Command Line

gpu-offload Command Line Analysis
Explore code execution on various CPU and GPU cores
on your platform, correlate CPU and GPU activity, and
identify whether your application is GPU or CPU
bound.

Syntax
vtune -collect gpu-offload [-knob <knobName=knobValue>] -- <target> [target_options]
Knobs: collect-cpu-gpu-bandwidth, collect-programming-api, enable-stack-collection,
enable-characterization-insights, target-gpu.

NOTE
For the most current information on available knobs (configuration options) for the GPU Offload
analysis, enter:

vtune -help collect gpu-offload

Example
This example runs GPU Offload analysis with enabled tracing for GPU programming APIs on the specified
Linux* application:

vtune -collect gpu-offload -knob collect-programming-api=true -- /home/test/myApplication

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Optimize applications for Intel® GPUs with Intel® VTune Profiler

 1 Intel® VTune™ Profiler User Guide

484

https://www.intel.com/content/www/us/en/develop/articles/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html
https://www.intel.com/content/www/us/en/develop/articles/optimize-applications-for-intel-gpus-with-intel-vtune-profiler.html

GPU Offload Analysis

npu
Use the NPU Exploration analysis to profile and
optimize artificial intelligence(AI) workloads running
on Intel architectures.

Syntax
vtune -collect npu [-knob <knobName=knobValue>] -- <target> [target_options]
Knobs: profiling_mode, sampling_interval, metrics_set

NOTE
For the most current information on available knobs (configuration options) for the NPU Exploration
analysis, enter:

vtune -help collect npu

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
NPU Exploration Analysis (Preview)

graphics-rendering Command Line Analysis
Use the graphics-rendering value to launch the
GPU Rendering analysis (preview) and estimate your
code performance based on the GPU usage per engine
and GPU hardware metrics.

It focuses on the following usage models:

• System-wide profiling on all virtual domains (Dom0, DomUs) running under the Xen* hypervisor to
identify domains that take too many resources and introduce a bottleneck for the whole platform. Use the
-target-system option to specify a remote machine connected to your host via SSH.

• Profiling of OpenGL-ES applications running on Linux* systems to detect performance-critical API calls. For
this mode, specify the application to analyze or a process to attach to, using the -target-process or -
target-pid options.

Prerequisites
For successful analysis, make sure to configure your system as follows:

• For Xen virtualization platforms:

• Virtualize CPU performance counters on a Xen platform to enable full-scale event-based sampling.
• Establish a password-less SSH connection to the remote target system with the Xen platform installed.

• To analyze Intel® HD and Intel® Iris® Graphics hardware events on a GPU, make sure to set up your
system for GPU analysis

Intel® VTune™ Profiler User Guide 1

485

Syntax
vtune [--target-system=ssh:username@hostname[:port]] --collect graphics-rendering [--
knob <knobName=knobValue>] -- [target] [target_options]
Knobs: gpu-sampling-interval, gpu-counters-mode=render-basic.

NOTE
For the most current information on available knobs (configuration options) for the GPU Rendering,
enter:

vtune -help collect graphics-rendering

Example
This example runs system-wide GPU Rendering analysis for a remote Xen target:

host>./vtune --target-system=ssh:user1@172.16.254.1 –-collect graphics-rendering --duration 0
This example profiles an OpenGL-ES app running the GPU Rendering analysis:

host>./vtune –-collect graphics-rendering --target-process process1

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
GPU Rendering Analysis (Preview)

Profile Targets on a Xen* Virtualization Platform

Configure SSH Access for Remote Collection

Configure Analysis Options from Command Line

fpga-interaction Command Line Analysis

Use the CPU/FPGA Interaction analysis to assess the balance between CPU and FPGA in systems with FPGA
hardware that run Data Parallel C++ (SYCL) or OpenCL™ applications. Review FPGA time spent executing
kernels, overall time for memory transfers between the CPU and FPGA, and wait time impact on CPU and
FPGA work loads.

Syntax
vtune -collect fpga-interaction [-knob <knobName=knobValue>] [--] <target>
Knobs: sampling-interval, enable-stack-collection.

 1 Intel® VTune™ Profiler User Guide

486

NOTE
For the most current information on available knobs (configuration options) for the CPU/FPGA
Interaction analysis, enter:

vtune -help collect fpga-interaction

Example
This example runs the CPU/FPGA Interaction analysis on an application with stack collection enabled:

vtune -collect fpga-interaction -knob enable-stack-collection=true -- /home/test/myApplication

See Also
CPU/FPGA Interaction Analysis

io Command Line Analysis

Syntax
vtune -collect io [-knob <knobName=knobValue>] [-- target] [target_options]

Knobs
Platform-Level Metric Knobs:

Knob Allowed Values Default Value Description

collect-
pcie-
bandwidth

true/false true Collect data for:

• Inbound bandwidth (Intel® Data Direct I/O)
• Outbound bandwidth (Memory-Mapped I/O)
• L3 misses
• Average latencies of inbound I/O requests

mmio true/false false Collect the data required to locate code that induces
outbound I/O traffic by accessing devices through MMIO
space.

iommu true/false false Collect the data required to calculate performance metrics
for Intel® Virtualization Technology for Directed I/O (Intel
VT-d).

collect-
memory-
bandwidth

true/false true Collect the data required to compute memory, persistent
memory and cross-socket bandwidth.

dram-
bandwidth-
limits

true/false true Evaluate maximum achievable local DRAM bandwidth
before the collection starts. This data is used to scale
bandwidth metrics on the timeline and calculate
thresholds.

OS- and API-level Metric Knobs:

Knob Allowed Values Default Value Description

dpdk true/false false Collect DPDK metrics. Make sure DPDK is built with VTune
Profiler support.

spdk true/false false Collect SPDK metrics. Make sure SPDK is built with VTune
Profiler support.

kernel-stack true/false false Profile Linux kernel I/O stack.

Intel® VTune™ Profiler User Guide 1

487

Prerequisites
Linux* OS:

Load the sampling driver or use driverless hardware event collection (Linux).

See the Input and Output analysis User Guide for detailed prerequisites for each metric type.

FreeBSD* OS:

Install the FreeBSD target package and configure your system following the instructions.

Examples
Example 1: Input and Output Analysis — Launch a Target Application

Run the Input and Output analysis with Intel® VT-d metrics collection enabled for the target application
<app>:

vtune -collect io -knob iommu=true -- <app>
Example 2: Input and Output Analysis – Attach to Target Application

Run the Input and Output analysis with Intel VT-d and SPDK metrics collection and without MMIO access
feature in the Attach to Process mode.

Attach by process name:

vtune -collect io -knob iommu=true -knob mmio=false -knob spdk=true --target-
process=<process_name>

Or attach by PID:

vtune -collect io -knob iommu=true -knob mmio=false -knob spdk=true --target-pid=<pid>
Example 3: Input and Output Analysis - Profile System

Run a system-wide Input and Output analysis without specific target application for 30 seconds:

vtune -collect io --duration 30

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
Input and Output Analysis
 Input and Output analysis

system-overview Command Line Analysis

System Overview analysis evaluates general behavior of Linux* or Android* target systems and correlates
power and performance metrics with IRQ handling. This analysis type uses the driverless event-based
sampling collection.

Syntax
vtune -collect system-overview [-knob <knobName=knobValue>] -- <target>
Knobs: collecting-mode, sampling-interval, enable-interrupts-collection,analyze-
throttling-reasons.

 1 Intel® VTune™ Profiler User Guide

488

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE
For the most current information on available knobs (configuration options) for the System Overview
analysis, enter:

vtune -help collect system-overview

Example 1:
This example runs the System Overview analysis on a guest OS via Kernel-based Virtual Machine with
specified kallsyms and modules files paths.

vtune -collect system-overview -analyze-kvm-guest -kvm-guest-kallsyms=/home/vtune/[guest]/
kallsyms -kvm-guest-modules=/home/vtune/[guest]/modules

Example 2:
This example runs the System Overview analysis for the matrix application in the low-overhead hardware
tracing mode.

vtune -collect system-overview -knob collecting-mode=hw-tracing -- /root/intel/vtune/sample/
matrix/matrix

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

See Also
System Overview Analysis
 from GUI

Analyze Latency Issues

Configure Analysis Options from Command Line

runsa/runss Custom Command Line Analysis

Use the collect-with action to configure and run a custom analysis using any of the following data
collectors:

• runsa
• runss

runsa
The hardware event-based sampling collector of the VTune Profiler profiles your application using the counter
overflow feature of the Performance Monitoring Unit (PMU).

Syntax:

vtune -collect-with runsa [-knob <knobName=knobValue>] [--] <target>

Intel® VTune™ Profiler User Guide 1

489

NOTE
For the most current information on available knobs (configuration options) for the hardware event-
based sampling, enter:

vtune -help collect-with runsa

To display a list of events available on the target PMU, enter:

vtune -collect-with runsa -knob event-config=? <target>
The command returns names and short descriptions of available events. For more information on the events,
use Intel Processor Events Reference

Example 1:

This example runs a custom hardware event-based sampling collection for the sample application with the
specified events:

vtune -collect-with runsa -knob event-
config=CPU_CLK_UNHALTED.CORE,CPU_CLK_UNHALTED.REF,INST_RETIRED.ANY -- /home/test/sample

Example 2:

This example configures and runs a custom event-based sampling data collection with the stack size limited
to 8192 bytes and defines a custom Sample After value for the CPU_CLK_UNHALTED.REF_TSC event using
the sa option:

vtune -collect-with runsa -knob enable-stack-collection=true -knob stack-size=8192 -knob -knob
event-config=CPU_CLK_UNHALTED.REF_TSC:sa=1800000,CPU_CLK_UNHALTED

runss
The user-mode sampling and tracing collector profiles an application execution and takes snapshots of how
that application utilizes the processors in the system. The collector interrupts a process, collects the value of
all active instruction addresses and captures a calling sequence for each of these samples.

Syntax:

vtune-collect-with runss [-knob <knobName=knobValue>] [--] <target>

NOTE
For the most current information on available knobs (configuration options) for the user-mode
sampling and tracing, enter:

vtune -help collect-with runss

Example:

This example runs user-mode sampling and tracing collection for the sample application with enabled loop
analysis.

vtune -collect-with runss -knob analyze-loops=true -- /home/test/sample

What's Next
When the data collection is complete, do one of the following to view the result:

• Use the -report action to view the data from command line.
• Use the -report-output action to write report to a .txt or .csv file
• Open the data collection result (*.vtune) in the VTune Profiler graphical interface.

 1 Intel® VTune™ Profiler User Guide

490

See Also
collect-with
 action

Configure Analysis Options from Command Line

Configure Analysis Options from Command Line
For performance analysis via Intel® VTune™ Profiler command line interface (vtune tool), you can configure
the following options:

Collect System-Wide Data from Command Line

To extend your analysis and collect performance data for other processes running on your system, you may
choose between two options:

• system analysis with a target application
• system analysis without a target application

NOTE
System-wide collection is available for Hardware Event-based Sampling Collection types only.

System Analysis with a Target Application
To analyze your target application AND all other processes running on your system at the moment, specify
your application and enable system-wide analysis with the -analyze-system option. In this mode, the
collection duration is defined by the duration of your application execution.

This mode is particularly convenient for types of the collection that require an application to be launched. For
example, you may run a Frame or Task analysis (available for application targets only) and collect system-
wide data at the same time.

Example
This example runs the Hotspots analysis in the hardware event-based sampling for the sample application
and collects data system-wide.

vtune -collect hotspots -knob sampling-mode=hw -analyze-system -- /home/test/sample
The following example runs the Microarchitecture Exploration analysis (former General Exploration) for the
sample application, including user tasks specified in your code via the Task API, and collects data system-
wide.

vtune -collect uarch-exploration -knob enable-user-tasks=true -- /home/test/sample

System Analysis without a Target Application
To profile your system without specifying a target application (equal to the Profile System target type in
GUI), you just need to specify the collection duration.

Example
This example runs a system-wide Hotspots analysis hardware event-based sampling for 60 seconds.

vtune -collect hotspots -knob sampling-mode=hw --duration 60

See Also
analyze-system
 option

Intel® VTune™ Profiler User Guide 1

491

Set Up Analysis Target
 from GUI

Collect Data on Remote Linux* Systems from Command Line

Intel® VTune™ Profiler enables you to collect data on a remote application from the host system (Remote
Performance Analysis Workflow for Linux* Systems) via command line interface (vtune) and view the
analysis result locally in the GUI. Remote data collection using the vtunecommand running on the host is
similar to the native collection on the target except that the target-system option is added to the command
line.

Prerequisites:

• Intel® VTune™ Profiler is installed on the local host.
• Target Linux* system is set up for remote analysis.

Depending on your remote system, you may choose to install the VTune Profiler remote target package or
full command line interface (vtune).

• A password-less SSH access to the target is set.
• Recommended: an analysis target located on a shared drive visible to both local and remote machines.

NOTE
If you plan to collect data remotely using the full-scale command line interface of the VTune Profiler
installed on your target Linux system, see the topic Running Command Line Analysis. You may use the
Command Line option in the VTune Profiler graphical interface to automatically generate a command
line for an analysis configuration selected in the GUI. Make sure to edit the generated command line
for remote collection as described in the Generating Command Line Configuration from GUI topic.

Use the following command line syntax to run the analysis on remote Linux system:

host>./vtune -target-system=ssh:user@target <-action> <analysis_type> [<-knob>
[knobName=knobValue]] [-target-tmp-dir=PATH] [-target-install-dir=PATH][--] <target>
where

• -target-system=ssh:user@target is a remote Linux target
• <-action> is the action to perform the analysis (collect or collect-with)
• <analysis_type is the type of analysis
• <-knob> is a configuration option that modifies the analysis. For a list of available knobs, enter:

vtune -help <action> <analysis_type>
• [knobName=knobValue] is the name of specified knob and its value
• [-target-tmp-dir=PATH] is a path to the temporary directory on the remote system where

performance results are temporarily stored
• [-target-install-dir=PATH] is a path to the VTune Profiler target package installed on the remote

system
• <target> is the path and name of the application to analyze

Examples
Example 1: Event-based System-wide Sampling Collection

The command line below collects system-wide Hotspots analysis information without call stacks. This
command automatically pulls in modules required for viewing results from the device and caches them in the
temp directory on the host. This happens only on the first collection, all subsequent collections reuse
modules from the cache.

host>./vtune -target-system=ssh:user1@172.16.254.1 –collect hotspots -knob sampling-mode=hw -
duration 10

 1 Intel® VTune™ Profiler User Guide

492

For system-wide collection, a lot of modules running in the system during collection are copied from the
target to the host, which may take a while. However, this happens only once since vtune caches target
system modules on the host for faster access on the next collection. If you do not want the command to take
the modules from the device, you can specify a local directory where modules will be searched first, for
example:

host>./vtune -target-system=ssh:user1@172.16.254.1 –collect hotspots -knob sampling-mode=hw -
duration 10 -search-dir /search/path

In the case above, <PATH> can be either a directory where modules are located, or it can be a pointer to the
root file system of the target device. For example, when the collector searches for the /usr/lib64/libstdc
++.so.6.0.16 file from the target device, it first tries <PATH>/usr/lib64/libstdc++.so.6.0.16, then it
tries <PATH>/libstdc++.so.6.0.16, and only after that it attempts to copy the file from the target device.

Example 2: Event-based Sampling Collection

This example shows hot to attach the analysis to a running application by its PID.

host>./vtune -target-system=ssh:user1@172.16.254.1 –collect hotspots -knob sampling-mode=hw -
target-pid 333

Example 3: Advanced Event-based Sampling Collection

You can take any event supported by the Performance Monitoring Unit (PMU). Additionally, you can enable
multiple event collection at a time.

The following example identifies potential latency or responsiveness issues:

host>./vtune -target=ssh:user1@172.16.254.1 -duration 10 -collect-with runsa -knob event-
config='CPU_CLK_UNHALTED.REF:sa=20000'

This command line takes samples at ~2x the rate of a context switch, which gives you an approximately
20% performance hit.

See Also
Set Up Remote Linux* Target

Set Up Linux* System for Remote Analysis

Specify Search Directories from Command Line
 from the command line

Configure GPU Analysis from Command Line

Use the -knob option for configuring Intel® VTune™Profilerto profile applications that use a Graphics
Processing Unit (GPU) for rendering, video processing, and computations. GPU analysis monitors overall GPU
activity (graphics, media, and compute), collects Intel® HD Graphics and Intel® Iris® Graphics hardware
metrics, and then shows this data correlated with CPU processes and threads.

The following knobs are supported for GPU analysis:

Knob Name Supported
Analysis
Types

Description

enable-gpu-
usage=true
| false

runss,
runsa

Analyze frame rate and usage of Processor Graphics engines.

Intel® VTune™ Profiler User Guide 1

493

Knob Name Supported
Analysis
Types

Description

gpu-
counters-
mode=none |
overview |
global-
local-
accesses |
compute-
extended |
full-
compute |
render-
basic

gpu-
hotspots,
graphics-
rendering,
gpu-
offload,
runss,
runsa

Analyze performance data from Processor Graphics based on the GPU
Metrics Reference.

• overview - track general GPU memory accesses such as Memory
Read/Write Bandwidth, GPU L3 Misses, Sampler Busy, Sampler Is
Bottleneck, and GPU Memory Texture Read Bandwidth. These
metrics can be useful for both graphics and compute-intensive
applications.

• global-local-accesses - include metrics that distinguish
accessing different types of data on a GPU: Untyped Memory Read/
Write Bandwidth, Typed Memory Read/Write Transactions, SLM Read/
Write Bandwidth, Render/GPGPU Command Streamer Loaded, and
GPU EU Array Usage. This metrics are useful for compute-intensive
workloads on the GPU.

• compute-extended - analyze GPU activity on the Intel processor
code name Broadwell. This metrics set is disabled for other systems.

• full-compute - collect both overview and compute-basic metrics
with the allow-multiple-runs option enabled to analyze all types
of EUs array stalled/idle issues in the same view.

• render-basic (preview) - collect Pixel Shader, Vertex Shader, and
Output Merger metrics.

This option is available only for supported platforms with the Intel
Graphics Driver installed.

gpu-
sampling-
interval=<v
alue in us>

gpu-
hotspots,
runss,
runsa

Set the interval between GPU samples between 10 and 1000
microseconds. Default is 1000us. An interval of less than 100us is not
recommended.

enable-gpu-
runtimes=tr
ue | false

gpu-
hotspots,
runss,
runsa

Capture the execution time of OpenCL™ kernels and Intel Media SDK
programs on a GPU, identify performance-critical GPU computing tasks,
and analyze the performance per GPU hardware metrics.

NOTE
OpenCL kernels analysis is currently supported for Windows and Linux
target systems with Intel HD Graphics and Intel Iris Graphics. Intel® Media
SDK Program Analysis Configuration is supported for Linux targets only and
should be started with root privileges.

Examples
Example 1: Running Analysis for an Intel Media SDK Application

This example starts vtune as root and launches the GPU Compute/Media Hotspots analysis for an Intel Media
SDK application running on Linux:

vtune -collect gpu-hotspots -knob enable-gpu-runtimes=true -r quadrant_r001 -- BitonicSort

 1 Intel® VTune™ Profiler User Guide

494

To analyze a remote Linux target from the Windows system, the same example looks as follows:

vtune -target-system=ssh:user1@172.16.254.1 -collect gpu-hotspots -knob enable-gpu-runtimes=true
-r quadrant_r001 -- BitonicSort.exe

Example 2: Running Analysis with OpenCL Kernels Tracing

Perform GPU Compute/Media Hotspots or custom analysis, enabling the enable-gpu-usage knob to analyze
GPU usage of a processor graphics engine, using the Overview gpu-counters-mode counter set, which is
available only on a supported platform with an Intel Graphics Driver installed. Enable tracing of OpenCL
kernels execution with the enable-gpu-runtimes option.

For example, to run GPU Compute/Media Hotspots analysis, collect GPU hardware metrics and trace OpenCL
kernels on the BitonicSort application (-g is the option of the application), enter:

vtune -collect gpu-hotspots -knob gpu-counters-mode=overview -knob enable-gpu-runtimes=true --
BitonicSort -g

GPU Analysis on Android* System
You can enable GPU analysis for algorithm analysis types on Android systems with Intel HD Graphics and
Intel Iris Graphics by using the following knobs:

• enable-gpu-usage to analyze frame rate and usage of Intel HD Graphics and Intel Iris Graphics engines
based on ftrace events

• gpu-counters-mode to analyze performance data from Intel HD Graphics and Intel Iris Graphics based
on the preset counter sets

• gpu-sampling interval to specify a data collection interval between GPU samples

This example runs the GPU Compute/Media Hotspots analysis and monitors GPU usage.

host>./vtune -collect gpu-hotspots -target-system=android -r quadrant_r001 -target-process
com.intel.fluid -knob enable-gpu-usage=true -knob gpu-counters-mode=overview

See Also
knob
 option

report
 action-option

Hotspots Report

Specify Search Directories from Command Line

Your binary and symbol files contain data that VTune Profiler uses when performing collections, finalizing
results, generating reports, and similar actions. For proper module resolution, use the search-dir action-
option to specify directories on the host that should be searched for binary and symbol files and source-
search-dir option for searching source files.

If the vtune tool is not provided with the information it needs to find all the necessary files, the results may
be skewed or the finalization process may fail altogether.

The finalization process writes collected data to a database, resolves symbolic information, and pre-computes
data to make further analysis more efficient and responsive. Finalization can only succeed if it knows which
directories to search.

During finalization, the result directory is set as the default search directory to make it easier to display the
result in the GUI or generate a report from the result. When a report is generated, the report action
requires the same modules that were used during data collection.

Intel® VTune™ Profiler User Guide 1

495

When generating a report from results that were imported from another system, use the search-dir and
source-search-dir action-options to specify the search directories for system modules. When VTune
Profiler searches for symbol/source data, the specified directories have a higher priority than absolute local
paths.

To specify the search directory for symbol/binary files used by your target, run the vtune command using
the search-dir option as follows:

vtune-report <report_type> -search-dir <search_dir> result-dir <result_dir>
To enable the source code view in the command line report, specify the search directory for source files using
the source-search-dir option as follows:

vtune-report <report_type> -source-search-dir <search_dir> result-dir <result_dir>
• <search_dir> is the search directory to add
• <result_dir> is the result directory
• <report_type> is the type of report to display

Examples
This command generates a callstacks report on the r001hs hotspots result on a Windows* system, searching
for symbol files in the C:\Import\system_modules high-priority search directory, and sends the report to
stdout. -R is the short form of the -report action, and -r is the short form of the result-dir action-option.

vtune -R callstacks -search-dir C:\Import\system_modules -r C:\Import\r001hs
This command generates a callstacks report on the r001hs hotspots result on a Linux* system, searching for
symbol files in the home/system_modules high-priority search directory, and sends the report to stdout. -R
is the short form of the -report action, and -r is the short form of the result-dir action-option.

vtune -R callstacks -search-dir /home/system_modules -r /home/import/r001hs
When your binary/symbol files are in multiple directories, use the search-dir option multiple times so that
all the necessary directories are searched.

vtune -collect hotspots -knob sampling-mode=hw -search-dir /home/my_system_modules -search-dir /
home/other_system_modules -- /home/test/myApplication

This command opens the source view for the foo function annotated with the Hotspots analysis metrics data
collected for the r001hs result. It uses the /home/my_sources directory to search for source files.

vtune -R hotspots -source-object function=foo -r /home/my_project/r001hs -source-search-dir /
home/my_sources

See Also
Import Results from Command Line

Search Directories
 from GUI

Search Directories for Remote Linux* Targets

Specify Result Directory from Command Line

It is generally safest to specify a PATH/name for the result directory when working on the command line.
When using an action that takes a result as input, it is safer to specify the result directory, even if the result
was created using the default directory.

• Be sure to specify the result directory when using an action that takes a result as input, especially the
finalize or import action.

 1 Intel® VTune™ Profiler User Guide

496

• You want to store the result in a different directory than the current working directory.
• The result is assigned a name other than the default. In this case, you would specify the result name

when performing the collect or collect-with action, and also when generating a report or performing
any other actions that take this result as input.

Use the -result-dir | -r action-option to specify the PATH/name of a result directory. This may be an
absolute path, or a path relative to the current working directory.

• To specify the directory path but use the default naming conventions for the directory, just specify the
path.

• To specify the name of the result directory, but have the result written to the current working directory,
just specify a name for the result directory.

NOTE
Use the user-data-dir action-option to specify the base directory for result paths.

Example
This command runs the Hotspots analysis of myApplication in the current working directory, which is
named test. The result is saved in a default-named directory under the /home/test/ directory. If this was
the first Hotspots analysis run, the result directory would be named r000hs.

vtune -collect hotspots -result-dir=/home/test/ -- /home/test/myApplication
To generate a report from this result, you must specify the result directory.

vtune -report hotspots -r=/home/test/ -- /home/test/myApplication

See Also
result-dir action-option
user-data-dir
 action-option

Pause Collection from Command Line

Intel® VTune™ Profiler offers different ways to pause the collection process, to resume a paused collection, or
to stop a running collect process from the command line.

Start collection in the paused mode, and then automatically resume collection
To start data collection in the paused mode, use the start-paused action option as follows:

vtune -collect <analysis_type> -start-paused [--] <target>

Resume a paused collection
There are two ways to resume a paused collection.

• To resume collection automatically after a specified amount of time, use the resume-after option.

vtune -collect <analysis_type> -start-paused -resume-after=<value> [--] <target>
where

• <analysis_type> is the type of analysis to run
• <value> is the time of delay in seconds
• <target> is the target to analyze

• To resume collection manually, use the command action with the resume argument.

vtune -command resume

Intel® VTune™ Profiler User Guide 1

497

Examples
This example starts the Hotspots analysis of the sample Linux* application in the paused mode, and then
resumes collection after a 50 second pause.

vtune -collect hotspots -start-paused -resume-after=50 -- /home/test/sample
This example starts the Hotspots analysis of the sample Windows* application in the paused mode.

vtune -collect hotspots -start-paused -- C:\test\sample.exe

See Also
resume-after action-option
command
 action

Pause Data Collection

Manage Analysis Duration from Command Line

Manage analysis duration for best results on short-running targets, or to minimize collection overhead on
longer-running targets.

Use the vtune command interface to minimize duration while optimizing the analysis process.

• Use Default Duration
• Adjust Collection Duration to Application
• Manually Interrupt and Restart Analysis
• Configure Collection Duration

Use Default Duration
Intel® VTune™ Profiler provides predefined general analysis types to keep overhead to a reasonable level. The
option reference topic for the collect action identifies analysis types that are recommended as starting points;
and points out some more advanced analysis types that have higher overhead.

NOTE
To view all the analysis types that are available for your processor, use the command line help:

vtune -help collect

Adjust Collection Duration to Application
The sampling interval determines how much data is collected. The default sampling interval is short, which is
appropriate for targets that complete in 1 - 15 minutes.

If your target runs shorter or longer than this, use the target-duration-type action-option to set the
appropriate duration type, which adjusts the sampling interval.

• If the target takes less than 1 minute to run, specify veryshort.
• If the target takes 15 minutes to 3 hours to run, specify medium.
• If the target takes over 3 hours, specify long.

NOTE
For hardware event-based analysis types, a multiplier applies to the configured Sample After value.

 1 Intel® VTune™ Profiler User Guide

498

Example
Perform a Hotspots analysis in the user-mode sampling mode using a medium sampling interval that is
appropriate for targets with a duration of 15 minutes to 3 hours.

vtune -collect hotspots -target-duration-type medium -- myApp

Manually Interrupt and Restart Analysis
To pause an analysis manually, open a new terminal and use the command action with the pause argument,
being sure to specify the result directory. The target process continues to run, but data collection is paused.

vtune -command pause -result-dir results/r002hs
To resume analysis, use the command action with the resume argument.

vtune -command resume -r results/r002hs
To stop analysis altogether, use the command action with the stop argument. Once analysis is stopped, it
cannot be resumed.

vtune -command stop -r results/r002hs

Configure Collection Duration
VTune Profiler offers other ways to limit the analysis process. To stop analysis at a specified time after
initiating target execution, use the duration option.

vtune -collect <analysis_type> -duration=<value> -- <target>
where

• <analysis_type> is the type of analysis to run
• <value> is the duration in seconds
• <target> is the target to analyze

NOTE
To start the analysis in the paused mode or pause the collection during the analysis, refer to Pause
Collection from the Command Line section.

Examples
Example 1: Ending analysis after specified time

Start a Hotspots analysis of myApplication and end analysis after 60 seconds.

vtune -collect hotspots -duration=60 -- /home/test/myApplication
Example 2: Running an unlimited duration analysis

Run an unlimited duration Hotspots analysis, which will run until you stop it.

vtune -collect hotspots -duration=unlimited -result-dir results/r002hs

See Also
Pause Data Collection
 from GUI

target-duration-type
 action-option

duration
 action-option

Intel® VTune™ Profiler User Guide 1

499

Limit Data Collection from Command Line

Limiting data collection prevents from collecting a large amount of data that may slow down the data
processing. For example, it may happen when running Threading analysis on frequently contended
applications or when analyzing long profiles.

Typically, the default maximum amount of raw data used by the Intel® VTune™Profiler for the result file is
enough to identify a problem.

To limit the amount of raw data, use any of the following options:

• Set the maximum possible result file (in MB)
• Set the analysis timer for the last seconds of collection

Set the Maximum Possible Result File (in MB)
Use the data-limit command line option to limit the amount of raw data to be collected by setting the
maximum possible result size (in MB). VTune Profiler starts collecting data from the beginning of the target
execution and suspends data collection when the specified limit for the result size is reached. For unlimited
data size, specify 0.

vtune -collect <analysis_type> -data-limit=<value> -- <target>
Example

Start a Hotspots analysis on the specified Linux* target and limit the result size to 200 MB:

vtune -collect hotspots -data-limit=200 -- /home/test/myApplication

Set the Analysis Timer for the Last Seconds of Collection
Use the ring-buffer command line option to limit the amount of raw data to be collected by setting the timer
that enables the analysis only for the last seconds before the target or collection is terminated. For example,
if you specify 2 seconds as a time limit, the VTune Profiler starts the data collection from the very beginning
but saves the collected data only for the last 2 seconds before you terminate the collection.

vtune -collect <analysis_type> -ring-buffer=<value> -- <target>
Example

Enable a Hotspots analysis on the specified Windows* target for the last 10 seconds before the collection is
terminated:

vtune -collect hotspots -ring-buffer=10 -- C:\test\myApplication.exe

See Also
data-limit
 command line option

ring-buffer
 command line option

Limit Data Collection
 from GUI

Work with Results from Command Line
Intel® VTune™Profiler provides several ways to work with the analysis results from the command line:

View Command Line Results in the GUI

After generating, importing or finalizing a result from the command line, you can open your result in the
graphical user interface for immediate access to the result windows and tools offered by the Intel® VTune™
Profiler.

 1 Intel® VTune™ Profiler User Guide

500

View Results in Microsoft Visual Studio
To add a result to an existing Microsoft Visual Studio* project, do the following:

1. Open your project in Visual Studio.
2. In the Intel VTune Profiler Results folder, click the pull-down menu next to the Profile with VTune

Profiler icon.
3. Select Import result.
4. Select the *.vtune result file and click the Add button.

The result appears in the Intel VTune Profiler Results folder. You can now work with the command line
result exactly as with the result collected from GUI, for example: view source/assembly, filter performance
data, or compare it with another result of the same analysis type.

View Results in the Standalone GUI
To open a result in the standalone interface:

1. Launch the standalone GUI interface of the VTune Profiler. To do this from the command line, enter:

vtune-gui
2. Click the

menu button, select Open > Result..., and navigate to the result file.

See Also
Generate Command Line Reports

VTune Profiler Filenames and Locations

Import Results from Command Line

You can collect performance data remotely with the Intel® VTune™ Profiler collectors (for example, SEP
collector or Intel SoC Watch collector) or Linux* Perf* collector, import this data to the VTune Profiler project,
and view the data in the graphical or command line interface. Use the import action to import data collection
files. Currently the following data formats are supported:

• *.tb6/*.tb7 (sampling raw data files collected with the low-level SEP collector)
• *.perf (Perf data files)
• *.csv (External Data Import files in the predefined format)
• *.pwr (processed Intel SoC Watch files with energy analysis data)

• Prerequisites for Importing a *.perf File
• Import Performance Profiler results and view data
• Import energy analysis results and view data

Prerequisites for Importing a *.perf File
To import a *.perf file with hardware event-based sampling data collected by the Linux* Perf tool, make
sure to run the Perf collection with the predefined command line options:

• For application analysis:

$ perf record -o <trace_file_name>.perf -call-graph dwarf -e cpu-cycles,instructions
<application_to_launch>

• For process analysis:

Intel® VTune™ Profiler User Guide 1

501

$ perf record -o <trace_file_name>.perf -call-graph dwarf -e cpu-cycles,instructions
<application_to_launch> -p <PID> sleep 15

where the -e option is used to specify a list of events to collect as -e <list of events>; -call-graph
option (optional) configures samples to be collected together with the thread call stack at the moment a
sample is taken. See Linux Perf documentation on possible call stack collection options (for example, dwarf)
and its availability in different OS kernel versions.

NOTE
The Linux* kernel exposes Perf API to the Perf tool starting from version 2.6.31. Any attempts to run
the Perf tool on kernels prior to this version lead to undefined results or even crashes. See Linux Perf
documentation for more details.

Import Performance Profiler results and view data
1. Copy the result directory to your local system.
2. Use the import action to import the required file, setting the imported result directory as a search

directory:

vtune -import <result_path> -source-search-dir <search_path> -r <result_dir>
If you do not use the result-dir option, the VTune Profiler creates a new directory with the default name
in the current working directory.

NOTE
To import a CSV file with external data, use the -result-dir option and specify the name of an
existing directory of the result that was collected by the VTune Profiler in parallel with the external
collection. VTune Profiler adds the externally collected statistics to the result and provides integrated
data in the Timeline pane.

3. You can use the command line to display the imported result in the VTune Profiler GUI, or generate a
report to view it.

• In the GUI:

vtune-gui <result_dir>/<result>.vtune
• In the CLI:

vtune -report <report_type> -result-dir <result_dir>/<result>.vtune

NOTE

• Use the search-dir action-option to specify symbol and binary files locations for module
resolution.

• For Linux targets, make sure to generate the debug information for your binary files using the -g
option for compiling and linking. This enables the VTune Profiler to collect accurate performance
data.

• To minimize the size of the result, you may use the discard-raw-data action-option, but this will
prevent re-finalizing the result.

• Imported result files may not have all the fields that are present in the VTune Profiler result files, so
some types of data may be missing from the report.

 1 Intel® VTune™ Profiler User Guide

502

Import energy analysis results and view data
Run the following command to create a VTune Profiler project with the Intel SoC Watch trace data:

vtune –import <path_to_file> -result-dir <project_folder>
where <project_folder> is the VTune Profiler project directory, for example, r001, or the full path to the
result directory, for example, on Linux: /root/intel/vtune/projects/my_project/r001

NOTE

• <project_folder> must be a non-existing folder, or you will get an error.
• The energy analysis data file has an extension of .pwr.

You may include a path with the project name to create the project in a directory other than the current
directory.

VTune Profiler should start up and automatically open your project in the Platform Power Analysis
viewpoint.

Examples
This command imports the /home/import/r001.tb6 data collection file on Linux, searching the same
directory for binary and symbol information. The result is output to the current working directory.

vtune -import /home/Import/r001.tb6 -search-dir /home/import/r001hs
Generate the callstacks report from the imported r001hs Hotspots result, searching the /home/import/
r001hs directory for binary and symbol information.

vtune -report callstacks -result-dir /home/import/r001hs -search-dir /home/import/binaries

See Also
import
 action

Import Results and Traces into VTune Profiler GUI

Search Directories
 from GUI

Re-finalize Results from Command Line
Results are finalized during collection by default, but sometimes finalization is suppressed, or a result that
was finalized needs to be re-resolved. Here are some of the possible reasons:

• The no-auto-finalize action-option may be used to suppress finalization when performing the collect
action. In this case, the finalize action must be performed before the result can be viewed or used to
generate a report.

• Finalization may not have completed successfully. If you open the result in the GUI and see question
marks or other unexpected characters, the usual cause is that vtune could not find all the source, binary
and symbol files. When re-finalizing the result, use the search-dir action-option and make sure to
specify all search directories.

NOTE
Raw collector data is used to re-finalize a result. If the collect action is performed with the
discard-raw-data option, so that the raw data is deleted after the initial finalization, the result
cannot be re-finalized.

Intel® VTune™ Profiler User Guide 1

503

Re-Finalize a Result
To force result re-finalization, run the finalize action using this general syntax:

vtune -finalize -result-dir <result_path> -search-dir <search_path>
where

<result_path> is the result directory and <search_path> is the search directory. Use the -search-dir
option to specify directories for searching symbol and binary files.

Example
This example re-finalizes the r001hs result, searching for symbol files in the specified search directory.

vtune -finalize -result-dir r001hs -search-dir /home/import/system_modules

See Also
finalize
 action

Finalization

Generate Command Line Reports
When you run a performance analysis from the command line, you see the results in the Intel® VTune™
Profiler user interface. Use available options in the VTune Profiler GUI to filter and format the data.

You can also see the collected data as a report on the command line. The following sections describe the
types of reports you can generate this way.

General Syntax
Use the following syntax to generate a report from the command line:

vtune report <report_type> -result-dir <result_path> [report_options]
where:

• <report_type> is the type of report that you want to create. To get the list of available report types,
enter:vtune -help report. To display help for a specific report type, enter: vtune -help report
<report_type>.

• <result_path> is a directory where your result file is located. If you do not specify a result directory, the
VTune Profiler displays a report for the latest collected result.

• [report_options] are action options used to manage the selected report. To view a list of available
report action options, enter: vtune -help report <report_type>.

NOTE
-R is the short form of the report action. -r is the short form of the result-dir action-option. The
syntax vtune -R <report_type> -r <result_path> is a valid syntax to generate a command line
report.

Usage Considerations
• You generate command line reports from existing results. When using the command line, you cannot

collect data and generate a timeline report simultaneously. Therefore, you cannot use the collect and
report actions in the same command.

• The analysis type used to collect a result determines the report types for that result that can be generated
from the command line.

 1 Intel® VTune™ Profiler User Guide

504

• By default, a report is written in text format to stdout and is not saved to a file. To save, filter and
format reports, see the topics on Saving and Formatting Reports as well as Filtering and Grouping
Reports.

Types of Command Line Reports
Use the vtune command to generate these types of reports:

affinity Display binding of a thread to a range of sockets, physical, and logical
cores.

callstacks Report full stack data for each hotspot function; identify the impact of each
stack on the function CPU or Wait time. You can use the group-by or filter
options to sort the data by:

• callstack
• function
• function-callstack

exec-query

gprof-cc Report a call tree with the time (CPU and Wait time, if available) spent in
each function and its children.

hotspots Display collected performance metrics according to the selected analysis
type and identify program units that took the most CPU time (hotspots).

hw-events Display the total number of hardware events.

platform-power-analysis Display CPU sleep time, wake-up reasons and CPU frequency scaling time.

summary Report on the overall performance of your target.

timeline Display metric data over time and distributed over time intervals.

top-down Report call sequences (stacks) detected during collection phase, starting
from the application root (usually, the main() function). Use this report to
see the impact of program units together with their callees.

vectspots Display statistics that help identify code regions to tracing on a HW
simulator.

Example
This example displays a Hotspots report for the r001hs result. The report shows CPU time for the functions
of the target in descending order, starting with the most time-consuming function.

vtune -report hotspots -r r001hs

Function CPU Time CPU Time:Effective Time CPU Time:Effective Time:Idle CPU
Time:Effective Time:Poor CPU Time:Effective Time:Ok CPU Time:Effective Time:Ideal CPU
Time:Effective Time:Over
---------------- -------- ----------------------- ----------------------------
---------------------------- -------------------------- -----------------------------

grid_intersect 3.371s 3.371s
0s 3.371s 0s
0s 0s
sphere_intersect 2.673s 2.673s
0s 2.673s 0s
0s 0s
render_one_pixel 0.559s 0.559s

Intel® VTune™ Profiler User Guide 1

505

0s 0.559s 0s
0s 0s
...

See Also
report action
Save and Format Command Line Reports

Manage Data Views
 from GUI

Filter and Group Command Line Reports

Summary Report

Similar to the Summary window, available in GUI, the summary report provides overall performance data of
your target. Intel® VTune™Profiler automatically generates the summary report when data collection
completes. To disable this report, use the no-summary option in your command when performing a collect
or collect-with action.

Use the following syntax to generate the Summary report from a preexisting result:

vtune -report summary -result-dir <result_path>
The summary report output depends on the collection type:

• User-mode Sampling and Tracing Collection Summary Report
• Hardware Event-based Sampling Collection Summary Report

User-mode Sampling and Tracing Collection Summary Report
For User-Mode Sampling and Tracing Collection results, the summary report includes the following sections:

• Collection and Platform Information
• CPU Information
• Summary per basic analysis metrics

Example 1: User-Mode Sampling Hotspots Summary
This example generates the summary report for the r000hs Hotspots analysis result on Windows*:

vtune -report summary -r r000hs
Elapsed Time: 1.857s
CPU Time: 10.069s
 Effective Time: 10.069s
 Idle: 0.000s
 Poor: 1.294s
 Ok: 6.381s
 Ideal: 2.395s
 Over: 0s
Spin Time: 0s
Overhead Time: 0s
Total Thread Count: 9
Paused Time: 0s

Top Hotspots
Function Module CPU Time
--------- ---------- --------
multiply1 matrix.exe 10.069s

 1 Intel® VTune™ Profiler User Guide

506

Collection and Platform Info
 Application Command Line: C:\temp\samples\en\C++\matrix_vtune\matrix\vc14\Win32\Release
\matrix.exe
 Operating System: Microsoft Windows 10
 Computer Name: my-computer
 Result Size: 5 MB
 Collection start time: 09:41:57 06/09/2018 UTC
 Collection stop time: 09:41:58 06/09/2018 UTC
 Collector Type: Event-based counting driver,User-mode sampling and tracing
 CPU
 Name: Intel(R) Processor code named Skylake
 Frequency: 4.008 GHz
 Logical CPU Count: 8

Example 2: Threading Summary
This example generates a summary report for the Threading analysis result r003tr. The summary portion of
the report shows that the multithreaded target spent 64 seconds waiting, with an average concurrency of
only 1.073:

vtune -report summary -r r003tr
Summary

Average Concurrency: 1.073
Elapsed Time: 13.911
CPU Time: 11.031
Wait Time: 64.468
Average CPU Usage: 0.768

To identify the cause of the wait, view the result in the GUI performance pane, or generate a performance
report.

Hardware Event-based Sampling Collection Summary Report
For Hardware Event-based Sampling Collection results, the summary report includes the following
information (if available):

• Collection and Platform information
• Microarchitecture Exploration metrics
• CPU information
• GPU information
• Summary per basic analysis metrics
• Event summary
• Uncore Event summary

For some analysis types, the command-line summary report provides an issue description for metrics that
exceed the predefined threshold. If you want to skip issues in the summary report, do one of the following:

• Use the -report-knob show-issues=false option when generating the report, for example: vtune -
report summary -r r001hpc -report-knob show-issues=false

• Use the -format=csv option to view the report in the CSV format, for example: vtune -report
summary -r r001hpc -format=csv

Intel® VTune™ Profiler User Guide 1

507

Example 3: Hardware Event-Based Sampling Hotspots Summary
This example generates the summary report for the r001hs Hotspots analysis (hardware event-based
sampling mode) result on Windows* OS.

vtune -report summary -r r001hs
Elapsed Time: 3.986s
 CPU Time: 1.391s
 CPI Rate: 0.860
 Wait Time: 65.023s
 Inactive Time: 14.819s
 Total Thread Count: 25
 Paused Time: 0s

Hardware Events
Hardware Event Type Hardware Event Count Hardware Event Sample Count Events
Per Sample
----------------------------------- -------------------- ---------------------------

CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE 24,832,593 8
1000030
CPU_CLK_UNHALTED.REF_TSC 3,471,208,416 120
24000000
CPU_CLK_UNHALTED.REF_XCLK 43,877,874 14
1000030
CPU_CLK_UNHALTED.THREAD 3,903,569,890 127
24000000
FP_ARITH_INST_RETIRED.SCALAR_DOUBLE 943,046,424 14
20000030
INST_RETIRED.ANY 4,536,715,682 140
24000000
UOPS_EXECUTED.THREAD 5,282,967,942 72
20000030
UOPS_RETIRED.RETIRE_SLOTS 5,587,595,565 76
20000030
Collection and Platform Info
 Application Command Line: C:\samples\tachyon\vc10\analyze_locks_Win32_Release
\analyze_locks.exe C:\samples\tachyon\dat\balls.dat
 Operating System: Microsoft Windows 10
 Computer Name: My Computer
 Result Size: 13 MB
 Collection start time: 12:12:52 24/07/2018 UTC
 Collection stop time: 12:13:03 24/07/2018 UTC
 Collector Type: Event-based sampling driver
 CPU
 Name: Intel(R) Processor code named Skylake ULT
 Frequency: 2.496 GHz
 Logical CPU Count: 4

Use the Elapsed Time metric as your performance baseline to estimate your optimizations.

 1 Intel® VTune™ Profiler User Guide

508

Example 4: HPC Performance Characterization Summary
This command generates the summary report for the HPC Performance Characterization analysis result and
skips issue descriptions:

vtune -report summary -r r001hpc -report-knob show-issues=false
Elapsed Time: 23.182s
GFLOPS: 14.748
Effective Physical Core Utilization: 58.0%
 Effective Logical Core Utilization: 13.920 Out of 24 logical CPUs
 Serial Time: 0.069s (0.3%)
 Parallel Region Time: 23.113s (99.7%)
 Estimated Ideal Time: 14.010s (60.4%)
 OpenMP Potential Gain: 9.103s (39.3%)
Memory Bound: 0.446
 Cache Bound: 0.175
 DRAM Bound: 0.216
 NUMA: % of Remote Accesses: 38.3%
FPU Utilization: 2.7%
 GFLOPS: 14.748
 Scalar GFLOPS: 4.801
 Packed GFLOPS: 9.947
Collection and Platform Info
 Application Command Line: ./sp.B.x
 User Name: vtune
 Operating System: 3.10.0-327.el7.x86_64 NAME="Red Hat Enterprise Linux Server" VERSION="7.2
(Maipo)" ID="rhel" ID_LIKE="fedora" VERSION_ID="7.2" P
RETTY_NAME="Red Hat Enterprise Linux Server 7.2 (Maipo)" ANSI_COLOR="0;31" CPE_NAME="cpe:/
o:redhat:enterprise_linux:7.2:GA:server" HOME_URL="https://w
ww.redhat.com/" BUG_REPORT_URL="https://bugzilla.redhat.com/" REDHAT_BUGZILLA_PRODUCT="Red Hat
Enterprise Linux 7" REDHAT_BUGZILLA_PRODUCT_VERSION=7.
2 REDHAT_SUPPORT_PRODUCT="Red Hat Enterprise Linux" REDHAT_SUPPORT_PRODUCT_VERSION="7.2"
 Computer Name: nntvtune235
 Result Size: 1 GB
 Collection start time: 19:04:30 13/06/2017 UTC
 Collection stop time: 19:04:53 13/06/2017 UTC
 Name: Intel(R) Xeon(R) E5/E7 v2 Processor code named Ivytown
 Frequency: 2.694 GHz
 Logical CPU Count: 24
 CPU
 Name: Intel(R) Xeon(R) E5/E7 v2 Processor code named Ivytown
 Frequency: 2.694 GHz
 Logical CPU Count: 24

Example 5: Memory Access Summary
This command generates the summary report for the Memory Access analysis result collected on Windows
and shows issue descriptions:

vtune -report summary -r r001macc

Elapsed Time: 7.917s
 CPU Time: 6.473s
 Memory Bound: 21.9% of Pipeline Slots
 | The metric value is high. This may indicate that a significant fraction
 | of execution pipeline slots could be stalled due to demand memory load
 | and stores. Explore the metric breakdown by memory hierarchy, memory
 | bandwidth information, and correlation by memory objects.

Intel® VTune™ Profiler User Guide 1

509

 |
 L1 Bound: 8.0% of Clockticks
 | This metric shows how often machine was stalled without missing the
 | L1 data cache. The L1 cache typically has the shortest latency.
 | However, in certain cases like loads blocked on older stores, a load
 | might suffer a high latency even though it is being satisfied by the
 | L1.
 |
 L2 Bound: 3.0% of Clockticks
 L3 Bound: 5.0% of Clockticks
 | This metric shows how often CPU was stalled on L3 cache, or contended
 | with a sibling Core. Avoiding cache misses (L2 misses/L3 hits)
 | improves the latency and increases performance.
 |
 DRAM Bound: 4.1% of Clockticks
 DRAM Bandwidth Bound: 0.4% of Elapsed Time
 Memory Latency: 0.000
 Loads: 10,137,704,122
 Stores: 3,208,896,264
 LLC Miss Count: 1,750,105
 Average Latency (cycles): 11
 Total Thread Count: 21
 Paused Time: 0s
System Bandwidth
 Max DRAM System Bandwidth: 15 GB

Bandwidth Utilization
Bandwidth Domain Platform Maximum Observed Maximum Average Bandwidth % of Elapsed Time with
High BW Utilization(%)
---------------- ---------------- ---------------- -----------------

DRAM, GB/sec 15 11.300
2.836 0.4%
Collection and Platform Info
 Application Command Line: C:\samples\tachyon\vc10\analyze_locks_Win32_Release
\analyze_locks.exe "C:\samples\tachyon\dat\balls.dat"
 Operating System: Microsoft Windows 10
 Computer Name: My Computer
 Result Size: 31 MB
 Collection start time: 09:33:44 07/06/2017 UTC
 Collection stop time: 09:33:52 07/06/2017 UTC
 CPU
 Name: Intel(R) Processor code named Skylake ULT
 Frequency: 2.496 GHz
 Logical CPU Count: 4

The Bandwidth Utilization section in the summary report shows the following metrics:

• Platform Maximum: Expected maximum bandwidth for the system. This value can be automatically
estimated using micro-benchmark at the start of analysis or hard-coded based on theoretical bandwidth
limits.

• Observed Maximum: Maximum bandwidth observed during the analysis. If the value is close to the
Platform Maximum, your workload is probably bandwidth-limited.

• Average Bandwidth: Average bandwidth utilization during the analysis.
• % of Elapsed Time with High BW Utilization: Percentage of Elapsed time spent heavily utilizing

system bandwidth.

This information is provided for all kinds of bandwidth domains you have in the result (DRAM, MCDRAM, QPI,
and so on).

 1 Intel® VTune™ Profiler User Guide

510

See Also
report action
no-summary action-option
Window: Summary
 in GUI

Hotspots Report

Use the hotspots command line report to identify program units (for example: functions, modules, or
objects) that take the most processor time (Hotspots analysis), underutilize available CPUs or have long
waits (Threading analysis), and so on.

Use the hotspots report to view hottest GPU computing tasks (or their instances) identified with the gpu-
hotspots or gpu-offload analysis.

The report displays the hottest program units in the descending order by default, starting from the most
performance-critical unit. The command-line reports provide the same data that is displayed in the default
GUI analysis viewpoint.

NOTE
To display a list of available groupings for a Hotspots report, enter vtune -report hotspots -r
<result_dir> group-by=?. If you do not specify a result directory, the latest result is used by
default.

Examples
Example 1: Hotspots Report with Module Grouping

This example opens the Hotspots report for the r001hs Hotspots analysis result and groups the data by
module.

vtune -report hotspots -r r001hs -group-by module

Module CPU Time
----------------- --------
analyze_locks 10.080s
KERNELBASE 0.679s
ntdl 0.164s
...

Example 2: Hotspots Report with Limited Items

This example displays the Hotspots report for the r001hs analysis result including only the top two functions
with the highest CPU Time values. Functions having insignificant impact on performance are excluded from
output.

vtune -report hotspots -r r001hs -limit 2

Function CPU Time
---------------- --------
grid_intersect 5.489s
sphere_intersect 3.590s

Example 3: Report per OpenCL Kernels

Intel® VTune™ Profiler User Guide 1

511

This example shows how to view the collected data per OpenCL kernels submitted and executed on the GPU:

vtune -report hotspots -group-by=computing-task -r r000gh
Computing Task Work Size:Global Computing Task:Total Time Data Transferred:Size EU
Array:Active(%) L3 <-> GTI Total Bandwidth, GB/sec
------------------- ---------------- ------------------------- ---------------------
------------------ ----------------------------------
AdvancePaths 65536
13.170s 25.0% 22.928
Init 65536
0.006s 34.4% 45.802
Intersect 65536
49.139s 61.5% 23.149
Sampler 65536
6.525s 76.4% 11.745
InitFrameBuffer 362432
0.000s 4.7% 17.456
clEnqueueReadBuffer 1.045s 3
GB 1.5% 8.840

Example 4: Report Grouped per SYCL Task Instances

This example filters and groups the collected data by SYCL task instances:

vtune -report hotspots -group-by=computing-instance -r r000gh
Computing Task Instance Work Size:Global Computing Task:Total Time Data
Transferred:Size GPU Time
------------------- ------------------ ---------------- -------------------------
--------------------- --------
CopyVector2 2 6553600
0.190s 0.190s
clEnqueueReadBuffer 1
0.034s 400 MB 0.034s

See Also
Summary Report

Filter and Group Command Line Reports

Hardware Events Report
Intel® VTune™Profiler counts the number of hardware events during the Hardware Event-based Sampling
Collection to help you understand how the application utilizes available hardware resources. Use the
hw-events report type to display hardware events count per application functions in the descending order by
default.

Example
This example generates the hw-events report for the specified Hotspots analysis (hardware event-based
sampling mode).

vtune -report hw-events -r r001hs
Function Hardware Event Count: Hardware Event Count: Hardware Event
Count: Hardware Event Count: Module
 INST_RETIRED.ANY (K) CPU_CLK_UNHALTED.THREAD (K)
CPU_CLK_UNHALTED.REF_TSC (K) BR_INST_RETIRED.NEAR_TAKEN (K)
---------------------------- --------------------- ---------------------------
---------------------------- ------------------------------ -----------------

 1 Intel® VTune™ Profiler User Guide

512

grid_intersect 11,901,341
16,145,531 17,464,710 1,620,825 analyze_locks
sphere_intersect 7,944,651
10,759,847 11,794,832 934,564 analyze_locks
grid_bounds_intersect 845,537
1,190,025 1,299,113 86,424 analyze_locks
Gdiplus::Graphics::DrawImage 667,500
1,255,001 1,246,747 47,194 analyze_locks
video::next_frame 241,619
279,866 212,356 24,419 analyze_locks
pos2grid 195,869
269,137 294,850 18,410 analyze_locks
tri_intersect 173,193
271,435 296,786 14,919 analyze_locks
shader 172,992
269,044 314,679 21,040 analyze_locks
Raypnt 162,623
206,349 204,826 26,100 analyze_locks
...

See Also
report action
Filter and Group Command Line Reports
 from command line

Callstacks Report

Intel® VTune™Profiler collects call stack information during User-Mode Sampling and Tracing Collection or
Hardware Event-based Sampling Collection with stack collection enabled. Use the callstacks report to see
how the hot functions are called. This report type focuses on call sequences, beginning from the functions
that take most CPU time.

You can use the -column option to filter the callstacks report and focus on the specific metric, for example:

vtune -report -callstacks -r r001ah -column="CPI Rate"

NOTE
To display a list of columns available for callstacks report, enter: vtune -report callstacks -r
<result_dir> column=?

Examples
Example 1: Callstacks Report with Limited Items

The following example generates a callstacks report for the most recent analysis result and limits the
number of functions and function stacks to 5 items.

vtune -report callstacks -limit 5
On Windows*:

Function Function Stack CPU Time Module Function (Full)
Source File Start Address
-------------- ----------------- -------- ----------------- -------------------------------
----------------- -------------
grid_intersect 5.436s analyze_locks.exe grid_intersect
grid.cpp 0x40d340

Intel® VTune™ Profiler User Guide 1

513

 intersect_objects 1.918s analyze_locks.exe intersect_objects(struct ray *)
intersect.cpp 0x402840
 shader 0s analyze_locks.exe shader(struct ray *)
shade.cpp 0x404730
 trace 0s analyze_locks.exe trace(struct ray *)
trace_rest.cpp 0x402370
 render_one_pixel 0s analyze_locks.exe render_one_pixel
analyze_locks.cpp 0x401db0
...

On Linux*:

Function Function Stack CPU Time Module Function
(Full) Source File Start Address
-------------------- ----------------- -------- ---------------------
------------------------ ----------------- -------------
initialize_2D_buffer 22.746s tachyon_find_hotspots
initialize_2D_buffer find_hotspots.cpp 0x4018f0
 render_one_pixel 22.746s tachyon_find_hotspots
render_one_pixel find_hotspots.cpp 0x401950
 draw_trace 0s tachyon_find_hotspots
draw_trace(void) find_hotspots.cpp 0x401d70
 thread_trace 0s tachyon_find_hotspots
thread_trace(thr_parms*) find_hotspots.cpp 0x401ef0
 trace_shm 0s tachyon_find_hotspots
trace_shm trace_rest.cpp 0x410a20
 trace_region 0s tachyon_find_hotspots
trace_region trace_rest.cpp 0x410aa0
 rt_renderscene 0s tachyon_find_hotspots
rt_renderscene(void*) api.cpp 0x402360
 tachyon_video 0s tachyon_find_hotspots
tachyon_video video.cpp 0x402240
 main 0s tachyon_find_hotspots
main video.cpp 0x4013e0
 __libc_start_main 0s libc.so.6
__libc_start_main libc-start.c 0x21dd0
 _start 0s tachyon_find_hotspots
_start [Unknown] 0x40149c

grid_intersect 7.282s tachyon_find_hotspots
grid_intersect grid.cpp 0x408930
 intersect_objects 2.756s tachyon_find_hotspots
intersect_objects(ray*) intersect.cpp 0x40a400
 shader 0s tachyon_find_hotspots
shader(ray*) shade.cpp 0x40eae0
...

Example 2: Callstacks Report with Callstack Grouping

This example generates a callstacks report for the r001tr result that is grouped by function call stacks.

vtune -report callstacks -r r001tr -group-by callstack
On Windows*:

Function/Function Stack Wait Time Module Function (Full)
--- --------- -----------------

tbb::internal::acquire_binsem_using_event 20.005s tbb.dll

 1 Intel® VTune™ Profiler User Guide

514

tbb::internal::acquire_binsem_using_event

func@0x10003350 13.857s gdiplus.dll func@0x10003350
func@0x1000c1f0 0s gdiplus.dll func@0x1000c1f0
BaseThreadInitThunk 0s KERNEL32.DLL BaseThreadInitThunk
func@0x6b2dacf0 0s ntdll.dll func@0x6b2dacf0
func@0x6b2daccf 0s ntdll.dll func@0x6b2daccf

video::main_loop 10.111s analyze_locks.exe video::main_loop(void)
main 0s analyze_locks.exe main
WinMain 0s analyze_locks.exe WinMain
_tmainCRTStartup 0s analyze_locks.exe _tmainCRTStartup
[Unknown stack frame(s)] 0s [Unknown] [Unknown stack frame(s)]
BaseThreadInitThunk 0s KERNEL32.DLL BaseThreadInitThunk
func@0x6b2dacf0 0s ntdll.dll func@0x6b2dacf0
...

On Linux*:

Function/Function Stack Wait Time Module Function
(Full)

------------------------------- --------- ---------------------

draw_task::operator() 98.698s tachyon_analyze_locks draw_task::operator()
(tbb::blocked_range<int> const&)
const

tbb::interface6::internal 0s tachyon_analyze_locks
tbb::interface6::internal
execute<tbb::interface6::internal 0s tachyon_analyze_locks
execute::interface6::internal
[TBB parallel_for on draw_task] 0s tachyon_analyze_locks
tbb::interface6::internal::execute(void)
[TBB Dispatch Loop] 0s libtbb.so.2
tbb::internal::local_wait_for_all(tbb::task&, tbb::task*)
...

See Also
report action
Filter and Group Command Line Reports

Timeline Report
Like the Timeline window in the Intel® VTune™ Profiler user interface, the Timeline report provides
information about a metric which changed over time. This is a tabular report where each row displays the
average metric value in each time interval.

For example, this command generates a timeline report that captures the CPU Utilization section
highlighted in the Timeline pane below:

vtune -result-dir <result_path> -report timeline -report-knob column-by=CPUTime -report-knob bin-
count=5

Intel® VTune™ Profiler User Guide 1

515

When you run the command, you see the following information:

vtune: Using result path `C:\VTune\Projects\sample (matrix)\r005hs'
vtune: Executing actions 75 % Generating a report
timeBin Bin Start Time Bin End Time CPU Time:Self
------- -------------- ------------ -------------
0 0.000 7.440 621.445s
1 7.440 14.879 620.543s
2 14.879 22.319 675.243s
3 22.319 29.758 573.878s
4 29.758 37.198 404.154s
vtune: Executing actions 100 % done

Generate a Timeline Report from an Existing Result
Run this command:

vtune -result-dir <result_path>
 -report timeline
 -report-knob column-by=<metric name>
 [-report-knob sort-column-by=<metric name>]
 [-report-knob group-by=<grouper name>]
 [-report-knob bin-count=<30 by default>]
 [-report-knob start=<0 by default>]
 [-report-knob end=<end of collection by default>]
 [-report-knob time-format=<seconds|milliseconds|events>]
 [-report-knob object-names=True|False by default]
 [-report-knob query-type=interval|...]

where:

• <metric name> is the metric information you want. For example, CPUTime, OvertimeBandwidth,
ContextSwitches, Task, PMUEventCount/PMUEventType etc.

 1 Intel® VTune™ Profiler User Guide

516

• <grouper name> is an optional name given to a grouper. During data collection, every metric on the
timeline gets detected within a context. The metric is then attributed to the context. You use this context
as the <grouper name> to group metric actions. Some examples of <grouper name> are Thread,
UncorePackage, Task etc. Each instance of the <grouper name> generates an output table for that
collection of metric actions. For example, if a parallel application runs on eight threads, setting group-
by=Thread generates eight timeline reports. To see the overall behavior of the metric over time, do not
set <grouper name>.

Example: Timeline Report for CPU Time
This example generates a timeline report for the r000hs result of a Hotspots analysis. The timeline report
shows CPU Time utilization over 30 intervals:

vtune.exe -r r000hs -report timeline -report-knob column-by=CPUTime

timeBin Bin Start Time Bin End Time CPU Time:Self
------- -------------- ------------ -------------
0 0.000 1.240 5.456s
1 1.240 2.480 6.318s
2 2.480 3.720 6.462s
3 3.720 4.960 6.502s
4 4.960 6.200 6.638s
5 6.200 7.440 5.908s
6 7.440 8.679 6.659s
7 8.679 9.919 6.018s
8 9.919 11.159 5.555s
9 11.159 12.399 5.599s
10 12.399 13.639 6.404s
11 13.639 14.879 6.994s
12 14.879 16.119 6.997s
13 16.119 17.359 6.290s
14 17.359 18.599 6.986s
15 18.599 19.839 6.859s
16 19.839 21.079 6.496s
17 21.079 22.319 6.883s
18 22.319 23.558 7.044s
19 23.558 24.798 4.416s
20 24.798 26.038 5.306s
21 26.038 27.278 6.219s
22 27.278 28.518 6.140s
23 28.518 29.758 5.305s
24 29.758 30.998 5.874s
25 30.998 32.238 5.617s
26 32.238 33.478 3.909s
27 33.478 34.718 3.688s
28 34.718 35.958 3.232s
29 35.958 37.198 1.927s

Intel® VTune™ Profiler User Guide 1

517

Example: Timeline Report for CPU Time within Time Range
In this example, a timeline report is generated from the r006ue result of a Microarchitecture analysis. The
data is collected between the second and fifth seconds. The data collected during these three seconds is
presented over 50 intervals of time.

vtune -r r006ue -report timeline -report-knob column-by=CPUTime -report-knob start=20000000000 -
report-knob end=50000000000 -report-knob bin-count=50

timeBin Bin Start Time Bin End Time CPU Time:Self
------- -------------- ------------ -------------
0 2.000 2.060 583.614s
1 2.060 2.120 596.239s
2 2.120 2.180 568.513s
3 2.180 2.240 656.714s
4 2.240 2.300 593.027s
5 2.300 2.360 582.537s
6 2.360 2.420 686.536s
7 2.420 2.480 630.049s
8 2.480 2.540 683.360s
9 2.540 2.600 449.970s
10 2.600 2.660 534.815s
11 2.660 2.720 523.006s
12 2.720 2.780 563.003s
13 2.780 2.840 650.275s
14 2.840 2.900 590.479s
15 2.900 2.960 644.241s
16 2.960 3.020 646.289s
17 3.020 3.080 644.978s
18 3.080 3.140 634.378s
19 3.140 3.200 627.582s
20 3.200 3.260 588.956s
21 3.260 3.320 621.873s
22 3.320 3.380 158.051s
23 3.380 3.440 170.440s
24 3.440 3.500 216.458s
25 3.500 3.560 121.819s
26 3.560 3.620 351.148s
27 3.620 3.680 256.142s
28 3.680 3.740 385.892s
29 3.740 3.800 507.566s
30 3.800 3.860 459.971s
31 3.860 3.920 495.019s
32 3.920 3.980 503.530s
33 3.980 4.040 565.219s
34 4.040 4.100 526.778s
35 4.100 4.160 541.870s
36 4.160 4.220 569.609s
37 4.220 4.280 474.287s
38 4.280 4.340 585.829s
39 4.340 4.400 625.578s
40 4.400 4.460 656.474s
41 4.460 4.520 438.410s
42 4.520 4.580 519.766s
43 4.580 4.640 414.919s
44 4.640 4.700 577.235s
45 4.700 4.760 596.569s
46 4.760 4.820 570.871s

 1 Intel® VTune™ Profiler User Guide

518

47 4.820 4.880 586.414s
48 4.880 4.940 532.267s
49 4.940 5.000 564.387s

Example: Timeline Report as a CSV File
When you collect a significantly large volume of data, consider exporting the timeline report to a CSV file for
easier data management.

In this example, a timeline report generated from the r008hs result (of a Hotspots analysis) is saved as a
CSV file (r008hs_timeline.csv). The collected data is split into 1000 intervals of time.

vtune -r r008hs -report timeline -report-knob column-by=CPUTime -report-knob bin-count=1000 -
format=csv -csv-delimiter=semicolon -report-output r008hs_timeline.csv

The contents of r008hs_timeline.csv contain:

timeBin;Bin Start Time;Bin End Time;CPU Time:Self
0;2.000;2.060;583.614
1;2.060;2.120;596.239
...

Example: Timeline Report of PMU Core Events Grouped by Threads
Run this command to generate a timeline report that groups PMU core events by threads and sorts the
groups by event counts.

vtune -r <result dir> -report timeline -report-knob group-by=Thread -report-knob sort-column-
by=PMUEventCount -report-knob column-by=PMUEventCount/PMUEventType

Example: Timeline Report of PMU Uncore Events Grouped by Packages
Run this command to generate a timeline report that groups PMU uncore events by packages and sorts the
groups by uncore event counts.

vtune -r <result dir> -report timeline -report-knob group-by=UncorePackage -report-knob sort-
column-by=UncoreEventCount -report-knob column-by=UncoreEventCount/UncoreEventType

Example: Timeline Report of Context Switches per Thread
Run this command to generate a timeline report of context switches per thread, using a time format of
millisecond

vtune -r <result dir> -report timeline -report-knob query-type=interval -report-knob group-
by=Thread -report-knob sort-column-by=ContextSwitchCount -report-knob column-by=ContextSwitches -
report-knob bin-count=1000000000 -report-knob time-format=millisecond

Example: Timeline Report of Tasks per Thread
Run this command to generate a timeline report of tasks per thread and also displays the names of the
tasks.

vtune -r <result dir> -report timeline -report-knob query-type=interval -report-knob group-
by=Thread -report-knob sort-column-by=TaskTime -report-knob column-by=Task -report-knob object-
names=True -report-knob bin-count=1000000000

See Also
Timeline pane
Window: Top-down Tree

Intel® VTune™ Profiler User Guide 1

519

Top-down Report
Similar to the Top-down window, available in GUI, the Top-down represents call sequences (stacks)
detected during collection phase starting from the application root. Use the top-down report to explore the
call sequence flow of the application and analyze the time spent in each program unit and on its callees.

NOTE
Intel® VTune™ Profiler collects information about program unit callees only during User-Mode Sampling
and Tracing Collection or Hardware Event-based Sampling Collection with stack collection enabled.

Examples
Example 1: Hotspots Top-down Report

This example displays the report for the specified Hotspots analysis in the user-mode sampling mode with
functions stacks limited to 5 elements.

vtune -report top-down -r r001hs -limit 5

Function Stack CPU Time:Total CPU Time:Effective Time:Total CPU Time:Spin Time:Total
CPU Time:Overhead Time:Total
---------------------- -------------- ----------------------------- ------------------------

Total 100.000% 100.000%
100.000% 100.000%
 func@0x6b2daccf 99.853% 99.835%
100.000% 100.000%
 func@0x6b2dacf0 99.853% 99.835%
100.000% 100.000%
 BaseThreadInitThunk 99.853% 99.835%
100.000% 100.000%
 thread_video 95.614% 97.876%
78.195% 0.0%

Example 2: Hotspots Report with Enabled Call Stack Collection (Linux*)

This command runs the Hotspots analysis in the hardware event-based sampling mode with enabled call
stack collection.

vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true -- /home/
tachyon

The following command generates the top-down report for the previously collected result and shows the
result for columns with the time:total strings in the title.

vtune -report top-down -r r001hs -column=time:total

Function Stack CPU Time: CPU Time: CPU Time: Context Switch Time:
Context Switch Time: Context Switch Time:
 Total Effective Time:Total Spin Time:Total Total
Wait Time:Total Inactive Time:Total
---------------------- --------- -------------------- --------------- --------------------
-------------------- --------------------
Total 100.000% 100.000% 100.000%
100.000% 100.000% 100.000%
 func@0x6b2daccf 97.595% 97.704% 89.202%
65.777% 90.121% 62.893%
 func@0x6b2dacf0 97.595% 97.704% 89.202%

 1 Intel® VTune™ Profiler User Guide

520

65.777% 90.121% 62.893%
 BaseThreadInitThunk 97.595% 97.704% 89.202%
65.777% 90.121% 62.893%
 threadstartex 67.091% 67.855% 8.335%
29.825% 9.027% 32.289%
...

Example 3: Hotspots Report with Disabled Stack Collection (Windows*)

This command runs the Hotspots analysis in the hardware event-based sampling mode with disabled call
stack collection.

vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=false -- C:\tachyon
\tachyon.exe

This command generates the top-down report for the previously collected result, and shows the result for
columns with the time:total string in the title. The report does not include information about program unit
callees, as it was not collected during the analysis.

vtune -report top-down -r r001hs -column=time:total

Function Stack CPU Time:Total CPU Time:Effective Time:Total CPU Time:Spin Time:Total
---------------------- -------------- ----------------------------- ------------------------
Total 100.000% 100.000% 100.000%
 grid_intersect 50.172% 50.213% 0.0%
 sphere_intersect 31.740% 31.766% 0.0%
 grid_bounds_intersect 3.766% 3.769% 0.0%
 pos2grid 0.778% 0.778% 0.0%
...

See Also
report action
Window: Top-down Tree

gprof-cc Report
You can use the Intel® VTune™Profiler command line interface to display analysis results in gprof-like format.
The gprof-cc report shows how much time is spent in each program unit, its callers and callees. The report
is sorted by time spent in the function and its callees.

Example
This example generates a gprof-cc report from the r001hs hotspots result.

The empty lines divide the report into entries, one for each function. The first line of the entry shows the
caller of the function, the second line shows the called function, and the following lines show function callees.
The Index by function name portion of the report shows the function index sorted by function name.

vtune -report gprof-cc -r r001hs
Index % CPU Time:Total CPU Time:Self CPU Time:Children Name Index
----- ---------------- ------------- -----------------
--------------------------------------- -----
 0.0 11.319
func@0x6b2dacf0 [3]
[1] 100.0 0.0 11.319
BaseThreadInitThunk [1]
 0.030 0.0
GetSphere [36]

Intel® VTune™ Profiler User Guide 1

521

 0.0 0.554
_tmainCRTStartup [23]
 0.0 0.016
func@0x1000c1f0 [44]
 0.0 10.709
thread_video [10]
 0.0 0.010
threadstartex [49]

 <spontaneous>
[2] 100.0 0.0 11.319
func@0x6b2daccf [2]
 0.0 11.319
func@0x6b2dacf0 [3]

 0.0 11.319
func@0x6b2daccf [2]
[3] 100.0 0.0 11.319
func@0x6b2dacf0 [3]
 0.0 11.319
BaseThreadInitThunk [1]

 0.0 10.709
thread_trace [9]
[4] 94.61 0.0 10.709 [TBB parallel_for on class
draw_task] [4]
 0.0 10.709
draw_task::operator() [5]

 0.0 10.709 [TBB parallel_for on class
draw_task] [4]
[5] 94.61 0.0 10.709
draw_task::operator() [5]
 0.436 0.0
video::next_frame [26]
 0.020 10.234
render_one_pixel [13]
 0.018 0.0
drawing_area::~drawing_area [42]
...

Index by function name

Index Function
----- --
[96] ColorAccum
[30] ColorAddS
[15] ColorScale
[137] CreateCompatibleBitmap
[138] DeleteObject
[211] EngAcquireSemaphore
[139] EngCopyBits
[212] EtwEventRegister
[45] ExAcquirePushLockExclusiveEx
[35] ExAcquireResourceExclusiveLite
...

 1 Intel® VTune™ Profiler User Guide

522

Difference Report
Comparing two results from the command line is a quick way to check for your application regressions. Use
the following syntax to create the difference report for the specified analysis results:

vtune -report <report_name> -r <result1_path> -r <result2_path>
where

• <report_name> is the type of report for comparison
• <result1_path> is a directory where your first result file is located
• <result2_path> is a directory where your second result file is located

Example
This example compares r001hs and r002hs Hotspots analysis results collected on Linux and displays CPU
time difference for each function of the analyzed application. In the result for the optimized application
(r002hs), a new main function is running for 0.010 seconds, while the Hotspot function algorithm_2 is
optimized by 1.678 seconds.

vtune -report hotspots -r r001hs -r r002hs

Function Module Result 1:CPU Time Result 2:CPU Time Difference:CPU Time
algorithm_1 matrix 1.225 1.222 0.003
algorithm_2 matrix 3.280 1.602 1.678
main matrix 0 0.010 -0.010

Generate a Difference Report for Regression Testing
Use the vtune command to test your code for regressions on a daily basis:

1. Create a baseline.

• Run the vtune tool to analyze your target using a particular analysis type. For example:

On Linux*

vtune -collect hotspots -- sample
On Windows*:

vtune -collect hotspots -- sample.exe
The command runs a Hotspots analysis on the sample or sample.exe target and writes the result
to the current working directory. A Summary report is written to stdout.

• Generate a report to use as a baseline for further analysis. For example:

vtune -report hotspots -result-dir r001hs
This creates a Hotspots report that shows the CPU time for each function of the sample or
sample.exe target.

2. Update your source code to optimize the target application.
3. Create and run the script that:

• On Linux: Sets the path to thevtuneinstallation folder
• On Windows: Invokes sep-vars.cmd in the Intel® VTune™ Profilerinstallation folder to set up the

environment.
• Starts the vtune command to collect performance data.
• Runs the vtune command to compare the current result with the initial baseline result and displays

the difference. For example:

vtune -R hotspots -r r001hs -r r002hs

Intel® VTune™ Profiler User Guide 1

523

This example compares CPU time for each function in results r001hs and r002hs and displays both
results side-by-side with the calculated difference. The positive difference between the performance
values indicates an improvement for result 2. The negative difference indicates a regression.

NOTE
You can compare results of the same analysis type or performance metrics only.

4. The test is passed if no regressions found.
5. Repeat steps 2-4 on a regular basis.

Installation Information
Whether you downloaded Intel® VTune™ Profiler as a standalone component or with the Intel® oneAPI Base
Toolkit, the default path for your <install-dir> is:

Operating System Path to <install-dir>

Windows* OS • C:\Program Files (x86)\Intel\oneAPI\
• C:\Program Files\Intel\oneAPI\

(in certain systems)

Linux* OS • /opt/intel/oneapi/ for root users
• $HOME/intel/oneapi/ for non-root users

macOS* /opt/intel/oneapi/

For OS-specific installation instructions, refer to the VTune Profiler Installation Guide.

See Also
vtune Command Syntax

Filter and Group Command Line Reports

View Source Objects from Command Line

For better understanding of a performance problem, it is important to associate a hotspot with the source
code and exact machine instruction(s) that caused this hotspot. To do this, you can open the source/
assembly code directly from the command line. Use the -source-object option to switch a report to the
source or assembly view mode, including associated performance data. Here is the command syntax for
viewing source objects in the command line:

vtune -report <report_name> -source-object <object_type>[=]<value> -result-dir
<result_path>
where

• report_name is the specified report type (hotspots or hw-events)
• object_type is the object type name. Possible values are: module, source-file, function.
• value is the application unit name for which source or assembly data should be displayed
• result_dir is a directory where your result file is located

Examples
Example 1: Report Displaying Source Data

 1 Intel® VTune™ Profiler User Guide

524

https://www.intel.com/content/www/us/en/develop/documentation/vtune-install-guide/top.html

This example generates a hotspots report that displays source data for the grid_intersect function. The
report is filtered to display only data columns with source, instructions, cpi values in the title. Since
the result directory is not specified, the most recent hotspots analysis result is used.

vtune -report hotspots -source-object function=grid_intersect -column=source,instructions,cpi
Source Line Source Instructions Retired CPI Rate
----------- --
-------------------- --------
461 }
462
463
464 /* the real thing */
465 static void grid_intersect(grid * g, ray * ry)
466
{ 48,867,664
 1.301
467
468
469 flt tnear, tfar, offset;
470 vector curpos, tmax, tdelta, pdeltaX, pdeltaY, pdeltaZ, nXp, nYp, nZp;
471 gridindex curvox, step, out;
472 int voxindex;
473 objectlist * cur;
474
475 if (ry->flags &
RT_RAY_FINISHED) 7,469,004 1.822
...

Example 2: Report with Grouped Assembly Data

This example generates a hardware events report that displays assembly data grouped by basic block and
then address. The report is filtered to display only data columns with block, source, function,
instructions, assembly, cpi, address values in the title.

vtune -report hotspots -r /home/results/r002hs -source-object function=grid_intersect -group-
by=basic-block,address -column=block,source,function,instructions,assembly,cpi,address
Basic Block Instructions Retired CPI Rate Assembly
Source Line Function (Full) Source File Function Range Size Start Address
----------- -------------------- -------- ---
----------- --------------- ----------- ------------------- -------------
0x40d340 39,900,000 2.238 Block 1
[Unknown] [Unknown] [Unknown] [Unknown] 0
0x40d340 3,800,000 2.000 sub esp, 0xd8
466 grid_intersect grid.cpp 0x646 0x40d340
0x40d346 0 mov eax, dword ptr [0x4130e0]
466 grid_intersect grid.cpp 0x646 0x40d340
0x40d34b 7,600,000 0.750 xor eax, esp
466 grid_intersect grid.cpp 0x646 0x40d340
0x40d34d 3,800,000 4.500 mov dword ptr [esp+0xd4], eax
466 grid_intersect grid.cpp 0x646 0x40d340
0x40d354 5,700,000 0.333 push esi
466 grid_intersect grid.cpp 0x646 0x40d340
0x40d355 1,900,000 1.000 mov esi, dword ptr [esp+0xe4]
466 grid_intersect grid.cpp 0x646 0x40d340
0x40d35c 1,900,000 10.000 push edi
466 grid_intersect grid.cpp 0x646 0x40d340
0x40d35d 3,800,000 0.500 mov edi, dword ptr [esp+0xe4]
466 grid_intersect grid.cpp 0x646 0x40d340

Intel® VTune™ Profiler User Guide 1

525

0x40d364 1,900,000 2.000 mov dword ptr [esp+0x74], edi
466 grid_intersect grid.cpp 0x646 0x40d340
0x40d368 3,800,000 3.500 test byte ptr [esi+0x8], 0x8
475 grid_intersect grid.cpp 0x646 0x40d340
0x40d36c 5,700,000 0.667 jnz 0x40d96f <Block 64>
475 grid_intersect grid.cpp 0x646 0x40d340
0x40d372 9,500,000 3.800 Block 2
[Unknown] [Unknown] [Unknown] [Unknown] 0
0x40d372 0 0.000 lea eax, ptr [esp+0x50]
478 grid_intersect grid.cpp 0x646 0x40d340
0x40d376 push eax
478 [Unknown] [Unknown] [Unknown] [Unknown]
0x40d377 1,900,000 11.000 lea eax, ptr [esp+0x8c]
478 grid_intersect grid.cpp 0x646 0x40d340
0x40d37e 1,900,000 0.000 push eax
478 grid_intersect grid.cpp 0x646 0x40d340
0x40d37f 3,800,000 1.000 push esi
478 grid_intersect grid.cpp 0x646 0x40d340
0x40d380 0 push edi
478 grid_intersect grid.cpp 0x646 0x40d340
0x40d381 1,900,000 1.000 call 0x40e4a0 <grid_bounds_intersect>
478 grid_intersect grid.cpp 0x646 0x40d340
0x40d386 15,200,000 2.375 Block 3
[Unknown] [Unknown] [Unknown] [Unknown] 0
0x40d386 13,300,000 2.286 add esp, 0x10
478 grid_intersect grid.cpp 0x646 0x40d340
0x40d389 1,900,000 3.000 test eax, eax
478 grid_intersect grid.cpp 0x646 0x40d340
0x40d38b jz 0x40d96f <Block 64>
478 [Unknown] [Unknown] [Unknown] [Unknown]
0x40d391 3,800,000 2.000 Block 4
[Unknown] [Unknown] [Unknown] [Unknown] 0
0x40d391 0 0.000 movsd xmm0, qword ptr [esp+0x88]
481 grid_intersect grid.cpp 0x646 0x40d340
0x40d39a 3,800,000 1.000 comisd xmm0, qword ptr [esi+0x48]
481 grid_intersect grid.cpp 0x646 0x40d340
0x40d39f 0 jnbe 0x40d96f <Block 64>
481 grid_intersect grid.cpp 0x646 0x40d340
0x40d3a5 5,700,000 2.000 Block 5
[Unknown] [Unknown] [Unknown] [Unknown] 0
0x40d3a5 1,900,000 1.000 sub esp, 0x8
484 grid_intersect grid.cpp 0x646 0x40d340
0x40d3a8 1,900,000 1.000 lea eax, ptr [esp+0x10]
484 grid_intersect grid.cpp 0x646 0x40d340

See Also
report action
source-object action-option
Filter and Group Command Line Reports

Save and Format Command Line Reports

By default, a report is written to stdout in text format, but vtune provides several options to control the
report format:

• Save a Report to a File
• Limit Line Width

 1 Intel® VTune™ Profiler User Guide

526

Save a Report to a File
When generating a report from the command line, use the report-output option to save this report in the
specified format. By default, most types of reports are saved in text format, but you may also choose CSV.
Whichever file type you choose, a number of options are available so you can format your report.

Here is the basic command syntax:

vtune -report <report_type> -result-dir <dir> -report-output <path/filename.ext>
where:

• <report_name> is the type of report to create.
• <dir> is the location of the result directory.
• <path/filename.ext> is the PATH, filename and file extension of the report file to be created.

NOTE
To be sure the correct result is used, use the result-dir option to specify the result directory. If not
specified when generating a report, the report uses the highest numbered compatible result in the
current working directory.

Examples:

• Generate a Hotspots report from the r001hs result on Linux*, and save it to /home/test/MyReport.txt
in text format.

vtune -report hotspots -result-dir r001hs -report-output /home/test/MyReport.txt
• Generate a hotspots report in the CSV format from the most recent result and save it in the current Linux

working directory. Use the format option with the csv argument and the csv-delimiter option to specify a
delimiter, such as comma.

vtune -R hotspots -report-output MyReport.csv -format csv -csv-delimiter comma
Module,Process,CPU Time
worker3.so,main,10.735worker1.so,main,5.525worker2.so,main,3.612worker5.so,main,3.103worker4.so,m
ain,1.679main,main,0.064

• Generate a vtune report with UNC events. Group results by package for this purpose.

vtune -report hw-events -group-by package -r unc

Limit Line Width
To limit line width for readability, use the report-width option and specify the maximum number of characters
per line before wrapping occurs.

Example:

Output a Hotspots report from the most recent result as a text file with a maximum width of 60 characters
per line.

vtune -report hotspots -report-width 60 -report-output MyHotspotsReport.txt

See Also
report
 action

Filter and Group Command Line Reports

Filter and Group Command Line Reports
You can manage vtune reports from command line by using the following options:

Intel® VTune™ Profiler User Guide 1

527

• Group data by a granularity level
• Sort the data in the ascending or descending order by metric
• Filter a report by:

• program unit name
• system functions in the call stack
• column name
• time interval

Group Report Data
Use the group-by option to group data in your report by some value, such as function. For multiple grouping
levels, add arguments separated by commas (no spaces). Grouping columns show up first in the view.

NOTE
To display a list of available groupings for a particular report, use -help report <report_name> .

Examples:

• Write stack information for all functions in the threading analysis result r00tr and group data by call
stack:

vtune -report callstacks -r r001tr -group-by callstack
• Generate a hotspots report grouping data in this order: Process, Process ID, Module, and Function:

vtune -report hotspots -r r002hs –group-by process,process-id,module,function

Sort Report Data
There are a pair of options that you can use to sort report data: sort-asc and sort-desc. Use the
sort-asc action-option to organize a report in ascending order of the specified field(s), or use sort-desc to
sort it in descending order. You can specify up to three different fields.

Example:

Generate a report from the Microarchitecture Exploration r001ue result, and sort data in ascending order by
the event columns INST_RETIRED.ANY and CPU_CLK_UNHALTED.CORE.

vtune -report hw-events -r r001ue -sort-asc INST_RETIRED.ANY,CPU_CLK_UNHALTED.CORE

Filter Reports by Program Unit
You can narrow down your report to display performance data for a particular program unit by using this
option:

filter <program_unit> [= | !=] <name>
where:

• <program_unit> is one of the following values: basic-block, frame, function, function-sync-obj,
module, process, source-file, source-line, sync-obj, task, thread, computing-task,
computing-instance

• <=|!=> are the operators 'equal to' (include) or 'not equal to' (exclude or filter out)
• <value> is the value to include or exclude

 1 Intel® VTune™ Profiler User Guide

528

NOTE

• To display a list of available filters for a particular report, use -report <report_name> -result
<result_dir> -filter=? .

• To specify multiple filter items, use multiple -filter option attributes. Multiple values for the same
column are combined with 'OR'. Values for different columns are combined with 'AND'.

Examples:

• Display a Hotspots report on the most recent result in the current working directory, but only include data
on the sample module:

vtune -report hotspots -filter module=sample
• Include data from both sample.dll and sample2.dll modules, excluding all other modules:

vtune -report hotspots -filter module=sample.dll -filter module=sample2.dll
• Display a Hotspots report that includes data for all processes except app:

vtune -report hotspots -filter process!=app

Filter by Call Stack Mode
You can filter the report by call stack display mode to set whether system functions display in the call stack
data in your report call-stack-mode

Possible values: all, user-only, user-plus-one.

Example:

Generate a Hotspots report from the most recent compatible result, group the result data by function, and
only display user functions and system functions called directly from user functions:

vtune -report hotspots -group-by function -call-stack-mode user-plus-one

Filter by Column Name
To display only particular columns providing Reference/event data, use the column option and specify a full
name of the required column(s) or its substring.

NOTE
To display a list of columns available for a particular report, type: vtune -report <report_name> -
r <result_dir> column=?

Examples:

• Show grouping and data columns only for event columns with the *INST_RETIRED.* string in the title:

vtune -R hw-events -r r000hs --column=INST_RETIRED.
• Show grouping and data columns only for columns with the Idle and Spin strings in the title:

vtune -R hotspots -r r001hs --column=Idle,Spin

Filter by Time Interval
To view data for a specific time range only, use the time-filter <begin_time>:<end_time> option,
where:

• <begin_time> is the elapsed time in seconds for the start of the included time range. If unspecified, the
time range begins at zero.

Intel® VTune™ Profiler User Guide 1

529

• <end_time> is the elapsed time in seconds for the end of the included time range. If unspecified, the time
range ends at total elapsed time.

Examples:

• Generate a Hotspots report from the r001tr result, grouped by the value in the function column. For the
time-filter, the start of the range is specified as 1.25, and the end of the range is left unbounded, so
the report includes data starting from 1.25 seconds of elapsed time to the time when analysis completes:

vtune -report hotspots -result-dir r001tr -group-by function -time-filter 1.25:
• Generate a Hotspots report from the r001tr result, grouped by the value in the function column. For the

time-filter, the start of the range is not specified, and the end of the range is 5.0, so the report
includes data from the start of the analysis data to 5.0 seconds of elapsed time:

vtune -report hotspots -result-dir r001tr -group-by function -time-filter :5.0
• Generate a report for both start and end values of the range specified, so the report includes data from

1.25 second to 5.0 seconds of elapsed time:

vtune -report hotspots -result-dir r001tr -group-by function -time-filter 1.25:5.0

Save and Format Command Line Reports

Manage Data Views

group-by
 action-option

sort-asc
 action-option

sort-desc
 action-option

filter
 action-option

column
 action-option

Command Line Usage Scenarios
This section describes the following Intel® VTune™ Profiler command line usage scenarios:

• Use VTune Profiler Server in Containers
• Android* Target Analysis from the Command Line
• OpenMP* Analysis from the Command Line
• Java* Code Analysis from the Command Line

Use VTune Profiler Server in Containers
Intel® VTune™ Profiler Server offers additional
command line interface options that help make its
usage in containerized environments more convenient.

These command line options are designed to trigger certain actions inside VTune Profiler Server in order to
make it more convenient to run VTune Profiler Server inside a container.

All of these options apply to the vtune-backend binary.

Custom Base URL
You can use the --base-url option to request a custom base URL to access VTune Profiler Server. This
option can be useful when a static port is required for VTune Profiler Server access while running VTune
Profiler Server inside a Docker* container.

 1 Intel® VTune™ Profiler User Guide

530

Format:

--base-url=http(s)://<host>:<port>/<pathname>/
Usage Example:

1. Enable SSH port forwarding on the host:

ssh -L 127.0.0.1:3000:127.0.0.1:8080 <ssh host name>
2. Run VTune Profiler Server with custom URL and port:

vtune-backend --web-port=8080 --base-url=https://127.0.0.1:3000
VTune Profiler Server prints out a URL in the format https://127.0.0.1:3000?one-time-
token=<token>, which clients can use to access the server.

Usage Statistics Collection
Allow or decline the collection of usage statistics for the Intel® Software Improvement Program from the
command line.

Use This To Do This

--usage-statistics-opt-in Allow the collection of usage statistics

--usage-statistics-opt-out Do not allow the collection of usage statistics

--print-usage-statistics-agreement Print agreement text for the Intel Software Improvement
Program

Suppress Automatic Help Tours
VTune Profiler automatically activates the interactive help tour the first time VTune Profiler is started.

Use the --suppress-automatic-help-tours option to prevent VTune Profiler from showing help tours on
first start.

See Also
Install VTune Profiler Server Set up Intel® VTune™ Profiler as a web server, using a lightweight
deployment intended for personal use or a full-scale corporate deployment supporting multi-user
environment.
Web Server Interface Use Intel® VTune™ Profiler in a web server mode to get an easy on-boarding
experience, benefit from a collaborative multi-user environment, and access a common repository
of collected performance results.
Cookbook: Using VTune Profiler Server in HPC Clusters

Android* Target Analysis from the Command Line
Use the Intel® VTune™ Profiler to collect data on a
remote Android application from the host system
(remote usage mode) via command line interface
(vtune) and view the analysis result locally from the
command line or GUI.

You may run the following analysis types on Android systems:

• Hotspots analysis (user-mode sampling mode)
• Hardware event-based sampling analysis types
• Custom analysis

Configure and Run Performance Analysis on Android System
Remote data collection using the vtune command running on the host is very similar to the native collection
on the target except that the target-system option is added to the command line.

Intel® VTune™ Profiler User Guide 1

531

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/vtune-profiler-server-in-hpc.html

Prerequisites: Make sure to prepare a target Android* system and your application for analysis.

To run an analysis on an Android device:

1. Launch your application on the target device.
2. Find out <pid> or <name> of the application running on remote Android system. For example, you can

use adb shell ps command for the purpose:

adb shell ps
...
root 2956 2 0 0 c1263c67 00000000 S kworker/u:3
u0_a34 8485 174 770232 54260 ffffffff 00000000 R com.intel.tbb.example.tachyon
shell 8502 235 2148 1028 00000000 b76bcf46 R ps
...

3. Optional: If you have several Android devices, you may set the ANDROID_SERIAL environment variable
to specify the device you plan to use for analysis. For example:

export ANDROID_SERIAL= emulator-5554 or export ANDROID_SERIAL=10.23.235.47:5555
4. On the development host, run vtune to collect data.

By default, the vtune utility is located in the following directory:

• On Windows*: <install-dir>\bin{32,64}
• On Linux*: <install-dir>/bin{32,64}
Use the following syntax to run an analysis:

host>./vtune -target-system=android:deviceName -<action> <analysis_type> [-duration
<duration_value>][-r <result_path>] [-search-dir=<search_dir>] [-source-search-
dir=<source_search_dir>] - <target_application>
where:

• deviceName is the name of your Android device, for example: Medfield2B3E703C . If you do not
specify the name of the device, the VTune Profiler uses the default device specified with adb. You do
not need to specify the device name if you set the ANDROID_SERIAL environment variable before the
collection.

• <action> is the action to perform the analysis (collect or collect-with)
• <analysis_type> is a predefined analysis type, such as hotspots, uarch-exploration, and so

on
• <duration_value> is the duration in seconds
• <result_path> is a PATH/name of the directory where a result is stored
• <search_dir> is a path to search for binary files used by your Android application
• <source_search_dir> is a path to search for source files used by your Android application
• <target_application> is an application to analyze. The command option depends on analysis

target type:

• To specify an application (a native Linux* application running on Android) or a script to analyze,
enter the path to the application or the script on your host system.

NOTE
This target type is not supported for the Hotspots analysis of Android applications.

• To specify an Android application package to analyze, enter the name of the Android package
installed on a remote device.

• To specify a particular process to attach to and analyze, use the -target-process command to
specify application by process name or the -target-pid command to specify the application by
process PID.

 1 Intel® VTune™ Profiler User Guide

532

• To profile your Android system, do not specify target application.

NOTE
System-wide analysis is possible on rooted devices only.

5. Optional: You can send pause and resume commands during collection from another console window,
for example:

host>./vtune -C pause -r tachyon_r001
host>./vtune -C resume -r tachyon_r001

6. If you do not specify analysis duration, you can stop analysis by pressing Ctrl-C or sending the stop
command from another console on the host development system:

vtune -r tachyon_r001 -C stop

NOTE
You may use the Command Line... option in the VTune Profiler graphical interface to automatically
generate a command line for an analysis configuration selected in the GUI.

Hotspots Analysis (User-Mode Sampling)
In this mode, you can:

• Run analysis without root access (although, root access is required for Java* analysis)
• Run the Hotspots analysis (if a target process or PID is specified) to identify functions that take the most

time to execute (hotspots)
• Explore call stacks
• View C/C++ generated functions/source
• (If installed) Automatically obtain Java function names for functions that have been JITed and drill down

to either JIT assembly or Java source or DEX Byte Code

NOTE
Java analysis is not supported for the 4th Generation Intel® Core™ processors (based on Intel
microarchitecture code name Haswell).

Example
This example runs Hotspots analysis on target Android system.

host>./vtune -collect hotspots -target-system=android -r tachyon_r@@@ --
com.intel.tbb.example.tachyon

Event-Based Sampling Analysis
In this mode, you can:

• Use hardware event-based sampling analysis types with event groups predefined by Intel architects
• View C/C++ generated functions/source
• Explore call stacks (if a target process or PID is specified)
• Analyze performance system wide (if call stack analysis is disabled)
• (If installed) Automatically obtain Java function names for functions that have been JITed and drill down

to either JIT assembly or Java source or DEX Byte Code

Intel® VTune™ Profiler User Guide 1

533

NOTE
Java analysis is not supported for the 4th Generation Intel® Core™ processors (based on Intel
microarchitecture code name Haswell) or systems using ART.

The following event-based sampling analysis types are supported by the VTune Profiler on Android systems:

• hotspots
• uarch-exploration
• memory-access
• system-overview
To associate JITed Java functions to samples in the system-wide event-based sampling, you have the
following two options:

• Specify -target-process Proccess.Name for the process you are interested in similar to how you do
this for the event-based call stack collection.

• For any process you are interested in, copy the JIT files for the PID of that process into the data.0
directory, and re-resolve the results in the VTune Profiler GUI:

1.Collect results:

host>./vtune -collect <analysis_type> -duration=60 -target-system=android -r system_wide_r@@@
2.Find PID of interesting processes:

adb shell ps | [grep MyApp]
u0_a79 1762 141 575912 75468 ffffffff 4006f2ef Scom.android.MyApp

3.Copy all jit files for processes you are interested in to the data.0 directory:

adb pull /data/vtune/results/localhost.1762*.jit system_wide_r000/data.0

Examples
Example 1: Microarchitecture Exploration Analysis

This example launches specified Android package and collects a complete list of events required to analyze
typical client applications running on the 4th Generation Intel Core processor.

host>./vtune -collect uarch-exploration -target-system=android -r tachyon_r@@@ -target-process
com.intel.tbb.example.tachyon

Example 2: Call Stack Analysis

By default, the VTune Profiler does not collect stack data during hardware event-based sampling. To enable
call stack analysis, use the enable-stack-collection=true knob. For example:

host>./vtune -collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true -target-
system=android -r tachyon_r@@@ -target-process com.intel.tbb.example.tachyon

Example 3: System-wide Data Collection

To analyze performance of your target application and all other processes running on the Android system,
use the --duration option and do not specify an analysis target.

host>./vtune -collect hotspots -knob sampling-mode=hw -target-system=android -duration=60 -r
system_wide_r@@@

Example 4: Unplugged Mode Collection

This example configures the Hotspots analysis for the application on an Android system that will be launched
after disconnecting the device from the USB cable or a network:

host>./vtune --collect hotspots --target-system=android -unplugged-mode -r quadrant_r@@@ --
target-process com.intel.fluid

 1 Intel® VTune™ Profiler User Guide

534

Custom Analysis
Use the -collect-with option to configure VTune Profiler to run a custom user-mode sampling and tracing
(runss) or event-based sampling (runsa) analysis and take other than default configuration options. For
example, to run a custom event-based sampling analysis, use the -collect-with option and specify
required event counters with the -knob event-config option as follows:

host>./vtune -collect-with runsa -target-process com.intel.tbb.example.tachyon -r
system_wide_r001 -knob collection-detail=stack-sampling [-event-mux] -knob event-
config=CPU_CLK_UNHALTED.REF_TSC:sa=1800000,CPU_CLK_UNHALTED

NOTE
To display a list of events available on the target PMU, enter:

vtune -collect-with <collector> -target-system=android:deviceName -knob event-
config=? <target_application>

You can take any counter that the Performance Monitoring Unit (PMU) of that processor supports.
Additionally, you can enable multiple counters at a time. Each processor supports only a specific number of
counters that can be taken at a time. You can take more events than the processor supports by using the -
event-mux option, which will round robin the events you specified on the available counters in that
processor.

NOTE
Typically, you are recommended to use analysis types with the predefined sets of counters. Use of
specific counters is targeted for advanced users. Please note that names of some counters may not
exactly correspond to the analysis scope provided with these counters.

After collecting these counters, import the result to the VTune Profiler GUI and explore the Microarchitecture
Explorationdata.

See Also
Android* Targets

Set Up Android* System

Prepare an Android* Application for Analysis

OpenMP* Analysis from the Command Line
Use the Intel® VTune™ Profiler command line interface
for performance analysis of OpenMP* applications
compiled with Intel® Compiler.

Prerequisites:

• To analyze OpenMP parallel regions, make sure to compile and run your code with the Intel® oneAPI DPC
+/C++ Compiler version 2023.2.0 (or newer). If an obsolete version of the OpenMP runtime libraries is
detected, VTune Profiler provides a warning message. In this case the collection results may be
incomplete.

To access the newest OpenMP analysis options described in the documentation, make sure you always use
the latest version of the Intel compiler.

Intel® VTune™ Profiler User Guide 1

535

• On Linux*, to analyze an OpenMP application compiled with GCC*, make sure the GCC OpenMP library
(libgomp.so) contains symbol information. To verify, search for libgomp.so and use the nm command to
check symbols, for example:

nm libgomp.so.1.0.0
If the library does not contain any symbols, either install/compile a new library with symbols or generate
debug information for the library. For example, on Fedora* you can install GCC debug information from
the yum repository:

yum install gcc-debuginfo.x86_64
OpenMP is a fork-join parallel model, which starts with an OpenMP program running with a single master
serial-code thread. When a parallel region is encountered, that thread forks into multiple threads, which then
execute the parallel region. At the end of the parallel region, the threads join at a barrier, and then the
master thread continues executing serial code. It is possible to write an OpenMP program more like an MPI
program, where the master thread immediately forks to a parallel region and constructs such as barrier and
single are used for work coordination. But it is far more common for an OpenMP program to consist of a
sequence of parallel regions interspersed with serial code.

Ideally, parallelized applications have working threads doing useful work from the beginning to the end of
execution, utilizing 100% of available CPU core processing time. In real life, useful CPU utilization is likely to
be less when working threads are waiting, either actively spinning (for performance, expecting to have a
short wait) or waiting passively, not consuming CPU. There are several major reasons why working threads
wait, not doing useful work:

• Execution of serial portions (outside of any parallel region): When the master thread is executing a
serial region, the worker threads are in the OpenMP runtime waiting for the next parallel region.

• Load imbalance: When a thread finishes its part of workload in a parallel region, it waits at a barrier for
the other threads to finish.

• Not enough parallel work: The number of loop iterations is less than the number of working threads so
several threads from the team are waiting at the barrier not doing useful work at all.

• Synchronization on locks: When synchronization objects are used inside a parallel region, threads can
wait on a lock release, contending with other threads for a shared resource.

Use VTune Profiler to understand how an application utilizes available CPUs and identify causes of CPU
underutilization.

Configure and Run an Analysis
To run the OpenMP analysis from the command line, use the threading or hpc-performance analysis
types. For example:

vtune -collect hpc-performance -- myApp
The HPC Performance Characterization analysis generates a summary report with OpenMP metrics and
descriptions of detected performance issues.

For the Threading and HPC Performance Characterization analysis types, OpenMP analysis option is enabled
by default. You may also create a custom analysis and explicitly enable this knob option: analyze-
openmp=true. For example:

vtune -collect-with runsa -knob analyze-openmp=true -knob enable-user-tasks=true -- myApp

View Summary Report Data
When the data collection is complete, the VTune Profiler automatically generates the summary report. Similar
to the Summary window, available in GUI, the summary report provides overall performance data of your
target.

Use the following syntax to generate the Summary report from a pre-existing result:

 1 Intel® VTune™ Profiler User Guide

536

vtune -report summary -result-dir <result_path>
For HPC Performance Characterization analysis, the command-line summary report provides an issue
description for metrics that exceed the predefined threshold. If you want to skip issues in the summary
report, do one of the following:

• Use the -report-knob show-issues=false option when generating the report, for example: vtune -
report summary -r r001hpc -report-knob show-issues=false

• Use the -format=csv option to view the report in the CSV format, for example: vtune -report
summary -r r001hpc -format=csv

Explore the OpenMP Analysis section of the summary report for inefficiencies in parallelization of the
application:

Serial Time: 0.069s (0.3%)
Parallel Region Time: 23.113s (99.7%)
 Estimated Ideal Time: 14.010s (60.4%)
 OpenMP Potential Gain: 9.103s (39.3%)
 | The time wasted on load imbalance or parallel work arrangement is
 | significant and negatively impacts the application performance and
 | scalability. Explore OpenMP regions with the highest metric values.
 | Make sure the workload of the regions is enough and the loop schedule
 | is optimal.

This section shows the Collection Time as well as the duration of serial (outside of any parallel region) and
parallel portions of the program. If the serial portion is significant, consider options to minimize serial
execution, either by introducing more parallelism or by doing algorithm or microarchitecture tuning for
sections that seem unavoidably serial. For high thread-count machines, serial sections have a severe
negative impact on potential scaling (Amdahl's Law) and should be minimized as much as possible.

Estimate Potential Gain
To estimate the efficiency of CPU utilization in the parallel part of the code, use the Potential Gain metric.
This metric estimates the difference in the Elapsed time between the actual measurement and an idealized
execution of parallel regions, assuming perfectly balanced threads and zero overhead of the OpenMP runtime
on work arrangement. Use this data to understand the maximum time that you may save by improving
parallel execution.

Use the hotspots report to identify the hottest program units. Use the following command to list the top five
parallel regions with the highest Potential Gain metric values:

vtune -report hotspots -result-dir r001hpc -group-by=region -sort-desc="OpenMP Potential
Gain:Self" -column="OpenMP Potential Gain:Self" -limit 5

where

• -report hotspots is the hotspots report type
• -group-by=region is the action-option to group data in the report by OpenMP Regions
• -sort-desc="OpenMP Potential Gain:Self" is the action-option to sort data by OpenMP Potential

Gain in descending order
• -column="OpenMP Potential Gain:Self" is the action-option to display only the OpenMP Potential

Gain metric in the report
• -limit 5 is the action-option to set the number of top items to include in the report

The command above produces the following output:

OpenMP Region OpenMP Potential Gain
-- ---------------------
compute_rhs_ompparallel:24@/root/work/apps/OMP/SP/rhs.f:17:433 3.417s
x_solve_ompparallel:24@/root/work/apps/OMP/SP/x_solve.f:27:315 0.920s

Intel® VTune™ Profiler User Guide 1

537

z_solve_ompparallel:24@/root/work/apps/OMP/SP/z_solve.f:31:321 0.913s
y_solve_ompparallel:24@/root/work/apps/OMP/SP/y_solve.f:27:310 0.806s
pinvr_ompparallel:24@/root/work/apps/OMP/SP/pinvr.f:20:41 0.697s

If Potential Gain for a region is significant, you can go deeper and analyze inefficiency metrics like Imbalance
by barriers. Use the following command:

vtune -report hotspots -result-dir r001hpc -group-by=region,barrier -sort-desc="OpenMP Potential
Gain:Self" -column="OpenMP Potential Gain" -limit 5

where

• -report hotspots is the hotspots report type
• -group-by=region, barrier is the action-option to group data in the report by OpenMP Regions and

OpenMP Barrier-to-Barrier Segment
• -sort-desc="OpenMP Potential Gain:Self" is the action-option to sort data by OpenMP Potential

Gain in descending order
• -column="OpenMP Potential Gain" is the action-option to display the metrics with OpenMP Potential

Gain string (including OpenMP Potential Gain: Imbalance and others)
• -limit 3 is the action-option to set the number of top items to include in the report

The command above produces the output that includes the following data:

OpenMP
Region

OpenMP
Barrier-to-
Barrier
Segment

OpenMP
Potential
Gain

OpenMP
Potential
Gain:Imbala
nce

OpenMP
Potential
Gain:Lock
Contention

OpenMP
Potential
Gain:Creatio
n

OpenMP
Potential
Gain:Schedul
ing

compute_rh
s_$omp
$parallel:
24@/root/
work/OMP/S
P/
rhs.f:17:4
33

compute_rh
s_$omp
$loop_barr
ier_segmen
t@/root/
work/OMP/S
P/
rhs.f:285

0.985s 0.982s 0s 0s 0.000s

x_solve_
$omp
$parallel:
24@/home/
root/
work/OMP/S
P/
x_solve.f:
27:315

x_solve_
$omp
$loop_barr
ier_segmen
t@/root/
work/OMP/S
P/
x_solve.f:
315

0.920s 0.904s 0.012s 0.000s 0.000s

z_solve_
$omp
$parallel:
24@/root/
work/OMP/S
P/
z_solve.f:
31:321

z_solve_
$omp
$loop_barr
ier_segmen
t@/root/
work/OMP/S
P/
z_solve.f:
321

0.913s 0.910s 0.000s 0.000s 0.000s

 1 Intel® VTune™ Profiler User Guide

538

OpenMP
Region

OpenMP
Barrier-to-
Barrier
Segment

OpenMP
Potential
Gain

OpenMP
Potential
Gain:Imbala
nce

OpenMP
Potential
Gain:Lock
Contention

OpenMP
Potential
Gain:Creatio
n

OpenMP
Potential
Gain:Schedul
ing

y_solve_
$omp
$parallel:
24@/root/
work/OMP/S
P/
y_solve.f:
27:310

y_solve_
$omp
$loop_barr
ier_segmen
t@/root/
work/OMP/S
P/
y_solve.f:
310

0.806s 0.803s 0.000s 0.000s 0.000s

Analyze the OpenMP Potential Gain columns data that shows a breakdown of Potential Gain in the region
by representing the cost (in elapsed time) of the inefficiencies with a normalization by the number of OpenMP
threads. Elapsed time cost helps decide whether you need to invest into addressing a particular type of
inefficiency. VTune Profiler can recognize the following types of inefficiencies:

• Imbalance: threads are finishing their work in different time and waiting on a barrier. If imbalance time
is significant, try dynamic type of scheduling. Intel OpenMP runtime library from Intel Parallel Studio
Composer Edition reports precise imbalance numbers and the metrics do not depend on statistical
accuracy as other inefficiencies that are calculated based on sampling.

• Lock Contention: threads are waiting on contended locks or "ordered" parallel loops. If the time of lock
contention is significant, try to avoid synchronization inside a parallel construct with reduction operations,
thread local storage usage, or less costly atomic operations for synchronization.

• Creation: overhead on a parallel work arrangement. If the time for parallel work arrangement is
significant, try to make parallelism more coarse-grain by moving parallel regions to an outer loop.

• Scheduling: OpenMP runtime scheduler overhead on a parallel work assignment for working threads. If
scheduling time is significant, which often happens for dynamic types of scheduling, you can use a
"dynamic" schedule with a bigger chunk size or "guided" type of schedule.

• Atomics: OpenMP runtime overhead on performing atomic operations.
• Reduction: time spent on reduction operations.

Limitations
VTune Profiler supports the analysis of parallel OpenMP regions with the following limitations:

• Maximum number of supported lexical parallel regions is 512, which means that no region annotations will
be emitted for regions whose scope is reached after 512 other parallel regions are encountered.

• Regions from nested parallelism are not supported. Only top-level items emit regions.
• VTune Profiler does not support static linkage of OpenMP libraries.

See Also
Cookbook: OpenMP* Code Analysis Method
MPI Code Analysis

Java* Code Analysis from the Command Line
Intel® VTune™ Profiler provides a low-overhead user-mode sampling and tracing and hardware event-based
sampling analysis of the JIT compiled code executed with Oracle* JDK or OpenJDK*. The analysis of the
interpreted Java methods is limited.

Intel® VTune™ Profiler User Guide 1

539

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/openmp-code-analysis-method.html

You may use the hardware event-based sampling data collection that monitors hardware events in the CPU's
pipeline and can identify coding pitfalls limiting the most effective execution of instructions in the CPU. The
hardware performance metrics are available and can be displayed against the application modules, functions,
and Java code source lines. You may also run the hardware event-based sampling collection with stacks when
you need to find out a call path for a function called in a driver or middleware layer in your system.

Configure Java Collection
Use the following syntax to configure Java analysis from the command line:

vtune -collect <analysis_type> [-[no-]follow-child] [-mrte-mode=<mrte_mode_value>] [<-
knob> <knob_name=knob_option>] [--] <target>
where

• <analysis_type> is the type of analysis to run
• -[no-]follow-child is an action option to collect data on the processes spawned by the target process.

It is recommended to enable the option for applications launched by a script. The option is enabled by
default.

• <mrte_mode_value> is a profiling mode for the managed code. The auto mode is enabled by default.
• <-knob> is an option that configures the analysis
• [knobName=knobValue] is the name of the specified knob and its value
• <target> is the path and name of the application to analyze

NOTE
To see all knobs available for a predefined analysis type, enter:

vtune -help collect <analysis_type>
To see knobs for a custom analysis type, enter:

vtune -help collect-with <analysis_type>

Examples
Example 1: Running Java Analysis

The following command line runs the Hotspots analysis on a java command on Linux*:

vtune -collect hotspots -- java -Xcomp -Djava.library.path=native_lib/ia32 -cp /home/Design/Java/
mixed_call MixedCall 3 2

Example 2: Running Analysis for Embedded Java Command

You may embed your java command in a batch file or executable script before running the analysis. For
example, on Windows* create a run.bat file with the following command:

java.exe -Xcomp -Djava.library.path=native_lib\ia32 -cp C:\Design\Java\mixed_call MixedCall 3 1
The following command line runs the Hotspots analysis on a specified batch file with embedded java
command:

vtune -collect hotspots -- run.bat
Example 3: Attaching Analysis to Java Process

In case your Java application needs to run for some time or cannot be launched at the start of this analysis,
you may attach the VTune Profiler to the Java process. To do this, specify the following analysis target: --
target-process java.

 1 Intel® VTune™ Profiler User Guide

540

NOTE
The dynamic attach mechanism is supported only with the Java Development Kit (JDK).

The following example attaches the Hotspots analysis to a running Java process on Linux:

vtune -collect hotspots --target-process java

View Summary Report
VTune Profiler automatically generates the summary report when data collection completes. Similar to the
Summary window, available in GUI, the command line report provides overall performance data of your Java
target.

NOTE
For more information on analyzing the summary report data, refer to the Summary Report section.

Examples

The following example generates the summary report for the Hotspots analysis result. For user-mode
sampling and tracing analysis results, the summary report includes Collection and Platform information, CPU
information and summary per the basic metrics.

On Windows:

Collection and Platform Info

Parameter r001hs

------------------------ --
Operating System Microsoft Windows 10
Result Size 21258782
Collection start time 11:58:36 15/04/2019 UTC
Collection stop time 11:58:50 15/04/2019 UTC

CPU

Parameter r001hs
----------------- ---
Name 4th generation Intel(R) Core(TM) Processor family
Frequency 2494227391
Logical CPU Count 4

Summary

Elapsed Time: 12.939
CPU Time: 14.813
Average CPU Usage: 1.012

On Linux:

Collection and Platform Info

Parameter r002hs

Application Command Line /tmp/java_mixed_call/src/run.sh

Operating System 3.16.0-30-generic NAME="Ubuntu"

Intel® VTune™ Profiler User Guide 1

541

VERSION="14.04.2 LTS, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04.2 LTS"
VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
Computer Name 10.125.21.55

Result Size 11560723

Collection start time 13:55:00 05/02/2019 UTC

Collection stop time 13:55:10 05/02/2019 UTC

CPU

Parameter r001hs
----------------- ---
Name 3rd generation Intel(R) Core(TM) Processor family
Frequency 3492067692
Logical CPU Count 8

Summary

Elapsed Time: 10.183
CPU Time: 19.200
Average CPU Usage: 1.885

This example generates the summary report for the Hotspots analysis (hardware event-based sampling
mode) result. For hardware event-based sampling analysis results, the summary report includes Collection
and Platform information, CPU information, summary per the basic metrics, and an event summary.

Collection and Platform Info

Parameter r002hs

------------------------ --
Operating System 3.16.0-30-generic NAME="Ubuntu"
VERSION="14.04.2 LTS, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04.2 LTS"
VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
Result Size 171662827
Collection start time 10:44:34 15/04/2019 UTC
Collection stop time 10:44:50 15/04/2019 UTC

CPU

Parameter r002hs
----------------- ---
Name 4th generation Intel(R) Core(TM) Processor family

 1 Intel® VTune™ Profiler User Guide

542

Frequency 2494227445
Logical CPU Count 4

Summary

Elapsed Time: 15.463
CPU Time: 6.392
Average CPU Usage: 0.379
CPI Rate: 1.318

Event summary

Hardware Event Type Hardware Event Count:Self Hardware Event Sample Count:Self Events
Per Sample
-------------------------- ------------------------- --------------------------------

INST_RETIRED.ANY 13014608235 8276 1900000
CPU_CLK_UNHALTED.THREAD 17158609921 8207 1900000
CPU_CLK_UNHALTED.REF_TSC 15942400300 5163 1900000
BR_INST_RETIRED.NEAR_TAKEN 1228364727 4648 200003
CALL_COUNT 213650621 75413 1
ITERATION_COUNT 370567815 84737 1
LOOP_ENTRY_COUNT 162943310 70069 1

Identify Hottest Methods
Use the hotspots command line report as a starting point for identifying program units (for example:
functions, modules, or objects) that take the most processor time (Hotspots analysis), underutilize available
CPUs or have long waits (Threading analysis), and so on.

The report displays the hottest program units in the descending order by default, starting from the most
performance-critical unit. The command-line reports provide the same data that is displayed in the default
GUI analysis viewpoints.

NOTE

• To display a list of available groupings for a hotspots report, enter: vtune -report hotspots -
r <result_dir> group-by=?.

• To set the number of top items to include in a report, use the limit action option: vtune -report
<report_type> -limit <value> -r <result_dir>

Examples
This example generates the hotspots report for the Hotspots analysis result and groups the data by module.
The result file is not specified and VTune Profiler uses the latest analysis result.

vtune -report hotspots
On Windows:

Function CPU Time CPU Time:Effective Time CPU Time:Effective Time:Idle CPU
Time:Effective Time:Poor CPU Time:Effective Time:Ok CPU Time:Effective Time:Ideal CPU
Time:Effective Time:Over CPU Time:Spin Time CPU Time:Overhead Time Module Function
(Full) Source File Start Address
--------------------- -------- ----------------------- ----------------------------
---------------------------- -------------------------- -----------------------------

Intel® VTune™ Profiler User Guide 1

543

consume_time 10.371s 10.371s
0s 10.341s 0.020s
0.010s 0s 0s 0s
mixed_call.dll consume_time mixed_call.c 0x180001000
NtWaitForSingleObject 1.609s 0s
0s 0s 0s
0s 0s 1.609s 0s ntdll.dll
NtWaitForSingleObject [Unknown] 0x1800906f0
WriteFile 0.245s 0.245s
0.009s 0.190s 0.030s
0.016s 0s 0s 0s
KERNELBASE.dll WriteFile [Unknown] 0x180001c50
func@0x707d5440 0.114s 0.010s
0s 0.010s 0s
0s 0s 0.104s 0s jvm.dll
func@0x707d5440 [Unknown] 0x707d5440
func@0x705be5c0 0.072s 0.025s
0s 0.025s 0s
0s 0s 0.047s 0s jvm.dll
func@0x705be5c0 [Unknown] 0x705be5c0
...

On Linux:

Function CPU Time CPU Time:Effective Time CPU Time:Effective Time:Idle CPU
Time:Effective Time:Poor CPU Time:Effective Time:Ok CPU Time:Effective Time:Ideal CPU
Time:Effective Time:Over CPU Time:Spin Time CPU Time:Overhead Time Module Function
(Full) Source File Start Address
------------------ -------- ----------------------- ----------------------------
---------------------------- -------------------------- -----------------------------

[libmixed_call.so] 17.180s 17.180s
0s 17.180s 0s
0s 0s 0s 0s libmixed_call.so
[libmixed_call.so] [Unknown] 0

[libjvm.so] 1.698s 1.698s
0.020s 1.678s 0s
0s 0s 0s 0s libjvm.so
[libjvm.so] [Unknown] 0

[libpthread.so.0] 0.136s 0.136s
0s 0.136s 0s
0s 0s 0s 0s libpthread.so.0
[libpthread.so.0] [Unknown] 0

[libtpsstool.so] 0.052s 0.052s
0s 0.052s 0s
0s 0s 0s 0s libtpsstool.so
[libtpsstool.so] [Unknown] 0
...

The following example generates the hotspots report for the specified Hotspots analysis result (hardware
event-based sampling mode), sets the number of items to include in the report to 3, and groups the report
data by application module.

vtune -report hotspots -limit 3 -r r002hs -group-by module

 1 Intel® VTune™ Profiler User Guide

544

On Windows:

Module CPU Time CPU Time:Effective Time CPU Time:Effective Time:Idle CPU
Time:Effective Time:Poor CPU Time:Effective Time:Ok CPU Time:Effective Time:Ideal CPU
Time:Effective Time:Over CPU Time:Spin Time CPU Time:Overhead Time Instructions Retired CPI
Rate Wait Rate CPU Frequency Ratio Context Switch Time Context Switch Time:Wait Time
Context Switch Time:Inactive Time Context Switch Count Context Switch Count:Preemption
Context Switch Count:Synchronization Module
Path
-------------- -------- ----------------------- ----------------------------
---------------------------- -------------------------- -----------------------------
---------------------------- -------
mixed_call.dll 15.294s 15.294s
0.419s 14.871s 0.004s
0s 0s 0s 0s
21,148,958,284 1.907 0.000 1.149
1.401s 0s 1.401s
26,769 26,769 0 C:\work\module
Java\module Java\java_mixed_call\vc9\bin32\mixed_call.dll
jvm.dll 0.582s 0.582s
0.033s 0.547s 0.002s
0s 0s 0s 0s
792,807,896 1.513 0.437 0.899
0.047s 0.005s 0.042s
462 451 11 C:\Program Files
(x86)\Java\jre8\bin\client\jvm.dll
ntoskrnl.exe 0.404s 0.404s
0.034s 0.370s 0.001s
0s 0s 0s 0s
660,557,183 1.096 0.000
0.780

C:\WINDOWS\system32\ntoskrnl.exe
...

On Linux:

Module CPU Time CPU Time:Effective Time CPU Time:Effective Time:Idle CPU
Time:Effective Time:Poor CPU Time:Effective Time:Ok CPU Time:Effective Time:Ideal CPU
Time:Effective Time:Over CPU Time:Spin Time CPU Time:Overhead Time Instructions Retired CPI
Rate Wait Rate CPU Frequency Ratio Context Switch Time Context Switch Time:Wait Time
Context Switch Time:Inactive Time Context Switch Count Context Switch Count:Preemption
Context Switch Count:Synchronization Module
Path
---------------- -------- ----------------------- ----------------------------
---------------------------- -------------------------- -----------------------------
---------------------------- ------
libmixed_call.so 15.294s 15.294s
0.419s 14.871s 0.004s
0s 0s 0s 0s
21,148,958,284 1.907 0.000 1.149
1.401s 0s 1.401s
26,769 26,769 0 /tmp/
java_mixed_call/src/libmixed_call.so
libjvm.so 0.582s 0.582s
0.033s 0.547s 0.002s
0s 0s 0s 0s
792,807,896 1.513 0.437 0.899

Intel® VTune™ Profiler User Guide 1

545

0.047s 0.005s 0.042s
462 451 11 /tmp/
java_mixed_call/src/libmjvm.so
...
...

Analyze Stacks
To get the maximum performance out of your Java application, writing and compiling performance critical
modules of your Java project in native languages, such as C or even assembly. This will help your application
take advantage of vectorization and make complete use of powerful CPU resources. This way of programming
helps to employ powerful CPU resources like vector computing (implemented via SIMD units and instruction
sets). In this case, compute-intensive functions become hotspots in the profiling results, which is expected as
they do most of the job. However, you might be interested not only in hotspot functions, but in identifying
locations in Java code these functions were called from via a JNI interface. Tracing such cross-runtime calls in
the mixed language algorithm implementations could be a challenge.

Use the callstacks report to display full stack data for each hotspot function and identify the impact of
each stack on the function CPU or Wait time.

NOTE
To display a list of available groupings for a callstacks report, enter vtune -report callstacks
-r <result_dir> group-by=?.

Example

The following command line generates the callstacks report for the specified Hotspots analysis result.

On Windows:

Function Function Stack CPU Time Module Function
(Full) Source File Start Address
------------ ------------------------- -------- --------------------
------------------------------ -------------- -------------
consume_time 10.371s mixed_call.dll
consume_time mixed_call.c 0x180001000
 MixedCall::CallNativeFunc 10.371s [Compiled Java code]
MixedCall::CallNativeFunc(int) MixedCall.java 0x186debc0
 MixedCall::foo4 0s [Compiled Java code]
MixedCall::foo4(int) MixedCall.java 0x186c1ae3
 MixedCall::foo3 0s [Compiled Java code]
MixedCall::foo3(int) MixedCall.java 0x186bb583
 MixedCall::foo2 0s [Compiled Java code]
MixedCall::foo2(int) MixedCall.java 0x186bb583
 MixedCall::foo1 0s [Compiled Java code]
MixedCall::foo1(int) MixedCall.java 0x186bb583
 MixedCall::run 0s [Compiled Java code]
MixedCall::run() MixedCall.java 0x186bb19d
 call_stub 0s [Dynamic code]
call_stub [Unknown] 0x18010827
...

On Linux:

Function Function Stack CPU Time Module Function
(Full) Source File Start Address

 1 Intel® VTune™ Profiler User Guide

546

------------------ ------------------------- -------- --------------------
------------------------------ -------------- --------------
[libmixed_call.so] 17.180s libmixed_call.so
[libmixed_call.so] [Unknown] 0
 [libmixed_call.so] 8.600s libmixed_call.so
[libmixed_call.so] [Unknown] 0
 MixedCall::CallNativeFunc 0s [Compiled Java code]
MixedCall::CallNativeFunc(int) MixedCall.java 0x7fb63937eec0
 MixedCall::foo4 0s [Compiled Java code]
MixedCall::foo4(int) MixedCall.java 0x7fb6393831e3
 MixedCall::foo3 0s [Compiled Java code]
MixedCall::foo3(int) MixedCall.java 0x7fb63938046c
 MixedCall::foo2 0s [Compiled Java code]
MixedCall::foo2(int) MixedCall.java 0x7fb63938046c
 MixedCall::foo1 0s [Compiled Java code]
MixedCall::foo1(int) MixedCall.java 0x7fb63938046c
 MixedCall::run 0s [Compiled Java code]
MixedCall::run() MixedCall.java 0x7fb63938009b
...

Analyze Hardware Metrics
VTune Profiler provides an advanced profiling option of optimizing Java applications for the CPU
microarchitecture utilized in your platform. Although Java and JVM technology is intended to free a developer
from hardware architecture specific coding, once Java code is optimized for the current Intel
microarchitecture, it will most probably keep this advantage for future generations of CPUs.
VTune Profiler counts the number of hardware events during the hardware event-based sampling collection to
help you understand how your Java application utilizes available hardware resources. Use the hw-events
report type to display hardware events count per application functions in the descending order by default.

NOTE
To display a list of available groupings for a hw-events report, enter vtune -report hw-events -r
<result_dir> group-by=?.

Example

This example generates the hw-events report for the specified Hotspots analysis (hardware event-based
sampling mode) result.

On Windows:

Function Hardware Event Count:INST_RETIRED.ANY Hardware Event
Count:CPU_CLK_UNHALTED.THREAD Hardware Event Count:CPU_CLK_UNHALTED.REF_TSC Hardware Event
Count:BR_INST_RETIRED.NEAR_TAKEN Hardware Event Count:ITERATION_COUNT Hardware Event
Count:LOOP_ENTRY_COUNT Hardware Event Count:CALL_COUNT Context Switch Time Context Switch
Time:Wait Time Context Switch Time:Inactive Time Context Switch Count Context Switch
Count:Preemption Context Switch Count:Synchronization Module Function (Full)
Source File Start Address
--------------------- -------------------------------------
-- ---

consume_time 8,649,248,560
28,577,118,234
25,656,728,125 126,927,912
126,914,825 0

Intel® VTune™ Profiler User Guide 1

547

0 0.217s 0s
0.217s 4,147
4,147 0 mixed_call.dll consume_time
mixed_call.c 0x180001000
NtWaitForSingleObject 1,683,967,360
3,955,057,542
716,832,500 200,003
0 0 66,678
223.825s 62.467s 161.358s
9,030 5,158 3,873 ntdll.dll
NtWaitForSingleObject [Unknown] 0x1800906f0
WriteFile 1,207,593,104
1,022,685,972
1,713,743,550
0 0
0 61,803 0.340s
0.003s 0.337s 962
954 8 KernelBase.dll WriteFile [Unknown]
0x180001c50

On Linux:

Function Hardware Event Count:INST_RETIRED.ANY Hardware Event
Count:CPU_CLK_UNHALTED.THREAD Hardware Event Count:CPU_CLK_UNHALTED.REF_TSC Context Switch
Time Context Switch Time:Wait Time Context Switch Time:Inactive Time Context Switch Count
Context Switch Count:Preemption Context Switch Count:Synchronization Module
Function (Full) Source File Start Address
------------------ -------------------------------------
-- ---
------------------- -----------------------------
[libmixed_call.so] 21,148,958,284
40,338,264,445 35,096,009,324
1.401s 0s 1.401s
26,769 26,769 0
[libmixed_call.so] [libmixed_call.so] [Unknown] 0
[libjvm.so] 792,807,896
1,199,773,286 1,335,034,092
0.047s 0.005s 0.042s
462 451 11 [libjvm.so]
[libjvm.so] [Unknown] 0
...

Limitations
VTune Profiler supports analysis of Java applications with some limitations:

• System-wide profiling is not supported for managed code.
• The JVM interprets some rarely called methods instead of compiling them for the sake of performance.

VTune Profiler does not recognize interpreted Java methods and marks such calls as !Interpreter in the
restored call stack.

If you want such functions to be displayed in stacks with their names, force the JVM to compile them by
using the -Xcomp option (show up as [Compiled Java code] methods in the results). However, the
timing characteristics may change noticeably if many small or rarely used functions are being called
during execution.

• When opening source code for a hotspot, the VTune Profiler may attribute events or time statistics to an
incorrect piece of the code. It happens due to JDK Java VM specifics. For a loop, the performance metric
may slip upward. Often the information is attributed to the first line of the hot method's source code.

 1 Intel® VTune™ Profiler User Guide

548

• Consider events and time mapping to the source code lines as approximate.
• For the user-mode sampling based Hotspots analysis type, the VTune Profiler may display only a part of

the call stack. To view the complete stack on Windows, use the -Xcomp additional command line JDK Java
VM option that enables the JIT compilation for better quality of stack walking. On Linux, use additional
command line JDK Java VM options that change behavior of the Java VM:

• Use the -Xcomp additional command line JDK Java VM option that enables the JIT compilation for
better quality of stack walking.

• On Linux* x86, use client JDK Java VM instead of the server Java VM: either explicitly specify -client,
or simply do not specify -server JDK Java VM command line option.

• On Linux x64, specify -XX:-UseLoopCounter command line option that switches off on-the-fly
substitution of the interpreted method with the compiled version.

• Java application profiling is supported for the Hotspots and Microarchitecture analysis types. Support for
the Threading analysis is limited as some embedded Java synchronization primitives (which do not call
operating system synchronization objects) cannot be recognized by the VTune Profiler. As a result, some
of the timing metrics may be distorted.

• There are no dedicated libraries supplying a user API for collection control in the Java source code.
However, you may want to try applying the native API by wrapping the __itt calls with JNI calls.

See Also
Java* Code Analysis
 from GUI

Enable Java* Analysis on Android* System

Stitch Stacks for Intel® oneAPI Threading Building Blocks or OpenMP* Analysis

Command Line Interface Reference
Select an item from the Table of Contents to continue.

NOTE
See the VTune Profiler CLI Cheat Sheet quick reference on VTune Profiler command line interface.

Option Descriptions and General Rules
All option descriptions in the Intel® VTune™
ProfilerCommand Line Interface Reference follow the
general rules and templates described below.

Option Description
Each option description provides the following information:

• A short description of the option.
• Products: This section lists the names of products supporting this option.
• GUI Equivalent: This section shows the equivalent of the option in the integrated development

environment (IDE)/standalone GUI client. If no equivalent is available, None is specified.

• Syntax: This section describes the command line syntax of the option.
• Arguments: This section lists the arguments related to the option. If it has no arguments, None is

specified.
• Default: This section shows the default setting for the option.
• Modifiers: This section lists the modifiers for the described action. The section is only available for

actions.

Intel® VTune™ Profiler User Guide 1

549

https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-cheat-sheet.pdf

• Actions Modified: This section lists the actions modified by the described option. The section is only
available for modifiers.

• Description: This section provides the full description for the option.
• Alternate Options: These options can be used instead of the described option. If no alternate options

are available, None is specified.

• Example: This is a typical usage example of the option.
• See Also: This section provides links to further information related to the option such as other options or

corresponding GUI procedures.

General Rules
• Options can be preceded by a single dash ("-") or a double dash ("--").
• Option names and values can be separated with a space (" "), or an equal sign ("=").
• Options defining the collection are specified before the analyzed target and can appear on the command

line in any order. Options related to the target are specified after the target
• You cannot combine options with a single dash. For example, -q and -c options cannot be specified as -

qc option.
• Options may have short and long names. Short names consist of one letter. Long names consist of one or

more words separated by dashes. Both short and long names are case-sensitive. Long and short option
names can be used interchangeably. For example, you may use -report or -R to generate a report.

• Long names of the options can be abbreviated. If the option consists of several words you can abbreviate
each word, keeping the dash between them. Make sure an abbreviated version unambiguously matches
the long name. For example, the -option-name option can be abbreviated as -opt-name, -op-na, -
opt-n, or -o-n.

• If the abbreviation is ambiguous between two available options, a syntax error is reported.
• You can disable Boolean default options by specifying -no-<optionname> from the command line. For

example, to avoid displaying a summary report after analysis, run vtune with the -no-summary option.
Conversely, if the default is -no-<option>, you can disable it by specifying -<optionname>.

• You can specify multiple values for the option by using the option several times, or by using the option
once and specifying comma-separated values (make sure there are no spaces around the commas). The
examples below are equivalent and specify two filters for the r001tr result when generating a hotspots
report.

On Linux*:

vtune -R hotspots -r r001tr -filter module=tachyon -filter module=vmlinux
vtune -R hotspots -r r001tr -filter module=tachyon,vmlinux

On Windows*:

vtune -R hotspots -r r001tr -filter module=ntdll.dll -filter module=main.exe
vtune -R hotspots -r r001tr -filter module=ntdll.dll,main.exe

See Also
vtune Actions

vtune Command Syntax

allow-multiple-runs
Enable multiple runs to achieve more precise results
for hardware event-based collections.

 1 Intel® VTune™ Profiler User Guide

550

GUI Equivalent

Allow multiple runs option in the WHAT pane

Syntax

-allow-multiple-runs
-no-allow-multiple-runs

Default

-no-allow-multiple-runs

Actions Modified

collect, collect-with

Description

By default, no-allow-multiple-runs is enabled, and a collect or collect-with action performs a single
analysis run. Performing multiple analysis runs can provide more precise results for hardware event-based
collections. To enable event multiplexing, specify allow-multiple-runs.

Example
This example runs the target application twice, collecting different events on each run.

vtune -collect hotspots -allow-multiple-runs -- /home/test/sample

See Also
Allow Multiple Runs or Multiplex Events
 from GUI

vtune Command Syntax

analyze-kvm-guest
Analyze a KVM guest OS running on your system.

GUI Equivalent

Analyze KVM guest OS option in the WHAT pane

Syntax

-analyze-kvm-guest | -no-analyze-kvm-guest

Default

-no-analyze-kvm-guest

Actions Modified

collect-with

Description

Analyze a KVM guest OS running on your system. For successful analysis, make sure to do the following:

1. Copy these files from the guest OS to your local file system:

• /proc/kallsyms
• /proc/modules

Intel® VTune™ Profiler User Guide 1

551

• any guest OS’s modules of interest (vmlinux, any *.ko files, and so on)
2. Specify a Linux target system for analysis using the target-system option.
3. Configure your VTune Profiler analysis target by using thekvm-guest-kallsyms, kvm-guest-modules,

and search-dir options to specify paths to the files copied in step 1 for accurate module resolution.
4. Configure your collect-with by using theknob ftrace-config=<events> option to specify Linux

FTrace* events tracking IRQ injection process.

Example
Enable a custom hardware event-based sampling collection for the KVM guest OS and collect irq, softirq,
workq, and kvm FTrace events:

vtune --target-system=ssh: user1@172.16.254.1 -collect-with runsa -knob event-
config=CPU_CLK_UNHALTED.REF_TSC:sa=3500000,CPU_CLK_UNHALTED.THREAD:sa=3500000,INST_RETIRED.ANY:sa
=3500000 –knob enable-stack-collection=true -knob ftrace-config=irq,softirq,workq,kvm -analyze-
kvm-guest -kvm-guest-kallsyms=/home/vtune/[guest]/kvm.kallsyms -kvm-guest-modules=/home/vtune/
[guest]/kvm.modules --search-dir sym:p=/home/vtune/ --target-pid 9791

See Also
Profile KVM Kernel and User Space on the KVM System
 from GUI

Targets in Virtualized Environments

Profile Targets on a KVM* Guest System

knob
ftrace-config

kvm-guest-modules

kvm-guest-kallsyms

vtune Actions

vtune Command Syntax

analyze-system
Enable analysis of all processes running on the
system.

GUI Equivalent

Configure Analysis window > WHAT pane > Advanced section > Analyze system-wide option

Syntax

-analyze-system
-no-analyze-system

Default

no-analyze-system

Actions Modified

collect, collect-with

 1 Intel® VTune™ Profiler User Guide

552

Description

For hardware event-based analysis types, no-analyze-system is enabled by default, so only the target
process is analyzed. Use analyze-system if you want to analyze all processes running on the system. Data
on CPU consumption for these other processes shows how they affect the performance of the target process.

Example
Perform the Hotspots analysis (hardware event-based sampling mode) of all processes running on the
system.

vtune -collect hotspots -knob sampling-mode=hw -analyze-system -- /home/test/sample

See Also
vtune Actions

vtune Command Syntax

app-working-dir
Specify the application directory in auto-generated
commands.

GUI Equivalent

Configure Analysis window > HOW pane > Launch Application target type

Syntax

-app-working-dir=<PATH>

Arguments

A string containing the PATH/name.

Default

Default is the current working directory.

Actions Modified

collect, collect-with

Description

If your data files are stored in a separate location from the application, use the app-working-dir option to
specify the application working directory.

Example
This command line example changes the application directory to C:\myAppDirectory (on Windows*) and
to /home/myAppDirectory(on Linux*) to run the myApp application, uses binary and symbol files found in
the directory specified by the search-dir option to finalize the result, writes the result in the default result
directory, and then returns to the working directory.

On Windows:

vtune-cl -collect hotspots -app-working-dir C:\myAppDirectory -search-dir C:\mySources --
myApp.exe

Intel® VTune™ Profiler User Guide 1

553

On Linux:

vtune-cl -collect hotspots -app-working-dir /home/myAppDirectory -search-dir /home/mySources --
myApp

See Also
vtune Actions

vtune Command Syntax

archive
Archive collected results.

Syntax

-archive -result-dir <PATH>

Description

Archive collected performance results and view them later on another system.

Examples
Archive Hotspots analysis results from the specified Linux directory.

 vtune -archive -result-dir /temp/test/baseline

call-stack-mode
Choose how to show system functions in the call
stack.

GUI Equivalent

Toolbar: Filter > Call Stack Mode menu

Syntax

-call-stack-mode <value>

Arguments

<value> - Type of call stack display. The following values are available:

Argument Description

all Display both system and user functions.

user-only Show user functions only.

user-plus-one Show user functions and system functions called directly from user
functions.

Default

user-plus-one Collected data is attributed to user functions and system functions called directly
from user functions.

Actions Modified

collect, finalizeimportreport

 1 Intel® VTune™ Profiler User Guide

554

Description

Use the call-stack-mode option when performing data collection, finalization or importation, to set call
stack data attribution for the result or report. If set for collection, finalization or importation, this sets the
default view when the result is opened in the GUI, and applies to any reports unless overridden in the
command used to generate the report.

Example
Generate a hotspots result and include system as well as user functions in the call stack. This is now the
project-level setting, and if the result is viewed in the GUI, the call stack shows both user functions and
system functions.

vtune -collect hotspots -call-stack-mode all -- myApp.exe
This command generates a hotspots report from the most recent hotspots analysis result, groups the result
data by function, and then overrides the project-level setting so that the call stack shows user functions plus
system functions called directly from user functions.

vtune -report hotspots -group-by function -call-stack-mode user-plus-one

See Also
vtune Actions

vtune Command Syntax

collect
Run the specified analysis type and collect data into a
result.

GUI Equivalent

Configure Analysis window > HOW pane

Syntax

-collect <analysis_type>
-c <analysis_type>

Arguments

analysis_type Type of performance analysis. The following analysis types and
configurable knobs are supported:

anomaly-detection Identify performance anomalies in frequently recurring intervals of
code like loop iterations. Perform fine-grained analysis at the
microsecond level.

• -knob ipt-regions-to-load to specify the maximum number
(10-5000) of code regions to load for detailed analysis. To load
details efficiently, maintain this number at or below 1000.

• -knob max-region-duration to specify the maximum duration
(0.001-1000ms) of analysis per code region.

Collection type: user-mode sampling and tracing collection or
hardware event-based sampling.

Intel® VTune™ Profiler User Guide 1

555

hotspots Identify your most time-consuming source code using one of the
available collection modes:

• -knob sampling-mode=sw (former Basic Hotspots) to collect
hotspots and stack information based on the user-mode sampling
and tracing, which does not required sampling drivers but incurs
higher collection overhead). This mode cannot be used to profile a
system, but must either launch an application/process or attach to
one.

• -knob sampling-mode=hw (former Advanced Hotspots) to sample
all processes on the system and identify hotspots.

Collection type: user-mode sampling and tracing collection or
hardware event-based sampling.

Knobs: enable-characterization-insights, enable-stack-
collection, sampling-interval, sampling-mode.

threading Analyze how your application is using available logical CPU cores,
discover where parallelism is incurring synchronization overhead, find
how waits affect your application's performance, and identify potential
candidates for parallelization.

Collection type: user-mode sampling and tracing collection.

Knobs: sampling-interval.

memory-consumption Analyze memory consumption by your Linux application, its distinct
memory objects and their allocation stacks.

Collection type: user-mode sampling and tracing collection.

Knobs: mem-object-size-min-thres.

hрc-performance Identify opportunities to optimize CPU, memory, and FPU utilization for
compute-intensive or throughput applications.

Collection type: hardware event-based sampling collection.

Knobs: enable-stack-collection, collect-memory-bandwidth,
sampling-interval, dram-bandwidth-limits.

uarch-exploration (formely known
as general-exploration)

Identify and locate the most significant hardware issues that affect the
performance of your application. Use this analysis type as a starting
point for microarchitecture analysis.

Collection type: hardware event-based sampling collection.

Knobs: enable-stack-collection, collect-memory-bandwidth,
enable-user-tasks.

memory-access Measure a set of metrics to identify memory access related issues (for
example, specific for NUMA architectures).

Collection type: hardware event-based sampling collection.

Knobs: sampling-interval, dram-bandwidth-limits, analyze-
openmp; Linux only: analyze-mem-objects, mem-object-size-
min-thres.

sgx-hotspots (deprecated) Analyze hotspots inside security enclaves for systems with the Intel®
Software Guard Extensions (Intel® SGX) feature enabled.

 1 Intel® VTune™ Profiler User Guide

556

Collection type: hardware event-based sampling collection.

Knobs: enable-stack-collection, enable-user-tasks.

tsx-exploration (deprecated) Analyze Intel® Transactional Synchronization Extensions (Intel® TSX)
usage.

Collection type: hardware event-based sampling collection.

Knobs: enable-user-tasks, analysis-step.

tsx-hotspots (deprecated) Analyze hotspots inside transactions.

Knobs: enable-user-tasks, enable-stack-collection.

cpugpu-concurrency (deprecated) Enable the CPU/GPU Concurrency analysis and explore code execution
on the various CPU and GPU cores in your system, correlate CPU and
GPU activity and identify whether your application is GPU or CPU
bound.

Knobs: sampling-interval, enable-user-tasks, enable-user-
sync, enable-gpu-usage, gpu-counters-mode, enable-gpu-
runtimes.

gpu-hotspots Identify GPU tasks with high GPU utilization and estimate the
effectiveness of this utilization.

Collection type: hardware event-based sampling collection.

Knobs: gpu-sampling-interval, enable-gpu-usage, gpu-
counters-mode, enable-gpu-runtimes, enable-stack-
collection.

gpu-profiling (deprecated) Analyze GPU kernel execution per code line and identify performance
issues caused by memory latency or inefficient kernel algorithms.

Collection type: hardware event-based sampling collection.

Knobs: gpu-profiling-mode, kernels-to-profile.

graphics-rendering (preview) Analyze the CPU/GPU utilization of your code running on the Xen
virtualization platform. Explore GPU usage per GPU engine and GPU
hardware metrics that help understand where performance
improvements are possible. If applicable, this analysis also detects
OpenGL-ES API calls and displays them on the timeline.

Collection type: hardware event-based sampling collection.

Knobs: gpu-sampling-interval, gpu-counters-mode.

fpga-interaction Analyze the CPU/FPGA interaction issues via exploring OpenCL kernels
running on FPGA, identify the most time-consuming FPGA kernels.

Collection type: hardware event-based sampling collection.

Knobs: sampling-interval, enable-stack-collection.

io Monitor utilization of the IO subsystems, CPU and processor buses.

Collection type: hardware event-based sampling collection.

Knobs: collect-pcie-bandwidth, mmio, iommu, collect-memory-
bandwidth, dram-bandwidth-limits, dpdk, spdk, kernel-stack.

Intel® VTune™ Profiler User Guide 1

557

system-overview Evaluate general behavior of Linux* or Android* target systems and
correlate power and performance metrics with IRQ handling.

Collection type: hardware event-based sampling collection.

Knobs: collection-detail.

NOTE
For Android* systems, VTune Profiler provides GPU analysis only on processors with Intel®
HD Graphics and Intel® Iris® Graphics. You cannot view the collected results in the CLI
report. To view the results, open the result file in GUI.

Default

OFF The vtune command runs no data collection unless the collect action is specified.

Modifiers

[no]-allow-multiple-runs, [no]-analyze-system, data-limit, discard-raw-data,
duration,finalization-mode,[no]-follow-child, knob , mrte-mode, quiet, resume-after,
return-app-exitcode, ring-buffer, search-dir,start-paused, , strategy, [no-]summary,
target-duration-type ,target-pid, target-process, target-system,trace-mpi,
no-unplugged-mode, user-data-dir, verbose

Description

Use the collect action to perform analysis and collect data. By default, this process performs the specified
type of analysis, collects and finalize data into a result file, and outputs a Summary report to stdout. In most
cases you will want to use the search-dir action-option to specify the search directory. Some analysis types
support the knob option, which allow you to specify additional level settings.

There are many options that you can use to customize the behavior of the collect action to suit your
purposes. For example, you can choose whether to analyze a child process only, whether to start collection
after a certain amount of time has elapsed, or whether to perform collection without finalizing the result.
There are a few examples included in this topic. For more information, use one of the help commands
described below, or browse or search this documentation for information on the type of analysis you wish to
perform.

NOTE
To access the most current command line documentation for an action, enter vtune -help
<action>, where <action> is one of the available actions. To see all available actions, enter
vtune -help.

To view a list of analysis types supported for your processor:

vtune -help collect
To view detailed information on the supported analysis type:

vtune -help collect <analysis_type>
This command displays a description for the specified analysis type and its configuration options (knobs).

 1 Intel® VTune™ Profiler User Guide

558

Alternate Options

collect-with The collect-with action performs the same basic functions as the
collect action, but provides additional knob settings for custom
configuration.

Examples
This command runs the hotspots analysis in the hardware event-based sampling mode for a Linux myApp
application, writes the result to the default directory, and outputs a summary report by default.

vtune -collect hotspots -knob sampling-mode=hw -- /home/test/sample
For best results, specify the search directories. This example collects a default-named hotspots result,
searching for symbol files in the home/import/system_modules high-priority search directory.

vtune -collect hs -search-dir /home/import/system_modules -- /home/test/sample
You can use the target-pid or target-process options to attach a Hotspots collection to a running
process. In this example, target-pid is used to attach the collection to a running process whose ID is 1234.

vtune -collect hotspots -target-pid 1234
The no-auto-finalize action-option start a Threading analysis, collect performance data, and exit without
finalizing the result.

vtune -collect threading -no-auto-finalize -- /home/test/sample

See Also
Run Command Line Analysis

collect-with
 action

Analyze Performance
 in GUI

vtune Command Syntax

collect-with
Run a custom hardware event-based sampling or
user-mode sampling and tracing collection using your
settings.

GUI Equivalent

Custom Analysis

Syntax

-collect-with <collector_name>

Arguments

collector_name Description

runsa Perform hardware event-based sampling collection.

runss Perform user-mode sampling and tracing collection.

Intel® VTune™ Profiler User Guide 1

559

Modifiers

[no-]allow-multiple-runs, analyze-kvm-guest, [no-]analyze-system, app-working-dir,
call-stack-mode, cpu-mask, data-limit, discard-raw-data, duration, finalization-mode,
[no-]follow-child, inline-mode, knob, mrte-mode, quiet, result-dir, resume-after,
return-app-exitcode, ring-buffer, search-dir, start-paused, strategy, [no-]summary,
target-duration-type, target-pid, target-process, no-unplugged-mode, user-data-dir,
verbose

Description

Use the collect-with action when you want finer control over analysis settings than the collect action
can offer. Specify both the collector type and the knob. The collector type determines the type of collection,
and the knob determines the level or granularity. Lower levels are coarser grained, while higher levels are
finer grained. The analysis process includes finalization of the result, and a summary report is displayed by
default.

For the runsa (event-based sampling) collector, the event-config knob option specifies the list of events to
collect. To display a list of events available on the target PMU, enter:

vtune -collect-with runsa -knob event-config=? <target>
The command returns names and short descriptions of available events. For more information on the events,
use Intel Processor Events Reference

NOTE

• To access the most current command line documentation for the collect or collect-with action,
enter vtune -help collect or vtune -help collect-with.

• For the most current information on available knobs, enter vtune -help collect
<analysis_type> or vtune -help collect-with <analysis_type>, where <analysis_type>
is the type of analysis you wish to perform.

Alternate Options

Use the collect action with predefined settings.

Example
This example runs the hardware event-based sampling collector for the sample Linux* application on the
specified events and displays a summary report.

vtune -collect-with runsa -knob event-
config=CPU_CLK_UNHALTED.CORE,CPU_CLK_UNHALTED.REF,INST_RETIRED.ANY /home/test/sample

See Also
Hardware Event-based Sampling Collection

Custom Analysis
 in GUI

column
Specify substrings for the column names to display
only corresponding columns in the report.

GUI Equivalent

Toolbar: Command

 1 Intel® VTune™ Profiler User Guide

560

Syntax

-column=<string>

Arguments

<string> - Full name of the column or its substring.

Actions Modified

report , report-output

Description

Filter in the report to display only data columns (typically corresponding to performance metrics or hardware
events) with the specified <string> in the title. For example, specify -column=Total to view only Total
metrics in the report. Columns used for data grouping are always displayed.

To display a list of columns available for a particular report, type: vtune -report <report_name> -r
<result_dir> -column=?.

Example
Display grouping and data columns only for event columns with the *INST_RETIRED.* string in the title:

vtune -R hw-events -r r000ue -column=INST_RETIRED.
Obtain a list of columns available for the hw-events report for a Microarchitecture Exploration analysis result
on Linux*:

vtune -report hw-events -r /temp/test/r029ue/r029ue -column=?
vtune: Using result path '/temp/test/r029ue/r029ue'

Available values for '-column' option are:
Function
Module
Hardware Event Count:UOPS_RETIRED.ALL_PS:Self
Module
Function (Full)
Source File
Module Path
Start Address

See Also
Save and Format Command Line Reports

command
Issue a command to a running collect action.

GUI Equivalent

Toolbar: Command

Window: Collection Log

Syntax

-command=<value>

Intel® VTune™ Profiler User Guide 1

561

Arguments

<value> Description

mark Place time-stamped mark in the data that can be referenced during analysis.

pause Temporarily suspend the collection process. Use -command resume when you are
ready to continue collection.

resume Continue collection on a paused collection process.

status Print collection status.

stop Terminate a running collection process. Alternatively, use ctrl + c.

Modifiers

result-dir, user-data-dir

Description

This option performs one of the following actions on a running collect action: pause, resume, stop,
status, or mark. Use with result-dir to specify the result directory for the running analysis.

Example
This example terminates the collect process in the default directory.

vtune -command stop
Run an unlimited duration collect process, which runs until stopped.

vtune -collect hotspots -knob sampling-mode=hw -duration unlimited -r ./results/r002hs
In another window, use -command stop to terminate the process running in the result directory results/
r002hs, specified by the -r option (shortname of result-dir).

vtune -command stop -r ./results/r002hs

See Also
vtune Command Syntax

vtune Actions

cpu-mask
Specify CPU(s) for a collect or collect-with action.

GUI Equivalent

Configure Analysis window > WHAT pane > Advanced section > CPU mask option

Syntax

-cpu-mask=<cpu_mask1>,<cpu_mask3>-<cpu_mask5>...

Arguments

CPU number or a range of numbers.

Default

ALL The hardware event-based sampling collector collects data on all CPUs in the
system.

 1 Intel® VTune™ Profiler User Guide

562

Actions Modified

collect, collect-with

Description

This option specifies the CPU(s) for which data will be collected during hardware event-based sampling
collection. Specify a list of comma-separated CPU IDs (with no spaces) and/or the range(s) of CPU IDs. A
range is represented by a beginning and ending ID, separated by a dash.

Example
This example collects samples on four CPUs (1, 3, 4, and 5) for a Linux sample application.

vtune -collect hotspots -knob sampling-mode=hw -cpu-mask 1,3-5 -- /home/test/sample

See Also

csv-delimiter
Specify the delimiter for a tabular report.

Syntax

-csv-delimiter=<delimiter>

Arguments

<delimiter> A character, keyword or string of characters to use as a delimiter when
generating a tabular (CSV) report. Any character string may be used as a
delimiter, but the most common values are one of these keywords: comma
| tab | semicolon | colon

Default

comma

Actions Modified

The report action, used with the format csv action-option. To write the report to a file, also use the
report-output option.

Description

Use this option to specify a delimiter when using -format csv to generate a report in CSV format.

Example
Generate a tabular hotspots report from the most recent result, using comma delimiters, and save the report
as MyReport.csv in the current working directory.

vtune -R hotspots -format csv -csv-delimiter comma -report-output MyReport.csv
Sample output:

Module,Process,CPU Time
worker3.so,main,10.735worker1.so,main,5.525worker2.so,main,3.612worker5.so,main,3.103worker4.so,m
ain,1.679main,main,0.064

See Also
Generate Command Line Reports

Intel® VTune™ Profiler User Guide 1

563

Save and Format Command Line Reports

vtune Command Syntax

vtune Actions

cumulative-threshold-percent
Set a percent of the target CPU/Wait time to display
only the hottest program units that exceed this
threshold.

GUI Equivalent

Window: Summary - Hotspots

Syntax

-cumulative-threshold-percent=<value>

Arguments

<value> The percent of target CPU/Wait time consumed by the program units
displayed.

Default

OFF all program units.

Actions Modified

report

Description

Use the cumulative-threshold-percent action-option to generate a performance detail report that
focuses on program units that exceed the specified percentage of target CPU/Wait time. Functions below the
specified threshold are filtered out, so your report includes just the hottest program units, and excludes
those that are insignificant.

Example
Linux*: Generate a Performance Detail report from the r001hs Hotspots result that only includes functions
that cumulatively account for 90% of target CPU time. Functions cumulatively representing less than 10% of
target CPU time are excluded.

vtune -report perf-detail -r r001hs -cumulative-threshold-percent=90

Module Function CPU Time Cumulative Percent
matrix algorithm_2 3.136 70.415
matrix algorithm_1 1.156 96.375

 1 Intel® VTune™ Profiler User Guide

564

Windows*: Generate performance reports in r001hs and r002hs functions that account for 50% of the total
difference. Positive and negative difference values are handled separately.

vtune -R perf -r r001hs -r r002hs -cumulative-threshold-percent=50

Module Function Result 1:CPU Time Result 2:CPU Time Difference:CPU Time
Cumulative Percent
matrix.exe algorithm_2 3.106 3.131 -0.025
100.000
Module Function Result 1:CPU Time Result 2:CPU Time Difference:CPU Time
Cumulative Percent
ntdll.dll KiFastSystemCallRet 0.012 0 0.012
39.956
ntdll.dll NtWaitForSingleObject 0.113 0.110 0.003 50.051

See Also
Change Threshold Values

vtune Command Syntax

vtune Actions

custom-collector
Launch an external collector to gather custom interval
and counter statistics for your target in parallel with
the VTune Profiler.

GUI Equivalent

Configure Analysis window > WHAT pane

Syntax

-custom-collector=<string>

Arguments

<string> Command line launching an external collection tool.

Actions Modified

collect,collect-with

Description

Your custom collector can be an application you analyze with the VTune Profiler or a collector that can be
launched with the VTune Profiler.

Use the -custom-collector option to specify an external collector other than a target analysis application.

When you start a collection, the VTune Profiler does the following:

1. Launches the target application in the suspended mode.
2. Launches the custom collector in the attach (or system-wide) mode.
3. Switches the application to the active mode and starts profiling.

If your custom collector cannot be launched in the attach mode, the collection may produce incomplete data.

You can later import custom collection data (time intervals and counters) in a CSV format to the VTune
Profiler result.

Intel® VTune™ Profiler User Guide 1

565

Example

This example runs Hotspots analysis in the default user-mode sampling mode and also launches an external
script collecting custom statistics for the specified application:

Windows:

vtune -collect hotspots -custom-collector="python.exe C:\work\custom_collector.py" -- notepad.exe
Linux:

vtune -collect hotspots -custom-collector="python /home/my_collectors/custom_collector.py" --
my_app

This example runs VTune Profiler event-based sampling collector and also uses an external system collector
to identify product environment variables:

Windows:

vtune -collect-with runsa -custom-collector="set | find \"AMPLXE\"" -- notepad.exe
Linux:

vtune -collect-with runsa -custom-collector="set | find \"AMPLXE\"" -- my_app

See Also
Use a Custom Collector
 in GUI

vtune Command Syntax

vtune Actions

data-limit
Limit the amount of raw data (in MB) to be collected.

GUI Equivalent

Configure Analysis window > WHAT tab > Result size from collection start, MB option

Syntax

-data-limit=<integer>

Arguments

<integer> Size of collected data (in MB)

Default

<integer> The default limit of collected data is set to 500 MB.

Actions Modified

collect, collect-with

Description

Use the data-limit action-option to limit the amount of raw data (in MB) to be collected. Zero data limit
means no limit for data collection.

 1 Intel® VTune™ Profiler User Guide

566

Alternate Options

ring-buffer Limit the amount of raw data (in sec) to be collected.

Example
Perform a Hotspots analysis and limit the size of collected data to 200MB.

vtune -collect hotspots -data-limit=200 myApp

See Also
Limit Data Collection

ring-buffer
 action-option

vtune Command Syntax

vtune Actions

discard-raw-data
Specify removal of raw collector data after finalization.

GUI Equivalent

Pane: Options - General

Syntax

-discard-raw-data
-no-discard-raw-data

Default

no-discard-raw-data Raw collector data is saved unless you specify the discard-raw-data option.

Actions Modified

collect, collect-with, finalize, import

Description

Use the discard-raw-data action-option if you want to remove raw collector data after the result is
finalized. This makes the result files smaller.

NOTE
Keeping raw data enables result re-finalization. Do not use this option if you want to re-
finalize the results in the future.

Example
This example runs the Hotspots analysis for the sample Linux* application, generates a default summary
report, and removes raw collector data.

vtune -collect hotspots -discard-raw-data -- /home/test/sample

Intel® VTune™ Profiler User Guide 1

567

See Also
Finalization

vtune Command Syntax

vtune Actions

duration
Specify the duration for collection (in seconds).

GUI Equivalent

Configure Analysis window > WHAT pane > Advanced section > Automatically stop collection after
option

Syntax

-duration=<value>

Arguments

unlimited Collection duration is unbounded.

<seconds> The duration in seconds.

Default

unlimited

Actions Modified

collect, collect-with

Description

The duration option is required for system-wide collection, and specifies the duration for collection (in
seconds). System-wide collection occurs when the target is not specified on the command line when
collection is initiated. It also can be used with when the target is specified, but you want to set a specific
duration for data collection.

Example
This command performs system-wide collection of Hotspots for 20 seconds.

vtune -collect hotspots -knob sampling-mode=hw -duration=20
In this example, the sample target on Linux* is specified for a Threading analysis, but collection is limited to
60 seconds in duration.

vtune -collect threading -duration=60 -- /home/test/sample

See Also
Manage Analysis Duration from Command Line

vtune Command Syntax

vtune Actions

 1 Intel® VTune™ Profiler User Guide

568

filter
Specify which data to include or exclude.

GUI Equivalent

Toolbar: Filter

Syntax

-filter <column_name> [= | !=]<value>

Arguments

Argument Description

<column_name> Column to which this filter will apply.

<value> Program unit name to be filtered in or out.

Actions Modified

report

Description

Use the filter option to include or exclude data from a report based on the specified column_name, the =
or != operator, and the value for that column.

To display a list of available filter attributes for a particular report, use vtune -report <report_name> -r
<result_dir> filter=? option. If you do not specify a result directory, the latest result is used by default.

Examples
Generate a hotspots report on Linux* from the specified hotspots result that only includes data from the
appname process. Data from other processes is excluded. This report is sent to stdout.

vtune -report hotspots -filter process=appname -result-dir /temp/test/r001hs
Generate a hotspots report from the most recent hotspots for all modules except foo, and save it as a text
file in the specified directory on Windows*.

vtune -R hotspots -filter module!=foo -report-output C:\Test\report.txt
Obtain a list of filters available for the hw-events report for a Microarchitecture Exploration analysis result on
Linux:

vtune -report hw-events -r /temp/test/r029ue/r029ue filter=?
vtune: Using result path '/temp/test/r029ue/r029ue'

Available values for '-filter' option are:
basic-block : Basic Block
basic-block-only : Basic Block
function-only : Function
function-mangled : Function
module : Module
module-path : Module Path
process : Process
thread-id : TID
process-id : PID
source-file : Source File
source-line : Source Line

Intel® VTune™ Profiler User Guide 1

569

source-file-path : Source File Path
thread : Thread
function-callstack : Function
function-parent-callstack : Function
callstack : Call Stack
callstack-address : Call Stack
no-attr-callstack : Call Stack
cpuid : Logical Core
address : Code Location
function-start-address : Start Address
function : Function
source-function : Source Function
package : Package

See Also
Filter and Group Command Line Reports
 from CLI

group-by
 action-option

vtune Command Syntax

vtune Actions

finalization-mode
Perform full finalization, fast finalization, deferred
finalization or skip finalization.

GUI Equivalent

Configure Analysis window > WHAT pane > Advanced section > Select finalization mode option

Syntax

finalization-mode=<value>

Arguments

full Perform full finalization on the target system.

fast Reduce the number of loaded samples to speed up post-processing.

deferred Only calculate the binary checksums for finalization on another
machine.

none Skip finalization.

Default

fast vtune performs fast finalization with the reduced number of loaded samples.

Actions Modified

collect,collect-with,import,finalize

Description

Use the finalization-mode option with the collect, collect-with, import, and finalize commands
to define the finalization mode for the result.

 1 Intel® VTune™ Profiler User Guide

570

Use the full finalization mode to perform the finalization on unchanged sampling data on the target system.
This mode takes the most time and resources to complete, but produces the most accurate results.

Use the fast finalization mode to perform the finalization on the target system using algorithmically reduced
sampling data. This greatly reduces the finalization time with a negligible impact on accuracy in most cases.
If you discover inaccuracies in your finalization, you can always use the finalize action with the full
finalization mode to re-finalize the result in full mode.

Use the deferred finalization mode to collect the sampling data and the binary checksums to perform the
finalization on another machine. After data collection completes, you can finalize and open the analysis result
on the host system. This mode may be useful for profiling applications on targets with limited computational
resources, such as IoT devices, and finalizing the result later on the host machine.

NOTE
To have binaries successfully resolved during finalization, ensure that the host system has access to
the binaries.

Use the none option to skip finalization entirely and to not collect the binary checksums. You can also finalize
this result later, however, you may encounter certain limitations. For example, if the binaries on the target
system have changed or have become unavailable since the sampling data collection, binary resolution may
produce an inaccurate or missing result for the affected binary.

You can always repeat the finalization process in a different mode using the finalize action.

Example
The following command starts the Hotspots analysis on Windows and only calculates the binary checksums
for finalization on another machine.

vtune -collect hotspots -knob sampling-mode=hw -finalization-mode=deferred -- C:\test\myApp.exe

See Also
Intel® Xeon Phi™ Processor Targets

finalize
 option

Run Command Line Analysis

Finalization

vtune Actions

vtune Command Syntax

finalize
Perform symbol resolution to finalize or re-resolve a
result.

GUI Equivalent

Configure Analysis tab >

Re-resolve button

Intel® VTune™ Profiler User Guide 1

571

Syntax

-finalize -result-dir <PATH>
-I -result-dir <PATH>

Arguments

The finalize action must be used with the result-dir action-option, which passes in the PATH/name of
the result directory.

Default

Result finalization is performed automatically as part of the collection process.

Modifiers

call-stack-mode, discard-raw-data, inline-mode, quiet, result-dir, search-dir, verbose

Description

Use the finalize action when you need to finalize an un-finalized or improperly finalized result in the
directory specified by the result-dir action-option. Use GUI tools to change search directories settings, or
use the search-dir action-option with the finalize action to re-finalize the result and update symbol
information.

Normally, finalization is performed automatically as part of a collect or import action. However, you may
need to re-finalize a result if:

• Finalization was suppressed during collection or importation, for example when the
-finalization-mode=none action-option was specified for a collect or collect-with action.

• Re-resolve a result that was not properly finalized because some of the source or symbol files were
missing. When viewed in the GUI or reports, the word [Unknown] commonly appears.

Example
In this example, finalization is suppressed when generating a Hotspots analysis result r001hs on Linux*.

vtune -collect hotspots -finalization-mode=none -result-dir /tmp/test/r001hs
Finalize the unfinalized Hotspots analysis result r001hs created previously.

vtune -finalize -result-dir /tmp/test/r001hs
Re-finalize a Hotspots analysis result r004hs, specifying search directories for symbol files.

vtune -finalize -search-dir /home/foo/system_modules -result-dir /tmp/test/r001hs

See Also
Finalization

vtune Command Syntax

vtune Actions

format
Specify output format for report.

Syntax

-format <value>

 1 Intel® VTune™ Profiler User Guide

572

Arguments

<value> Description

text Text output format. File extension is .txt.

csv CSV output format. File extension is .csv. Must be used with csv-
delimiter option.

xml XML output format. File extension is .xml. Available for summary report
only.

html HTML output format. File extension is .html. Available for summary report
only.

Default

text

Actions Modified

report

Description

Use the format action-option to specify output format for report. To print to a file, use this with the report-
output option. If you choose csv, you must also use the csv-delimiter option to specify the delimiter, such as
comma.

NOTE
XML and HTML formats are available for the summary report only.

Example
Generate a Hotspots report in CSV file format using a comma delimiter and save it as MyReport.csv in the
current working directory.

vtune -report hotspots -report-output MyReport.csv -format csv -csv-delimiter comma

See Also
vtune Command Syntax

vtune Actions

group-by
Specify grouping in a report.

GUI Equivalent

Bottom-up tab > Grouping drop-down menu

Syntax

-group-by <granularity1>,<granularity2>

Intel® VTune™ Profiler User Guide 1

573

Arguments

Argument Description

<granularity> Grouping level that depends on the report type.

Default

Varies by report; function is the most common default.

Actions Modified

report

Description

Use the group-by action-option to group data in your report by your specified criteria. For multiple grouping
levels, add arguments separated by commas (no spaces).

NOTE
For some reports (for example, top-down report) you can specify only a single grouping
level.

To display a list of available groupings for a particular report, type: vtune -report <report_name> -r
<result_dir> group-by=?. If you do not specify a result directory, the latest result is used by default.

NOTE
The function value groups the result data both by function and by module. To group just by
the function, use function-only.

Example
Output a hotspots report for the latest result with data grouped by module:

vtune -report hotspots -group-by module
Output a hotspots report for the latest result with data grouped by thread and function:

vtune -report hotspots -group-by thread,function
Display all available hotspots report groupings for a Hotspots analysis result on Linux*:

vtune -R hotspots -r /temp/test/r029hs/r029hs group-by=?
vtune: Using result path '/temp/test/r029hs/r029hs'

Available values for '-group-by' option are:

basic-block : Basic Block
function : Function
function-mangled : Function
module : Module
module-path : Module Path
process : Process
thread-id : TID
process-id : PID
source-file : Source File
source-line : Source Line

 1 Intel® VTune™ Profiler User Guide

574

source-file-path : Source File Path
thread : Thread
callstack : Call Stack
cpuid : Logical Core
address : Code Location
function-start-address : Start Address
source-function : Source Function
package : Package
source-function-stack : Source Function Stack
core : Physical Core
class : Class
cacheline : Cacheline
data-address : Data Address
tasks-and-interrupts : Task and Interrupt
context : Context
vcore : VCore
The following items can be specified only as the final grouping level: callstack, source-
function-stack.

See Also
Save and Format Command Line Reports

Filter and Group Command Line Reports
 from CLI

filter

Group and Filter Data
 from GUI

vtune Command Syntax

vtune Actions

help
Display brief explanations of command line
arguments.

Syntax

-h, -help
-help <action>
-help collect <analysis_type>
-help collect-with <collector_type>
-help report <report_type>

Arguments

Argument Description

None List available action options for which help is available.

<action> Output a help message for the specified action.

Intel® VTune™ Profiler User Guide 1

575

Description

Use the help action to access help for the vtune command. The help for each action includes explanations
and usage examples.

Below is a list of available actions:

help, version, import, finalize, report, collect, collect-with, command

Examples
Display all available vtune actions.

vtune -help
Display help for the collect action, including all available options.

vtune -help collect
This example displays help for the threading analysis type, including knobs that are available on your
system.

vtune -help collect threading
Display help for the hotspots report, including value for the group-by action-option.

vtune -help report hotspots
See Also
Get Help

vtune Command Syntax

vtune Actions

import
Import one or more collection data files/directories.

GUI Equivalent

VTune Profiler menu > Import Result...

Syntax

-import <PATH>

Arguments

A string containing the PATH of the data files to import. To import several files, make sure to use the import
option for each path.

Modifiers

call-stack-mode, discard-raw-data, inline-mode, result-dir, search-dir, user-data-dir

Description

Use the import action to import one or more collection data files into the VTune Profiler. You may import the
following formats:

• .tb6 or .tb7 with event-based sampling data. To import the files, use the -result-dir option and
specify the name for a new directory you want to create for the imported data. If you do not use the -
result-dir option, the VTune Profiler creates a new directory with the default name.

 1 Intel® VTune™ Profiler User Guide

576

• .perf files with event-based sampling data collected by Linux* Perf tool. To ensure accurate data
representation in the VTune Profiler, make sure to run the Perf collection with the predefined command
line options:

• For application analysis:

perf record -o <trace_file_name>.perf --call-graph dwarf -e cpu-
cycles,instructions <application_to_launch>

• For process analysis:

perf record -o <trace_file_name>.perf --call-graph dwarf -e cpu-
cycles,instructions <application_to_launch> -p <PID> sleep 15

where the -e option is used to specify a list of events to collect as -e <list of events>; --call-
graph option (optional) configures samples to be collected together with the thread call stack at the
moment a sample is taken. See Linux Perf documentation on possible call stack collection options (for
example, dwarf) and its availability in different OS kernel versions.

NOTE
The Linux kernel exposes Perf API to the Perf tool starting from version 2.6.31. Any attempts to run
the Perf tool on kernels prior to this version lead to undefined results or even crashes. See Linux Perf
documentation for more details.

• To import a csv file , use the -result-dir option and specify the name of an existing directory of the
result that was collected by the VTune Profiler in parallel with the external data collection. VTune Profiler
adds the externally collected statistics to the result and provides integrated data in the Timeline pane.

NOTE
Importing a csv file to the VTune Profiler result does not affect symbol resolution in the result. For
example, you can safely import a csv file to a result located on a system where module and debug
information is not available.

• *.pwr processed Intel SoC Watch files with energy analysis data

Example
This example imports the sample_data.tb7 file into a VTune Profiler project and creates the result directory
r000hs:

vtune –import sample_data.tb7 –result-dir r000hs
This example imports a trace file collected with the Linux Perf tool into a VTune Profiler project and creates a
default result directory r000 (since no result directory is specified from the command line):

vtune -import perf_trace.perf

See Also
vtune Command Syntax

vtune Actions

Import Results and Traces into VTune Profiler GUI
 in GUI

inline-mode
Exclude/include inline functions in the stack.

Intel® VTune™ Profiler User Guide 1

577

GUI Equivalent

Toolbar: Filter > Inline Mode menu

Syntax

-inline-mode off | on

Default

on Inline functions are included in the stack.

Actions Modified

collect, finalize, import, report

Description

Use inline-mode off with the collect, finalize or import actions if you want to exclude inline functions
from the stack in results. You can also use this with the report action to exclude inline functions from
reports.

By default, this option is enabled so that performance details for all inline functions used in the application
are included in the stack in results and reports.

NOTE
This option is available if information about inline functions is available in debug information
generated by compilers. See View Data on Inline Functions for supported compilers and
options.

Example
Generate a hotspots report with inline mode disabled.

vtune –report hotspots -inline-mode off

See Also
View Data on Inline Functions
 from GUI

vtune Command Syntax

vtune Actions

knob
Set configuration options for the specified analysis
type or collector type.

GUI Equivalent

Configure Analysiswindow > HOW pane

Syntax

-knob | -k <knob-name>=<knob-value>

 1 Intel® VTune™ Profiler User Guide

578

Arguments

knob-name An analysis type or collector type may have one or more configuration
options (knobs) that provide additional instructions for performing the
specified type of analysis. To use a knob, you must specify the knob
name and knob value.

Multiple knob options are allowed and can be followed by additional
action-options, as well as global-options, if needed.

knob-value There are values available for each knob. In most cases this is a
Boolean value, so for Boolean knobs, specify <knob-name>=true to
enable the knob.

NOTE
Knob behavior may vary depending on the analysis type or collector type.

<knob-name> Description

accurate-cpu-time-
detection=true | false
(Windows only)

Default: true

Collect more accurate CPU time data. This option requires additional disk
space and post-processing time. Administrator privileges are required.

Supported analysis: runss

analyze-loops=true |
false
Default: false

Extend loop analysis to collect advanced loops information such as
instruction set usage and display analysis results by loops and functions.

Supported analysis: runss, runsa

analyze-mem-
objects=true | false
Default: false

Enable the instrumentation of memory allocation/de-allocation and map
hardware events to memory objects. This option is supported only for
Linux targets which run on the Intel microarchitectures code named
Haswell (or newer).

Supported analysis: memory-access

analyze-openmp=true |
false
Default: true for the HPC
Performance
Characterization analysis;
false for other analysis
types.

Instrument the OpenMP* runtimes in your application to group
performance data by regions/work-sharing constructs and detect
inefficiencies such as imbalance, lock contention, or overhead on
performing scheduling, reduction, and atomic operations. Using this option
may cause higher overhead and increase the result size.

Supported analysis: hotspots, threading, hpc-performance, memory-
access, uarch-exploration, runsa

analyze-persistent-
memory=true | false
Default: false

Collect performance information for Intel® Optane™ Persistent Memory
modules.

Supported analysis: platform-profiler

analyze-power-
usage=true | false
Default: false

Collect information about energy consumed by CPU, DRAM, and discrete
GPU.

Supported analysis: gpu-hotspots,gpu-offload

Intel® VTune™ Profiler User Guide 1

579

<knob-name> Description

analyze-throttling-
reasons=true | false
Default: false

Collect information about factors that cause the CPU to throttle.

Supported analysis: system-overview

analyze-xelink-
usage=true | false
Default: false

Collect information about data traffic between GPU interconnects (Xe Link)
in multi-GPU analysis.

Supported analysis: gpu-hotspots,gpu-offload

atrace-config=<event>
Available events are gfx,
input, view, webview,
wm, am, audio, video,
camera, hal, res,
dalvik.

Collect Android framework events from Systrace*.

Supported analysis: runsa

characterization-
mode=overview | global-
local-accesses |
compute-extended |
full-compute |
instruction-count
Default: overview

Monitor the Render and GPGPU engine usage (Intel Graphics only), identify
which parts of the engine are loaded, and correlate GPU and CPU data.

The Characterization mode uses platform-specific presets of the GPU
metrics. All presets, except for the instruction-count, collect data
about execution units (EUs) activity: EU Array Active, EU Array Stalled, EU
Array Idle, Computing Threads Started, and Core Frequency; and each one
introduces additional metrics:

• overview metric set includes additional metrics that track general GPU
memory accesses such as Memory Read/Write Bandwidth, GPU L3
Misses, Sampler Busy, Sampler Is Bottleneck, and GPU Memory Texture
Read Bandwidth. These metrics can be useful for both graphics and
compute-intensive applications.

• global-local-accesses metric group includes additional metrics that
distinguish accessing different types of data on a GPU: Untyped
Memory Read/Write Bandwidth, Typed Memory Read/Write
Transactions, SLM Read/Write Bandwidth, Render/GPGPU Command
Streamer Loaded, and GPU EU Array Usage. These metrics are useful
for compute-intensive workloads on the GPU.

• compute-extended metric group includes additional metrics targeted
only for GPU analysis on the Intel processor code name Broadwell and
higher. For other systems, this preset is not available.

• full-compute metric group is a combination of the overview and
global-local-accesses event sets.

• instruction-count metric group counts the execution frequency of
specific classes of instructions.

Supported analysis: gpu-hotspots, graphics-rendering, runsa

chipset-event-
config="event1,event2 ,.
.."

Specify a comma-separated list of Android chipset events (up to 5 events)
to monitor with the hardware event-based sampling collector.

Supported analysis: runsa

source-analysis=bb-
latency | mem-latency

Collect data on performance-critical basic blocks and issues caused by
memory accesses in the GPU kernels. Choose one of the following modes:

 1 Intel® VTune™ Profiler User Guide

580

<knob-name> Description

Default value: bb-latency • bb-latency mode helps you identify issues caused by algorithm
inefficiencies. In this mode, VTune Profiler measures the execution time
of all basic blocks. Basic block is a straight-line code sequence that has
a single entry point at the beginning of the sequence and a single exit
point at the end of this sequence. During post-processing, VTune
Profiler calculates the execution time for each instruction in the basic
block. So, this mode helps understand which operations are more
expensive.

• mem-latency mode helps identify latency issues caused by memory
accesses. In this mode, VTune Profiler profiles memory read/
synchronization instructions to estimate their impact on the kernel
execution time. Consider using this option, if you ran the gpu-
hotspots analysis in the Characterization mode, identified that the
GPU kernel is throughput or memory-bound, and want to explore which
memory read/synchronization instructions from the same basic block
take more time.

Supported analysis: gpu-hotspots

collect-bad-
speculation=true |
false
Default value: true

Collect the minimum set of data required to compute top-level metrics and
all Bad Speculation sub-metrics.

Supported analysis: uarch-exploration, runsa

collect-core-bound=true
| false
Default: false

Collect the minimum set of data required to compute top-level metrics and
all Core Bound sub-metrics.

Supported analysis: uarch-exploration, runsa

collect-frontend-
bound=true | false
Default value: true

Collect the minimum set of data required to compute top-level metrics and
all Front-End Bound sub-metrics.

Supported analysis: uarch-exploration, runsa

collect-cpu-gpu-
bandwidth=true | false
Default: false

Collect DRAM bandwidth data for all hosts. Additionally, collect PCIe
bandwidth for supported server hosts (Intel® micro-architectures code
named Ice Lake and Sapphire Rapids). To view collected data in GUI,
enable the Analyze CPU host-GPU bandwidth option.

Supported analysis:gpu-offload

collect-cpu-gpu-pci-
bandwidth=true | false
Default: false

Collect PCIe bandwidth for supported server hosts (Intel® micro-
architectures code named Ice Lake and Sapphire Rapids). This knob is
available for custom analyses only. To view collected data in GUI, enable
the Analyze CPU host-GPU bandwidth option.

Supported analysis:runsa

collect-io-waits=true |
false
Default: false

Analyze the percentage of time each thread and CPU spends in I/O wait
state.

Supported analysis: runsa

collect-memory-
bandwidth=true | false

Collect data to identify where your application is generating significant
bandwidth to DRAM. To view collected data in GUI, enable the Analyze
memory bandwidth option.

Intel® VTune™ Profiler User Guide 1

581

<knob-name> Description

Default: depends on analysis
type

Supported analysis: performance-snapshot, uarch-exploration,
hpc-performance, gpu-hotspots,runsa

collect-memory-
bound=true | false
Default value: true

Collect the minimum set of data required to compute top-level metrics and
all Memory Bound sub-metrics.

Supported analysis: uarch-exploration, hpc-performance

collect-programming-
api=true | false
Default for gpu-hotspots:
true, for runss: false.

Analyze execution of SYCL apps, OpenCL™ kernels and Intel® Media SDK
programs on Intel HD Graphics and Intel® Iris® Graphics. This option may
affect the performance of your application on the CPU side.

Supported analysis: gpu-hotspots, gpu-offload, runsa

collect-retiring=true |
false
Default value: true

Collect the minimum set of data required to compute top-level metrics and
all Retiring sub-metrics.

Supported analysis: uarch-exploration, runsa

collecting-mode=hw-
tracing | hw-tracing
Default value: hw-sampling

Specify the system-wide collection mode to either explore CPU, GPU, and
I/O resources utilization with the default event-based sampling mode, or
enable the low-overhead hardware tracing and identify a root cause of
latency issues.

Supported analysis: system-overview, runsa

computing-task-of-
interest=computing_task
_name[#start_idx#step#s
top_idx]

Specify a comma-separated list of GPU computing task names and
invocations. Use a search string, if necessary (* and . are supported).
Invocations happen in this format:
computing_task_name[#start_idx#step#stop_idx] Default
value:*#1#1#4294967295
• computing_task_name is the name of the GPU computing task

(default value is *);
• start_idx is the number of the first invocation to be profiled (default

value is 1);
• step_idx is the number of the step idx invocation (default value is 1);
• stop_idx is the number of the last invocation to be profiled (default

value is 4294967295, UNIT_MAX)

Supported analysis: gpu-hotspots, runsa

counting-mode=true |
false
Default: false

Choose between collecting detailed context data for each PMU event (such
as code or hardware context) or the counts of events. Counting mode
introduces less overhead but gives less information.

Supported analysis: runsa

cpu-samples-mode=off |
stack | nostack
Default: false

Enable to periodically sample the application. Samples can be collected
with or without stacks.

Supported analysis: runss

dpdk=true | false
Default: false

Profile DPDK IO API.

Supported analysis: io

 1 Intel® VTune™ Profiler User Guide

582

<knob-name> Description

dram-bandwidth-
limits=true | false
Default: true for the HPC
Performance
Characterization and
Microarchitecture
Exploration analysis with
collect-memory-
bandwidth knob enabled;
true for the Memory Access
and Microarchitecture
Exploration analysis.

Evaluate maximum achievable local DRAM bandwidth before the collection
starts. This data is used to scale bandwidth metrics on the timeline and
calculate thresholds.

Supported analysis: performance-snapshot, memory-access, uarch-
exploration, hpc-performance, runsa

enable-
characterization-
insights=true | false

Get additional performance insights such as the efficiency of hardware
usage, and learn next steps.

Supported analysis: gpu-offload

enable-context-
switches=true | false
Default: false

Analyze detailed scheduling layout for all threads in your application,
explore time spent on a context switch and identify the nature of context
switches for a thread (preemption or synchronization).

Supported analysis: runsa

enable-driverless-
collection=true | false
Default: false

Enable driverless Linux Perf collection when possible.

Supported analysis: runsa

enable-gpu-usage=true |
false
Default: false

Analyze frame rate and usage of Intel HD Graphics and Intel® Iris®
Graphics engines and identify whether your application is GPU or CPU
bound.

Supported analysis: runss, runsa

enable-interrupt-
collection=true | false
Default: false

Collect interrupt events that alter a normal execution flow of a program.
Such events can be generated by hardware devices or by CPUs. Use this
data to identify slow interrupts that affect your code performance.

Supported analysis: system-overview.

enable-parallel-fs-
collection=true | false
Default: false

Analyze Lustre* file system performance statistics, including Bandwidth,
Package Rate, Average Packet Size, and others.

Supported analysis: runsa

enable-stack-
collection=true | false
Default: false

Enable Hardware Event-based Sampling Collection with Stacks.

Supported analysis: hotspots, hpc-performance, gpu-offload, runsa

enable-system-
cswitch=true | false
Default: false

Analyze detailed scheduling layout for all threads on the system and
identify the nature of context switches for a thread (preemption or
synchronization).

Supported analysis: runsa

Intel® VTune™ Profiler User Guide 1

583

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

<knob-name> Description

enable-thread-
affinity=true | false
Default: false

Analyze thread pinning to sockets, physical cores, and logical cores.
Identify incorrect affinity that utilizes logical cores instead of physical cores
and contributes to poor physical CPU utilization.

NOTE
Affinity information is collected at the end of the thread lifetime, so the
resulting data may not show the whole issue for dynamic affinity that is
changed during the thread lifetime.

enable-user-sync=true |
false
Default: false

Collect synchronization data via the User-Defined Synchronization API.

Supported analysis: threading, runss

enable-user-tasks=true
| false
Default: false

Analyze tasks, events and counters specified in your application via the
Task API. This option causes higher overhead and increases result size.

Supported analysis: hotspots, threading, uarch-exploration, runss,
runsa

event-
config=<event_name1>,<e
vent_name2>,...

Configure PMU events to collect with the hardware event-based sampling
collector. Multiple events can be specified as a comma-separated list (no
spaces).

NOTE
To display a list of events available on the target PMU, enter:

vtune -collect-with runsa -knob event-config=? <target>
The command returns names and short descriptions of available
events. For more information on the events, use Intel Processor
Events Reference.

Supported analysis: runsa

event-mode=all | user |
os
Default: all

Limit event-based sampling collection to OS or USER mode.

Supported analysis: runsa

ftrace-
config=<event_name>
Available events are freq,
idle, sched, disk,
filesystem, irq, kvm,
workq, softirq, sync.

Default for Linux targets:
sched,freq,idle,workq,i
rq,softirq

Collect Linux Ftrace* framework events.

• This option is supported for Linux target systems only.
• On some systems, Linux Ftrace events collection is possible only for the

root user.

Supported analysis: runsa, runss

 1 Intel® VTune™ Profiler User Guide

584

https://download.01.org/perfmon/
https://download.01.org/perfmon/

<knob-name> Description

Default for Android targets:
sched,freq,idle,workq,f
ilesystem,
irq,softirq,sync,disk

gpu-sampling-
interval=<number>
between 0.1 and 1000ms

Default: 1.

Specify an interval between GPU samples (in milliseconds).

Supported analysis: gpu-hotspots, graphics-rendering, runss, runsa

io-mode=off | stack |
nostack
Default: off

Enable to identify where threads are waiting or compute thread
concurrency. The collector instruments APIs, which causes higher
overhead and increases result size.

Supported analysis: runss, runsa

ipt-regions-to-
load=<number> between 10
and 5000

Default: 1000

Specify the maximum number (10-5000) of code regions to load for
detailed analysis.

Supported analysis: anomaly-detection

kernel-stack=true |
false
Default: true

Profile system disk IO API.

Supported analysis: io

max-region-
duration=<number>
between 0.001 and 1000 ms

Default: 100

Specify the maximum duration (0.001-1000ms) of analysis per code
region.

Supported analysis: anomaly-detection

mem-object-size-min-
thres=<number>
Default: 1024 bytes

Specify a minimal size of memory allocations to analyze. This option helps
reduce runtime overhead of the instrumentation.

This option is supported only for Linux targets which run on Intel
microarchitectures code named Haswell (or later).

Supported analysis: memory-access

metrics_set=NOC
Default: NOC

Specify the type of metrics set to collect.

Supported analysis: npu

mrte-type=java,dotnet |
java,dotnet,python |
python
Default: java,dotnet

Specify a type of managed runtime to analyze. Available values:
combined .NET* and Java* analysis, combined Java, .NET and Python*
analysis, and Python only.

Supported analysis: runss, runsa

no-altstack=true |
false
Default: false

Disable using alternative stacks for signal handlers. Consider this option
for profiling standard Python 3 code on Linux.

Supported analysis: runss

Intel® VTune™ Profiler User Guide 1

585

<knob-name> Description

pmu-collection-
mode=detailed | summary
Default: detailed

Choose the detailed sampling-based collection mode to view data
breakdown per function and other hotspots. Use the summary counting-
based mode for an overview of the whole profiling run. This mode has a
lower collection overhead and fast post-processing time.

Supported analysis: uarch-exploration

profiling-
mode=characterization
(default), code-level-
analysis, query-based,
time-based

Select a profiling mode for these analyses:

• GPU Compute/Media Hotspots analysis: Characterize GPU
performance issues based on GPU hardware metric presets

• Custom analysis: Enable a source analysis to identify basic blocks
latency due to algorithm inefficiencies or memory latency due to
memory access issues

• NPU Exploration analysis: Select a data collection mode (time-based
or query-based)

Supported analysis: gpu-hotspots, runsa, npu

sampling-
interval=<number>
For user-mode sampling and
tracing types: a number (in
milliseconds) between 1 and
1000. Default: 10

For hardware event-based
sampling types: a number
(in milliseconds) between
0.01 and 1000. Default: 1.

For NPU exploration: a
number (in milliseconds)
between 0.1 and 1000.

Specify a sampling interval (in milliseconds) between CPU samples. For
NPU Exploration analysis, specify the sampling interval for data collection
in time-based mode.

Supported analysis: hotspots,runss, threading, ,runsa, system-
overview, memory-access, hpc-performance, npu

sampling-mode=sw | hw
Default: sw

Specify a profiling mode.

Use sw to identify CPU hotspots and explore a call flow of your program.
This mode does not require sampling drivers to be installed but incurs
more collection overhead.

Use hw to identify application hotspots based on such basic hardware
events as Clockticks and Instructions Retired. This is a low-overhead
collection mode but it requires the sampling driver to be installed on your
system.

Supported analysis: hotspots, threading

signals-mode=off |
objects | stack |
nostack
Default: off

Enable to view synchronization transitions in the timeline and signalling
call stacks for associated waits. The collector instruments signalling APIs,
which causes higher overhead and increases result size.

Supported analysis: runss

spdk=true | false
Default: false

Profile SPDK IO API.

Supported analysis: io

 1 Intel® VTune™ Profiler User Guide

586

<knob-name> Description

stack-size=<number>
A number between 0 and
2147483647. Default is 0
(unlimited stack size).

Reduce the collection overhead and limit the stack size (in bytes)
processed by the VTune Profiler.

Supported analysis: runsa

stack-stitching=true |
false
Default: true

For Intel® oneAPI Threading Building Blocks(oneTBB)-based applications,
restructure the call flow to attach stacks to a point introducing a parallel
workload.

Supported analysis: runss

stack-type=software |
lbr
Default: software

Choose between software stack and hardware LBR-based stack types.
Software stacks have no depth limitations and provide more data while
hardware stacks introduce less overhead. Typically, software stack type is
recommended unless the collection overhead becomes significant. Note
that hardware LBR stack type may not be available on all platforms.

Supported analysis: runsa

stackwalk-mode=online |
offline
Default: offline

Choose between online (during collection) and offline (after collection)
modes to analyze stacks. Offline mode reduces analysis overhead and is
typically recommended.

Supported analysis: runss

target-gpu=
<domain:bus:device.func
tion>
Default: The newest GPU
architecture that VTune
Profiler can detect

Select a target GPU for profiling when you have multiple GPUs connected
to your system. If unset, VTune Profiler selects the newest GPU
architecture it can detect.

Example: target-gpu=0:0:2.0
Supported analysis: gpu-offload, gpu-hotspots

uncore-sampling-
interval=<number>
For hardware event-based
sampling types: a number
(in milliseconds) between 1
and 1000. Default: 10.

Specify an interval (in milliseconds) between uncore event samples.

Supported analysis: runsa

waits-mode=off | stack
| nostack
Default: off

Enable to identify where threads are waiting or compute thread
concurrency. The collector instruments APIs, which causes higher
overhead and increases result size.

Supported analysis: runss

Actions Modified

collect, collect-with

Description

Use the knob action-option to configure knob settings for a collect (predefined analysis types) or
collect-with (custom analysis types) action where the analysis type supports one or more knobs. Each
analysis type or collector type supports a specific set of knobs, and each knob requires a value. In most
cases the knob value is Boolean, so you would use True to enable the knob.

Intel® VTune™ Profiler User Guide 1

587

To see all knobs available for a predefined analysis type:

vtune -help collect <analysis_type>
To see knobs for a custom analysis type:

vtune -help collect-with <analysis_type>

Example
This example returns a list of knobs for the Threading analysis type:

vtune -help collect threading
This example runs a custom event-based sampling data collection on an Android system enabling collection
of Android framework and chipset events.

vtune -collect-with runss -target-system=android -knob sampling-interval=2 -knob cpu-samples-
mode=stack -knob ftrace-config=gfx,dalvik -knob chipset-event-
config="GMCH_PARTIAL_WR_DRAM.ANY,GMCH_CORE_CLKS" --target-process com.intel.tbb.example.tachyon

This example configures and runs a custom event-based sampling data collection with the stack size limited
to 8192 bytes:

vtune -collect-with runsa -knob enable-stack-collection=true -knob stack-size=8192 -knob enable-
call-counts=true -knob event-config=CPU_CLK_UNHALTED.REF_TSC:sa=1800000,CPU_CLK_UNHALTED

See Also
Custom Analysis Options
 in GUI

Analyze Performance
 from GUI

API Support

vtune Command Syntax

vtune Actions

kvm-guest-kallsyms
Specify a local path to the /proc/kallsyms file
copied from the guest system.

GUI Equivalent

Guest OS /proc/kallsyms option in the WHAT pane

Syntax

-kvm-guest-kallsyms=<string>

Arguments

A string containing the PATH, for example: /home/<user>/[guest]/<kvm kallsyms path>.

Actions Modified

collect, collect-with

Description

Specify a local path to the /proc/kallsyms file copied from the guest OS for proper finalization.

 1 Intel® VTune™ Profiler User Guide

588

Example
Enable a custom hardware event-based sampling collection for the KVM guest OS and collect irq, softirq,
workq, and kvm FTrace* events:

vtune -collect-with runsa -knob event-
config=CPU_CLK_UNHALTED.REF_TSC:sa=3500000,CPU_CLK_UNHALTED.THREAD:sa=3500000,INST_RETIRED.ANY:sa
=3500000 –knob enable-stack-collection=true -knob ftrace-config=irq,softirq,workq,kvm -analyze-
kvm-guest -kvm-guest-kallsyms=/home/vtune/[guest]/kvm.kallsyms -kvm-guest-modules=/home/vtune/
[guest]/kvm.modules --search-dir sym:p=/home/vtune/ --target-pid 9791

See Also
Profile KVM Kernel and User Space on the KVM System
 from GUI

Targets in Virtualized Environments

Profile Targets on a KVM* Guest System

knob
ftrace-config

kvm-guest-modules

analyze-kvm-guest

vtune Actions

vtune Command Syntax

kvm-guest-modules
Specify a local path to the /proc/modules file copied
from the guest system.

GUI Equivalent

Guest OS /proc/modules option in the WHAT pane

Syntax

-kvm-guest-modules=<string>

Arguments

A string containing the PATH, for example: /home/<user>/<guest mount path>/<kvm modules path>.

Actions Modified

collect, collect-with

Description

Specify a local path to the /proc/modules file copied from the guest OS for proper finalization.

Intel® VTune™ Profiler User Guide 1

589

Example
Enable a custom hardware event-based sampling collection for the KVM guest OS mounted to the /home/
vtune/guest_mount directory:

vtune -collect-with runsa -knob event-
config=CPU_CLK_UNHALTED.REF_TSC:sa=3500000,CPU_CLK_UNHALTED.THREAD:sa=3500000,INST_RETIRED.ANY:sa
=3500000 –knob enable-stack-collection=true -knob ftrace-config=irq,softirq,workq,kvm-analyze-
kvm-guest -kvm-guest-kallsyms=/home/vtune/guest_mount/kvm.kallsyms -kvm-guest-modules=/home/
vtune/guest_mount/kvm.modules --search-dir sym:p=/home/vtune/ --target-pid 9791

See Also
Profile KVM Kernel and User Space on the KVM System
 from GUI

Targets in Virtualized Environments

Profile Targets on a KVM* Guest System

knob
ftrace-config

analyze-kvm-guest

kvm-guest-kallsyms

vtune Actions

vtune Command Syntax

limit
Set the number of top items to include in a report.

Syntax

-limit <value>

Arguments

<value> Number of items to output

Default

Unlimited lines in output

Actions Modified

report

Description

Use the limit action-option when you only want to include the top items in a report, and specify the number
of items (program units) to include.

Example
Output a Hotspots report on the ten modules with the highest CPU time values.

vtune -report hotspots -limit 10 -group-by module

 1 Intel® VTune™ Profiler User Guide

590

See Also
vtune Command Syntax

vtune Actions

loop-mode
Show or hide loops in the stack.

IDE Equivalent

Toolbar: Filter > Loop Mode drop-down menu

Syntax

loop-mode=<value>

Arguments

loop-only Display loops as regular nodes in the tree. Loop name consists of:

• start address of the loop
• number of the code line where this loop is created
• name of the function where this loop is created

loop-and-function Display both loops and functions as separate nodes.

function-only Display data by function with no loop information (default mode).

Default

function-only vtune reports show no loop data.

Actions Modified

report

Description

Use the loop-mode option when performing data collection, finalization or importation, to set loop view for
the result or report. You can also use this option with the report action to override the project-level setting
for viewing a hierarchy of the loops in your application call tree.

Example
This command displays the data collected during the Hotspots analysis in the callstack report that is filtered
to show loops only:

vtune -R callstacks -loop-mode=loop-only
Function Function Stack Module
CPU Time:Self
-------------------------------------- --------------------------------------
------------ ------------
[Outside any loop]
[Unknown] 0.009

[Loop@0x7dea03b7 in func@0x7dea0392]
ntdll.dll 0.002
 [Loop@0x7dea03a6 in func@0x7dea0392]

Intel® VTune™ Profiler User Guide 1

591

ntdll.dll 0.002
 [Outside any loop]
[Unknown] 0

[Loop@0x1400147f0 in func@0x140014782]
mfeapfk.sys 0.001
 [Outside any loop]
[Unknown] 0.001

[Loop@0x14001a111 in func@0x14001a0c0]
mfeapfk.sys 0.001
 [Loop@0x14001a100 in func@0x14001a0c0]
mfeapfk.sys 0.001
 [Outside any loop]
[Unknown] 0

[Loop@0x1402d0329 in func@0x1402d02af]
ntoskrnl.exe 0.001
 [Outside any loop]
[Unknown] 0.001

See Also
Analyze Loops

Run Command Line Analysis

mrte-mode
Specify managed profiling mode for Java*, Python*,
Go*, .NET*, and Windows* Store applications.

GUI Equivalent

Configure Analysis window >WHAT pane > Managed code profiling mode option

Syntax

-mrte-mode <value>

Arguments

<value> Profiling mode for the managed code. Possible values are:

• auto - Automatically detects the type of target executable, managed or
native, and switches to the corresponding mode.

• native - Collects data on native code only, does not attribute data to
managed source.

• mixed - Collects data on both native and managed code, and attributes
data to managed source where appropriate. Consider using this option
when analyzing a native executable that makes calls to the managed
code.

• managed - Collects data on both native and managed code, resolves
samples attributed to native code, attributes data to managed source
only. The call stack in the analysis result displays data for managed code
only.

 1 Intel® VTune™ Profiler User Guide

592

Default

auto Mode is set automatically based on detected target type (executable, managed or
native).

Actions Modified

collect, collect-with

Description

Use the mrte-mode option to specify one of the following Microsoft* run-time environment profiling modes:
auto, native, mixed, or managed.

Example
Collect hotspots data on native code only for a Windows sample application:

vtune -collect hotspots -mrte-mode native -- C:\test\sample.exe

See Also
Managed Code Targets
 in GUI

Java* Code Analysis from the Command Line

vtune Command Syntax

vtune Actions

no-follow-child
Specify whether child processes are included in
collection results.

GUI Equivalent

Configure Analysis window > WHAT pane> Analyze child processes options

Syntax

-no-follow-child
-follow-child

Default

The default is -follow-child, so that child processes are included in the collect action.

Actions Modified

collect

Description

Use the no-follow-child action-option when you want to exclude child processes from collect action
data collection and analysis. This option is recommended when profiling an application launched by a script.

Intel® VTune™ Profiler User Guide 1

593

Example
In this example, only the myApp Linux* application will be profiled. No information will be collected about any
child processes initiated by myApp.

vtune -collect hotspots -no-follow-child myApp -- /home/test/sample

See Also
Run Command Line Analysis

vtune Command Syntax

vtune Actions

no-summary
Suppress summary report generation.

GUI Equivalent

Window: Summary - Hotspots

Syntax

-no-summary
-summary

Default

A Summary report is generated and sent to stdout after performing a collect or collect-with action.

Actions Modified

collect

Description

When performing certain actions, such as collect or collect-with, a Summary is generated and sent to stdout
by default. To suppress this, use the no-summary option when performing data collection. This can save time
and system resources when analyzing large applications.

Example
This example runs the Hotspots analysis for the sample application without generating a summary report.

On Windows*:

vtune -collect hotspots -no-summary -- C:\test\sample.exe
On Linux*:

vtune -collect hotspots -no-summary -- /home/test/sample

See Also
report
 option

Summary Report

vtune Command Syntax

vtune Actions

 1 Intel® VTune™ Profiler User Guide

594

Generate Command Line Reports

no-unplugged-mode
Enable collection from an unplugged Android* device
to exclude ADB connection and power impact on the
results .

GUI Equivalent

Analyze detached device option in the WHAT: Analysis Target pane

Syntax

-no-unplugged-mode
-unplugged-mode

Actions Modified

collect, collect-with

Description

The unplugged-mode option enables collection on an unplugged Android device to exclude ADB connection
and power supply impact on the results. When this option is used, you configure and launch an analysis from
the host but data collection starts after disconnecting the device from the USB cable or a network. Collection
results are automatically transferred to the host as soon as you plug in the device back.

Example
This command configures Hotspots analysis for the application on an Android system that will be launched
after disconnecting the device from the USB cable or a network:

host>./vtune --collect hotspots --target-system=android -unplugged-mode -r quadrant_r@@@ --
target-process com.intel.fluid

See Also
Android* Target Analysis from the Command Line

vtune Command Syntax

vtune Actions

quiet
Limit the amount of information displayed by vtune.

Syntax

-quiet
-q

Default

OFF Standard amount of information is output.

Intel® VTune™ Profiler User Guide 1

595

Actions Modified

collect, finalize, report, version

Description

Use the quiet option to limit the amount of information displayed by vtune. Only error, fatal error, and
warning messages are displayed when this option is used.

Example
This example suppresses unimportant messages while running the Hotspots analysis of the Linux* sample
application and generating the default summary report.

vtune -collect hotspots -quiet -- /home/test/sample

See Also
vtune Actions

vtune Command Syntax

report
Generate a specified type of report from an analysis
result.

GUI Equivalent

Viewpoint

Syntax

-report <report_name>
-R <report_name>

Arguments

Argument Description

<report_name> Type of report to create.

affinity Display binding of a thread to a range of sockets, physical, and
logical cores.

callstacks Report full stack data for each hotspot function; identify the impact
of each stack on the function CPU or Wait time. You can use the
group-by or filter options to sort the data by:

• callstack
• function
• function-callstack

exec-query

gprof-cc Report a call tree with the time (CPU and Wait time, if available)
spent in each function and its children.

hotspots Display collected performance metrics according to the selected
analysis type and identify program units that took the most CPU
time (hotspots).

 1 Intel® VTune™ Profiler User Guide

596

hw-events Display the total number of hardware events.

platform-power-analysis Display CPU sleep time, wake-up reasons and CPU frequency scaling
time.

summary Report on the overall performance of your target.

timeline Display metric data over time and distributed over time intervals.

top-down Report call sequences (stacks) detected during collection phase,
starting from the application root (usually, the main() function). Use
this report to see the impact of program units together with their
callees.

vectspots Display statistics that help identify code regions to tracing on a HW
simulator.

Modifiers

call-stack-mode, csv-delimiter, cumulative-threshold-percent, discard-raw-data, filter,
format, group-by, inline-mode, limit, quiet, report-output, result-dir, search-dir,
source-search-dir, source-object, verbose, time-filter, loop-mode, column

Description

Use the report action to generate a report from an existing result. The report type must be compatible with
the analysis type used in the collection.

By default, your report is written to stdout. If you want to save it to a file, use the report-output action-
option.

Both short names and long names are case-sensitive. For example, -R is the short name of the report
action, and -r is the short name of the result-dir action-option.

NOTE
To get the list of available report types, use the vtune -help report command.

To display help for a specific report type, use vtune -help report <report_name>, where
<report_name> is the type of report that you want to create.

Example
In this pair of examples, a collect action is used to perform a hotspots analysis for the Linux* sample
target and write the result to the current working directory. The second command uses the report action to
generate a hotspots report from the most recent result and write it to stdout.

vtune -collect hotspots -- /home/test/sample
vtune -R hotspots

Generate a hotspots report from a hotspots analysis and group data by module.

vtune -R hotspots -result-dir r001hs -group-by module
Open source view with the hotspots performance metrics for the foo function and use the Windows*
C:\test\my_sources directory to search for source files.

vtune -R hotspots -source-object function=foo -r r001hs -source-search-dir C:\test\my_sources

Intel® VTune™ Profiler User Guide 1

597

Write stack information for all functions in the threading analysis result r003tr. The data is grouped by call
stack.

vtune -R callstacks -r r003tr -group-by callstack

See Also
report-output
 option

Save and Format Command Line Reports

Filter and Group Command Line Reports

Generate Command Line Reports

report-knob
Set configuration options for the specified report type.

Syntax

-report-knob<knobName>=<knobValue>

Arguments

<knobName> <knobValue> Supported Report Description

show-issues true | false. Default:
true

summary Skip issue descriptions
in the generated report.

NOTE
This knob is available
only for the HPC
Performance
Characterization analysis
report.

Actions Modified

report

Description

Use the -report-knob action-option to configure knob settings for a report action.

Example
This example generates the summary report for the HPC Performance Characterization analysis result and
skips issue descriptions.

vtune -report summary -r r001hpc -report-knob show-issues=false
vtune: Executing actions 75 % Generating a report
Elapsed Time: 23.182s
GFLOPS: 14.748
CPU Utilization: 58.0%
 Average CPU Usage: 13.920 Out of 24 logical CPUs
 Serial Time: 0.069s (0.3%)
 Parallel Region Time: 23.113s (99.7%)
 Estimated Ideal Time: 14.010s (60.4%)

 1 Intel® VTune™ Profiler User Guide

598

 OpenMP Potential Gain: 9.103s (39.3%)
Memory Bound: 0.446
 Cache Bound: 0.175
 DRAM Bound: 0.216
 NUMA: % of Remote Accesses: 38.3%
FPU Utilization: 2.7%
 GFLOPS: 14.748
 Scalar GFLOPS: 4.801
 Packed GFLOPS: 9.947
Collection and Platform Info
 Application Command Line: ./sp.B.x
 User Name: vtune
 Operating System: 3.10.0-327.el7.x86_64 NAME="Red Hat Enterprise Linux Server" VERSION="7.2
(Maipo)" ID="rhel" ID_LIKE="fedora" VERSION_ID="7.2" P
RETTY_NAME="Red Hat Enterprise Linux Server 7.2 (Maipo)" ANSI_COLOR="0;31" CPE_NAME="cpe:/
o:redhat:enterprise_linux:7.2:GA:server" HOME_URL="https://w
ww.redhat.com/" BUG_REPORT_URL="https://bugzilla.redhat.com/" REDHAT_BUGZILLA_PRODUCT="Red Hat
Enterprise Linux 7" REDHAT_BUGZILLA_PRODUCT_VERSION=7.
2 REDHAT_SUPPORT_PRODUCT="Red Hat Enterprise Linux" REDHAT_SUPPORT_PRODUCT_VERSION="7.2"
 Computer Name: test
 Result Size: 1 GB
 Collection start time: 19:04:30 13/07/2016 UTC
 Collection stop time: 19:04:53 13/07/2016 UTC
 Name: Intel(R) Xeon(R) E5/E7 v2 Processor code named Ivytown
 Frequency: 2.694 GHz
 Logical CPU Count: 24
 CPU
 Name: Intel(R) Xeon(R) E5/E7 v2 Processor code named Ivytown
 Frequency: 2.694 GHz
 Logical CPU Count: 24

This example generates the summary report for the HPC Performance Characterization analysis result and
shows issue descriptions.

vtune -report summary -r r001hpc -report-knob show-issues=true
vtune: Executing actions 75 % Generating a report
Elapsed Time: 23.182s
GFLOPS: 14.748
CPU Utilization: 58.0%
 | The metric value is low, which may signal a poor logical CPU cores
 | utilization caused by load imbalance, threading runtime overhead, contended
 | synchronization, or thread/process underutilization. Explore CPU Utilization
 | sub-metrics to estimate the efficiency of MPI and OpenMP parallelism or run
 | the Threading analysis to identify parallel bottlenecks for other
 | parallel runtimes.
 |
 Average CPU Usage: 13.920 Out of 24 logical CPUs
 Serial Time: 0.069s (0.3%)
 Parallel Region Time: 23.113s (99.7%)
 Estimated Ideal Time: 14.010s (60.4%)
 OpenMP Potential Gain: 9.103s (39.3%)
 | The time wasted on load imbalance or parallel work arrangement is
 | significant and negatively impacts the application performance and
 | scalability. Explore OpenMP regions with the highest metric values.
 | Make sure the workload of the regions is enough and the loop schedule
 | is optimal.
 |
...

Intel® VTune™ Profiler User Guide 1

599

See Also
vtune Command Syntax

vtune Actions

report-output
Write a generated report to a file.

Syntax

-report-output <pathname>

Arguments

Argument Description

<dir> Name of the directory if you are writing multiple report files

<pathname> Directory, filename and extension of a single report file.

Default

The report is written to stdout.

Actions Modified

report

Description

Use the report-output action-option to write a report to a file.

• If the filename includes a file extension, it is used unchanged.
• If the file extension is not included in the filename, the value specified for the format option is used (.txt

for text or .csv for csv).

NOTE
If you specify a .csv file, use the csv-delimiter option to specify which delimiter you want to
use in the report.

Example
This example generates a wait-time report for the r001tr Threading analysis result and saves it in the /
home/text/report.txt file.

vtune -report wait-time -r r001tr -format text -report-output /home/test/report.txt
This example creates a hotspots report from the most recent hotspot result and saves it as a .csv file with
tab delimiters.

vtune -R hotspots -report-output MyReport.csv -format csv -csv-delimiter tab

See Also
vtune Command Syntax

vtune Actions

 1 Intel® VTune™ Profiler User Guide

600

report-width
Set the maximum width for a report

Syntax

-report-width <double>

Arguments

<double> The maximum number of characters per line in a report.

Default

None

Actions Modified

report

Description

If a report is too wide to view or print properly, use the report-width option to limit the number of
characters per line.

Example
Output a hotspots report from the most recent result as a text file with a maximum width of 60 characters
per line.

vtune -report hotspots -report-width 60 -report-output MyHotspotsReport.txt

See Also
vtune Command Syntax

vtune Actions

result-dir
Specify the result directory.

GUI Equivalent

Configure Analysis window > WHAT pane

Syntax

-result-dir <PATH>
-r <PATH>

Arguments

Argument Description

<PATH> The PATH/name of a directory where a result is stored. This may be an
absolute pathname, or a pathname relative to the current working
directory. If the final component of the pathname does not exist, it is
created.

Intel® VTune™ Profiler User Guide 1

601

Default

If not specified, the default result name and directory are used. If not specified for a collect or
collect-with action, a new result directory is created in the current working directory. If not specified
when generating a report, the report uses the highest numbered compatible result in the current working
directory. The default name for a result directory is r@@@{at}, where @@@ is the incremented number of
the result, and {at} is a two- or three-letter abbreviation for the analysis type.

Actions Modified

collect, collect-with, finalize, import, report

Description

Use the result-dir option to specify the result directory. If you specify the result directory for collection or
to import results from other projects, you should also specify the result directory for any actions that use this
result, such as report.. Specifying the result directory when using the finalize action is highly
recommended.

If you want to specify the result directory name, you can use the auto-incremented counter pattern @@@ with
a prefix and/or suffix.

For example, you could use the prefix myResult- and the usual analysis type suffix like this: myResult-
@@@{at}. If you then perform a memory error analysis, followed by a threading error analysis, specifying -
result-dir myResult-@@@{at} each time, the result directories would be assigned the following names:
myResult-000mi1 and myResult-001ti2.

Both short names and long names are case-sensitive. For example, -R is the short name of the report
action, and -r is the short name of the result-dir action-option.

Alternate Options

The user-data-dir global-option can be used to specify the base directory for results. Result directories
created under this base directory would use the default naming conventions unless specified using the
result-dir action-option.

Example
This example starts the Threading analysis of the myApplication application and saves the results in the
baseline result directory.

On Linux*:

vtune -collect threading -result-dir /temp/test/baseline -- /temp/test/myApplication
On Windows*:

vtune -collect threading -result-dir C:\test\baseline -- C:\test\myApplication.exe

See Also
Specify Result Directory from Command Line

Manage Result Files
 from GUI

vtune Command Syntax

vtune Actions

 1 Intel® VTune™ Profiler User Guide

602

resume-after
Resume collection after the specified number of
seconds.

GUI Equivalent

Configure Analysis window > WHAT pane > Advanced section > Automatically resume collection
after option

Syntax

-resume-after <value>

Arguments

Argument Description

<value> The number of seconds that should elapse before data collection is
resumed. Fractions of seconds are possible, for example: 1.56 for 1 sec 560
msec.

Default

OFF Data collection started in the paused mode is not resumed unless this option is
specified or the pause/resume API call in the target code is reached.

Actions Modified

collect

Description

Use the resume-after option with the start-paused option to automatically exit paused mode after the
specified number of seconds has elapsed.

Example
This example starts a Linux* sample application in paused mode and resumes the Hotspots analysis in 5
seconds.

vtune -collect hotspots -resume-after 5 -- /home/test/sample

See Also
vtune Command Syntax

vtune Actions

Pause Data Collection
 in GUI

return-app-exitcode
Return the exit code of the target.

Syntax

-return-app-exitcode

Intel® VTune™ Profiler User Guide 1

603

Default

OFF By default, the vtune exit code is returned.

Actions Modified

collect

Description

Use the return-app-exitcode option to return the exit code of the target rather than the vtune tool.

Example
This example runs the Threading analysis for the sample Linux* application, generates a default summary
report, and returns the exit code of the sample application.

vtune -collect threading -return-app-exitcode -- /home/test/sample

See Also
vtune Command Syntax

vtune Actions

ring-buffer
Limit the amount of raw data to be collected by
setting the timer that enables the analysis only for the
last seconds before the target or collection is
terminated.

GUI Equivalent

Configure Analysis window >WHAT pane > Advanced > Limit collected data by: Time from
collection end, sec option

Syntax

-ring-buffer=<integer>

Arguments

<integer> Timer (in sec)

Actions Modified

collect, collect-with

Description

Use the ring-buffer action-option to limit the amount of raw data to be collected. The option sets the timer
(in sec) that enables the analysis only for the last seconds before the target or collection is terminated.

Alternate Options

data-limit Limit the amount of raw data (in MB) to be collected.

 1 Intel® VTune™ Profiler User Guide

604

Example
Enable a Hotspots analysis for the last 10 seconds before the collection is terminated.

vtune -collect hotspots -ring-buffer=10 myApp

See Also
Limit Data Collection

data-limit
 action-option

vtune Command Syntax

vtune Actions

search-dir
Specify a search directory for binary and symbol files.

GUI Equivalent

Binary/Symbol Search dialog box

Syntax

-search-dir DIR

Arguments

DIR Specify the name of the search directory to add.

Default

Only default search directories are used.

Actions Modified

collect, finalize, import

Description

This option specifies search directories for binary and symbol files. It is often used in conjunction with the
finalize action to re-finalize a result when a symbol file is missed during collection. It is also used if you
import results from another system.

During data collection, the result directory is set as the default search directory for the collected result.

If you import results from another system, specify additional search directories for system modules. To show
correct results, the vtune tool requires the same modules that were used for data collection. To ensure the
Intel® VTune™ Profiler takes the right module, copy the original system modules to your system.

Alternate Options

source-search-dir Specify a search directory for source files.

Intel® VTune™ Profiler User Guide 1

605

Examples
When your source files are in multiple directories, use the search-dir option multiple times so that all the
necessary directories are searched.

vtune -collect hotspots -knob sampling-mode=hw -search-dir /home/my_system_modules -search-dir /
home/other_system_modules -- /home/test/myApplication

This example finalizes the r001hs result searching for symbol files in the C:\Import\system_modules
directory.

vtune -finalize -search-dir C:\Import\system_modules -r C:\Import\r001hs

See Also
source-search-dir
 action-option

vtune Command Syntax

vtune Actions

Search Directories

Finalization

show-as
Specify report values as events, samples, or
percentage.

GUI Equivalent

Context Menu: Grid

Syntax

-show-as samples | events | percent

Arguments

Argument Description

samples Show the total number of samples collected for each event in the
viewpoints provided for the hardware event-based sampling data collection.

events Show the number of times the event occurred during sampling data
collection. VTune Profiler determines this value by applying the following
formula for each event: < Event name > samples * Sample After
value.

percent Show the percentage of samples collected for the event. This value is
calculated using the following formula: (Number of samples collected
for the event/ Total number of samples collected for the event) x
100 .

Default

samples Performance data collected during the hardware event-based analysis are
displayed as samples.

 1 Intel® VTune™ Profiler User Guide

606

Actions Modified

report

Description

Choose the data format for displaying results collected during hardware event-based sampling.

Example
Generate a hardware events report for the result collected during a hotspots analysis and show as a
percentage of events.

vtune -report hw-events -result-dir r001hs -show-as percent

See Also
vtune Actions

vtune Command Syntax

Choose Data Format
 from GUI

Hardware Event-based Sampling Collection

sort-asc
Sort data in ascending order by the specified column
name.

GUI Equivalent

Context Menu: Grid

Syntax

-sort-asc <string>
-s <string>

Arguments

Argument Description

<string> Column name that corresponds to a performance metric or event name.
Multiple values are possible.

Actions Modified

report

Description

Use the sort-asc option with the report action to sort data by the specified column name in ascending
order. Each column name corresponds to a performance metric or event.

You can specify multiple values as a comma-separated string (no spaces).

Alternate Options

Opposite: sort-desc

Intel® VTune™ Profiler User Guide 1

607

Example
This example sorts the data collected in the r001ue result and displayed in the Hardware Events report in
the ascending order by the INST_RETIRED.ANY and CPU_CLK_UNHALTED.CORE event columns.

vtune -r r001ge -report hw-events -sort-asc=INST_RETIRED.ANY,CPU_CLK_UNHALTED.CORE

See Also
Generate Command Line Reports

Reference

sort-desc
Sort data in descending order by the specified column
name.

GUI Equivalent

Context Menu: Grid

Syntax

-sort-desc <string>
-S <string>

Arguments

Argument Description

<string> Column name that corresponds to a performance metric or event name.
Multiple values are possible.

Default

Varies by report.

Actions Modified

report

Description

Use the sort-desc option with the report action to sort data by the specified column name in descending
order. Each column name corresponds to a performance metric or event.

You can specify multiple values as a comma-separated string (no spaces).

Alternate Options

Opposite: sort-asc

Example
Sort the data collected in the r001ue result and displayed in the Hardware Events report in the descending
order by the INST_RETIRED.ANY and CPU_CLK_UNHALTED.CORE event columns.

vtune -r r001ue -report hw-events -sort-desc=INST_RETIRED.ANY,CPU_CLK_UNHALTED.CORE

See Also
Generate Command Line Reports

 1 Intel® VTune™ Profiler User Guide

608

Reference

source-object
Type of source object to display in a report for source
or assembly data.

GUI Equivalent

Context Menus: Source/Assembly Window

Syntax

-source-object <object_type> [=]<value>

Arguments

Argument Description

<object_type> Application unit for which source or assembly data should be
displayed. Possible values are: module, source-file, function.

Actions Modified

report with either hw-events or hotspots report type.

Description

Use the source-object option to switch report to source or assembly view mode, including associated
performance data. To define a particular object, you can specify this option more than once. For example, if
two modules each have a function named foo, VTune Profiler will throw an error unless you specify both the
module and function.

Tip
By default, source view is displayed. Specify group-by address to see disassembly view with
associated performance data.

Examples
Generate a hardware events report that displays source data for the foo function. Since the result directory
is not specified, the most recent hardware analysis result in the current working directory is used.

vtune -report hw-events -source-object function=foo
This example specifies the object as the function foo in module1. This would avoid a conflict if there was a
second function named foo in some other module.

vtune -report hw-events -source-object module=module1 -source-object function=foo
Generate a hardware events report that displays assembly data for the foo function.

vtune -R hw-events -source-object function=foo -group-by address
Generate a hardware events report that displays assembly data grouped by basic block and then address.

vtune -R hw-events -source-object function=foo -group-by basic-block,address

Intel® VTune™ Profiler User Guide 1

609

Generate a hardware events report that displays assembly data grouped by function-range, then basic block,
and then by address.

vtune -R hw-events -source-object function=foo -group-by function-range,basic-block,address

See Also
filter

vtune Command Syntax

vtune Actions

source-search-dir
Specify a search directory for source files.

GUI Equivalent

Dialog Box: Source Search

Syntax

-source-search-dir DIR

Arguments

Argument Description

DIR Specify the name of the search directory to add.

Default

Only default search directories are used.

Actions Modified

report

Description

This option specifies search directories for source files. Use this option to specify the location of source files
required to provide correct source view report with the source-object option.

During data collection, the result directory is set as the default search directory for the collected result.

Alternate Options

search-dir Specify search directories for symbol and binary files.

Example
This command opens the source view with the hotspots performance metrics for the foo function and uses
the directory to search for source files.

vtune -report hotspots -source-object function=foo -r r001hs -source-search-dir /home/my_sources

See Also
search-dir
 action-option

source-object
 action-option

 1 Intel® VTune™ Profiler User Guide

610

vtune Command Syntax

vtune Actions

Search Directories

stack-size
Specify the size of a raw stack (in bytes) to process.

GUI Equivalent

Custom Analysis

Syntax

-stack-size=<value in bytes>

Arguments

Possible <value>: numbers between 0 and 2147483647

Default

0 The stack size is unlimited.

NOTE
For driverless sampling collection, the default value is 1024 bytes.

Actions Modified

collect-with

Description

When you configure a customhardware event-based sampling collection, you may reduce the collection
overhead and limit the stack size (in bytes) processed by the VTune Profiler by using the -stack-size
option.

Example
This example configures and runs a custom event-based sampling data collection with the stack size limited
to 8192 bytes:

vtune -collect-with runsa -knob enable-stack-collection=true -knob stack-size=8192 -knob enable-
call-counts=true -knob event-
config=CPU_CLK_UNHALTED.REF_TSC:sa=1800000,CPU_CLK_UNHALTED.THREAD:sa=1800000,INST_RETIRED.ANY:sa
=1800000 -app-working-dir /home/samples/nqueens_fortran -- /home/samples/nqueens_fortran/
nqueens_parallel

See Also
vtune Command Syntax

vtune Actions

Intel® VTune™ Profiler User Guide 1

611

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

start-paused
Start data collection in the paused mode.

GUI Equivalent

Toolbar: Command

Syntax

-start-paused

Default

OFF Data collection starts without pausing.

Actions Modified

collect with one of the user-mode sampling analysis types

Description

This option starts the data collection in the paused mode.

Collection resumes when pause/resume API calls in the target code are reached, when the command action
is used with the resume argument, or if the resume-after option is used, when the specified time has
elapsed.

Example
This example starts the hotspots analysis of the sample application in the paused mode.

vtune -collect hotspots -start-paused -- /home/test/sample

See Also
resume-after
 option

vtune Command Syntax

vtune Actions

Pause Data Collection
 in GUI

strategy
Specify which processes to analyze.

GUI Equivalent

Configure Analysis window > WHAT pane > Analyze child processes check box > Per-process
Configuration

Syntax

-strategy <process_name1>:<profiling_mode>,<process_name2>:<profiling_mode>,...

Arguments

Argument Description

 1 Intel® VTune™ Profiler User Guide

612

<process_name> The name of the process to which the strategy
configuration applies. If <process_name> is empty,
the strategy configuration applies by default to all
processes for which a profiling strategy is not
specified.

<profiling_mode> The strategy for profiling the specified process.
Possible values are:

Value Description

trace:trace Collect data on the process, and its child processes.

notrace:trace Do not analyze the process, but collect data on its
child processes.

notrace:notrace Ignore the process, and its child processes, while
collecting data.

trace:notrace Analyze the process, but do not collect data on its
child processes.

Default

:trace:trace Analyze both parent and child processes.

Actions Modified

collect, collect-with

Description

Use the strategy action-option to specify which processes to analyze, and which to ignore.

This option is not applicable to hardware event-based analysis types.

Example
This example performs a Hotspots analysis where the strategy configuration limits data collection to the
example process, and ignores its child processes.

vtune -collect hotspots -strategy :notrace:trace,example:trace:notrace /home/test/run_example.sh

See Also
vtune Command Syntax

vtune Actions

Set Up Analysis Target
 from GUI

target-install-dir
Specify a path to the VTune Profiler target package
installed on the remote system.

GUI Equivalent

Configure Analysis window > WHERE pane > Remote Linux (SSH) target system > VTune Profiler
installation directory on the remote system option

Intel® VTune™ Profiler User Guide 1

613

Syntax

-target-install-dir=<string>

Arguments

<string> Path to the product installed on a remote Linux system. If the product
is installed to the default location, this option is configured
automatically.

Default

/opt/intel/vtune_profiler_<version>

Actions Modified

collect, collect-with

Description

VTune Profiler supports command line analysis of applications running on a remote Linux or Android system
(target) using the following product components installed:

• Host: VTune Profiler command line interface (vtune)
• Remote embedded Linux or Android target: target package with data collectors

To enable remote analysis, make sure the path to the VTune Profiler installed on the remote target system is
specified. If you use the default installation directory, the VTune Profiler on the host system automatically
detects the location of the remote components. Otherwise, use the -target-install-dir to specify the
correct path.

Example
This command runs Hotspots analysis with stacks for a Linux application and specifies a path to the remote
version of the VTune Profiler installed to a non-default location:

host>./vtune --target-system=ssh:user1@172.16.254.1 -target-install-dir=/home/vtune_2020.123456 –
collect hotspots -knob sampling-mode=hw -knob enable-stack-collection=true -- /home/samples/
matrix

See Also
Set Up Remote Linux* Target

Collect Data on Remote Linux* Systems from Command Line

vtune Command Syntax

vtune Actions

target-system
Collect data on a remote machine using SSH/ADB
connection.

GUI Equivalent

Configure Analysis window > WHERE pane

Syntax

-target-system=<string>

 1 Intel® VTune™ Profiler User Guide

614

Arguments

<string> Target system for remote collection. Supported values are:

• android:deviceName - for Android* systems, where deviceName
is the name of an Android device connected via ADB.

• ssh:username@hostname[:port] - for Linux* systems, where
you specify a user name, network name of the remote system
accessed via SSH (usually IP address), and a port to connect (if
required).

• get-perf-cmd:pmuName - for Linux* systems. When you specify
the target PMU name, this argument displays on the command line
the parameters for the perf driverless collector for a specific
analysis. To see a list of available PMUs, type:

sep -platform-list
Use this argument when:

• You do not have an SSH connection to the target machine.
• You cannot install VTune Profiler on the target machine, for

security reasons.

NOTE
The Linux Perf* tool (driverless collection) supports complex
event names that contain .:= symbols in v4.18 and newer
versions. For example,

perf record -e cpu/
period=0x98968f,event=0xc7,umask=0x20,name=
\'FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE\'/uk ./a.out

Complex names like this example are not necessary for the Perf
tool itself. You can replace these symbols for a simpler name.

perf record -e cpu/
period=0x98968f,event=0xc7,umask=0x20,name=
\'FP_ARITH_INST_RETIRED_256B_PACKED_SINGLE\'/uk ./a.out

Actions Modified

collect, collect-with

Description

Intel®VTune Profiler enables you to analyze applications running on a remote Linux system or Android device
(target system) using the VTune Profiler command line interface (vtune) installed on the host system
(remote usage mode). Use the target-system option to specify your target system and enable remote data
collection.

For details, see Linux* System Setup for Remote Analysis and Android* System Setup.

Example
This command runs Hotspots analysis in the hardware event-based mode for the application on a Linux
embedded system:

host>./vtune --target-system=ssh:user1@172.16.254.1 –collect hotspots -knob collection-type:hw-
events -- /target-system-path/app

Intel® VTune™ Profiler User Guide 1

615

This example shows a list of available PMU names and the command for driverless collection for a Linux
system:

$sep -platform-list
...
Platform: 111, PMU: skylake_server, Signature: 0x50650, CPU name: Intel(R) Xeon(R) Processor
code named Skylake
...
$ vtune --collect uarch-exploration --target-system=get-perf-cmd:skylake_server

This command runs Hotspots analysis in the user-mode sampling mode for the application on an Android
system:

host>./vtune –-collect hotspots –-target-system=android -r quadrant_r@@@ --target-process
com.intel.fluid

This command runs Hotspots analysis in the hardware event-based mode for the application on an Android
system:

host>./vtune --collect hotspots -knob collection-type:hw-events --target-system=android -r
quadrant_r000 --target-process com.intel.fluid

See Also
Set Up Remote Linux* Target

Android* Targets

Collect Data on Remote Linux* Systems from Command Line

Android* Target Analysis from the Command Line

vtune Command Syntax

vtune Actions

target-tmp-dir
Specify a path to the temporary directory on the
remote system where performance results are
temporarily stored.

GUI Equivalent

Configure Analysis window > WHERE pane > Remote Linux (SSH) target system > Temporary
directory on the remote system option

Syntax

-target-tmp-dir=<string>

Arguments

<string> Path to a directory on the remote Linux system where performance
results are temporarily stored.

Default

/tmp

 1 Intel® VTune™ Profiler User Guide

616

Actions Modified

collect, collect-with

Description

VTune Profiler supports command line analysis of applications running on a remote Linux system (target)
using the following product components installed:

• Host: VTune Profiler command line interface (vtune)
• Remote embedded Linux or Android target: target package with data collectors

When the VTune Profiler collects data remotely, performance data is temporarily saved to the default /tmp
directory on the remote system. If, for some reason, you changed the default temporary directory, make
sure to specify this path with the -target-tmp-dir option.

This command runs Hotspots analysis with stacks for a Linux application and specifies a non-default
temporary location on the remote system:

host>./vtune --target-system=ssh:vtune@10.125.21.170 -target-tmp-dir=/home/tmp –collect hotspots
-knob sampling-mode=hw -knob enable-stack-collection=true -- /home/samples/matrix

See Also
Temporary Directory for Performance Results on Linux* Targets

Set Up Remote Linux* Target

Collect Data on Remote Linux* Systems from Command Line

vtune Command Syntax

vtune Actions

target-duration-type
Adjust the sampling interval for longer-running
targets.

GUI Equivalent

Configure Analysis window > WHAT pane > Duration time estimate option

Syntax

-target-duration-type veryshort | short | medium | long

Arguments

veryshort Target takes less than 1 minute to run.

short Target takes between 1 and 15 minutes to run.

medium Target takes 15 minutes to 3 hours to run.

long Target takes more than 3 hours to run.

Default

short This is appropriate for a target that runs for 1 to 15 minutes.

Intel® VTune™ Profiler User Guide 1

617

Actions Modified

collect, collect-with

Description

If your target runs 15 minutes or longer, or if it runs less than one minute, use the target-duration
action-option to set a different duration type. The collect or collect-with action uses this value to adjust
the sampling interval, which determines how much data is collected. For longer-running targets, the
sampling interval is greater (less frequent) to reduce the amount of collected data. For very short-running
targets, the sampling interval is smaller (more frequent). For hardware event-based analysis types, a
multiplier applies to the configured Sample After value.

NOTE
This option is deprecated. Use the -knob sampling-interval option instead.

Example
Perform a Hotspots analysis using a medium sampling interval that is appropriate for targets with a duration
of 15 minutes to 3 hours.

vtune -collect hotspots -knob sampling-mode=hw -target-duration-type medium -- MyApp

See Also
Manage Analysis Duration from Command Line

Sample After Value

Sampling Interval

vtune Actions

vtune Command Syntax

target-pid
Attach a collection to a running process specified by
the process ID.

GUI Equivalent

Configure Analysis window> WHAT pane > Attach To Process > PID

Syntax

-target-pid <value>

Arguments

ID of process that you want to analyze.

Actions Modified

collect, collect-with

 1 Intel® VTune™ Profiler User Guide

618

Description

Use the target-pid option to attach a collect or collect-with action to a running process specified by
its process ID (pid).

Alternate Options

The target-process option provides the same capabilities, but uses the process name to specify the process.

Example
Attach a hotspots collection to a running process whose ID is 1234.

vtune -collect hotspots -target-pid 1234

See Also
vtune Actions

vtune Command Syntax

target-process
Attach a collection to a running process specified by
the process name.

GUI Equivalent

Configure Analysis window > WHAT pane > Attach To Process > Process name

Syntax

-target-process <string>

Arguments

A string containing the name of the process to profile.

Actions Modified

collect, collect-with

Description

Use the target-process option to attach a collect or collect-with action to a running process specified
by the process name.

Alternate Options

The target-pid option provides the same capabilities, but uses the process ID to specify the process.

Example
In this example, a Hotspots analysis is attached to the myApp process, which is already running on the
system.

vtune -collect hotspots -target-process myApp

See Also
vtune Command Syntax

vtune Actions

Intel® VTune™ Profiler User Guide 1

619

time-filter
Filter reports by a time range.

IDE Equivalent

Pane: Timeline

Syntax

time-filter=<value>

Arguments

<value> Specify filtered time range (in seconds) using format
<begin_time>:<end_time>.

Default

OFF By default, vtune-cl reports display data for the full analysis duration.

Actions Modified

report

Description

Use the time-filter option to filter the report and display data for the specified time range only. For
example, -time-filter=2.3:5.4 reports data collected from 2.3 seconds to 5.4 seconds of Elapsed Time.

Examples
vtune-cl -R hotspots -time-filter=2.3:5.4

See Also
Run Command Line Analysis

vtune Command Syntax

Filter and Group Command Line Reports

trace-mpi
For message passing interface (MPI) analysis ,
configure collectors to determine MPI rank ID in case
of a non-Intel MPI library implementation.

Syntax

-trace-mpi | -no-trace-mpi

Default

-no-trace-mpi

Actions Modified

collect, collect-with

 1 Intel® VTune™ Profiler User Guide

620

Description

Based on the PMI_RANK or PMI_ID MPI analysis environment variable (whichever is set), the VTune Profiler
extends a process name with the captured rank number that is helpful to differentiate ranks in a VTune
Profiler result with multiple ranks. The process naming schema in this case is <process_name> (rank <N>).
Use the -trace-mpi option to enable detecting an MPI rank ID for MPI implementations that do not provide
the environment variable.

Examples
This command runs the Hotspots analysis type (hardware event-based sampling mode) with enabled MPI
rank ID detection.

mpirun -n 4 vtune -result-dir my_result -trace-mpi -collect hotspots -knob sampling-mode=hw -- ./
test.x

See Also
MPI Code Analysis

user-data-dir
Specify the base directory for result paths.

GUI Equivalent

Configure Analysis window > WHAT pane

Syntax

-user-data-dir <PATH>

Arguments

A string containing the PATH/name of the user data directory.

Default

The current working directory.

Actions Modified

collect, finalize, import

Description

Use the user-data-dir action-option with the result-dir action-option when you want to specify a base
directory for results.

Example
This example runs a Threading analysis of the sample Linux application and creates the default-named result
directories under the myresults directory.

vtune -collect threading -user-data-dir /root/intel/myresults -- /home/test/sample

See Also
vtune Command Syntax

vtune Actions

result-dir

Intel® VTune™ Profiler User Guide 1

621

 option
Manage Result Files
 from GUI

verbose
Display detailed information on actions performed by
the vtune tool.

Syntax

-verbose
-v

Default

OFF Standard amount of information is displayed.

Description

Use the verbose option when you want to see detailed information on the actions performed by the vtune
command.

Example
This example displays detailed information while running a Hotspots analysis.

vtune -collect hotspots -verbose -- /home/test/sample

See Also
quiet
 option

vtune Command Syntax

vtune Actions

version
Display version information for the vtune tool.

Syntax

-version
-V

Description

This action displays version information for the Intel® VTune™ Profiler and the vtune command.

Example
This example shows version information for the Intel® VTune™ Profiler and the vtune command.

vtune -version

See Also
vtune Command Syntax

vtune Actions

 1 Intel® VTune™ Profiler User Guide

622

Introduction

Report Problems from Command Line
If the product crashes, you can use the amplxe-feedback command tool to package relevant information
and send a report to the Intel Customer Support Team.

Basic Crash Report Process

1. Create a bug report package using the create-bug-report action and desired options.
2. Use the send-crash-report action to send the report to the Intel Customer Support Team.

Crash Report Actions
Action Argument Description

create-bug-
report <PATH>

Pathname
for the bug
report.

Package the following into a bug report package: product log files,
system information, crash reports for each running product process,
and product installation details.

list-crash-
report None Output a list of existing bug reports.

report-system-
info None Output system information.

send-crash-
report <PATH>

Pathname
for the bug
report.

Email the specified bug/crash report(s) to the Intel Customer
Support Team.

Options for create-bug-report
Option Argument Description

dump-stack <PID>
Process
identifier

Create crash report for process with specified process identifier
(PID) when using create-bug-report.

no-dump None Disable crash reports to conserve system resources.
dump-memory None Use with dump-stack to include crash report for process with

specified process identifier (PID).
no-system-info None Use when creating a report to speed up the bug report creation

process by disabling system information collection.

Examples
This command generates a bug report package and stores it in a compressed file under the name you
specify, such as 001bug.

amplxe-feedback -create-bug-report=001bug
This command creates a list of crash report filenames.

amplxe-feedback -list-crash-report
This command outputs system information so you can provide this information to support.

amplxe-feedback -report-system-info
This command forwards the specified bug report to the Intel Customer Support Team.

amplxe-feedback -send-bug-report=r0001b

Intel® VTune™ Profiler User Guide 1

623

API Support
Intel® VTune™ Profiler supports two kinds of APIs:

• The Instrumentation and Tracing Technology API (ITT API) provided by the Intel®VTune™ Profiler enables
your application to generate and control the collection of trace data during its execution.

• The JIT (Just-In-Time) Profiling API provides functionality to report information about just-in-time
generated code that can be used by performance tools. You need to insert JIT Profiling API calls in the
code generator to report information before JIT-compiled code goes to execution. This information is
collected at runtime and used by tools like Intel® VTune™ Profiler to display performance metrics
associated with JIT-compiled code.

Instrumentation and Tracing Technology APIs

NOTE
The Instrumentation and Tracing Technology API (ITT API) and the Just-in-Time Profiling API (JIT API)
are open source components. Visit the GitHub* repository to access source code and contribute.

The Instrumentation and Tracing Technology API (ITT API) provided by the Intel®VTune™ Profiler enables your
application to generate and control the collection of trace data during its execution.

ITT API has the following features:

• Controls application performance overhead based on the amount of traces that you collect.
• Enables trace collection without recompiling your application.
• Supports applications in C/C++ and Fortran environments on Windows*, Linux*, FreeBSD*, or Android*

systems.
• Supports instrumentation for tracing application code.

To use the APIs, add API calls in your code to designate logical tasks. These markers will help you visualize
the relationship between tasks in your code relative to other CPU and GPU tasks. To see user tasks in your
performance analysis results, enable the Analyze user tasks checkbox in analysis settings.

NOTE
The ITT API is a set of pure C/C++ functions. There are no Java* or .NET* APIs. If you need runtime
environment support, you can use a JNI, or C/C++ function call from the managed code. If the
collector causes significant overhead or data storage, you can pause the analysis to reduce the
overhead.

See Also
Task Analysis

View Instrumentation and Tracing Technology (ITT) API Task Data in Intel® VTune™ Profiler

Basic Usage and Configuration
You can control performance data collection for your application by adding basic instrumentation to your
application and by configuring your environment and your build system to use the instrumentation and
tracing technology (ITT) APIs.

User applications/modules linked to the static ITT API library do not have a runtime dependency on a
dynamic library. Therefore, they can be executed without Intel®VTune™ Profiler.

 1 Intel® VTune™ Profiler User Guide

624

https://github.com/intel/ittapi

To use the ITT APIs, set up your C/C++ or Fortran application using the steps provided in Configuring Your
Build System.

Unicode Support
All API functions that take parameters of type __itt_char follow the Windows OS unicode convention. If
UNICODE is defined when compiling on a Windows OS, __itt_char is wchar_t, otherwise it is char. The
actual function names are suffixed with A for the ASCII APIs and W for the unicode APIs. Both types of
functions are defined in the DLL that implements the API.

Strings that are all ASCII characters are internally equivalent for both the unicode and the ASCII API
versions. For example, the following strings are equivalent:

__itt_sync_createA(addr, "OpenMP Scheduler", "Critical Section", 0);
__itt_sync_createW(addr, L"OpenMP Scheduler", L"Critical Section", 0);

See Also
Minimize ITT API Overhead

Configure Your Build System

Task Analysis

Configure Your Build System

NOTE
ITT API usage is supported on Windows*, Linux*, FreeBSD*, and Android* systems. It is not
supported for QNX* systems.

Before instrumenting your application, you need to configure your build system to be able to reach the API
headers and libraries.

For Windows* and Linux* systems:

• Add <install_dir>/sdk/include to your INCLUDE path for C/C++ applications or
<install_dir>/sdk/[lib32 or lib64] to your INCLUDE path for Fortran applications

• Add <install_dir>/sdk/lib32 to your 32-bit LIBRARIES path
• Add <install_dir>/sdk/lib64 to your 64-bit LIBRARIES path

NOTE
On Linux* systems, you have to link the dl and pthread libraries to enable ITT API functionality. Not
linking these libraries will not prevent your application from running, but no ITT API data will be
collected.

For FreeBSD* systems:

NOTE
Header and library files are available from the vtune_profiler_target_x86_64.tgz FreeBSD target
package. See Set Up FreeBSD* System for more information.

• Add <target-package>/sdk/include to your INCLUDE path for C/C++ applications or
<install_dir>/sdk/[lib32 or lib64] to your INCLUDE path for Fortran applications

• Add <target-package>/sdk/lib64 to your 64-bit LIBRARIES path

Intel® VTune™ Profiler User Guide 1

625

For the Android* system, add the following libraries to your LIBRARIES path depending on your device
architecture:

• Add <install_dir>/target/android_v5_x86_64/lib-x86_64 for the Intel® 64 architecture
• Add <install_dir>/target/android_v5/lib-x86 for the IA-32 architecture
• Add <install_dir>/target/android_arm/lib-arm for the ARM* architecture

<install_dir> is the Intel®VTune™ Profiler installation directory. The default installation path for the VTune
Profiler varies with the product shipment.

NOTE
The ITT API headers, static libraries, and Fortran modules previously located at <install_dir>/
include and <install_dir>/lib32 [64] folders were moved to the <install_dir>/sdk folder
starting the VTune Profiler 2021.1-beta08 release. Copies of these files are retained at their old
locations for backwards compatibility and these copies should not be used for new projects.

Include the ITT API Header or Module in Your Application
For C/C++ Applications

Add the following #include statements to every source file that you want to instrument:

#include <ittnotify.h>
The ittnotify.h header contains definitions of ITT API routines and important macros which provide the
correct logic of API invocation from a user application.

The ITT API is designed to incur almost zero overhead when tracing is disabled. But if you need fully zero
overhead, you can compile out all ITT API calls from your application by defining the
INTEL_NO_ITTNOTIFY_API macro in your project at compile time, either on the compiler command line, or
in your source file, prior to including the ittnotify.h file.

For Fortran Applications

Add the ITTNOTIFY module to your source files with the following source line:

USE ITTNOTIFY

Insert ITT Notifications in Your Application
Insert __itt_* (C/C++) or ITT_* (Fortran) notifications in your source code.

C/C++ example:

__itt_pause();
Fortran example:

CALL ITT_PAUSE()
For more information, see Instrumenting Your Application.

Link the libittnotify.a (Linux*, Android*, FreeBSD*) or libittnotify.lib (Windows*) Static Library to
Your Application
You need to link the static library, libittnotify.a (Linux*, FreeBSD*, Android*) or libittnotify.lib
(Windows*), to your application. If tracing is enabled, this static library loads the ITT API implementation and
forwards ITT API instrumentation data to VTune Profiler. If tracing is disabled, the static library ignores ITT
API calls, causing nearly zero instrumentation overhead.

 1 Intel® VTune™ Profiler User Guide

626

After you instrument your application by adding ITT API calls to your code and link the libittnotify.a
(Linux*, FreeBSD*, Android*) or libittnotify.lib (Windows*) static library, your application will check
the INTEL_LIBITTNOTIFY32 or theINTEL_LIBITTNOTIFY64 environment variable depending on your
application's architecture. If that variable is set, it will load the libraries defined in the variable.

Make sure to set these environment variables for the ittnotify_collector to enable data collection:

On Windows*:

INTEL_LIBITTNOTIFY32=<install-dir>\bin32\runtime\ittnotify_collector.dll
INTEL_LIBITTNOTIFY64=<install-dir>\bin64\runtime\ittnotify_collector.dll
On Linux*:

INTEL_LIBITTNOTIFY32=<install-dir>/lib32/runtime/libittnotify_collector.so
INTEL_LIBITTNOTIFY64=<install-dir>/lib64/runtime/libittnotify_collector.so
On FreeBSD*:

INTEL_LIBITTNOTIFY64=<target-package>/lib64/runtime/libittnotify_collector.so

See Also
Basic Usage and Configuration

Minimizing ITT API Overhead

Attach ITT APIs to a Launched Application

You can use the Intel® VTune™Profiler to attach to a running application instrumented with ITT API. But before
launching the application, make sure to set up the following environment variable for the
ittnotify_collector:

On Windows*:

INTEL_LIBITTNOTIFY32=<install-dir>\bin32\runtime\ittnotify_collector.dll
INTEL_LIBITTNOTIFY64=<install-dir>\bin64\runtime\ittnotify_collector.dll
On Linux*:

INTEL_LIBITTNOTIFY32=<install-dir>/lib32/runtime/libittnotify_collector.so
INTEL_LIBITTNOTIFY64=<install-dir>/lib64/runtime/libittnotify_collector.so
On FreeBSD:

NOTE
Header and library files are available from the vtune_profiler_target_x86_64.tgz FreeBSD target
package. See Set Up FreeBSD* System for more information.

INTEL_LIBITTNOTIFY64=<target-package>/lib64/runtime/libittnotify_collector.so

NOTE
The variables should contain the full path to the library without quotes.

Intel® VTune™ Profiler User Guide 1

627

Example
On Windows:

set INTEL_LIBITTNOTIFY32=C:\Program Files (x86)\Intel\oneAPI\vtune\latest\bin32\runtime
\ittnotify_collector.dll
set INTEL_LIBITTNOTIFY64=C:\Program Files (x86)\Intel\oneAPI\vtune\latest\bin64\runtime
\ittnotify_collector.dll

On Linux:

export INTEL_LIBITTNOTIFY32=/opt/intel/oneapi/vtune/latest/lib32/runtime/
libittnotify_collector.so
export INTEL_LIBITTNOTIFY64=/opt/intel/oneapi/vtune/latest/lib64/runtime/
libittnotify_collector.so

On FreeBSD:

NOTE You may need to change the path to reflect the placement of the FreeBSD target package on
your target system.

setenv INTEL_LIBITTNOTIFY64 /tmp/vtune_profiler_2021.9.0/lib64/runtime/libittnotify_collector.so
After you complete the configuration, you can start the instrumented application in the correct environment
and Intel® VTune™ Profiler will collect user API data even if the application was launched before the VTune
Profiler.

See Also
Set Up Analysis Target

Instrument Your Application

To get the most out of the ITT APIs when collecting performance data with Intel® VTune™ Profiler, you need to
add API calls in your code to designate logical tasks. This will help you visualize the relationship between
tasks in your code, including when they start and end, relative to other CPU and GPU tasks.

At the highest level a task is a logical group of work executing on a specific thread, and may correspond to
any grouping of code within your program that you consider important. You can mark up your code by
identifying the beginning and end of each logical task with __itt_task_begin and __itt_task_end calls.
For example, to track "smoke rendering" separately from "detailed shadows", you should add API tracking
calls to the code modules for these specific features.

To get started, use the following API calls:

• __itt_domain_create() creates a domain required in most ITT API calls. You need to define at least
one domain.

• __itt_string_handle_create() creates string handles for identifying your tasks. String handles are
more efficient for identifying traces than strings.

• __itt_task_begin() marks the beginning of a task.
• __itt_task_end() marks the end of a task.

Example
The following sample shows how four basic ITT API functions are used in a multi threaded application:

• Domain API
• String Handle API
• Task API

 1 Intel® VTune™ Profiler User Guide

628

• Thread Naming API

#include <windows.h>
#include <ittnotify.h>

// Forward declaration of a thread function.
DWORD WINAPI workerthread(LPVOID);
bool g_done = false;
// Create a domain that is visible globally: we will use it in our example.
__itt_domain* domain = __itt_domain_create("Example.Domain.Global");
// Create string handles which associates with the "main" task.
__itt_string_handle* handle_main = __itt_string_handle_create("main");
__itt_string_handle* handle_createthread = __itt_string_handle_create("CreateThread");
void main(int, char* argv[])
{
// Create a task associated with the "main" routine.
__itt_task_begin(domain, __itt_null, __itt_null, handle_main);
// Now we'll create 4 worker threads
for (int i = 0; i < 4; i++)
{
// We might be curious about the cost of CreateThread. We add tracing to do the measurement.
__itt_task_begin(domain, __itt_null, __itt_null, handle_createthread);
::CreateThread(NULL, 0, workerthread, (LPVOID)i, 0, NULL);
__itt_task_end(domain);
}

// Wait a while,...
::Sleep(5000);
g_done = true;
// Mark the end of the main task
__itt_task_end(domain);
}
// Create string handle for the work task.
__itt_string_handle* handle_work = __itt_string_handle_create("work");
DWORD WINAPI workerthread(LPVOID data)
{
// Set the name of this thread so it shows up in the UI as something meaningful
char threadname[32];
wsprintf(threadname, "Worker Thread %d", data);
__itt_thread_set_name(threadname);
// Each worker thread does some number of "work" tasks
while(!g_done)
{
__itt_task_begin(domain, __itt_null, __itt_null, handle_work);
::Sleep(150);
__itt_task_end(domain);
}
return 0;
}

See Also
Basic Usage and Configuration
Domain API
String Handle API
Task API

Intel® VTune™ Profiler User Guide 1

629

Minimize ITT API Overhead

The ITT API overhead and its impact on the overall application performance depends on the amount of
instrumentation code added to the application. When instrumenting an application with ITT API, you should
balance between application performance and the amount of performance data that you need to collect, in
order to minimize API overhead while collecting sufficient performance data.

Follow these guidelines to achieve good balance between overall performance of the instrumented application
and instrumentation detail:

• Instrument only those paths within your application that are important for analysis.
• Create ITT domains and string handles outside the critical paths.
• Filter data collection by different aspects of your application that can be analyzed separately. The

overhead for a disabled API call (thus filtering out the associated call) is always less than 10 clock ticks,
regardless of the API.

Conditional Compilation
For best performance in the release version of your code, use conditional compilation to turn off annotations.
Define the macro INTEL_NO_ITTNOTIFY_API before you include ittnotify.h during compilation to
eliminate all __itt_* functions from your code.

You can also remove the static library from the linking stage by defining this macro.

Usage Example: Using Domains and String Handles
The ITT APIs include a subset of functions which create domains and string handles. These functions always
return identical handles for the same domain names and strings. This requires these functions to perform
string comparisons and table lookups, which can incur serious performance penalties. In addition, the
performance of these functions is proportional to the log of the number of created domains or string handles.
It is best to create domains and string handles at global scope, or during application startup.

The following code section creates two domains in the global scope. You can use these domains to control the
level of detail that is written to the trace file.

 __itt_domain* basic = __itt_domain_create(L"MyFunction.Basic");
 __itt_domain* detailed = __itt_domain_create(L"MyFunction.Detailed");
 // Create string handles at global scope.
 __itt_string_handle* h_my_funcion = __itt_string_handle_create(L"MyFunction");
 void MyFunction(int arg)
 {
 __itt_task_begin(basic, __itt_null, __itt_null, h_my_function);
 Foo(arg);
 FooEx();
 __itt_task_end(basic);
 }
 __itt_string_handle* h_foo = __itt_string_handle_create(L"Foo");
 void Foo(int arg)
 {
 // Skip tracing detailed data if the detailed domain is disabled.
 __itt_task_begin(detailed, __itt_null, __itt_null, h_foo);
 // Do some work here...
 __itt_task_end(detailed);
 }
 __itt_string_handle* h_foo_ex = __itt_string_handle_create(L"FooEx");
 void FooEx()
 {
 // Skip tracing detailed data if the detailed domain is disabled.
 __itt_task_begin(detailed, __itt_null, __itt_null, h_foo_ex);
 // Do some work here...

 1 Intel® VTune™ Profiler User Guide

630

 __itt_task_end(detailed);
 }
 // This is my entry point.
 int main(int argc, char** argv)
 {
 if(argc < 2)
 //Disable detailed domain if we do not need tracing from that in this
 //application run
detailed ->flags = 0;
 MyFunction(atoi(argv[1])); }

See Also
Basic Usage and Configuration

Instrument Your Application

Configure Your Build System

View Instrumentation and Tracing Technology (ITT) API Task Data in Intel® VTune™ Profiler
User task and API data can be visualized in Intel®
VTune™ Profiler performance analysis results.

After you have added basic annotations to your application to control performance data collection, you can
view these annotations in the Intel VTune Profiler timeline. All supported instrumentation and tracing
technology (ITT) API tasks can be visualized in VTune Profiler.

Use the following steps to include ITT API tasks in your performance analysis collection:

1. Click the

(standalone GUI)/

(Visual Studio IDE) Configure Analysis button on the Intel® VTune™ Profiler toolbar.

The Configure Analysis window opens.
2. Set up the analysis target in the WHERE and WHAT panes.
3. From HOW pane, click the

Browse button and select an analysis type. For more information about each analysis type, see
Performance Analysis Setup.

4. Select the Analyze user tasks, events, and counters checkbox to view the API tasks, counters, and
events that you added to your application code.

NOTE
In some cases, the Analyze user tasks, events, and counters checkbox is in the expandable
Details section. To enable the checkbox, use the Copy button at the top of the tab to create an
editable version of the analysis type configuration. For more information, see Custom Analysis .

5. Click the

Start button to run the analysis.

After collection completes, the analysis results appear in a viewpoint specific to the analysis type selected.
The API data collected is available in the following locations:

Intel® VTune™ Profiler User Guide 1

631

• Timeline view: Each API type appears differently on the timeline view. In the example below, the code
was instrumented with the task API, frame API, event API, and collection control API. Tasks appear as
yellow bars on the task thread. Frames appear at the top of the timeline in pink. Events appear on the
appropriate thread as a triangle at the event time. Collection control events span the entire timeline.
Hover over a task, frame, or event to view the type of API task.

• Grid view: Set the Grouping to Task Domain / Task Type / Function / Call Stack or Task Type /
Function / Call Stack to view task data in the grid pane.

• Platform tab: Individual tasks are available in a larger view on the Platform tab. Hover over a task to get
more information.

 1 Intel® VTune™ Profiler User Guide

632

See Also
Instrumentation and Tracing Technology APIs

Basic Usage and Configuration

Instrument Your Application

Task Analysis

Instrumentation and Tracing Technology API Reference
These are the available Instrumentation and Tracing Technology API tools:

Domain API

A domain enables tagging trace data for different modules or libraries in a program. Domains are specified
by unique character strings, for example TBB.Internal.Control.

Each domain is represented by an opaque __itt_domain structure, which you can use to tag each of the ITT
API calls in your code.

You can selectively enable or disable specific domains in your application, in order to filter the subsets of
instrumentation that are collected into the output trace capture file. To disable a domain set its flag field to 0
value. This disables tracing for a particular domain while keeping the rest of the code unmodified. The
overhead of a disabled domain is a single if check.

To create a domain, use the following primitives:

__itt_domain *ITTAPI__itt_domain_create (const char *name)

For a domain name, the URI naming style is recommended, for example,
com.my_company.my_application. The set of domains is expected to be static over the application's
execution time, therefore, there is no mechanism to destroy a domain.

Any domain can be accessed by any thread in the process, regardless of which thread created the domain.
This call is thread-safe.

Parameters of the primitives:

[in] name Name of domain

Intel® VTune™ Profiler User Guide 1

633

Usage Example

#include "ittnotify.h"

__itt_domain* pD = __itt_domain_create(L"My Domain");pD->flags = 0; /* disable domain */

See Also
Basic Usage and Configuration
Instrument Your Application
Minimize ITT API Overhead

String Handle API

Many API calls require names to identify API objects. String handles are pointers to names. They enable
efficient handling of named objects in run time and make collected traces data more compact.

To create and return a handle value that can be associated with a string, use the following
primitive:

__itt_string_handle *ITTAPI__itt_string_handle_create (const char *name)
Consecutive calls to __itt_string_handle_create with the same name return the same value. The set of
string handles is expected to remain static during the application's execution time, therefore, there is no
mechanism to destroy a string handle. Any string handle can be accessed by any thread in the process,
regardless of which thread created the string handle. This call is thread-safe.

Parameters of the primitive:

[in] name The input string

See Also
Basic Usage and Configuration
Minimize ITT API Overhead

Collection Control API

You can use the collection control APIs in your code to control the way the Intel® VTune™Profiler collects data
for applications.

Use This Primitive To Do This

void __itt_pause
(void)

Run the application without collecting data. VTune Profiler reduces the overhead
of collection, by collecting only critical information, such as thread and process
creation.

void __itt_resume
(void)

Resume data collection. VTune Profiler resumes collecting all data.

void __itt_detach
(void)

Detach data collection. VTune Profiler detaches all collectors from all processes.
Your application continues to work but no data is collected for the running
collection.

Pausing the data collection has the following effects:

• Data collection is paused for the whole program, not only within the current thread.
• Some runtime analysis overhead reduction.
• The following APIs are not affected by pausing the data collection:

• Domain API
• String Handle API
• Thread Naming API

• The following APIs are affected by pausing the data collection. Data is not collected for these APIs while in
paused state:

 1 Intel® VTune™ Profiler User Guide

634

• Task API
• Frame API
• Event API
• User-Defined Synchronization API

NOTE
The Pause/Resume API call frequency is about 1Hz for a reasonable rate. Since this operation pauses
and resumes data collection in all processes in the analysis run with the corresponding collection state
notification to GUI, you are not recommended to call it on frequent basis for small workloads. For
small workloads, consider using the Frame APIs.

Usage Example: Focus on Specific Code Section
The pause/resume calls shown in the following code snippet enable you to focus the collection on a specific
section of code, and start the application run with collection paused.

int main(int argc, char* argv[])
{
 // Do initialization work here
 __itt_resume();
 // Do profiling work here
 __itt_pause();
 // Do finalization work here
 return 0;
}

Usage Example: Hide Sections of Code
The pause/resume calls shown in the following code snippet enable you to hide some intensive work that
you are not currently focusing on:

int main(int argc, char* argv[])
{
 // Do work here
 __itt_pause();
 // Do uninteresting work here
 __itt_resume();
 // Do work here
 __itt_detach();
 // Do uninteresting work here
 return 0;
}

See Also
Basic Usage and Configuration

Frame API

View Instrumentation and Tracing Technology (ITT) API Task Data in Intel® VTune™ Profiler

Thread Naming API

By default, each thread in your application is displayed in the timeline track with a default label generated
from the process ID and the thread ID, or with the OS thread name. You can use the Thread Naming API in
your code to give threads meaningful names.

Thread Naming API is a per-thread function that works in all states (paused or resumed).

Intel® VTune™ Profiler User Guide 1

635

To set thread name using a char or Unicode string, use the primitive:

void __itt_thread_set_name (const __itt_char *name)
Parameters of the primitive:

[in] name The thread name

To indicate that this thread should be ignored from analysis:

void __itt_thread_ignore (void)
It does not affect the concurrency of the application. It does not be visible in the Timeline pane.

If the thread name is set multiple times, only the last name is used.

Usage Example
You can use the following thread naming example to give a meaningful name to the thread you wish to focus
on and ignore the service thread.

DWORD WINAPI service_thread(LPVOID lpArg)
{
 __itt_thread_ignore();
 // Do service work here. This thread will not be displayed.
 return 0;
}

DWORD WINAPI thread_function(LPVOID lpArg)
{
 __itt_thread_set_name("My worker thread");
 // Do thread work here
 return 0;
}

int main(int argc, char* argv[])
{
 ...
 CreateThread(NULL, 0, service_thread, NULL, 0, NULL);
 CreateThread(NULL, 0, thread_function, NULL, 0, NULL);
 ...
 return 0;
}

See Also
Basic Usage and Configuration

Task API

A task is a logical unit of work performed by a particular thread. Tasks can nest; thus, tasks typically
correspond to functions, scopes, or a case block in a switch statement. You can use the Task API to assign
tasks to threads.

Task API is a per-thread function that works in resumed state. This function does not work in paused state.

The Task API does not enable a thread to suspend the current task and switch to a different task (task
switching), or move a task to a different thread (task stealing).

A task instance represents a piece of work performed by a particular thread for a period of time. The task is
defined by the bracketing of __itt_task_begin() and __itt_task_end() on the same thread.

 1 Intel® VTune™ Profiler User Guide

636

NOTE
To be able to see user tasks in your results, enable the Analyze user tasks checkbox in analysis
settings.

Task API Functions
Create a task instance on a thread. This becomes the current task instance for that thread. A call to
__itt_task_end() on the same thread ends the current task instance.

void __itt_task_begin (const __itt_domain *domain,__itt_id taskid, __itt_id parentid,
__itt_string_handle *name)
Trace the end of the current task.

void __itt_task_end (const __itt_domain *domain)

ITTAPI__itt_task_* Function Parameters
The following table defines the parameters used in the Task API primitives.

Type Parameter Description

[in] __itt_domain The domain of the task.

[in] __itt_id taskid This is a reserved parameter.

[in] __itt_id parentid This is a reserved parameter.

[in] __itt_string_handle The task string handle.

Enable Task APIs
The following steps are required to begin using task APIs:

1. Include ittnotify.h header.
2. Create domain and string handles for your tasks.
3. Insert task begin and task end marks in your code.
4. Link to libittnotify.lib (Windows*) or libittnotify.a (Linux*).
5. Enable the Analyze user tasks, events, and counters option before profiling. For more information,

see Task Analysis topic.

Usage Example
The following code snippet creates a domain and a couple of tasks at global scope.

#include "ittnotify.h"

void do_foo(double seconds);

__itt_domain* domain = __itt_domain_create("MyTraces.MyDomain");
__itt_string_handle* shMyTask = __itt_string_handle_create("My Task");
__itt_string_handle* shMySubtask = __itt_string_handle_create("My SubTask");

void BeginFrame() {
 __itt_task_begin(domain, __itt_null, __itt_null, shMyTask);
 do_foo(1);
}

Intel® VTune™ Profiler User Guide 1

637

void DoWork() {
 __itt_task_begin(domain, __itt_null, __itt_null, shMySubtask);
 do_foo(1);
 __itt_task_end(domain);
}
void EndFrame() {
 do_foo(1);
 __itt_task_end(domain);
}

int main() {
 BeginFrame();
 DoWork();
 EndFrame();
 return 0;
}

#ifdef _WIN32
#include <ctime>

void do_foo(double seconds) {
 clock_t goal = (clock_t)((double)clock() + seconds * CLOCKS_PER_SEC);
 while (goal > clock());
}
#else
#include <time.h>

#define NSEC 1000000000
#define TYPE long

void do_foo(double sec) {
 struct timespec start_time;
 struct timespec current_time;

 clock_gettime(CLOCK_REALTIME, &start_time);
 while(1) {
 clock_gettime(CLOCK_REALTIME, ¤t_time);
 TYPE cur_nsec=(long)((current_time.tv_sec-start_time.tv_sec-sec)*NSEC +
current_time.tv_nsec - start_time.tv_nsec);
 if(cur_nsec>=0)
 break;
 }
}
#endif

See Also
Basic Usage and Configuration
Minimize ITT API Overhead
Task Analysis

View Instrumentation and Tracing Technology (ITT) API Task Data in Intel® VTune™ Profiler

 1 Intel® VTune™ Profiler User Guide

638

Frame API

Use the frame API to insert calls to the desired places in your code and analyze performance per frame,
where frame is the time period between frame begin and end points. When frames are displayed in
Intel®VTune™ Profiler, they are displayed in a separate track, so they provide a way to visually separate this
data from normal task data.

Frame API is a per-process function that works in resumed state. This function does not work in paused
state.

You can run the frame analysis to:

• Analyze Windows OS game applications that use DirectX* rendering.
• Analyze graphical applications performing repeated calculations.
• Analyze transaction processing on a per transaction basis to discover input cases that cause bad

performance.

Frames represent a series of non-overlapping regions of Elapsed time. Frames are global in nature and not
connected with any specific thread. ITT APIs that enable analyzing code frames and presenting the analysis
data.

Adding Frame API to Your Code

Use This Primitive To Do This

__itt_domain
*ITTAPI__itt_domain_create (const
char *name)

For a domain name, the URI naming style is
recommended, for example,
com.my_company.my_application. The set of domains
is expected to be static over the application's execution
time, therefore, there is no mechanism to destroy a
domain.

Any domain can be accessed by any thread in the
process, regardless of which thread created the domain.
This call is thread-safe.

[in
]

na
me

Name of domain

void __itt_frame_begin_v3(const
__itt_domain *domain, __itt_id *id);

Define the beginning of the frame instance. An
__itt_frame_begin_v3 call must be paired with an
__itt_frame_end_v3 call.

Successive calls to __itt_frame_begin_v3 with the
same ID are ignored until a call to __itt_frame_end_v3
with the same ID.

[in] domain The domain for
this frame
instance

[in] id The instance
ID for this
frame
instance. Can
be NULL, in
which case the
next call to
__itt_frame_

Intel® VTune™ Profiler User Guide 1

639

Use This Primitive To Do This

end_v3_htm"
>__itt_frame_
end_v3 with
NULL as the id
parameter
designates the
end of the
frame.

void __itt_frame_end_v3(const
__itt_domain *domain, __itt_id *id);

Define the end of the frame instance. A
__itt_frame_end_v3 call must be paired with a
__itt_frame_begin_v3 call. The first call to
__itt_frame_end_v3 with a given ID ends the frame.
Successive calls with the same ID are ignored, as are
calls that do not have a matching
__itt_frame_begin_v3 call.

[in] domain The domain for
this frame
instance

[in] id The instance
ID for this
frame
instance, or
NULL for the
current
instance

NOTE
The analysis types based on the hardware event-based sampling collection are limited to 64 distinct
frame domains.

Guidelines for Frame API Usage
• Use the frame API to denote the frame begin point and end point. Consider a frame as the time period

between frame begin and end points.
• VTune Profiler does not attribute the time/samples between __itt_frame_end_v3() and

__itt_frame_begin_v3() to any program unit and displays it as [Unknown] in the viewpoint.
• If there are consecutive __itt_frame_begin_v3 calls in the same domain, treat it as a

__itt_frame_end_v3/__itt_frame_begin_v3 pair.
• Recursive/nested/overlapping frames for the same domain are not allowed.
• The __itt_frame_begin_v3() and __itt_frame_end_v3() calls can be made from different threads.
• The recommended maximum rate for calling the frame API is 1000 frames per second. A higher rate may

result in large product memory consumption and slow finalization.

 1 Intel® VTune™ Profiler User Guide

640

Usage Example
The following example uses the frame API to capture the Elapsed times for the specified code sections.

#include "ittnotify.h"

__itt_domain* pD = __itt_domain_create(L"My Domain");

pD->flags = 1; /* enable domain */

for (int i = 0; i < getItemCount(); ++i)
{
 __itt_frame_begin_v3(pD, NULL);
 do_foo();
 __itt_frame_end_v3(pD, NULL);
}

…

__itt_frame_begin_v3(pD, NULL);
do_foo_1();
__itt_frame_end_v3(pD, NULL);

…

__itt_frame_begin_v3(pD, NULL);
do_foo_2();
__itt_frame_end_v3(pD, NULL);

See Also
Basic Usage and Configuration
Viewing ITT API Task Data in Intel VTune Profiler

Histogram API
Use the Histogram API to define histograms that
display arbitrary data in histogram form in Intel®
VTune™ Profiler.

The Histogram API enables you to define custom histogram graphs in your code to display arbitrary data of
your choice in VTune Profiler.

Histograms can be especially useful for showing statistics that can be split by individual units for cross-
comparison.

For example, you can use this API in your workload to:

• Track load distribution
• Track resource utilization
• Identify oversubscribed or underutilized worker nodes

Any histogram instance can be accessed by any thread in the process, regardless of which thread created the
histogram. The Histogram API call is thread-safe.

NOTE
By default, Histogram API data collection and visualization are available in the Input and Output
analysis only. To see the histogram in the result of other analysis types, create a custom analysis
based on the pre-defined analysis type you are interested in, and enable the Analyze user
histogram checkbox in the custom analysis options.

Intel® VTune™ Profiler User Guide 1

641

Define and Create Histogram
Before creating the histogram, an ITT API Domain must be created. The pointer to this domain is then
passed to the primitive.

The domain name provides a heading for the histogram section on the Summary tab of VTune Profiler result.

One domain can combine any number of histograms. However, the name of the histogram must be unique
within the same domain.

Parameters of the primitives:

[in] domain Domain controlling the call

[in] name Histogram name

[in] x_axis_type Type of X axis data

[in] y_axis_type Type of Y axis data

Primitives:

 1 Intel® VTune™ Profiler User Guide

642

Use This Primitive To Do This

__itt_histogram*
_itt_histogram_create(__itt_domain*
domain, const char* name,
__itt_metadata_type x_axis_type,
__itt_metadata_type y_axis_type);

Create a histogram instance with the specified
domain, name, and data type on Linux* and
Android* OS.

__itt_histogram*
_itt_histogram_createA(__itt_domain*
domain, const char* name,
__itt_metadata_type x_axis_type,
__itt_metadata_type y_axis_type);

Create a histogram instance with the specified
domain, name, and data type on Windows* OS for
ASCII strings (char).

__itt_histogram*
_itt_histogram_createW(__itt_domain*
domain, const wchar_t* name,
__itt_metadata_type x_axis_type,
__itt_metadata_type y_axis_type);

Create a histogram instance with the specified
domain, name, and data type on Windows* OS for
UNICODE strings (wchar_t).

Submit Data to Histogram
Parameters of the primitives:

[in] histogram Histogram instance to submit data to

[in] length Number of elements in submitted axis
data array

[in] x_axis_data Array containing X axis data (may be
NULL).

If x_axis_data is NULL, VTune Profiler
uses the indices of the y_axis_data
array.

[in] y_axis_data Array containing Y axis data.

Primitives:

Use This Primitive To Do This

void
_itt_histogram_submit(__itt_histogram*
histogram, size_t length, void*
x_axis_data, void* y_axis_data);

Submit user statistics for the selected histogram
instance.

Array data for the Y-axis is mapped to array data
for the X-axis, similar to coordinates of a point on a
2D plane.

Data submitted during workload run is summarized
into one common histogram for all calls of this
primitive.

It is recommended to determine an efficient
interval between data submissions to lower
collection overhead.

Intel® VTune™ Profiler User Guide 1

643

Usage Example
The following example creates a histogram to store worker thread statistics:

#include "ittnotify.h"
#include "ittnotify_types.h"

void submit_stats()
{
 // Create domain
 __itt_domain* domain = __itt_domain_create("Histogram statistics domain");

 // Create histogram
 __itt_histogram* histogram = __itt_histogram_create(domain, "Worker TID 13454",
__itt_metadata_u64, __itt_metadata_u64);

 // Fill the statistics arrays with profiling data:
 uint64_t* x_stats, y_stats;
 size_t array_size;
 get_worker_stats(x_stats, y_stats, array_size);

 // Submit histogram statistics:
 __itt_histogram_submit(histogram, array_size, x_stats, y_stats);
}

Basic Usage and Configuration
Domain API

User-Defined Synchronization API

While the Intel®VTune™ Profiler supports a significant portion of the Windows* OS and POSIX* APIs, it is often
useful for you to define your own synchronization constructs. Any specially built constructs that you create
are not normally tracked by the VTune Profiler. However, the VTune Profiler includes the synchronization API
to help you gather statistical information related to user-defined synchronization constructs.

The User-Defined Synchronization API is a per-thread function that works in resumed state. This function
does not work in paused state.

Synchronization constructs may generally be modeled as a series of signals. One thread or many threads
may wait for a signal from another group of threads telling them they may proceed with some action. By
tracking when a thread begins waiting for a signal, and then noting when the signal occurs, the
synchronization API can take a user-defined synchronization object and give you an understanding of your
code. The API uses memory handles along with a set of primitives to gather statistics on the user-defined
synchronization object.

NOTE
The User-Defined Synchronization API works with the Threading analysis type.

• Using User-Defined Synchronization API in Your Code
• Usage Example: User-Defined Spin-Waits
• Usage Example: User-Defined Synchronized Critical Section
• Usage Example: User-Level Synchronized Barrier

Using User-Defined Synchronization API in Your Code
The following table describes the user-defined synchronization API primitives, available for use on Windows*
and Linux* operating systems:

 1 Intel® VTune™ Profiler User Guide

644

Use This Primitive To Do This

void __itt_sync_create (void *addr, const
__itt_char *objtype, const __itt_char
*objname, int attribute)

Register the creation of a sync object using char or
Unicode string.

void __itt_sync_rename (void *addr, const
__itt_char *name)

Assign a name to a sync object using char or
Unicode string, after it was created.

void __itt_sync_destroy (void *addr) Track lifetime of the destroyed object.

void __itt_sync_prepare (void *addr) Enter spin loop on user-defined sync object.

void __itt_sync_cancel (void *addr) Quit spin loop without acquiring spin object.

void __itt_sync_acquired (void *addr) Define successful spin loop completion (sync object
acquired).

void __itt_sync_releasing (void *addr) Start sync object releasing code. This primitive is
called before the lock release call.

Each API call has a single parameter, addr. The address, not the value, is used to differentiate between two
or more distinct custom synchronization objects. Each unique address enables the VTune Profiler to track a
separate custom object. Therefore, to use the same custom object to protect access in different parts of your
code, use the same addr parameter around each.

When properly embedded in your code, the primitives tell the VTune Profiler when the code is attempting to
perform some type of synchronization. Each prepare primitive must be paired with a cancel or acquired
primitive.

Each user-defined synchronization construct may involve any number of synchronization objects. Each
synchronization object must be triggered off of a unique memory handle, which the user-defined
synchronization API uses to track the object. Any number of synchronization objects may be tracked at one
time using the user-defined synchronization API, as long as each object uses a unique memory pointer. You
can think of this as modeling objects similar to the WaitForMultipleObjects function in the Windows* OS
API. You can create more complex synchronization constructs out of a group of synchronization objects;
however, it is not advisable to interlace different user-defined synchronization constructs as this results in
incorrect behavior.

API Usage Tips
The user-defined synchronization API requires proper placement of the primitives within your code.
Appropriate usage of the user-defined synchronization API can be accomplished by following these
guidelines:

• Put a prepare primitive immediately before the code that attempts to obtain access to a synchronization
object.

• Put either a cancel primitive or an acquired primitive immediately after your code is no longer waiting
for a synchronization object.

• The releasing primitive should be used immediately before the code signals that it no longer holds a
synchronization object.

• When using multiple prepare primitives to simulate any construct that waits for multiple objects, the last
individual cancel or acquired primitive on an object related to the group of prepare primitives
determines if the behavior of the construct is a cancel or acquired respectively.

• The time between a prepare primitive and an acquired primitive may be considered impact time

Intel® VTune™ Profiler User Guide 1

645

• The time between a prepare primitive and a cancel primitive is considered blocking time, even though
the processor does not necessarily block.

• Improper use of the user-defined synchronization API results in incorrect statistical data.

Usage Example: User-Defined Spin-Waits
The prepare API indicates to the VTune Profiler that the current thread is about to begin waiting for a signal
on a memory location. This call must occur before you invoke the user synchronization construct. The
prepare API must always be paired with a call to either the acquired or cancel API.

The following code snippet shows the use of the prepare and acquired API used in conjunction with a user-
defined spin-wait construct:

long spin = 1;
. . . .
. . . .
__itt_sync_prepare((void *) &spin);
while(ResourceBusy);
// spin wait;
__itt_sync_acquired((void *) &spin);

Using the cancel API may be applicable to other scenarios where the current thread tests the user
synchronization construct and decides to do something useful instead of waiting for a signal from another
thread. See the following code example:

long spin = 1;
. . . .
. . . .
__itt_sync_prepare((void *) &spin);
while(ResourceBusy)
{
 __itt_sync_cancel((void *) &spin);

 //
 // Do useful work
 //

 //
 // Once done with the useful work, this construct will test the
 // lock variable and try to acquire it again. Before this can
 // be done, a call to the prepare API is required.
 //
 __itt_sync_prepare((void *) &spin);
}
__itt_sync_acquired((void *) &spin);

After you acquire a lock, you must call the releasing API before the current thread releases the lock. The
following example shows how to use the releasing API:

long spin = 1;
. . . .
. . . .
__itt_sync_releasing((void *) &spin);
// Code here should free the resource

 1 Intel® VTune™ Profiler User Guide

646

Usage Example: User-Defined Synchronized Critical Section
The following code snippet shows how to create a critical section construct that can be tracked using the
user-defined synchronization API:

CSEnter()
{
 __itt_sync_prepare((void*) &cs);
 while(LockIsUsed)
 {
 if(LockIsFree)
 {
 // Code to actually acquire the lock goes here
 __itt_sync_acquired((void*) &cs);
 }
 if(timeout)
 {
 __itt_sync_cancel((void*) &cs);
 }
 }
}
CSLeave()
{
if(LockIsMine)
 {
 __itt_sync_releasing((void*) &cs);
 // Code to actually release the lock goes here
 }
}

This simple critical section example demonstrates how to use the user-defined synchronization primitives.
When looking at this example, note the following points:

• Each prepare primitive is paired with an acquired primitive or a cancel primitive.
• The prepare primitive is placed immediately before the user code begins waiting for the user lock.
• The acquired primitive is placed immediately after the user code actually obtains the user lock.
• The releasing primitive is placed before the user code actually releases the user lock. This ensures that

another thread does not call the acquired primitive before the VTune Profiler realizes that this thread has
released the lock.

Usage Example: User-Level Synchronized Barrier
Higher level constructs, such as barriers, are also easy to model using the synchronization API. The following
code snippet shows how to create a barrier construct that can be tracked using the synchronization API:

Barrier()
{
 teamflag = false;
 __itt_sync_releasing((void *) &counter);
 InterlockedIncrement(&counter); // use the atomic increment primitive appropriate to your
OS and compiler

 if(counter == thread count)
 {
 __itt_sync_acquired((void *) &counter);
 __itt_sync_releasing((void *) &teamflag);
 teamflag = true;
 counter = 0;
 }
 else

Intel® VTune™ Profiler User Guide 1

647

 {
 __ itt_sync_prepare((void *) &teamflag);
 Wait for team flag
 __ itt_sync_acquired((void *) &teamflag);
 }
}

When looking at this example, note the following points:

• There are two synchronization objects in this barrier code. The counter object is used to do a gather-like
signaling from all the threads to the final thread indicating that each thread has entered the barrier. Once
the last thread hits the barrier it uses the teamflag object to signal all the other threads that they may
proceed.

• As each thread enters the barrier it calls __itt_sync_releasing to tell the VTune Profiler that it is about
to signal the last thread by incrementing counter

• The last thread to enter the barrier calls __itt_sync_acquired to tell the VTune Profiler that it was
successfully signaled by all the other threads.

• The last thread to enter the barrier calls __itt_sync_releasing to tell the VTune Profiler that it is going
to signal the barrier completion to all the other threads by setting teamflag

• Each thread, except the last, calls the __itt_sync_prepare primitive to tell the VTune Profiler that it is
about to start waiting for the teamflag signal from the last thread.

• Finally, before leaving the barrier, each thread calls the __itt_sync_acquired primitive to tell the VTune
Profiler that it successfully received the end-of-barrier signal.

See Also
Basic Usage and Configuration

Event API

The event API is used to observe when demarcated events occur in your application, or to identify how long it
takes to execute demarcated regions of code. Set annotations in the application to demarcate areas where
events of interest occur. After running analysis, you can see the events marked in the Timeline pane.

Event API is a per-thread function that works in resumed state. This function does not work in paused state.

NOTE

• On Windows* OS platforms you can define Unicode to use a wide character version of APIs that
pass strings. However, these strings are internally converted to ASCII strings.

• On Linux* OS platforms only a single variant of the API exists.

Use This Primitive To Do This

__itt_event __itt_event_create(const
__itt_char *name, int namelen);

Create an event type with the specified name and length.
This API returns a handle to the event type that should
be passed into the following event start and event end
APIs as a parameter. The namelen parameter refers to
the name length in number of characters, not the number
of bytes.

int __itt_event_start(__itt_event
event);

Call this API with your previously created event type
handle to register an instance of the event. Event start
appears in the Timeline pane display as a tick mark.

 1 Intel® VTune™ Profiler User Guide

648

Use This Primitive To Do This

int __itt_event_end(__itt_event
event);

Call this API following a call to __itt_event_start() to
show the event as a tick mark with a duration line from
start to end. If this API is not called, this event appears in
the Timeline pane as a single tick mark.

Guidelines for Event API Usage
• An __itt_event_end() is always matched with the nearest preceding __itt_event_start().

Otherwise, the __itt_event_end() call is matched with the nearest unmatched __itt_event_start()
preceding it. Any intervening events are nested.

• You can nest user events of the same or different type within each other. In the case of nested events, the
time is considered to have been spent only in the most deeply nested user event region.

• You can overlap different ITT API events. In the case of overlapping events the time is considered to have
been spent only in the event region with the later __itt_event_start(). Unmatched
__itt_event_end() calls are ignored.

NOTE
To see events and user tasks in your results, create a custom analysis (based on the pre-defined
analysis you are interested in) and select the Analyze user tasks, events and counters checkbox in
the analysis settings.

Usage Example: Creating and Marking Single Events
The __itt_event_create API returns a new event handle that you can subsequently use to mark user
events with the __itt_event_start API. In this example, two event type handles are created and used to
set the start points for tracking two different types of events.

#include "ittnotify.h"

__itt_event mark_event = __itt_event_create("User Mark", 9);
__itt_event frame_event = __itt_event_create("Frame Completed", 15);
...
__itt_event_start(mark_event);
...
for(int f ; f<number_of_frames ; f++) {
 ...
 __itt_event_start(frame_event);
}

Usage Example: Creating and Marking Event Regions
The __itt_event_start API can be followed by an __itt_event_end API to define an event region, as in
the following example:

#include "ittnotify.h"

__itt_event render_event = __itt_event_create("Rendering Phase", 15);
...
for(int f ; f<number_of_frames ; f++) {
 ...
 do_stuff_for_frame();
 ...
 __itt_event_start(render_event);

Intel® VTune™ Profiler User Guide 1

649

 ...
 do_rendering_for_frame();
 ...
 __itt_event_end(render_event);
 ...
}

See Also
Basic Usage and Configuration

View Instrumentation and Tracing Technology (ITT) API Task Data in Intel® VTune™ Profiler

Counter API

Use the Counter API to observe user-defined global characteristic counters that are unknown to VTune
Profiler. For example, system on a chip (SoC) development benefits from several counters representing
different parts of the SoC to count some hardware characteristics.

Define and create a counter object

Use these primitives:

__itt_counter
__itt_counter_create(const char *name, const char *domain);
__itt_counter_createA(const char *name, const char *domain);
__itt_counter_createW(const wchar_t *name, const wchar_t *domain);
__itt_counter_create_typed (const char *name, const char *domain, __itt_metadata_type
type);
__itt_counter __itt_counter_create_typedA __itt_counter_create_typedA(const char *name,
const char *domain, __itt_metadata_type type)
__itt_counter __itt_counter_create_typedW __itt_counter_create_typedW(const wchar_t
*name, const wchar_t *domain, __itt_metadata_type type)
__itt_counter_create_v3(__itt_domain* domain, const char* name,__itt_metadata_type
type);
A counter name and domain name should be specified. To load a specialized type of data, specify the counter
type. By default the unsigned int64 type is used.

Parameters of the primitives:

[in] domain Counter domain

[in] name Counter name

[in] type Counter type

Increment/decrement a counter value

Use these primitives:

__itt_counter_inc (__itt_counter id);
__itt_counter_inc_delta(__itt_counter id, unsigned long long value);
__itt_counter_dec(__itt_counter id);
__itt_counter_dec_delta(__itt_counter id, unsigned long long value);

 1 Intel® VTune™ Profiler User Guide

650

NOTE
These primitives are applicable to uint64 counters only.

Directly set the counter value

Use:

__itt_counter_set_value(__itt_counter id, void *value_ptr);
__itt_counter_set_value_v3(__itt_counter counter, void *value_ptr);
Parameters of the primitive:

[in] id Counter ID

[in] value_ptr Counter value

Remove an existing counter

Use:

__itt_counter_destroy(__itt_counter id);

Usage Example
This example creates a counter that measures temperature and memory usage metrics:

#include "ittnotify.h"

__itt_counter temperatureCounter = __itt_counter_create("Temperature", "Domain");
__itt_counter memoryUsageCounter = __itt_counter_create("Memory Usage", "Domain");
unsigned __int64 temperature;

while (...)
{
 ...
 temperature = getTemperature();
 __itt_counter_set_value(temperatureCounter, &temperature);

 __itt_counter_inc_delta(memoryUsageCounter, getAllocatedMemSize());
 __itt_counter_dec_delta(memoryUsageCounter, getDeallocatedMemSize());
 ...
}

__itt_counter_destroy(temperatureCounter);
__itt_counter_destroy(memoryUsageCounter);

See Also
Basic Usage and Configuration

Context Metadata API

Use context metadata to collect counter-based metrics and attribute them to hardware topology like:

• PCIe devices
• Block devices
• CPU cores
• Threads

With the Context Metadata API, you can define custom counters in your code with special attributes. You can
also get a set of metrics for the collected data in any classical form of data representation in Intel® VTune™
Profiler.

Availability:

Intel® VTune™ Profiler User Guide 1

651

By default, the Context Metadata API for data collection and visualization is available in the Input and Output
analysis only.

To see this data when running other analysis types,

1. Create a custom analysis based on the predefined analysis type of your interest.
2. In custom analysis options, enable the Analyze all ITT API user data checkbox.

Define and create a counter object

Use this structure to store context metadata:

__itt_context_metadata
{
 __itt_context_type type; /*!< Type of the context metadata value */
 void* value; /*!< Pointer to context metadata value itself */
}

The structure accepts the following types of context metadata:

__itt_context_type Value Description
__itt_context_name ASCII string char*/ Unicode string

wchar_t* type
The name of the counter-based
metric. This value is required.

__itt_context_device ASCII string char*/ Unicode string
wchar_t* type

Statistics subdomain to break down
the counter samples (for example,
network port ID, disk partition, etc.)

__itt_context_units ASCII string char*/ Unicode string
wchar_t* type

Units of measurement. For
measurement of time, use the
ns/us/ms/s units to correct data
representation in VTune Profiler.

__itt_context_pci_addr ASCII string char*/ Unicode string
wchar_t* type

PCI address of device to associate
with the counter.

__itt_context_tid Unsigned 64-bit integer type Thread ID to associate with the
counter.

__itt_context_bandwidth_flag Unsigned 64-bit integer type (0,1) If this flag is set to 1, calculate
latency histogram and counter/sec
timeline distribution.

__itt_context_latency_flag Unsigned 64-bit integer type (0,1) If this flag is set to 1,calculate the
throughput histogram and
counter/sec timeline distribution.

__itt_context_on_thread_flag Unsigned 64-bit integer type (0,1) If this flag is set to 1, show the
counter on top of the Thread graph
as percentage of the CPU Time
distribution.

Before you associate context metadata with a counter, you should create an ITT API Domain and ITT API
Counter Instances.

The domain name provides a heading for the section of metrics for the counters in the results of VTune
Profiler. A single domain can combine data from any number of counters. However, the name of the counters
must be unique within the same domain.

You can combine different counters under a single metric of the Context Metadata.

Add context information

Once you have created all objects, you can add context information for the selected counters. Use these
primitives:

__itt_bind_context_metadata_to_counter(__itt_counter counter, size_t length,
__itt_context_metadata* metadata);
Parameters of the primitive:

 1 Intel® VTune™ Profiler User Guide

652

Type Parameter Description

[in] __itt_counter counter Pointer to the counter instance
associated with the context
metadata

[in] size_t length Number of elements in the array
of context metadata

[in] __itt_context_metadata*
metadata

Pointer to the array of context
metadata

To create counter instances and submit counter data, use:

 __itt_counter_create_v3(__itt_domain* domain, const char* name, __itt_metadata_type type);
__itt_counter_set_value_v3(__itt_counter counter, void *value_ptr);

Usage Example
This example creates counters with context metadata that measures random read operation metrics for an
SSD NVMe device:

#include "ittnotify.h"
#include "ittnotify_types.h"

// Create domain and counters:
__itt_domain* domain = __itt_domain_create("ITT API collected data");
__itt_counter counter_read_op = __itt_counter_create_v3(domain, "Read Operations",
__itt_metadata_u64);
__itt_counter counter_read_mb = __itt_counter_create_v3(domain, "Read Megabytes",
__itt_metadata_u64);
__itt_counter counter_spin_time = __itt_counter_create_v3(domain, "Spin Time",
__itt_metadata_u64);

// Create context metadata:
__itt_context_metadata metadata_read_op[] = {
 {__itt_context_name, "Reads"},
 {__itt_context_device, "NVMe SSD Intel DC 660p"},
 {__itt_context_units, "Operations"},
 {__itt_context_pci_addr, "0001:10:00.1"},
 {__itt_context_latency_flag, &true_flag}
};
__itt_context_metadata metadata_read_mb[] = {
 {__itt_context_name, "Read"},
 {__itt_context_device, "NVMe SSD Intel DC 660p"},
 {__itt_context_units, "MB"},
 {__itt_context_pci_addr, "0001:10:00.1"},
 {__itt_context_bandwidth_flag, &true_flag}
};
__itt_context_metadata metadata_spin_time[] = {
 {__itt_context_name, "Spin Time"},
 {__itt_context_device, "NVMe SSD Intel DC 660p"},
 {__itt_context_units, "ms"},
 {__itt_context_tid, &thread_id}
};

// Bind context metadata to counters:
__itt_bind_context_metadata_to_counter(counter_read_op, n, metadata_read_op);
__itt_bind_context_metadata_to_counter(counter_read_mb, n, metadata_read_mb);

Intel® VTune™ Profiler User Guide 1

653

__itt_bind_context_metadata_to_counter(counter_spin_time, n, metadata_spin_time);

while(1)
{
 // Get collected data:
 uint64_t read_op = get_user_read_operation_num();
 uint64_t read_mb = get_user_read_megabytes_num();
 uint64_t spin_time = get_user_spin_time();

 // Dump collected data:
 __itt_counter_set_value_v3(counter_read_op, &read_op);
 __itt_counter_set_value_v3(counter_read_mb, &read_mb);
 __itt_counter_set_value_v3(counter_spin_time, &spin_time);
}

See Also
Basic Usage and Configuration
Domain API
Counters API

Load Module API

You can use the Load Module API in your code to analyze a module that was loaded in an alternate location
that cannot otherwise be tracked by Intel VTune Profiler. For example, this would allow you to analyze code
that is typically executed in an isolated environment to which there is no visibility of the code. This API allows
you to explicitly set the module location in an address space for analysis by VTune Profiler.

Use This Primitive To Do This

void __itt_module_loadW
(void* start_addr,void*
end_addr, const wchar_t*
path)

Call this function after the relocation of a module. Provide the new
start and end addresses for the module and the full path to the
module on the local drive.

void
__itt_module_loadA(void*
start_addr, void* end_addr,
const char* path)

Call this function after the relocation of a module. Provide the new
start and end addresses for the module and the full path to the
module on the local drive.

void __itt_module_load(void*
start_addr, void* end_addr,
const char* path)

Call this function after the relocation of a module. Provide the new
start and end addresses for the module and the full path to the
module on the local drive.

Usage Example

#include "ittnotify.h"
__itt_module_load(relocatedBaseModuleAddress, relocatedEndModuleAddress, '/some/path/to/dynamic/
library.so');

See Also
Basic Usage and Configuration
Instrumenting Your Application
Minimizing ITT API Overhead

Memory Allocation APIs

Intel® VTune™ Profiler provides a set of APIs to help it identify the semantics of your malloc-like heap
management functions.

 1 Intel® VTune™ Profiler User Guide

654

Annotating your code with these APIs allows VTune Profiler to correctly determine memory objects as part of
Memory Access Analysis.

Usage Tips
Follow these guidelines when using the memory allocation APIs:

• Create wrapper functions for your routines, and put the __itt_heap_*_begin and __itt_heap_*_end
calls in these functions.

• Allocate a unique domain for each pair of allocate/free functions when calling
__itt_heap_function_create. This allows the VTune Profiler to verify a matching free function is
called for every allocate function call.

• Annotate the beginning and end of every allocate function and free function.
• Call all function pairs from the same stack frame, otherwise the VTune Profiler assumes an exception

occurred and the allocation attempt failed.
• Do not call an end function without first calling the matching begin function.

Using Memory Allocation APIs in Your Code

Use This To Do This

typedef void*
__itt_heap_function;

__itt_heap_function
__itt_heap_function_create(
 const __itt_char* <name>,
 const __itt_char* <domain>);

Declare a handle type to match begin and end calls and
domains.
• name = Name of the function you want to annotate.
• domain = String identifying a matching set of functions. For

example, if there are three functions that all work with
my_struct, such as alloc_my_structs,
free_my_structs, and realloc_my_structs, pass the
same domain to all three
__itt_heap_function_create() calls.

void __itt_heap_allocate_begin(
 __itt_heap_function <h>,
 size_t <size>,
 int <initialized>);

void __itt_heap_allocate_end(
 __itt_heap_function <h>,
 void** <addr>,
 size_t <size>,
 int <initialized>);

Identify allocation functions.

• h = Handle returned when this function's name was passed
to __itt_heap_function_create().

• size = Size in bytes of the requested memory region.
• initialized = Flag indicating if the memory region will be

initialized by this routine.
• addr = Pointer to the address of the memory region this

function has allocated, or 0 if the allocation failed.

void __itt_heap_free_begin(
 __itt_heap_function <h>,
 void* <addr>);

void __itt_heap_free_end(
 __itt_heap_function <h>,
 void* <addr>);

Identify deallocation functions.

• h = Handle returned when this function's name was passed
to __itt_heap_function_create().

• addr = Pointer to the address of the memory region this
function is deallocating.

void __itt_heap_reallocate_begin(
 __itt_heap_function <h>,
 void* <addr>,
 size_t <new_size>,
 int <initialized>);

Identify reallocation functions.

Note that itt_heap_reallocate_end() must be called after
the attempt even if no memory is returned. VTune Profiler
assumes C-runtime realloc semantics.

Intel® VTune™ Profiler User Guide 1

655

Use This To Do This

void __itt_heap_reallocate_end(
 __itt_heap_function <h>,
 void* <addr>,
 void** <new_addr>,
 size_t <new_size>,
 int <initialized>);

• h = Handle returned when this function's name was passed
to __itt_heap_function_create().

• addr = Pointer to the address of the memory region this
function is reallocating. If addr is NULL, the VTune Profiler
treats this as if it is an allocation.

• new_addr = Pointer to a pointer to hold the address of the
reallocated memory region.

• size = Size in bytes of the requested memory region. If
new_size is 0, the VTune Profiler treats this as if it is a
deallocation.

Usage Example: Heap Allocation

#include <ittnotify.h>

void* user_defined_malloc(size_t size);
void user_defined_free(void *p);
void* user_defined_realloc(void *p, size_t s);

__itt_heap_function my_allocator;
__itt_heap_function my_reallocator;
__itt_heap_function my_freer;

void* my_malloc(size_t s)
{
 void* p;

 __itt_heap_allocate_begin(my_allocator, s, 0);
 p = user_defined_malloc(s);
 __itt_heap_allocate_end(my_allocator, &p, s, 0);

 return p;
}

void my_free(void *p)
{
 __itt_heap_free_begin (my_freer, p);
 user_defined_free(p);
 __itt_heap_free_end (my_freer, p);
}

void* my_realloc(void *p, size_t s)
{
 void *np;

 __itt_heap_reallocate_begin (my_reallocator, p, s, 0);
 np = user_defined_realloc(p, s);
 __itt_heap_reallocate_end(my_reallocator, p, &np, s, 0);

 return(np);
}

// Make sure to call this init routine before any calls to
// user defined allocators.

 1 Intel® VTune™ Profiler User Guide

656

void init_itt_calls()
{
 my_allocator = __itt_heap_function_create("my_malloc", "mydomain");
 my_reallocator = __itt_heap_function_create("my_realloc", "mydomain");
 my_freer = __itt_heap_function_create("my_free", "mydomain");
}

See Also
Basic Usage and Configuration

Basic Usage and Configuration

Minimize ITT API Overhead

JIT Profiling API

NOTE
The Instrumentation and Tracing Technology API (ITT API) and the Just-in-Time Profiling API (JIT API)
are open source components. Visit the GitHub* repository to access source code and contribute.

The JIT (Just-In-Time) Profiling API provides functionality to report information about just-in-time generated
code that can be used by performance tools. You need to insert JIT Profiling API calls in the code generator to
report information before JIT-compiled code goes to execution. This information is collected at runtime and
used by tools like Intel® VTune™ Profiler to display performance metrics associated with JIT-compiled code.

You can use the JIT Profiling API to profile such environments as dynamic JIT compilation of JavaScript code
traces, JIT execution in OpenCL™ applications, Java*/.NET* managed execution environments, and custom
ISV JIT engines.

The standard VTune Profiler installation contains a static part (as a static library and source files) and a
profiler object. The JIT engine generating code during runtime communicates with a profiler object through
the static part. During runtime, the JIT engine reports the information about JIT-compiled code stored in a
trace file by the profiler object. After collection, the VTune Profiler uses the generated trace file to resolve the
JIT-compiled code. If the VTune Profiler is not installed, profiling is disabled.

Use the JIT Profiling API to:

• Profile trace-based and method-based JIT-compiled code
• Analyze split functions
• Explore inline functions

JIT profiling is supported with the Launch Application target option for event based sampling.

Profile Trace-based and Method-based JIT-compiled Code
This is the most common scenario for using JIT Profiling API to profile trace-based and method-based JIT-
compiled code:

#include <jitprofiling.h>

if (iJIT_IsProfilingActive() != iJIT_SAMPLING_ON) {
 return;
}

iJIT_Method_Load jmethod = {0};
jmethod.method_id = iJIT_GetNewMethodID();
jmethod.method_name = "method_name";
jmethod.class_file_name = "class_name";

Intel® VTune™ Profiler User Guide 1

657

https://github.com/intel/ittapi

jmethod.source_file_name = "source_file_name";
jmethod.method_load_address = code_addr;
jmethod.method_size = code_size;

iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED,
 (void*)&jmethod);
iJIT_NotifyEvent(iJVM_EVENT_TYPE_SHUTDOWN, NULL);

Usage Tips

• If any iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED event overwrites an already reported method, then
such a method becomes invalid and its memory region is treated as unloaded. VTune Profiler displays the
metrics collected by the method until it is overwritten.

• If supplied line number information contains multiple source lines for the same assembly instruction (code
location), then VTune Profiler picks up the first line number.

• Dynamically generated code can be associated with a module name. Use the iJIT_Method_Load_V2
structure.

• If you register a function with the same method ID multiple times, specifying different module names,
then the VTune Profiler picks up the module name registered first. If you want to distinguish the same
function between different JIT engines, supply different method IDs for each function. Other symbolic
information (for example, source file) can be identical.

Analyze Split Functions
You can use the JIT Profiling API to analyze split functions (multiple joint or disjoint code regions belonging to
the same function) including re-JITting with potential overlapping of code regions in time, which is common
in resource-limited environments.

 #include <jitprofiling.h>

 unsigned int method_id = iJIT_GetNewMethodID();

 iJIT_Method_Load a = {0};
 a.method_id = method_id;
 a.method_load_address = 0x100;
 a.method_size = 0x20;

 iJIT_Method_Load b = {0};
 b.method_id = method_id;
 b.method_load_address = 0x200;
 b.method_size = 0x30;

 iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED, (void*)&a);
 iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED, (void*)&b)

Usage Tips

• If a iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED event overwrites an already reported method, then such
a method becomes invalid and its memory region is treated as unloaded.

• All code regions reported with the same method ID are considered as belonging to the same method.
Symbolic information (method name, source file name) will be taken from the first notification, and all
subsequent notifications with the same method ID will be processed only for line number table
information. So, the VTune Profiler will map samples to a source line using the line number table from the
current notification while taking the source file name from the very first one.

 1 Intel® VTune™ Profiler User Guide

658

• If you register a second code region with a different source file name and the same method ID, this
information will be saved and will not be considered as an extension of the first code region, but VTune
Profiler will use the source file of the first code region and map performance metrics incorrectly.

• If you register a second code region with the same source file as for the first region and the same
method ID, the source file will be discarded but VTune Profiler will map metrics to the source file
correctly.

• If you register a second code region with a null source file and the same method ID, provided line
number info will be associated with the source file of the first code region.

Explore Inline Functions
You can use the JIT Profiling API to explore inline functions including multi-level hierarchy of nested inline
methods that shows how performance metrics are distributed through them.

#include <jitprofiling.h>

 // method_id parent_id
 // [-- c --] 3000 2000
 // [---- d -----] 2001 1000
 // [---- b ----] 2000 1000
 // [------------ a ----------------] 1000 n/a

iJIT_Method_Load a = {0};
a.method_id = 1000;

iJIT_Method_Inline_Load b = {0};
b.method_id = 2000;
b.parent_method_id = 1000;

iJIT_Method_Inline_Load c = {0};
c.method_id = 3000;
c.parent_method_id = 2000;

iJIT_Method_Inline_Load d = {0};
d.method_id = 2001;
d.parent_method_id = 1000;

iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED, (void*)&a);
iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_INLINE_LOAD_FINISHED, (void*)&b);
iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_INLINE_LOAD_FINISHED, (void*)&c);
iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_INLINE_LOAD_FINISHED, (void*)&d);

Usage Tips

• Each inline (iJIT_Method_Inline_Load) method should be associated with two method IDs: one for
itself; one for its immediate parent.

• Address regions of inline methods of the same parent method cannot overlap each other.
• Execution of the parent method must not be started until it and all its inline methods are reported.
• In case of nested inline methods an order of iJVM_EVENT_TYPE_METHOD_INLINE_LOAD_FINISHED events

is not important.
• If any event overwrites either inline method or top parent method, then the parent, including inline

methods, becomes invalid and its memory region is treated as unloaded.

See Also
JIT Profiling API Reference

Using JIT Profiling API

Intel® VTune™ Profiler User Guide 1

659

Basic Usage and Configuration
 See prerequisites here

Using JIT Profiling API
To include JIT Profiling support, do one of the following:

• Include the following files to your source tree:

• jitprofiling.h, located under <install-dir>\include (Windows*) or <install-dir>/include
(Linux*)

• ittnotify_config.h, ittnotify_types.h and jitprofiling.c, located under <install-dir>
\sdk\src\ittnotify (Windows*) or <install-dir>/sdk/src/ittnotify (Linux*)

NOTE To locate your <install-dir> see Installation Directory.

• Use the static library provided with the product:

1. Include jitprofiling.h file, located under the <install-dir>\include (Windows*) or <install-
dir>/include (Linux*) directory, in your code. This header file provides all API function prototypes
and type definitions.

2.Link to jitprofiling.lib (Windows*) or jitprofiling.a (Linux*), located under <install-dir>
\lib32or <install-dir>\lib64 (Windows*) or <install-dir>/lib32 or <install-dir>/lib32
(Linux*).

Use This Primitive To Do This

int
iJIT_NotifyEvent(i
JIT_JVM_EVENT
event_type, void
*EventSpecificData
);

Use this API to send a notification of event_type with the data pointed by
EventSpecificData to the agent. The reported information is used to
attribute samples obtained from any Intel® VTune™ Profiler collector.

unsigned int
iJIT_GetNewMethodID
(void);

Generate a new method ID. You must use this function to assign unique and
valid method IDs to methods reported to the profiler.

This API returns a new unique method ID. When out of unique method IDs,
this API function returns 0.

iJIT_IsProfilingAct
iveFlags
iJIT_IsProfilingAct
ive(void);

Returns the current mode of the profiler: off, or sampling, using the
iJIT_IsProfilingActiveFlags enumeration.

This API returns iJIT_SAMPLING_ON by default, indicating that Sampling is
running. It returns iJIT_NOTHING_RUNNING if no profiler is running.

Lifetime of Allocated Data
You send an event notification to the agent (VTune Profiler) with event-specific data, which is a structure. The
pointers in the structure refer to memory you allocated and you are responsible for releasing it. The pointers
are used by the iJIT_NotifyEvent method to copy your data in a trace file, and they are not used after the
iJIT_NotifyEvent method returns.

JIT Profiling API Sample Application
VTune Profiler is installed with a sample application in the jitprofiling_vtune_amp_xe.zip (Windows*)
or jitprofiling_vtune_amp_xe.tgz (Linux*) that emulates the creation and execution of dynamic code.
In addition, it uses the JIT profiling API to notify the VTune Profiler when it transfers execution control to
dynamic code.

To install and set up the sample code:

 1 Intel® VTune™ Profiler User Guide

660

1. Copy the jitprofiling_vtune_amp_xe.zip (Windows*) or jitprofiling_vtune_amp_xe.tgz
(Linux*) file from the <install-dir>\samples\<locale>\C++ (Windows*) or <install-dir>/
samples/<locale>/C++ (Linux*)directory to a writable directory or share on your system.

2. Extract the sample from the archive file.

Build jitprofiling.c in Microsoft Visual Studio*
1. Copy the jitprofiling_vtune_amp_xe.zip file from the <install-dir>\samples\<locale>\C++

directory to a writable directory or share on your system.
2. Extract the sample from the .zip file.
3. Open the jitprofiling.sln file with Microsoft Visual Studio.
4. Right-click jitprofiling in the Solution Explorer and select Properties. The jitprofiling Property

Pages window opens.
5. Set the Platform (top of the window) to x64.
6. Select Configuration Properties > C/C++ > General and add the path to the headers (<install-

dir>/include) to Additional Include Directories.
7. Select Configuration Properties > C/C++ > Linker > General and add the path to the library

(<install-dir>/lib32 or <install-dir>/lib64) to Additional Library Directories.
8. Click OK to apply the changes and close the window.
9. Rebuild the solution with the new project settings.

Installation Information
Whether you downloaded Intel® VTune™ Profiler as a standalone component or with the Intel® oneAPI Base
Toolkit, the default path for your <install-dir> is:

Operating System Path to <install-dir>

Windows* OS • C:\Program Files (x86)\Intel\oneAPI\
• C:\Program Files\Intel\oneAPI\

(in certain systems)

Linux* OS • /opt/intel/oneapi/ for root users
• $HOME/intel/oneapi/ for non-root users

macOS* /opt/intel/oneapi/

For OS-specific installation instructions, refer to the VTune Profiler Installation Guide.

See Also
About JIT Profiling API
JIT Profiling API Reference
Basic Usage and Configuration
 See prerequisites here

JIT Profiling API Reference

iJIT_NotifyEvent
Reports information about JIT-compiled code to the
agent.

Syntax

int iJIT_NotifyEvent(iJIT_JVM_EVENT event_type, void *EventSpecificData);

Intel® VTune™ Profiler User Guide 1

661

https://www.intel.com/content/www/us/en/develop/documentation/vtune-install-guide/top.html

Description

The iJIT_NotifyEvent function sends a notification of event_type with the data pointed by
EventSpecificData to the agent. The reported information is used to attribute samples obtained from any
Intel® VTune™ Profiler collector. This API needs to be called after JIT compilation and before the first entry into
the JIT-compiled code.

Input Parameters

Parameter Description

iJIT_JVM_EVENT event_type Notification code sent to the agent. See a complete list of
event types below.

void *EventSpecificData Pointer to event specific data.

The following values are allowed for event_type:

iJVM_EVENT_TYPE_METHOD_LOAD_FINISH
ED

Send this notification after a JITted method has been loaded
into memory, and possibly JIT compiled, but before the
code is executed. Use the iJIT_Method_Load structure for
EventSpecificData. The return value of
iJIT_NotifyEvent is undefined.

iJVM_EVENT_TYPE_SHUTDOWN Send this notification to terminate profiling. Use NULL for
EventSpecificData. iJIT_NotifyEvent returns 1 on
success.

JVM_EVENT_TYPE_METHOD_UPDATE Send this notification to provide new content for a
previously reported dynamic code. The previous content will
be invalidated starting from the time of the notification. Use
the iJIT_Method_Load structure for EventSpecificData
with the following required fields:

• method_id to identify the code to update
• method_load_address to specify the start address

within an identified code range where the update should
be started

• method_size to specify the length of an updated code
range

JVM_EVENT_TYPE_METHOD_INLINE_LOAD_
FINISHED

Send this notification when an inline dynamic code is JIT
compiled and loaded into memory by the JIT engine, but
before the parent code region starts executing. Use the
iJIT_Method_Inline_Load structure for
EventSpecificData.

iJVM_EVENT_TYPE_METHOD_LOAD_FINISH
ED_V2

Send this notification when a dynamic code is JIT compiled
and loaded into memory by the JIT engine, but before the
code is executed. Use the iJIT_Method_Load_V2 structure
for EventSpecificData.

The following structures can be used for EventSpecificData:

iJIT_Method_Inline_Load Structure

 1 Intel® VTune™ Profiler User Guide

662

When you use the iJIT_Method_Inline_Load structure to describe the JIT compiled method, use
iJVM_EVENT_TYPE_METHOD_INLINE_LOAD_FINISHED as an event type to report it. The
iJIT_Method_Inline_Load structure has the following fields:

Field Description

unsigned int method_id Unique method ID. Method ID cannot be smaller than 999.
You must either use the API function
iJIT_GetNewMethodID to get a valid and unique method
ID, or else manage ID uniqueness and correct range by
yourself.

unsigned int parent_method_id Unique immediate parent’s method ID. Method ID may not
be smaller than 999. You must either use the API function
iJIT_GetNewMethodID to get a valid and unique method ID,
or else manage ID uniqueness and correct range by yourself.

char *method_name The name of the method, optionally prefixed with its class
name and appended with its complete signature. This
argument cannot be set to NULL.

void *method_load_address The base address of the method code. Can be NULL if the
method is not JITted.

unsigned int method_size The virtual address on which the method is inlined. If NULL,
then data provided with the event are not accepted.

unsigned int line_number_size The number of entries in the line number table. 0 if none.

pLineNumberInfo line_number_table Pointer to the line numbers info array. Can be NULL if
line_number_size is 0. See LineNumberInfo structure for
a description of a single entry in the line number info array.

char *class_file_name Class name. Can be NULL.

char *source_file_name Source file name. Can be NULL.

iJIT_Method_Load Structure

When you use the iJIT_Method_Load structure to describe the JIT compiled method, use
iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED as an event type to report it. The iJIT_Method_Load
structure has the following fields:

Field Description

unsigned int method_id Unique method ID. Method ID cannot be smaller than 999.
You must either use the API function
iJIT_GetNewMethodID to get a valid and unique method
ID, or else manage ID uniqueness and correct range by
yourself.

char *method_name The name of the method, optionally prefixed with its class
name and appended with its complete signature. This
argument cannot be set to NULL.

void *method_load_address The base address of the method code. Can be NULL if the
method is not JITted.

Intel® VTune™ Profiler User Guide 1

663

Field Description

unsigned int method_size The virtual address on which the method is inlined. If NULL,
then data provided with the event are not accepted.

unsigned int line_number_size The number of entries in the line number table. 0 if none.

pLineNumberInfo line_number_table Pointer to the line numbers info array. Can be NULL if
line_number_size is 0. See LineNumberInfo structure for
a description of a single entry in the line number info array.

unsigned int class_id This field is obsolete.

char *class_file_name Class name. Can be NULL.

char *source_file_name Source file name. Can be NULL.

void *user_data This field is obsolete.

unsigned int user_data_size This field is obsolete.

iJDEnvironmentType env This field is obsolete.

iJIT_Method_Load_V2 Structure

When you use the iJIT_Method_Load_V2 structure to describe the JIT compiled method, use
iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED_V2 as an event type to report it. The iJIT_Method_Load_V2
structure has the following fields:

Field Description

unsigned int method_id Unique method ID. Method ID cannot be smaller than 999.
You must either use the API function
iJIT_GetNewMethodID to get a valid and unique method
ID, or else manage ID uniqueness and correct range by
yourself.

char *method_name The name of the method, optionally prefixed with its class
name and appended with its complete signature. This
argument cannot be set to NULL.

void *method_load_address The base address of the method code. Can be NULL if the
method is not JITted.

unsigned int method_size The virtual address on which the method is inlined. If NULL,
then data provided with the event are not accepted.

unsigned int line_number_size The number of entries in the line number table. 0 if none.

pLineNumberInfo line_number_table Pointer to the line numbers info array. Can be NULL if
line_number_size is 0. See LineNumberInfo structure
for a description of a single entry in the line number info
array.

char *class_file_name Class name. Can be NULL.

char *source_file_name Source file name. Can be NULL.

 1 Intel® VTune™ Profiler User Guide

664

Field Description

char *module_name Module name. Can be NULL. The module name can be
useful for distinguishing among different JIT engines. VTune
Profiler will display reported methods grouped by specific
module.

LineNumberInfo Structure

Use the LineNumberInfo structure to describe a single entry in the line number information of a code
region. A table of line number entries provides information about how the reported code region is mapped to
source file. VTune Profiler uses line number information to attribute the samples (virtual address) to a line
number. It is acceptable to report different code addresses for the same source line:

Off
set

Line Number

1 2

12 4

15 2

18 1

21 30

VTune Profiler constructs the following table using the client data:

Cod
e
sub
-
ran
ge

Line Number

0-1 2

1-1
2

4

12-
15

2

15-
18

1

18-
21

30

The LineNumberInfo structure has the following fields:

Field Description

unsigned int Offset Opcode byte offset from the beginning of the method.

unsigned int LineNumber Matching source line number offset (from beginning of
source file).

Intel® VTune™ Profiler User Guide 1

665

Return Values

The return values are dependent on the particular iJIT_JVM_EVENT.

See Also
About JIT Profiling API

Using JIT Profiling API

iJIT_IsProfilingActive
Returns the current mode of the agent.

Syntax

iJIT_IsProfilingActiveFlags JITAPI iJIT IsProfilingActive (void)

Description

The iJIT_IsProfilingActive function returns the current mode of the agent.

Input Parameters

None

Return Values

iJIT_SAMPLING_ON, indicating that agent is running, or iJIT_NOTHING_RUNNING if no agent is running.

See Also
About JIT Profiling API
Using JIT Profiling API

iJIT_ GetNewMethodID
Generates a new unique method ID.

Syntax

unsigned int iJIT_GetNewMethodID(void);

Description

The iJIT_GetNewMethodID function generates new method ID upon each call. Use this API to obtain unique
and valid method IDs for methods or traces reported to the agent if you do not have your own mechanism to
generate unique method IDs.

Input Parameters

None

Return Values

A new unique method ID. When out of unique method IDs, this API function returns 0.

See Also
About JIT Profiling API
Using JIT Profiling API

 1 Intel® VTune™ Profiler User Guide

666

System APIs Supported by Intel® VTune™ Profiler
VTune Profiler supports interpretation of Linux* and Microsoft* Windows* OS APIs.

The following table lists all of the 32-bit and 64-bit OS threading and synchronization functions that are
currently supported by VTune Profiler. Check the Release Notes to see if support for new APIs has been
added recently. If an API is not supported, the collected statistics will be incomplete.

API for Windows* OS

.NET* APIs

RegisterClassA

RegisterClassW

RegisterClassExA

RegisterClassExW

UnregisterClassA

UnregisterClassW

GetClassInfoA

GetClassInfoW

GetClassInfoExA

GetClassInfoExW

GetWindowLongA

GetWindowLongW

GetWindowLongPtrA

GetWindowLongPtrW

GetClassLongA

GetClassLongW

GetClassLongPtrA

GetClassLongPtrW

SetWindowLongA

SetWindowLongW

SetWindowLongPtrA

SetWindowLongPtrW

SetClassLongA

SetClassLongW

SetClassLongPtrA

SetClassLongPtrW

AutoResetEvent_Ctor

ManualResetEvent_Ctor

EventWaitHandle_Ctor_1

ThreadPool_UnsafeRegisterWaitForSingleObject_4

ThreadPool_QueueUserWorkItem_1

ThreadPool_QueueUserWorkItem_2

ThreadPool_UnsafeQueueUserWorkItem

ThreadPool_UnsafeQueueNativeOverlapped

Timer_Ctor_1

Timer_Ctor_2

Timer_Ctor_3

Timer_Ctor_4

Timer_Ctor_5

Monitor_Exit

MonitorWait

Monitor_Wait_1

Monitor_Wait_2

Monitor_Wait_3

Monitor_Wait_4

Monitor_Wait_5

Monitor_Pulse

Monitor_PulseAll

Monitor_Enter

Monitor_Enter_1

MonitorTryEnter

Monitor_TryEnter_1

Monitor_TryEnter_2

Monitor_TryEnter_3

Monitor_TryEnter_4

Monitor_TryEnter_5

Mutex_Ctor_1

Mutex_Ctor_2

Intel® VTune™ Profiler User Guide 1

667

.NET* APIs

EventWaitHandle_Ctor_2

EventWaitHandle_Ctor_3

EventWaitHandle_Ctor_4

EventWaitHandle_OpenExisting_1

EventWaitHandle_OpenExisting_2

EventWaitHandle_Set

EventWaitHandle_Reset

WaitHandle_WaitOne_1

WaitHandle_WaitOne_2

WaitHandle_WaitOne_3

WaitHandle_WaitAny_1

WaitHandle_WaitAny_2

WaitHandle_WaitAny_3

WaitHandle_WaitAll_1

WaitHandle_WaitAll_2

WaitHandle_WaitAll_3

WaitHandle_SignalAndWait_1

WaitHandle_SignalAndWait_2

WaitHandle_SignalAndWait_3

Thread_Join_1

Thread_Join_2

Thread_Join_3

Thread_Sleep_1

Thread_Sleep_2

Thread_Interrupt

ThreadPool_RegisterWaitForSingleObject_1

ThreadPool_RegisterWaitForSingleObject_2

ThreadPool_RegisterWaitForSingleObject_3

ThreadPool_RegisterWaitForSingleObject_4

ThreadPool_UnsafeRegisterWaitForSingleObject_1

ThreadPool_UnsafeRegisterWaitForSingleObject_2

ThreadPool_UnsafeRegisterWaitForSingleObject_3

Mutex_Ctor_3

Mutex_Ctor_4

Mutex_Ctor_5

Mutex_Release

Mutex_OpenExisting_1

Mutex_OpenExisting_2

Semaphore_Ctor_1

Semaphore_Ctor_2

Semaphore_Ctor_3

Semaphore_Ctor_4

Semaphore_OpenExisting_1

Semaphore_OpenExisting_2

Semaphore_Release_1

Semaphore_Release_2

ReaderWriterLock_Ctor

ReaderWriterLock_AcquireReaderLock_1

ReaderWriterLock_AcquireReaderLock_2

ReaderWriterLock_AcquireWriterLock_1

ReaderWriterLock_AcquireWriterLock_2

ReaderWriterLock_ReleaseReaderLock

ReaderWriterLock_ReleaseWriterLock

ReaderWriterLock_UpgradeToWriterLock_1

ReaderWriterLock_UpgradeToWriterLock_2

ReaderWriterLock_DowngradeFromWriterLock

ReaderWriterLock_RestoreLock

ReaderWriterLock_ReleaseLock

WaitHandle_WaitOne_4

WaitHandle_WaitOne_5

WaitHandle_WaitAny_4

WaitHandle_WaitAny_5

WaitHandle_WaitAll_4

WaitHandle_WaitAll_5

Callback APIs

BindIoCompletionCallback

GetOverlappedResult

QueueUserAPC

RaiseException

 1 Intel® VTune™ Profiler User Guide

668

Condition variable APIs

RtlInitializeConditionVariable

RtlWakeAllConditionVariable

RtlWakeConditionVariable

SleepConditionVariableCS

SleepConditionVariableSRW

Critical section APIs

InitializeCriticalSection

InitializeCriticalSection

InitializeCriticalSectionEx

InitializeCriticalSectionAndSpinCount

RtlInitializeCriticalSectionAndSpinCount

RtlInitializeCriticalSection

RtlTryEnterCriticalSection

RtlEnterCriticalSection

RtlLeaveCriticalSection

RtlSetCriticalSectionSpinCount

RtlDeleteCriticalSection

Event APIs

CreateEventA

CreateEventExA

CreateEventExW

CreateEventW

OpenEventA

OpenEventW

PulseEvent

ResetEvent

SetEvent

PulseEvent

Fiber APIs

SwitchToFiber

CreateFiberEx

DeleteFiber

FiberStartRoutineWrapper

File/Directory APIs

CreateFileA

CreateFileW

OpenFile

WriteFile

WriteFileEx

WriteFileGather

ReadFile

ReadFileEx

ReadFileScatter

FindFirstChangeNotificationA

FindFirstChangeNotificationW

FindCloseChangeNotification

CreateDirectoryA

FindFirstFileW

FindFirstFileExA

FindFirstFileExW

FindNextChangeNotification

FindNextFileA

FindNextFileW

GetCurrentDirectoryA

GetCurrentDirectoryW

MoveFileA

MoveFileW

MoveFileExA

MoveFileExW

ReadDirectoryChangesW

Intel® VTune™ Profiler User Guide 1

669

File/Directory APIs

CreateDirectoryW

CreateDirectoryExA

CreateDirectoryExW

DeleteFileA

DeleteFileW

FindFirstFileA

RemoveDirectoryA

RemoveDirectoryW

SetCurrentDirectoryA

SetCurrentDirectoryW

lock

unlock

Input/output APIs

CreateMailslotA

CreateMailslotW

DeviceIoControl

FindFirstPrinterChangeNotification

FindClosePrinterChangeNotification

GetStdHandle

ReadConsoleInputA

ReadConsoleInputW

ReadConsoleA

ReadConsoleW

WaitCommEvent

WaitForInputIdle

Memory Allocation APIs

malloc

calloc

realloc

free

RtlAllocateHeap

RtlReAllocateHeap

RtlFreeHeap

RtlSizeHeap

GlobalAlloc

GlobalFlags

GlobalFree

GlobalHandle

GlobalLock

GlobalReAlloc

GlobalSize

GlobalUnlock

LocalAlloc

LocalFlags

LocalFree

LocalHandle

LocalLock

LocalReAlloc

LocalSize

LocalUnlock

GetProcessHeap

GetProcessHeaps

HeapAlloc

HeapCompact

HeapCreate

HeapDestroy

HeapFree

HeapLock

HeapQueryInformation

HeapReAlloc

HeapSetInformation

HeapSize

HeapUnlock

HeapValidate

HeapWalk

 1 Intel® VTune™ Profiler User Guide

670

Mutex APIs

CreateMutexA

CreateMutexExA

CreateMutexExW

CreateMutexW

OpenMutexA

OpenMutexW

ReleaseMutex

Networking APIs

RpcNsBindingLookupBeginA

RpcNsBindingLookupBeginW

RpcNsBindingLookupNext

RpcNsBindingLookupDone

RpcNsBindingImportBeginA

RpcNsBindingImportBeginW

RpcNsBindingImportNext

RpcNsBindingImportDone

RpcStringBindingComposeA

RpcStringBindingComposeW

RpcServerListen

RpcMgmtWaitServerListen

RpcMgmtInqIfIds

RpcEpResolveBinding

RpcCancelThread

RpcMgmtEpEltInqBegin

RpcMgmtEpEltInqDone

RpcMgmtEpEltInqNextA

RpcMgmtEpEltInqNextW

socket

accept

closesocket

connect

recv

recvfrom

send

sendto

select

WSASocketA

WSASocketW

WSAAccept

WSAConnect

WSASend

WSASendTo

WSARecv

WSARecvFrom

WSAGetOverlappedResult

WSACreateEvent

WSACloseEvent

WSAResetEvent

WSASetEvent

WSAWaitForMultipleEvents

Object APIs

CloseHandle DuplicateHandle

One-time initialization APIs

InitOnceBeginInitialize

InitOnceComplete

InitOnceExecuteOnce

RtlRunOnceInitialize

Pipe APIs

CallNamedPipeA TransactNamedPipe

Intel® VTune™ Profiler User Guide 1

671

Pipe APIs

CallNamedPipeW

ConnectNamedPipe

CreateNamedPipeA

CreateNamedPipeW

WaitNamedPipeA

WaitNamedPipeW

Process APIs

CreateProcessA

CreateProcessW

OpenProcess

TerminateProcess

ExitProcess

RtlExitUserProcess

Semaphore APIs

CreateSemaphoreA

CreateSemaphoreExA

CreateSemaphoreExW

CreateSemaphoreW

OpenSemaphoreA

OpenSemaphoreW

ReleaseSemaphore

Sleep APIs

Sleep SleepEx

Slim Reader/Writer (SRW) Locks APIs

RtlInitializeSRWLock

RtlAcquireSRWLockExclusive

RtlReleaseSRWLockExclus

RtlAcquireSRWLockShared

RtlReleaseSRWLockShared

Thread APIs

CreateThread

CreateRemoteThread

OpenThread

ExitThread

FreeLibraryAndExitThread

RtlExitUserThread

TerminateThread

SuspendThread

Wow64SuspendThread

ResumeThread

Threadpool APIs

CreateIoCompletionPort

GetQueuedCompletionStatus

PostQueuedCompletionStatus

CreateThreadpoolWait

CreateThreadpoolWork

TrySubmitThreadpoolCallback

CreateTimerQueue

CreateTimerQueueTimer

DeleteTimerQueueTimer

DeleteTimerQueueEx

DeleteTimerQueue

UnregisterWait

 1 Intel® VTune™ Profiler User Guide

672

Threadpool APIs

CreateThreadpoolTimer

CreateThreadpoolIo

CreateThreadpoolCleanupGroup

UnregisterWaitEx

QueueUserWorkItem

RegisterWaitForSingleObject

Timer APIs

CancelWaitableTimer

CreateWaitableTimerA

CreateWaitableTimerW

OpenWaitableTimerA

OpenWaitableTimerW

SetWaitableTimer

Wait APIs

MsgWaitForMultipleObjects

MsgWaitForMultipleObjectsEx

SignalObjectAndWait

WaitForMultipleObjects

WaitForMultipleObjectsEx

WaitForSingleObject

WaitForSingleObjectEx

RegisteredWaitHandle_Unregister

Windows Messaging APIs

GetMessageA

GetMessageW

PeekMessageA

PeekMessageW

SendMessageA

SendMessageW

SendMessageTimeoutA

SendMessageTimeoutW

SendMessageCallbackA

SendMessageCallbackW

SendNotifyMessageA

SendNotifyMessageW

BroadcastSystemMessageExA

BroadcastSystemMessageExW

BroadcastSystemMessageA

BroadcastSystemMessageW

PostMessageA

PostMessageW

PostThreadMessageA

PostThreadMessageW

ReplyMessage

WaitMessage

DialogBoxParamA

DialogBoxParamW

DialogBoxIndirectParamA

DialogBoxIndirectParamW

MessageBoxA

MessageBoxW

MessageBoxExA

MessageBoxExW

NdrSendReceive

NdrNsSendReceive

PrintDlgA

PrintDlgW

PrintDlgExA

PrintDlgExW

ConnectToPrinterDlg

Intel® VTune™ Profiler User Guide 1

673

API for Linux* OS

Timer, signal and wait APIs

setitimer

getitimer

wait

waitpid

waitid

wait3

wait4

sleep

usleep

ualarm

nanosleep

clock_nanosleep

pause

alarm

signal

sigaction

sigprocmask

sigsuspend

sigpending

sigtimedwait

sigwaitinfo

sigwait

I/O API

getwc

getw

getchar

getwchar

getch

wgetch

mvgetch

gets

fgetc

fgetwc

fgets

fgetws

fread

fwrite

pipe

read

write

readv

writev

open

fopen

fdopen

close

fclose

io_submit

io_cancel

io_setup

io_destroy

io_getevents

Synchronous I/O multiplexing APIs

select

pselect

epoll_wait

epoll_pwait

poll

ppoll

Network API

socket recv

 1 Intel® VTune™ Profiler User Guide

674

Network API

accept

connect

shutdown

recvfrom

send

sendto

File Locking API

ioctl

flock

flockfile

funlockfile

lockf

fcntl

DSO API

dlopen

dlclose

dlsym

dlvsym

dladdr

dladdr1

RPC API

callrpc

clnt_broadcast

clntudp_create

clntudp_bufcreate

clntraw_create

pmap_getmaps

pmap_getport

pmap_rmtcall

pmap_set

svc_run

svc_sendreply

svcraw_create

svctcp_create

svcudp_bufcreate

svcudp_create

POSIX Thread Function API

pthread_exit

pthread_cancel

pthread_barrier_init

pthread_barrier_destroy

pthread_barrier_wait

pthread_mutex_init

pthread_mutex_destroy

pthread_mutex_lock

pthread_mutex_unlock

pthread_mutex_timedlock

pthread_rwlock_init

pthread_rwlock_destroy

pthread_rwlock_timedrdlock

pthread_rwlock_timedwrlock

pthread_spin_init

pthread_spin_destroy

pthread_spin_lock

pthread_spin_unlock

pthread_cond_init

pthread_cond_destroy

pthread_cond_broadcast

pthread_cond_signal

pthread_cond_timedwait

pthread_cond_wait

Intel® VTune™ Profiler User Guide 1

675

POSIX Thread Function API

pthread_rwlock_rdlock

pthread_rwlock_wrlock

pthread_rwlock_unlock

pthread_create

pthread_join

pthread_key_create

pthread_key_delete

pthread_sigmask

pthread_setcancelstate

POSIX Interprocess Communication API

sem_init

sem_destroy

sem_wait

sem_timedwait

sem_post

semop

semtimedop

recvmsg

sendmsg

msgrcv

msgsnd

msgget

semget

POSIX Message Queue API

mq_close

mq_open

mq_receive

mq_timedreceive

mq_send

mq_timedsend

See Also
API Support

Troubleshooting
Use these topics to learn about best practices, common problems, and their solutions when you run
performance analyses with Intel® VTune™ Profiler:

Best Practices
• Best Practice: Resolve VTune Profiler BSODs, Crashes, and Hangs in Windows OS

Error Messages
• Error Message: Application Sets Its Own Handler for Signal
• Error Message: Cannot Enable Event-Based Sampling Collection
• Error Message: Cannot Collect GPU Hardware Metrics
• Error Message: Cannot Load Data File
• Error Message: Cannot Locate Debugging Symbols
• Error Message: Result Is Empty
• Error Message: Client Is Not Authorized To Connect to Server
• Error Message: Make sure you have root privileges to analyze Processor Graphics hardware events
• Error Message: No Pre-built Driver Exists for This System
• Error Message: Not All OpenCL Code Profiling Callbacks Are Received
• Error Message: Problem Accessing the Sampling Driver

 1 Intel® VTune™ Profiler User Guide

676

• Error Message: Required Key Not Available
• Error Message: Scope of ptrace System Call Application Is Limited
• Error Message: Stack Size Is Too Small
• Error Message: Symbol File Is Not Found

Problems
• Problem: Analysis of the .NET* Application Fails
• Problem: Cannot Access Documentation
• Problem: CPU Time for Hotspots and Threading Analysis Is Too Low
• Problem: Events= Sample After Value (SAV) * Samples Is Wrong for Disabled Multiple Runs
• Problem: Guessed Stack Frames
• Problem: GUI Hangs or Crashes
• Problem: Inaccurate Sum in the Grid
• Problem: Information Collected via ITT API Is Not Available When Attaching to a Process
• Problem: No GPU Utilization Data Is Collected
• Problem: Same Functions Are Compared As Different Instances
• Problem: Skipped Stack Frames
• Problem: Stack in the Top-Down Tree Window Is Incorrect
• Problem: Stacks in Call Stack and Bottom-Up Panes Are Different
• Problem: System Functions Appear in the User Functions Only Mode
• Problem: VTune Profiler is Slow to Respond When Collecting or Displaying Data
• Problem: VTune Profiler is Slow on XServers with SSH Connection
• Problem: Unexpected Paused Time
• Problem: {Unknown Timer} in the Platform Power Analysis Viewpoint
• Problem: Unknown Critical Error Due to Disabled Loopback Interface
• Problem: Unknown Frames
• Problem: Unreadable text in Intel VTune Profiler on macOS*
• Problem: Unsupported Windows Operating System

Warnings
• Warnings about Accurate CPU Time Collection

Best Practices: Resolve Intel® VTune™ Profiler BSODs, Crashes, and Hangs in Windows*
OS

Scenario
When you use Intel® VTune™ Profiler to profile target applications on Windows systems, if you experience
problems with an unresponsive UI or tool crashes, the following suggestions can help you get better clarity
on the root causes. Verify if one of these scenarios apply to your environment. If you need further
assistance, contact us to get help.

BSOD from Incompatible Intel® VTune™ Profiler Driver or Windows Update
What is happening?

Intel® VTune™ Profiler runs well on a Windows system. After an update to the OS, Intel® VTune™ Profiler
crashes for certain analysis types, while others are unavailable.
Why is it happening?

Intel® VTune™ Profiler User Guide 1

677

Sometimes, the latest version of Intel® VTune™ Profiler may be one update behind the latest version of
Windows OS. The changes contained in the Windows update can then cause an incompatibility with VTune
Profiler drivers, particularly with the stack sampling driver for hardware-event based sampling (HEBS)
collections. Ideally, you should upgrade to the latest version of Intel® VTune™ Profiler after every time you
update Windows OS. This ensures that all relevant drivers are installed.

When you install Intel® VTune™ Profiler on an unsupported version of Windows, the installer does not install
incompatible drivers. This disables HEBS and stack collection. However, you may still be able to run hotspots
or threading analyses that use user-mode sampling. If you proceed to upgrade Windows to a newer,
unsupported version, the user-mode sampling collections attempt to use unavailable drivers and cause Intel®
VTune™ Profiler to crash.

Suggestion Every time you upgrade to the latest version of Windows OS, uninstall your existing
version of Intel® VTune™ Profiler and install the latest available version.

BSOD from Driver Conflict
What is happening?

A BSOD occurs due to a driver conflict that affects Intel® VTune™ Profiler drivers.

Why is it happening?

Sometimes, there can be a conflict between Intel® VTune™ Profiler drivers and graphics or third-party drivers.
This can likely happen if the Intel® VTune™ Profiler drivers are out of date.

Suggestion Update all Intel® VTune™ Profiler drivers by installing the latest available version.

VTune Profiler UI turns Unresponsive or 'Hangs'
What is happening?

During symbol resolution stage, Intel® VTune™ Profiler stalls or hangs without any response.

Why is it happening?

Several reasons can cause Intel® VTune™ Profiler to hang during the collection and finalization phase.

PDB File Retrieval

When symbol resolution happens in the finalization process, Intel® VTune™ Profiler may have to retrieve and
process large .pdb files. If used within Microsoft Visual Studio, Intel® VTune™ Profiler uses the Visual Studio
settings to find symbol files and any additional paths provided in Intel® VTune™ Profiler settings. However, if
Intel® VTune™ Profiler uses a symbol server, the resolution waits on updates and therefore slows down.
Depending on the size of the .pdb files, this may cause Intel® VTune™ Profiler to stall or hang.

Suggestion If your analysis requires symbols for system libraries, use a local cache (like the location
defined in Visual Studio) instead of a symbol server. Also, remove large .pdb files from the symbol
location you provide to Intel® VTune™ Profiler if these files are not required for your analysis.

Synchronization with other Processes

Certain processes like virus scanners or synchronization/back-up utilities can interfere with data collection
and finalization in Intel® VTune™ Profiler. Virus scanners can cause problems in the process that Intel® VTune™
Profiler uses for software-based analysis types, such as threading. Some synchronization utilities can cause
finalization to fail if the backup happens as Intel® VTune™ Profiler is processing it.

 1 Intel® VTune™ Profiler User Guide

678

Suggestion Exclude the pin.exe process from your virus scanning software or disable the scan when
running a Intel® VTune™ Profiler collection. Also, pause synchronization and/or back-up utilities until
Intel® VTune™ Profiler finalization is complete.

Intel® VTune™ Profiler Crashes during a Collection
What is happening?

Intel® VTune™ Profiler crashes in the middle of a collection operation.

Why is it happening?

A crash can happen if Intel® VTune™ Profiler attempts to instrument or attach to a privileged process or
service.

Suggestion Run Intel® VTune™ Profiler as an administrator. You can then profile processes with
elevated privileges. You can also configure Intel® VTune™ Profiler to profile specific modules. See the
Advanced section in the WHAT pane for this purpose.

Other Techniques to Enable Data Collection
What is happening?

Intel® VTune™ Profiler does not perform data collection in some specific situations.

Why is it happening?

Certain specific actions can cause data collection to fail. See if one of these suggestions helps to resolve your
issue.

Problem Suggestion

User-mode sampling for Threading analysis is too
slow or creates too much overhead.

Run Threading analysis with Hardware-Event Based
Sampling (HEBS) and context switches enabled.
This provides the context switch data necessary to
understand thread behavior.

Hotspots analysis is unavailable with HEBS and
stack collection enabled.

Disable stack collection. To correlate hotspots with
stacks, run a separate hotspots analysis with user-
mode sampling enabled.

Intel® VTune™ Profiler hangs or crashes when
attaching to a running process.

Run Intel® VTune™ Profiler with the application in
paused state. Resume data collection when the
application gets to an area of interest.

Data collection crashes when using the
Instrumentation and Tracing Technology (ITT) API.

Create a custom analysis. Disable the checkbox to
analyze user tasks, events, and counters. Identify if
the API is causing the crash.

Get Help
The suggestions described in this topic can help resolve several crashes or stalls. If you are still facing issues,
contact us so we may better assist you.

• Contact Customer Support.
• Discuss in the Analyzers developer forum.
• See if the issue has been addressed in the Intel® VTune™ Profiler release notes.

Intel® VTune™ Profiler User Guide 1

679

https://www.intel.com/content/www/us/en/develop/tools/support.html
https://community.intel.com/t5/Analyzers/bd-p/analyzers
https://www.intel.com/content/www/us/en/develop/articles/intel-vtune-release-notes.html

See Also
Hardware Event-based Sampling Collection

Error Message: Application Sets Its Own Handler for Signal
Full error message: Application sets its own handler for signal <conflicting_signal> that is used for internal
needs of the tool. Collection cannot continue. This is a Linux* only message.

Cause
User-mode sampling and tracing collector cannot profile applications that set up the signal handler for a
signal used by the Intel® VTune™ Profiler.

Solution
When collecting data with vtune, add the --run-pass-thru=--profiling-signal=<not_used_signal>
command line option, where <not_used_signal> is a signal that should not be used by your application to
analyze; you need to select the signal from SIGRTMIN..SIGRTMAX.

Alternatively, you may set the environment variable AMPLXE_RUNTOOL_OPTIONS=--profiling-
signal=<not_used_signal>. You may do this, either from your terminal window before running the VTune
Profiler GUI or from the Configure Analysis window entering the variable into the User-defined
Environment Variables field.

See Also
Set Up Analysis Target

Error Message: Cannot Enable Event-Based Sampling Collection

Cause
Intel® VTune™ Profiler cannot access the PMU resources in the virtualization environment since either the PMU
resources are made unavailable through BIOS options or Hyper-V has been activated on an unsupported
platform.

Known System Limitations
• The sampling-based performance profiling on Hyper-V has only been available since Windows 10 RS3

release (version 1709) or later. Check your Windows OS version to make sure the VTune Profiler can run
on the system:
> winver
For example, Version 1709 indicates that the supported Windows 10 Fall Creators Update (RedStone3)
is running on the system:

 1 Intel® VTune™ Profiler User Guide

680

• The Hyper-V allows the sampling-based performance profiling on the latest generation of Intel
microarchitectures code named Skylake and Goldmont onward. VTune Profiler will not be able to work in
the Hyper-V environment running on Intel microarchitectures code named Haswell or Broadwell.

Solution
To enable hardware event-based sampling collection for systems prior to Windows 10 RS3, do the following:

• Enable access to the PMU resources through BIOS options (if it was disabled manually).
• Disable the Hyper-V feature as follows:

1.From the Start menu select Search > Settings > Turn Windows features on or off to open the
Windows Features window.

2.Make sure to disable the Hyper-V feature and its sub-features and restart the system.

Intel® VTune™ Profiler User Guide 1

681

3. If the Hyper-V feature is not disabled even after the system reboot, you must disable the BIOS VMX
(virtualization feature) if it was not turned off already.

To troubleshoot hardware event-based sampling collection problems for Windows 10 RS3, make sure you
have the Credential Guard and Device Guard security features disabled on your system.

See Also
Profiling Targets in the Hyper-V* Environment

Error Message: Cannot Collect GPU Hardware Metrics
Possible error messages:

• Cannot collect GPU hardware metrics because neither libigdmd.so nor libmd.so was found.
• Cannot collect GPU hardware metrics because neither libigdmd.so nor libmd.so can be initialized.

Make sure you have installed Metrics Discovery API from https://github.com/intel/metrics-discovery
correctly.

• Cannot collect GPU hardware metrics because libmd.so cannot be loaded. Make sure you have installed
Metrics Discovery API from https://github.com/intel/metrics-discovery correctly.

• Cannot collect GPU hardware metrics because libmd.so was not found. Make sure you have installed
Metrics Discovery Application Programming Interface from https://github.com/intel/metrics-discovery.

• Cannot collect GPU hardware metrics because your version of the Metrics Discovery API is obsolete.

Cause
To collect GPU hardware metrics and GPU utilization data on Linux, VTune Profiler uses the Intel® Metric
Discovery API library distributed with the product. If VTune cannot access the library, one of the
aforementioned error messages display.

Solution
Depending on the version of VTune Profiler you use, choose one of these solutions and follow the steps.

Version of VTune Profiler Step 1 Step 2

Upgrade to the latest version of
VTune Profiler

Install as part of the Intel® oneAPI
Base Toolkit

No further actions necessary.
Product versions starting with
2021.1 automatically select the
latest libstdc++ available in
runtime to satisfy the GPU
analysis requirements, so no
additional configuration is
required.

Install as a standalone component Install the Intel Metric Discovery
API library ver. 1.12.148 (or
newer) from the official
repository at https://github.com/
intel/metrics-discovery.

Use VTune Profiler versions 2020,
2021.1.0 beta04 or an older version

Install the Intel Metric Discovery
API library ver. 1.12.147 (or
older) from the official repository
at https://github.com/intel/
metrics-discovery.

Ensure that the API library meets
the following requirements:

• To enable VTune Profiler to
successfully load the library, it
should be linked to libstdc+
+ (version GLIBCXX_3.4.20 or

 1 Intel® VTune™ Profiler User Guide

682

HTTPS://GITHUB.COM/INTEL/METRICS-DISCOVERY
HTTPS://GITHUB.COM/INTEL/METRICS-DISCOVERY
https://github.com/intel/metrics-discovery
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler-download.html

Version of VTune Profiler Step 1 Step 2

older) or statically linked to
libstd++. If libmd.so
(renamed to libigdmd.so
starting with MD API
1.12.148) is dynamically
linked to a newer version of
libstdc++, make sure to
have it loaded to the process
before loading libmd.so. You
can do this, for example, by
re-defining the environment
variable LD_PRELOAD:

LD_PRELOAD=/usr/lib/
x86_64-linux-gnu/libstdc
++.so.6 vtune -c gpu-
hotspots.

• If you use su or sudo
command to run the VTune
Profiler, you need to redefine
LD_PRELOAD directly in the
command, for example:

sudo
LD_PRELOAD=/usr/lib/
x86_64-linux-gnu/libstdc
++.so.6 vtune -c gpu-
hotspots

• In case of remote target
profiling, remove or rename
the following file in the VTune
Profiler package installed on
the remote target:

<vtune-target-install-
dir>/lib64/libstdc+
+.so.6

See Also
Set Up System for GPU Analysis

GPU Compute/Media Hotspots Analysis (Preview)

Error Message: Cannot Load Data File

Cause
The collected temporary data may have exceeded the current allocated or available global temporary storage
space on a Linux* target system.

Intel® VTune™ Profiler User Guide 1

683

Solution
Consider providing an alternative temporary directory for collected data.

See Also
Analysis Target Setup

Error Message: Cannot Locate Debugging Information

Cause
Debugging information (PDB files on Windows* and DWARF format on Linux*) for applications and system
modules is not generally available on the system by default. Missing debug information is not critical to
performance analysis but prevents Intel® VTune™ Profiler from providing full-scale statistics on call stacks,
source data, and so on.

If the VTune Profiler does not find debug information for the binaries, it statically identifies function
boundaries and assigns hotspot addresses to generated pseudo names func@address for such functions, for
example:

If a module is not found or the name of a function cannot be resolved, the VTune Profiler displays module
identifiers within square brackets, for example: [module].

If the debug information is absent, the VTune Profiler may not unwind the call stack and display it correctly in
the Call Stack pane. Additionally in some cases, it can take significantly more time to finalize the results for
modules that do not have debug information.

Solution
For accurate performance analysis, you are recommended to have the debug information available on the
system where the VTune Profiler is installed. See detailed instructions to enable:

• debug information for Windows application binaries
• debug information for Windows system libraries
• debug information for Linux application binaries
• debug information for Linux kernels

See Also
Compiler Switches for Performance Analysis on Windows* Targets

Compiler Switches for Performance Analysis on Linux* Targets

Error Message: Cannot Open Data
Error message: Cannot open data. Intel® VTune™ Profiler has faced a serious problem.

Cause
The data collection period could be too short (for example, <10ms), so that the VTune Profiler could not
capture performance data.

Solution
Consider the following options:

• Verify that you can run your application without the VTune Profiler.

 1 Intel® VTune™ Profiler User Guide

684

You may have two console windows: the first one for building the application and the second one for
launching the VTune Profiler. The second console should run the application smoothly before attempting to
launch the VTune Profiler. If you see an error message reporting problems with loading shared libraries on
the second console, set up the environment correctly either via the LD_LIBRARY_PATH variable or by
running source <install-dir>/env/vars.sh for Linux* and vars.bat for Windows*. Once the
application runs, start the VTune Profiler from that environment.

• If the analysis duration is too short, increase the workload for your application.

See Also
Manage Result Files

Error Message: Client Is Not Authorized to Connect to Server

Cause
If you are running a VNC* session as a standard user, but trying to launch a graphical application for GPU
analysis as a root user, you may get a system error message: 'Client is not authorized to connect to Server'
because, by default, and for security reasons, root cannot connect to a non-root user's X Server.

Solution
You may permanently allow root access applying any of the two proposed methods.

See Also
GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Error Message: Root Privileges Required for Processor Graphics Events
Full error message: Make sure you have root privileges to analyze Processor Graphics hardware events.

Cause
You selected the Analyze Processor Graphics events option of the GPU analysis but do not have a
supported version of the Intel® Metric Discovery API library installed.

Solution
To analyze Intel® HD Graphics and Intel® Iris® Graphics hardware events, make sure to set up your system
for GPU analysis

See Also
GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Error Message: No Pre-built Driver Exists for This System
When executing the build-driver script on Linux*, you may see a warning message similar to the following
if the kernel sources are not configured properly (they do not match the kernel that is running): Warning:
Current running kernel is version 2.4.18-e.31smp. After successfully building the driver and
running the insmod-sep3 or insmod-sep command, the following message appears: No pre-built
driver exists for this system.

Intel® VTune™ Profiler User Guide 1

685

https://wiki.archlinux.org/index.php/Running_GUI_applications_as_root#Permanently_allow_root_access

Solution
To resolve this issue, execute the following commands to configure the kernel sources:

$ cd /usr/src/linux
$ make mrproper
$ cp /boot/config-'uname-r' .config
$ vi Makefile
Make sure that EXTRAVERSION matches the tail of the output of uname -r. The resulting /user/src/linux/
include/version.h should have a UTS_RELEASE that matches the output of uname -r. Once that is true,
run the following commands:

$ make oldconfig
$ make dep
After completing these steps, run the build-driver script to build the sampling driver against the kernel
sources in /usr/src/linux

See Also
Cookbook: Profiling Hardware without Sampling Drivers

Build and Install the Sampling Drivers for Linux* Targets

Error Message: Not All OpenCL™ API Profiling Callbacks Are Received

Cause
Intel® VTune™ Profiler uses OpenCL™ API to collect profiling information about OpenCL kernels. According to
the OpenCL Specification, completion callbacks must be thread-safe and can be called in different threads. It
is possible that the completion callback is received while the collection is being stopped.

Solution
Use OpenCL API to set callbacks for events for clEnqueue* functions and wait for them to be received. For
example:

#include <atomic>
#include <thread>
...
#include <CL/cl2.hpp>

std::atomic_uint32_t number_of_uncompleted_callbacks = 0;

void CL_CALLBACK completion_callback(cl_event, cl_int , void*)
{
 --number_of_uncompleted_callbacks;
}
int main()
{
 ...
 cl::Program prog(context,

std::string((std::istreambuf_iterator<char>(programSourceFile)),std::istreambuf_iterator<char>())
);
 ...

 1 Intel® VTune™ Profiler User Guide

686

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf

 auto kernelFunc = cl::KernelFunctor<cl::Buffer, cl_int>(prog, "sin_cos");
 cl::Event event = kernelFunc(cl::EnqueueArgs(cl::NDRange(dataBuf.size())), clDataBuf, 0);

 ++ number_of_uncompleted_callbacks;
 event.setCallback(CL_COMPLETE, completion_callback);
 ...
 while (number_of_uncompleted_callbacks.load())
 {
 std::this_thread::yield();
 }
 return EXIT_SUCCESS;
}

See Also
GPU OpenCL™ Application Analysis

Error Message: Problem Accessing the Sampling Driver
Linux* only error message: Problem accessing the sampling driver. The driver may need to be (re)started.

Cause
Intel® VTune™ Profiler cannot access the hardware event-based sampling (EBS) driver required to run a
hardware event-based sampling analysis type. This problem happens if the sampling driver was not loaded or
you do not have correct permissions.

Solution
Make sure the sampling drivers are loaded:

> lsmod | grep sep3_1 or > lsmod | grep sep4_
> lsmod | grep pax
If the drivers are already loaded, make sure you are a member of the vtune user group. You can check
the /etc/group file or contact your system administrator to find out if you are a member of this group.

See Also
Sampling Drivers

Cookbook: Profiling Hardware without Sampling Drivers

Error Message: Required Key Not Available

Cause
For hardware event-based sampling analysis and Intel Energy Profiler analysis with VTune Profiler for
Systems, an Android* system requires signed drivers. Every time the Android kernel is built, a random
private/public key is generated. Drivers must be signed with the random private key to be loaded. The
drivers must be signed with the same key and be compiled against the same kernel headers/sources as what
is installed on the Android target system.

Solution
Make sure you use the same signing key that was produced at the time and on the system where your kernel
was built for your target.

Intel® VTune™ Profiler User Guide 1

687

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

See Also
Android* System Setup

Error Message: Scope of ptrace System Call Is Limited
Full error message: Failed to start profiling because the scope of ptrace() system call application is limited.
To enable profiling, please set /proc/sys/kernel/yama/ptrace_scope to 0. See the Release Notes for
instructions on enabling it permanently. This is a Linux* only message.

Cause
VTune Profiler may fail to collect data for Hotspots and Threading analysis types on the Ubuntu* operating
system if the scope of ptrace() system call application is limited.

Solution
Set the value of the kernel.yama.ptrace_scopesysctl option to 0 with this command:

sysctl -w kernel.yama.ptrace_scope=0

To make this change permanent, set the kernel.yama.ptrace_scope value to 0 in the /etc/
sysctl.d/10-ptrace.conf file using root permissions and reboot the machine.

Error Message: Stack Size Is Too Small
Full error message: Stack size provided to sigaltstack is too small. Please increase the stack size to 64K
minimum. This message is Linux* only.

Cause
When setting up SIGPROF signal handler, the VTune Profiler attempts to configure the signals to use the
alternative stack size using sigaltstack() API to make sure that its signal handler does not depend on the
stack size of the profiled application. If the application uses alternative signal stack itself, the Intel® VTune™
Profiler requires that the alternative stack size is 64K at a minimum. This may be not the case if the
application uses SIGSTKSZ constant for the alternative stack size (which is 8192 bytes). In this case, the
data collection may terminate with the error message.

Solution
Configure the VTune Profiler not to set up the alternative stack and use the stack provided by th application.
To do this, pass the following command line options to the tool:

vtune -run-pass-thru=--no-altstack
Or, set up the environment variable AMPLXE_RUNTOOL_OPTIONS=--no-altstack.

See Also
Pane: Call Stack

View Stacks

 1 Intel® VTune™ Profiler User Guide

688

Error Message: Symbol File Is Not Found
This is a Linux* only message. Intel® VTune™ Profiler may display the error message about missing symbol
file during user-mode sampling and tracing collection. For example:

/opt/intel/vtune_profiler/bin64/vtune -collect hotspots -r test1 - my_test_exe
vtune: Warning: Symbol file is not found.
vtune: The call stack passing through the module [vdso] may be incorrect.
vtune: Using result path '/home/user/test1'
vtune: Executing actions 75 % Generating a report

Summary

Elapsed Time: 6.354 CPU Time: 6.210
...
vtune: Executing actions 100 % done

Cause and Solution
VTune Profiler notifies you that there is a module [vdso] that cannot be resolved for symbols (the square
brackets are used for that purpose) and therefore the call stack may be incorrect. In some cases it might be
a [vsyscall] module.

You may check that the vdso module is in a dynamic dependency list:

ldd -d my_test_exe linux-vdso.so.1

=> (0x00002aaaaaac6000) libtbb.so.2
=> /opt/intel/tbb/tbb40_233oss/lib/libtbb.so.2 (0x00002aaaaabc7000) libstdc++.so.6
=> /usr/intel/pkgs/gcc/4.5.2/lib64/libstdc++.so.6 (0x00002aaaaadf5000) libm.so.6
=> /lib64/libm.so.6 (0x00002aaaab117000) libgcc_s.so.1
=> /usr/intel/pkgs/gcc/4.5.2/lib64/libgcc_s.so.1 (0x00002aaaab26c000) libc.so.6
=> /lib64/libc.so.6 (0x00002aaaab481000) librt.so.1
=> /lib64/librt.so.1 (0x00002aaaab6c2000) libdl.so.2
=> /lib64/libdl.so.2 (0x00002aaaab7cb000) libpthread.so.0
=> /lib64/libpthread.so.0 (0x00002aaaab8cf000) /lib64/ld-linux-x86-64.so.2 (0x00002aaaaaaab000)

You can safely ignore this message if you see a reference to the [vdso]. It means that the kernel
dynamically made some temporary memory allocations by loading some executable code into memory space.
The fact that VTune Profiler throws this message indicates that some Hotspot samples were taken when that
code was running. During the post-processing time the VTune Profiler's collector could not find the vdso
anymore. The module linux-vdso.so.1 (linux-vsyscall.so.1 or linux-gate.so.1 on earlier Linux
kernels) is a Virtual Dynamic Shared Object (VDSO) that resides in the address space of the program. This is
a virtual library that contains a complex logic providing user applications with a fast access to system
functions, depending on a CPU microarchitecture, either via an interrupt mechanism or via the fast system
calls mechanism (for modern CPUs).

See Also
Debug Information for Linux* Application Binaries

Window: Cannot Find <file type> File

Problem: Analysis of the .NET* Application Fails
This problem is specific to Windows* .NET applications.

Intel® VTune™ Profiler User Guide 1

689

Cause
If your .NET application performs security checks based on a known public key (for example, checks whether
its assemblies are strong-name signed), it may either crash when launched by the VTune Profiler or provide
unpredicted analysis results.

Solution
This is a third-party technology limitation. To workaround this issue, you are recommended to disable the
security check for any of the user-mode sampling and tracing analysis types.

See Also
.NET* Code Analysis

Problem: Cannot Access VTune Profiler Documentation

Cause
Intel® VTune™ Profiler product help, including context-sensitive help (F1), is available online only. Make sure
that you have a stable internet connection on your system.

If your browser or operating system has some specific limitations for displaying context help from VTune
Profiler, you may see this message:

This browser or operating system do not support Intel VTune Profiler context-sensitive web documentation.

Solution
For the best experience with context help, use the Google Chrome* browser.

You can also access these VTune Profiler documents directly

• Get Started Guide
• Installation Guide
• VTune Profiler User Guide
• Tutorials
• VTune Profiler Performance Analysis Cookbook
• Intel Processor Event Reference

Download offline versions of the VTune documentation from this repository: https://
d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/.

Get Help

Problem: CPU time for Hotspots or Threading Analysis is Too Low

Cause
The CPU time is low for one of the following reasons:

• The analysis run was very short and the target consumed little CPU time.
• CPU time may be inaccurate for targets that work in short quanta less than the scheduler tick interval. For

example, this can happen for frame-by-frame computation in video decoders. To capture CPU time more
accurately on Windows* OS, you need to run the analysis with the accurate CPU time detection mode
enabled.

 1 Intel® VTune™ Profiler User Guide

690

https://www.intel.com/content/www/us/en/docs/vtune-profiler/get-started-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/current/tutorials-and-samples.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/overview.html
https://download.01.org/perfmon/
https://d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/
https://d1hdbi2t0py8f.cloudfront.net/index.html?prefix=vtune-docs/

Solution
Try one of the following:

• Extend the duration of the analysis run.
• Windows OS only: Enable accurate CPU time detection. To do this for the Hotspots or Threading analysis,

it is enough to run the VTune Profiler with administrative permissions. You may also enable this option
explicitly in the custom analysis configuration by checking the Collect highly accurate CPU time box.
Make sure to extend maximum size of raw collector data.

NOTE
Accurate CPU time collection produces a significant amount of temporary data depending on the
system configuration and the profiled target. VTune Profiler may generate up to 5 Mb of temporary
data per minute per logical CPU.

See Also
Warnings about Accurate CPU Time Collection
Custom Analysis Options

Add Administrative Privileges

Problem: 'Events= Sample After Value (SAV) * Samples' Is Not True If Multiple Runs Are
Disabled

Cause
The Allow multiple runs option is located in the Advanced section of the WHAT pane on the Configure
Analysis window. By default, the option is disabled. As a result, the VTune Profiler uses event multiplexing
and runs the data collection only once. This approach lowers the precision of the collected data. So, the
VTune Profiler calculates the number of collected events using the formula: Events= Sample After Value
(SAV) * Samples. But when the event multiplexing is enabled, this formula is modified as follows: Events=
Sample After Value * Samples * Event Group Count, where the Event Group Count is the number of
incompatible groups of events used during the collection. The Event Group Count multiplier is introduced
based on the heuristics approach to fill the gaps when the VTune Profiler collected events for one event group
only.

For example, you have three groups of events: A, B and C, where event A1 is in group A. During the
application run, the VTune Profiler spends equal time on collecting each group of events. While group A is
analyzed, event A1 has 10 samples with SAV of 10.000 and your application generates no A1 samples at all
for the rest of the time. In this case, the accurate result is 100.000 events (10.000 * 10). But the VTune
Profiler provides the resultant number of events as 100.000 * 3 (A, B and C groups) = 300.000.

Solution
Select the Allow multiple runs option to disable event multiplexing and run a separate data collection for
each event group. This mechanism provides more precise data on collected events.

See Also
Sample After Value

Allow Multiple Runs or Multiplex Events

Intel® VTune™ Profiler User Guide 1

691

Problem: Guessed Stack Frames
VTune Profiler displays [Guessed stack frame(s)] in the grid panes.

Cause
VTune Profiler did not unwind the stack to reduce data collection overhead, but resolved the stack
heuristically.

[Guessed stack frame] is considered to be a system function. If the Call Stack Mode filter bar option is
set to User/system functions, the VTune Profiler displays [Guessed stack frame(s)].

Solution
To avoid displaying [Guessed stack frame(s)], set the Call Stack Mode filter bar option to Only user
functions.

See Also
Manage Data Views

Call Stack Mode

Problem: GUI Hangs or Crashes

Cause
You may face the Intel® VTune™ Profiler GUI hangs during symbol resolution in the finalization process. This
typically results from retrieving or processing large .pdb files. If you run the VTune Profiler from Microsoft*
Visual Studio* IDE, it automatically uses the Visual Studio settings to find symbol files and any additional
paths provided in the VTune Profiler's search settings. If the VTune Profiler uses a symbol server, the module
resolution can be slow if it has to wait for updates. Some .pdb files can be large and take time to resolve.

There are also some processes that can interfere with the VTune Profiler collection and finalization, such as
virus scanners and synchronization/back-up utilities. Virus scanners can cause problems in the process the
VTune Profiler uses for software-based analysis types, such as Threading. Some synchronization utilities can
also cause finalization to fail if they try to back up a file while the VTune Profiler is processing it.

Crashes during the collection are rare but may happen in some situations, for example, if the VTune Profiler
tries to instrument or attach to a privileged process or service that is not accessible to it.

Solution
To workaround a problem with GUI hangs during finalization, consider the following:

• If symbols for system libraries are necessary for your analysis, use a local cache instead of a symbol
server, such as the location defined for Visual Studio.

• Remove large pdb files from the search directories provided to the VTune Profiler if they are not the focus
of your analysis.

• Exclude the pin.exe process from your virus scanner, or disable the virus scanner while running the
VTune profiler collection.

• Pause synchronization and/or back-up utilities until the finalization is complete.

To prevent a possible crash for the VTune Profiler accessing processes with elevated privileges, run the VTune
Profiler as administrator. You can also configure the VTune Profiler to profile specific modules in the
Advanced section of the WHAT pane.

 1 Intel® VTune™ Profiler User Guide

692

See Also
Finalization

Add Administrative Privileges

Problem: Inaccurate Sum in the Grid
The sum of the several summands in the grid view may not equal the overall time shown for the parent of
the items.

Cause
The values in the data columns are rounded. For items that are sums of several other items, such as a
function with several stacks, the rounded sums may differ slightly from the sum of rounded summands.

For example:

Module / Function Time (exact) Time (rounded)

foo.dll 0.2468 0.247

 foo() 0.1234 0.123

 bar() 0.1234 0.123

The rounded values in the grid do not sum up exactly as (0.123 + 0.123) != 0.247.

See Also
Manage Data Views

Problem: Information Collected via ITT API Is Not Available When Attaching to a Process

Solution
If you use ITT API in your source code to collect statistics data, like Frame Analysis or JIT-profiling, by
attaching to a process, make sure to set up the following environment variables before starting your target
application:

• INTEL_LIBITTNOTIFY32=<>\bin32\runtime\ittnotify_collector.dll
• INTEL_LIBITTNOTIFY64=<install-dir>\bin64\runtime\ittnotify_collector.dll

NOTE
The variables should contain the full path to the library without quotes.

See Also
Analysis Target

Problem: No GPU Utilization Data Is Collected
Intel® VTune™ Profiler collects detailed GPU utilization data during GPU Offload (preview) or GPU Compute/
Media Hotspots analysis.

Intel® VTune™ Profiler User Guide 1

693

Cause
Intel® VTune™ Profiler may not collect the detailed GPU utilization data in the following cases:

• GPU analysis is run without root privileges.
• Intel Graphics driver is not signed properly.
• Linux kernel is configured with the CONFIG_FTRACE option disabled.

Solution
Depending on the root cause, which is typically identified by the VTune Profiler and described in a warning
message, consider one of the following workarounds:

• Make sure to properly set up your system for GPU analysis.
• Since detailed GPU utilization analysis relies on the Ftrace* technology (i915 Ftrace events collection),

your Linux kernel should be properly configured.

• If you update the kernel rarely, configure and rebuild only module i915.
• If you update the kernel often, build the special kernel for GPU analysis.

If your system does not support i915 Ftrace event collection, all the GPU Utilization statistics will be
calculated based on the hardware events and attributed to the Render and GPGPU engine.

See Also
Rebuild and Install the Kernel for GPU Analysis

Rebuild and Install Module i915 for GPU Analysis on CentOS*

Rebuild and Install Module i915 for GPU Analysis on Ubuntu*

Linux* and Android* Kernel Analysis

Problem: Same Functions Are Compared As Different Instances
The same functions are compared as different instances in the grid panes.

Cause
You are using the Function Stack grouping for the recompiled binary. The Function Stack grouping uses
function start addresses and is based on function instances.

Solution
Switch to the Source Function Stack grouping level to ignore start addresses and display the data by
source file objects.

See Also
Compare Results

Manage Data Views

Problem: Skipped Stack Frames
Intel® VTune™ Profiler displays [Skipped stack frame(s)] in the grid panes.

 1 Intel® VTune™ Profiler User Guide

694

Cause
VTune Profiler did not unwind the stack to reduce data collection overhead, and failed to resolve the stack
heuristically.

Solution
You may collect deeper stacks by creating a custom event-based sampling analysis and increasing the Stack
size option value in bytes (-stack-size option in CLI), though beware that this also increases the collection
overhead.

See Also
Custom Analysis Options

Manage Data Views

Problem: Stack in the Top-Down Tree Window Is Incorrect

Cause
The target was built with an optimization level that removed stack information from the binary.

Solution
Decrease the optimization level of your project and rebuild the target. Then profile with the Intel® VTune™
Profiler.

See Also
Compiler Switches for Performance Analysis on Linux* Targets

Compiler Switches for Performance Analysis on Windows* Targets

Debug Information for Windows* Application Binaries

Debug Information for Linux* Application Binaries

Problem: Stacks in Call Stack and Bottom-Up Panes Are Different
The Call Stack pane shows more stacks than the call tree in the Bottom-up pane.

Cause
There are several stacks going to the same function, but to different code lines (call sites).

The call tree in the Bottom-up pane aggregates these stacks in one line but the Call Stack pane shows
each as a separate stack. For more details, see the Call Stacks in the Bottom-up Pane and Call Stack Pane
topic.

See Also
Pane: Call Stack

Window: Bottom-up

Intel® VTune™ Profiler User Guide 1

695

Problem: System Functions Appear in the User Functions Only Mode
The Call Stack Mode option on the filter bar is set to Only user functions but system functions still appear
in the result windows.

Cause
If there is a system function that has no user function calling it, the system function appears and its time is
shown in the analysis result windows.

See Also
Call Stack Mode

Viewing Stacks

Problem: VTune Profiler is Slow to Respond When Collecting or Displaying Data
This problem is specific to Linux* targets.

Cause
• If your project directory (and consequently, the result files) are located on an NFS-mounted directory and

not on a local disk, this significantly impacts performance of the tool in several areas: writing of the
results is slower, updating project information is slower, and when loading the results for display you may
see delays of several minutes.

• If application binaries are on an NFS-mounted drive but not on a local drive, the VTune Profiler takes
longer to parse symbol information and present the results.

Solution
Make sure your project directory (and consequently, the result files) and application binaries are located on a
local disk and not an NFS-mounted directory. By default, the projects are stored in $HOME/intel/vtune/
projects. If your home directory is on an NFS-mounted drive to facilitate access from multiple systems, you
should ensure that you set the project directory to a local directory at project creation.

See Also
Set Up Project

Problem: VTune Profiler is Slow on X-Servers with SSH Connection
Intel® VTune™ Profiler GUI may respond slowly when you run a remote Linux* collection using an X11-
forwarding/X-server.

Cause
The GUI response may be slow if you use an X-server (for example, Xming*) with SSH on Windows to run
the VTune Profiler GUI on a connected Linux machine and the X-server is slow.

Solution
Option 1: Enable Traffic Compression

Compression may help if you are forwarding X sessions on a dial-up or slow network. Turn on the
compression with ssh -C or specify Compression yes in your configuration file.

 1 Intel® VTune™ Profiler User Guide

696

SSH obtains configuration data in the following order:

• ssh -C command-line option
• user configuration file (~/.ssh/config)
• system configuration file (/etc/ssh/ssh_config)

NOTE
You can explore all available options with man ssh_config.

Option 2: Change Your Encryption Cipher

The default cipher on many systems is triple DES (3DES), which is slower than Blowfish and AES. New
versions of OpenSSH default to Blowfish. You can change the cipher to Blowfish with ssh -c blowfish.

Change your configuration file with the Cipher option depending on whether you are connecting with SSH1
or SSH2:

• for SSH1, use Cipher blowfish
• for SSH2, use Ciphers blowfish-cbc,aes128-cbc,3des-cbc,cast128-cbc,arcfour,aes192-

cbc,aes256-cbc
You may also follow recommendations provided in the documentation to an X-server you are using.

See Also
Configure SSH Access for Remote Collection

Set Up Remote Linux* Target

Problem: Unexpected Paused Time
You may see unexpected Paused time in the Timeline pane even though you did not add any calls to the
__itt_pause() API or manually paused the analysis target. For example:

This may happen when collecting call stacks with hardware event-based sampling (EBS).

Cause
In the above example, the application called __itt_pause() at about the 22 sec mark. But the other,
smaller pauses were inserted by the VTune Profiler, which temporarily pauses profiling when data generation
rate exceeds data spill rate and it is about to lose data. The data is flushed and then the collection resumes.
In the paused regions, your application is not executing: the VTune Profiler lets the application exhaust its
current quanta and then prevents it from being scheduled on the CPU until all the data has been saved to a
file.

Intel® VTune™ Profiler User Guide 1

697

Solution
You can ignore this injected paused time. For example, in the Summary information below, you can see that
Paused Time is part of the Elapsed Time, but is not included in CPU Time.

See Also
Pausing Data Collection

start-paused vtune option
Pane: Timeline

Problem: {Unknown Timer} in the Platform Power Analysis Viewpoint
Platform Power Analysis viewpoint displays an {Unknown Timer} with a blank process name and {Unknown}
PID/TID.

Cause
The kernel configuration prevents the VTune Profiler from collecting the required data: it cannot identify the
PID/TID/module or process name for the timer.

Solution
You may set the CONFIG_TIMER_STAT =Y in the boot configuration file and recompile the kernel.

See Also
Interpreting Energy Analysis Data

Problem: Unknown Critical Error Due to Disabled Loopback Interface

Cause
When running a command line Linux* target analysis, the Intel®VTune Profiler may display an error message:
"Fatal error: Unknown critical error". One of possible reasons could be the disabled loopback interface.

Solution
Run the following command to enable the loopback interface: ipconfig lo up.

 1 Intel® VTune™ Profiler User Guide

698

Problem: Unknown Frames

Cause
When the Intel® VTune™ Profiler finalizes collected data, it uses symbol information to display stack
information for each function. If the VTune Profiler cannot find symbols for system modules used in your
application, the stack data displayed in the Bottom-up/Top-down Tree windows and Call Stack pane may
be either incomplete or incorrect. The following scenarios are possible:

If Then

You run Hotspots or/and
Threading analysis and your
application uses a system API
intensively

VTune Profiler cannot unwind the stack correctly since stacks do not
reach user code and stay inside the system modules. Often such stacks
may be limited to call sites from system modules. Since VTune Profiler
tries to attach incomplete stacks to previous full stacks via [Unknown
frame(s)], you may see [Unknown frame(s)] hotspots when
attributing system layers to user code via the Call stack mode option on
the Filter bar.

You run Threading analysis
and your application uses
synchronization API causing
waits that slow down the
application

NOTE
Windows* only: Missing PDB files may lead to the incorrect stack information only for 32-bit
applications. For 64-bit applications, stack unwinding information is encoded inside the application.

Solution
1. On Windows, make sure the search directories, specified in the Binary/Symbol Search dialog box,

include paths to PDB files for your application modules. For more details, see the Search Directories
topic.

2. On Windows, specify paths to the Microsoft* symbol server in Tools > Options > Debugging >
Symbols page. On Linux, make sure to install the debug info packages available for your system
version. For more details, see the Using Debug Information topic.

3. Re-finalize the result.

On Windows, the VTune Profiler will use the symbol files for system modules from the specified cache
directory and provide a more complete call stack.

See Also
Search Order

Control Data Collection

Problem: Unreadable Text on macOS*
VTune Profiler displays unreadable text in the graphical user interface on a macOS* host system.

Cause
Running the X11* version of XQuartz* on a macOS system caused the text in the VTune Profiler graphical
interface to appear garbled and unreadable. The problem is related to the XQuartz X11 server performing
font anti-aliasing, even in 256 color mode.

Intel® VTune™ Profiler User Guide 1

699

Solution
Reset the XQuartz preference to "millions" of colors and restart XQuartz.

See Also
macOS* Support

Problem: Unsupported Microsoft* Windows* OS
Intel® VTune™ Profiler does not support your current Windows* operating system.

Cause
In general, VTune Profiler is compatible with Windows OS versions supported by Microsoft, but there may be
one update behind the latest major version. Depending on the changes in the OS update, this may cause
incompatibility with the VTune Profiler drivers, particularly the sampling driver for hardware event-based
collections. VTune Profiler installer detects an unsupported OS and fails to install incompatible drivers. While
this can prevent hardware event-based sampling and stack collection, other analysis types using user-mode
sampling, such as Hotspots and Threading, can still be run. If the VTune Profiler is already installed when
your Windows system is updated to an unsupported version, the data collector may cause a crash or BSOD
while accessing the required drivers (sampling, graphics, or third-party drivers).

Solution
After installing the latest major Windows update, uninstall and reinstall the latest version of the VTune
Profiler.

Make sure all drivers are up to date.

Intel VTune Profiler Installation Guide for Windows

Warnings about Accurate CPU Time Collection
The following table lists warning messages you may encounter on Windows* OS when collecting data in the
highly accurate CPU time detection mode (enabled by default) and suggests solutions.

Warning Cause and Possible Solution

Accurate CPU time detection was
disabled. Another collection in this
mode is already running on the
system.

Cause

Another collection with accurate CPU time detection is running on
the system or was not terminated properly.

Solution

Make sure the other collection has finished and try again. Only
one VTune Profiler collection can run with accurate CPU time
detection on the system at a time.

Accurate CPU time detection was
disabled. The NT Kernel Logger is
already in use.

Cause

VTune Profiler requires the Microsoft* NT Kernel Logger to
capture precise CPU time data. The NT Kernel Logger is a system-
wide resource which cannot be shared by different processes.
Other tools, such as the Xperf utility of the Windows*
Performance Tools Kit may use the NT Kernel Logger at the same
time.

Solution

 1 Intel® VTune™ Profiler User Guide

700

https://www.intel.com/content/www/us/en/docs/vtune-profiler/installation-guide/current/windows.html

Warning Cause and Possible Solution

Make sure that other tools do not use the NT Kernel Logger and
try again.

Accurate CPU time detection was
disabled. Drive <drive name> has
not enough disk space.

Cause

The temporary folder for storing accurate CPU time data is
located on a drive with insufficient free space.

Solution

Make sure you have enough space on the drive. The free space
must be not less than specified in the Limit collected data by:
Result size from collection start option on the WHAT pane of
the Configure Analysis window.

Highly accurate CPU time collection is
disabled for this analysis. To enable
this feature, run the product with the
administrative privileges.

Cause

VTune Profiler requires administrative privileges to enable
accurate CPU time detection.

Solution

Make sure you are running the collection as a local administrator.

Accurate CPU time detection was
disabled. The temporary data path
<full path to file> is longer than 1024
symbols.

Cause

VTune Profiler uses temporary files to collect precise CPU time
data. The length of the path to the temporary files cannot be
longer than 1024 symbols.

Solution

Make sure the TEMP environment variable for the path to the
temporary files is no longer than 1024 symbols.

Accurate CPU time detection was
disabled. This mode is not supported
on this OS.

Cause

Some operating systems may not support accurate CPU time
detection. For the list of supported operating systems, please see
the System Requirements section of the product Release Notes.

See Also
Control Data Collection

Reference
Explore the following reference information for Intel® VTune™ Profiler:

• Graphical User Interface Reference
• CPU Metrics Reference
• GPU Metrics Reference
• OpenCL™ Kernel Analysis Metrics Reference
• Energy Analysis Metrics Reference
• Intel Processor Events Reference

User Interface Reference
This section provides reference context-sensitive topics for Intel® VTune™ Profiler user interface elements,
typically accessed from the product via Learn More link,

Intel® VTune™ Profiler User Guide 1

701

Context Help button, or F1 button.

• Context Menu: Grid
• Context Menu: Call Stack Pane
• Context Menu: Project Navigator
• Context Menu: Source/Assembly Window
• Dialog Box: Binary/Symbol Search
• Dialog Box: Source Search
• Hot Keys
• Menu: Customize Grouping
• Menu: Intel VTune Profiler
• Pane: Call Stack
• Pane: Options - General
• Pane: Options - Result Location
• Pane: Options - Source/Assembly
• Pane: Project Navigator
• Pane: Timeline
• Toolbar: Command
• Toolbar: Filter
• Toolbar: Source/Assembly
• Toolbar: Intel VTune Profiler
• Window: Bandwidth - Platform Power Analysis
• Window: Bottom-up
• Window: Caller/Callee
• Window: Cannot Find file type File
• Window: Collection Log
• Window: Compare Results
• Window: Configure Analysis
• Window: Core Wake-ups - Platform Power Analysis
• Window: Correlate Metrics - Platform Power Analysis
• Window: CPU C\P States - Platform Power Analysis
• Window: Debug
• Window: Event Count
• Window: Flame Graph
• Window: Graphics - GPU Hotspots
• Window: Graphics C/P States - Platform Power Analysis
• Window: NC Device States - Platform Power Analysis
• Window: Platform
• Window: Platform Power Analysis
• Window: Sample Count
• Window: SC Device States - Platform Power Analysis
• Window: Summary
• Summary - Input and Output
• Summary - Microarchitecture Exploration
• Summary - GPU Hotspots
• Summary - Hardware Events
• Summary - Hotspots by CPU Usage
• Summary - HPC Performance Characterization
• Summary - Memory Consumption
• Summary - Memory Usage
• Summary - Platform Power Analysis
• Window: System Sleep States - Platform Power Analysis
• Window: Temperature - Platform Power Analysis
• Window: Timer Resolution - Platform Power Analysis
• Window: Top-down Tree
• Window: Uncore Event Count
• Window: Wakelocks - Platform Power Analysis

 1 Intel® VTune™ Profiler User Guide

702

Context Menu: Grid
Right-click a column in a grid pane (for example, Bottom-up) to access the options available from the
context menu:

Use This To Do This

View Source Open the Source/Assembly window of the selected program unit.

Change Focus Function Use a function selected in the Callers or Callees pane as a focus function
and display its parent and child functions.

What's This Column? Open a help topic describing the selected metric column.

Show Data As Specify the data format for the collected data (for example, time, percent,
bar, counts, and others).

This option is available for columns displaying numeric data.

Hide Column Hide the selected column.

Show All Columns Show all the columns.

Select All Select all items in the grid. The Selected data row at the bottom of the
grid is updated to sum up all selected data per metric. Selecting data in
one of the panes, Bottom-up or Top-down Tree, automatically updates
the other pane and Call Stack pane.

Expand Selected Rows Expand all child entries for the selected row(s).

Collapse All Collapse all rows in the grid.

Find Open a search bar and search for a string in the grid.

Export to CSV... Export the content of the active pane to CSV format.

Copy Rows to Clipboard

Copy Cells to Clipboard

Copy the content of the selected rows or a cell into the clipboard buffer.

Filter In by Selection Filter in the grid and Timeline pane based on the currently selected rows.
Selecting this menu item updates the filter bar based on the current
selection. All rows except for the selected ones will be hidden. To show
rows again, use the

Clear all filters button on the Filter toolbar.

If you applied filters available on the Filter bar to the data already filtered
with the Filter In/Out by Selection context menu options, all filters are
combined and applied simultaneously.

Filter Out by Selection Filter out the grid and Timeline pane based on the currently selected
rows. Selecting this menu item updates the filter bar based on the current
selection. All selected rows will be hidden. To show rows again, use the

Clear Filter button in the Filter toolbar.
If you applied filters available on the Filter bar to the data already filtered with the
Filter In/Out by Selection context menu options, all filters are combined and
applied simultaneously.

Show Grouping Area Show/hide the Grouping drop-down menu at the top of the Bottom-up
pane.

Intel® VTune™ Profiler User Guide 1

703

See Also
Window: Bottom-up

Window: Top-down Tree

Window: Caller/Callee

Pane: Timeline

Toolbar: Filter

Source Code Analysis

Context Menus: Call Stack Pane

Use the available controls to address a number of options:

Use This To Do This

View Source hyperlink Open the Source/Assembly window for the program unit in the selected
stack.

Show Modules toggle Display the module names of the program units selected in the Call Stack
pane.

Show Source File and
Line toggle

Display the source file names of the program units selected in the Call
Stack pane and a line number where the call was made.

Stack Selector Switch between available stacks using the left/right arrows.

Copy to Clipboard button Copy the data into the clipboard buffer to paste it to a different location.

Stack Type drop-down
menu

Select a metric to arrange the stack by.

See Also
Viewing Source
Pane: Call Stack

Context Menus: Project Navigator
Manage Intel® VTune™ Profiler projects/results using the Project Navigator context menus.

 1 Intel® VTune™ Profiler User Guide

704

Directory Context Menu
Right-click the directory of the current project to choose one of the following options:

Use This To Do This

New Project... Open the Create a Project dialog box to browse to or create a directory
in which the Intel® VTune™ Profiler will create a project
(config.amplxeproj).

Open Project from New
Location

Open the Select Project dialog box to browse to a directory containing
VTune Profiler projects.

Copy Path to Clipboard Copy the path to the currently opened project to the system clipboard.

Project Context Menu
Right-click a project to access the following options:

Use This To Do This

Open Project Open the VTune Profiler project.

Close Project Close the current project and any opened results.

Configure Analysis... Open the Configure Analysis window to modify project properties
including a target system, a target type, and an analysis type.

<analysis type> Analysis Rerun a recent analysis.

Close All Results Close all opened results for this project.

Delete Project Immediately delete the selected project and associated results from the
Project Navigator and file system.

Rename Project Rename the selected project in the Project Navigator immediately and in
the file system after you close the project or exit the VTune Profiler.

Copy Project Path to
Clipboard

Copy the path to the selected project to the system clipboard.

Result Context Menu
Right-click the result to choose one of the following options:

Use This To Do This

Open Result Open the VTune Profiler result.

Re-resolve and Open Finalize the selected result again. You may use this option after changing
the search directories settings to enable updating the symbol information.
This option is available if the result is NOT open in the grid.

Compare Open the Compare Results window and select a result to compare the
current result with.

Delete Result Delete the selected result from the Project Navigator and file system.

Rename Result Rename the selected result in the Project Navigator immediately and in
the file system after you close the result or project, or exit the VTune
Profiler.

Intel® VTune™ Profiler User Guide 1

705

Use This To Do This

NOTE
The corresponding result directory in the file system is not renamed.

Copy Result Path to
Clipboard

Copy the path to the selected result to the system clipboard.

See Also
Pane: Project Navigator

Set Up Project

Set Up Analysis Target

Analyze Performance

VTune Profiler Filenames and Locations
Manage Data Views
Finalization

Context Menus: Source/Assembly Window
Manage the data in the Source/Assembly panes using one of the following mechanisms:

• Right-click the source/assembly code column to access the code column context menu.
• Right-click a data column with numeric data (for example, CPU Time) to access the data column context

menu.

The following context menu options are available:

Use This To Do This

Edit Source Launch the source file editor. This option is only available for the Source
pane.

Instruction Reference Open the Reference help system for particular assembly instruction. This
option is only available for the Assembly pane.

What's This Column? Open a help topic for the selected performance metric column.

Show Data As Specify the format to display the collected data. You can view the data as:

• Time
• Percent
• Bar
• Time and Bar
• Percent and Bar

This option is only available for columns displaying numeric data.

Hide Column Hide the selected column.

This option is only available for columns displaying numeric data.

Show All Columns Show all the columns.

 1 Intel® VTune™ Profiler User Guide

706

Use This To Do This

Define the current metric column in the Source and Assembly views.

This option is only available for columns displaying numeric data.

Export to CSV Export the content of the active pane to CSV format.

Select All Select the content of the whole table.

Find Open the search bar and search for a string.

Copy Rows to Clipboard Copy the content of the selected rows into the clipboard buffer.

Copy Cell to Clipboard Copy the content of the selected cell into the clipboard buffer.

See Also
Source Code Analysis

Dialog Box: Binary/Symbol Search
Use the Binary/Symbol Search dialog box to configure the search directories for binary and symbol files on
the host, which is required to finalization and accurate source analysis. For example, specify non-standard
directories for the supporting files needed to execute the target executable.

For remote data collection, if the symbol files are not available on the host, make sure to either copy them to
the host or mount the directory with the source files and add it to the search paths. Binary files are copied
from the target system to the host by default after data collection.

To access this dialog box:

1. On the Intel® VTune™ Profiler toolbar, click the

Configure Analysis button.

The result tab opens the Configure Analysis window.
2. Specify your analysis system on the WHERE pane and analysis target on the WHAT pane.
3. Click the

Search Sources/Binaries button on the command toolbar at the bottom.
4. In the dialog box, select Binaries/Symbols from the left pane.

To manage the search directories list, hover over a respective line to see the action buttons.

Use This To Do This

Search Directories
list

• Add non-standard directories to the list.
• View the directories currently in the search list, including their search order.

button
Browse for directories to include to the search list.

<Add a new search
location> field

Add a new local search directory or a symbol server paths to the list by clicking
the field and typing the path and name of the directory in the activated text box.

If running an analysis from the standalone VTune Profiler GUI on Windows* OS,
make sure to configure the Microsoft* symbol server by adding the following line
to the list of search directories:

Intel® VTune™ Profiler User Guide 1

707

Use This To Do This

srv*C:\local_symbols_cache_location*http://msdl.microsoft.com/
download/symbols
where local_symbols_cache_location is the location of local symbols. VTune
Profiler will download debug symbols for system libraries to this location and use
them to resolve collected data and provide accurate performance data for system
modules.

NOTE
The search is non-recursive. Make sure to specify correct paths to the binary/symbol
files.

button
Move the selected directory up the search priority list.

button
Move the selected directory down the search priority list.

button
Remove the selected directory from the list.

See Also
Search Directories

Dialog Box: Source Search

Debug Information for Windows* Application Binaries

Enable Linux* Kernel Analysis

Debug Information for Windows* System Libraries

Specifying Search Directories
 from command line

Dialog Box: Source Search
Use the Source Search dialog box to specify the directories used to search for source files on the host,
which is required for data finalization and accurate source analysis. For remote data collection, if the source
files are not available on the host, make sure to either copy them to the host or mount the directory with the
source files and add it to the search paths.

To access this dialog box:

1. On the Intel® VTune™ Profiler toolbar, click the

Configure Analysis button.

The result tab opens the Configure Analysis window.
2. Specify your analysis system on the WHERE pane and analysis target on the WHAT pane.
3. Click the

Search Sources/Binaries button on the command toolbar at the bottom.

 1 Intel® VTune™ Profiler User Guide

708

4. In the dialog box, select Sources from the left pane.

To manage the search directories list, hover over a respective line to see the action buttons.

Use This To Do This

Search Directories
list

• Add non-standard directories to the list.
• View the directories currently in the search list, including their search order.

button
Browse for directories to include to the search list.

<Add a new
search location>
field

Add a new local search directory to the list by clicking the field and typing the path
and name of the directory in the activated text box.

NOTE
The search is non-recursive. Make sure to specify correct paths to the source files.

button
Move the selected directory up the search priority list.

button
Move the selected directory down the search priority list.

button
Remove the selected directory from the list.

See Also
Search Directories

Dialog Box: Binary/Symbol Search

Debug Information for Windows* Application Binaries

Specifying Search Directories
 from command line

Hot Keys
Use hot keys supported by the Intel® VTune™ Profiler to quickly perform various tasks:

Use This To Do This

Alt + 1 Launch the VTune Profiler and start the analysis of the selected type, or resume the
data collection after it has been paused.

Alt + Break Pause the current data collection.

Alt + Shift + 1 Stop the current data collection.

Alt + 9 Open the Configure Analysis window to choose and run a new analysis.

Ctrl + O Open the Select Result dialog box to select and open an existing analysis result.

NOTE
You may program hot keys to start/stop a particular analysis. For more details, see http://
software.intel.com/en-us/articles/using-hot-keys-in-vtune-amplifier-xe/.

Intel® VTune™ Profiler User Guide 1

709

http://software.intel.com/en-us/articles/using-hot-keys-in-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/using-hot-keys-in-vtune-amplifier-xe/

Menu: Customize Grouping
Use the Customize Grouping menu to create a
custom grouping of program units for the current
viewpoint.

Typically default groupings provided in the VTune Profiler are enough for basic analysis workflows. But you
may organize the collected data to explore it from a different perspective. For this, click the

Customize Grouping button in the grid view and combine a grouping you need.

Use This To Do This

List of available
grouping levels

Select grouping levels required for your custom grouping. This list provides all levels
supported by the Intel® VTune™ Profiler. Make sure to select grouping levels applicable
to your analysis type.

Custom
grouping field

View the custom grouping you created. The grouping shows up in the Grouping menu
in the order presented in this field. If the grouping uses levels not applicable to the
current analysis, no data is shown in the grid.

Left and Right
arrows

Use the left and right arrows to add/remove the groping levels in the custom grouping.
Use double right arrows to remove all levels from the custom grouping.

Up and Down
arrows

Modify the order of grouping levels selected for the custom grouping.

The grouping you create is added to the Grouping menu for the current session and automatically removed
when you close the result.

See Also
Grouping and Filtering Data

Menu: Intel VTune Profiler
If you work with the Microsoft Visual Studio* environment, a new Intel® VTune™ Profiler menu item appears
under the Microsoft Visual Studio* Tools menu after the product installation. This menu contains commands
for accessing all commonly used VTune Profiler features. This includes menu items to run and control
performance analysis for the current solution.

These are the commands available from the Intel VTune Profiler toolbar in Visual Studio IDE:

Icon Command Description

Open VTune Profiler Open VTune Profiler within Microsoft Visual Studio IDE.

 Configure Analysis
with VTune Profiler

Configure your VTune Profiler project and profile your target with
VTune Profiler.

In the Visual Studio IDE sub-menu (File > Intel VTune Profiler), these options are available:

Icon Command Description

Open VTune Profiler Open VTune Profiler within
Microsoft Visual Studio IDE.

Configure Analysis with
VTune Profiler

Configure your VTune Profiler
project and profile your target
with VTune Profiler.

 1 Intel® VTune™ Profiler User Guide

710

Icon Command Description

Import Result... Open the Import window to
import a data file, such as *.tb6.

Compare... Open the Compare Results
dialog box and specify analysis
results to compare. You can
compare only the results of the
same analysis type.

To access the VTune Profiler menu in the standalone GUI, click the button in the

Menu button in the upper left corner. The following commands are available:

Command Hot Keys Description

Welcome Open the Welcome page that provides direct access to most recent
projects and results. You can also use this page to open or create a
VTune Profiler project or access the latest technical articles on the
product functionality

Help Tour Launch an interactive tour around the product that uses a sample pre-
collected result to demo basic product functionality.

New > Project... CTRL
+SHIFT
+N

Create a new VTune Profiler project that introduces your analysis
target.

New > Compare
Results...

CTRL+ALT
+O

Open the Compare Results dialog box and specify analysis results to
compare. You can compare only the results of the same analysis type.

New > Analysis... CTRL+N Open the Configure Analysis window to choose, configure, and run
an analysis.

New > <analysis
type> Analysis

Run the specified analysis types without opening the Configure
Analysis window. For your convenience, this list of analysis types
includes the most recent configurations you ran.

Open > Project... CTRL
+SHIFT
+O

Open an existing VTune Profiler project to introduce your analysis
target and start analysis.

Open > Result... CTRL+O Open an existing analysis result.

Close Project Close the currently opened project.

Import Result... CTRL+ALT
+N

Open the Import window to import a data file, such as *.tb6.

Recent Projects Quickly open a recently used VTune Profiler project.

Recent Results Quickly open a recently collected analysis result.

View > Project
Navigator

Open the project navigator window to explore the currently selected
project.

Options... Open the Options dialog box to configure general, result name, or
source/assembly options.

Help >
<doc_format>

Open one of the following online documentation format for the VTune
Profiler:

Intel® VTune™ Profiler User Guide 1

711

Command Hot Keys Description

• Intel VTune Profilerversion User Guide
• Get Started with Intel VTune Profilerversion
• VTune Profiler Developer Forum
• Cookbooks and Tutorials
• Intel Processor Event Reference

Help > Additional
Resources

Access VTune Profiler documentation on the Intel Developer Zone or
download it for offline usage.

Help > About... View product license and product details.

Exit Exit the VTune Profiler standalone interface.

See Also
Toolbar: Intel VTune Profiler

Window: Compare Results

Compare Results

Finalization

Pane: Call Stack
The Call Stack pane is available for these collections:

• User-mode sampling and tracing collection, such as Hotspots and Threading analyses
• GPU Offload analysis
• Hardware event-based sampling with the stack collection enabled

Use the Call Stack pane to identify the call sequences (stacks) that called the program unit selected in the
grid. Call stacks from different threads are aggregated together, showing all the call stacks for a function,
without providing information on what threads were calling. See the table below to understand how to use
the data provided in the Call Stack pane for the Threading analysis results.

Stack metric drop-down menu. Select a performance metric to explore the distribution of this metric
over stacks of the selected object. For example, for the Threading Efficiency viewpoint the Wait Time
metric is preselected. For the GPU Offload viewpoint, the Execution metric is preselected.

 1 Intel® VTune™ Profiler User Guide

712

Navigation bar. Click the next/previous

arrows to view stacks for the selected program unit(s). The stack types are classified by metrics and
depend on the selected viewpoint. For example, for the Threading Efficiency viewpoint the Wait
Time stack type displays call stacks where the object selected in the grid contributed to the application
Wait time.

When multiple stacks lead to the selected program unit, the Call Stack pane shows the stack that
contributed most to the metric value, the hottest path, as the first stack. To see other stacks, click the
navigation arrows.

NOTE

• If several stacks go to the same functions in different code lines, the bottom-up tree shown in
the Bottom-up grid aggregates these stacks in one line. But the Call Stack pane shows each
as a separate stack.

• If a selected stack type is not applicable to a selected program unit, the VTune Profiler
automatically uses the first applicable stack type from the stack type list instead.

Contribution bar. Analyze the indicator of the contribution of the currently visible stack to the overall
metric data for the selected program unit(s). If you select a single stack in the result window, the
Contribution bar shows 100%. If more than one program unit is selected, all the related stacks are
added to the calculation.

In the example above, the function selected in the Bottom-up grid had 3 Wait Time stacks leading to it
with the total Wait time 23.718 seconds. The first stack is responsible for 97.9% (or 23.230s) of the
overall 23.718 seconds. Note that the Bottom-up grid aggregates all 3 stacks into one since all of them
go to the same function in different code lines.

Call stack for a program unit selected in the grid or in the Timeline pane. Analyze the call
sequence for the selected function according to the stack metric selected in the navigation bar. Each
row in the stack represents a function (with an RVA and a line number of the call site, if available) that
called the function in the row above it. When the Call Stack Mode on the filter toolbar is set to Only
user functions, the system functions are shown at the bottom of the stack. When set to User/
system functions, the system functions are shown in the correct location, according to the call
sequence.

Click a hyperlink or double-click a function in the stack to open the source exactly where this function
was called.

NOTE
If you see [Unknown frame(s)] identifiers in the stack, it means that the VTune Profiler could
not locate symbol files for system or your application modules. See the Resolving Unknown
Frames topic for more details.

Context menu. Manage the call stack representation in the Call Stack pane (applicable to all stacks).
Right-click and select an option. For example, you may de-select the Show in One-Line Mode option
to view functions in two lines:

Intel® VTune™ Profiler User Guide 1

713

NOTE
When you compare two analysis results, the Call Stack pane does not show any call stacks.

See Also
Metrics Distribution Over Call Stacks

View Stacks

Context Menus: Call Stack Pane

Pane: Options - General
To access this pane:

In the Microsoft Visual Studio IDE, click the pull-down menu next to the Open VTune Profiler icon (

) and select Options:

From the standalone VTune Profiler interface: Click the

menu button and select Options... > Intel VTune Profiler version > General.

The following options are available:

Use This To Do This

Application output
destination options

Choose the location for the output of the analyzed application:

 1 Intel® VTune™ Profiler User Guide

714

Use This To Do This

• Product output window: Direct the application output to the Application
Output pane in the Collection Log window.

• Separate console window: Direct the application output to a separate
console window (default).

• Microsoft Visual Studio* output window: View the application output in
the Microsoft Visual Studio* output window. Use this option to see the output
during the analysis.

Remove raw
collector data after
resolving the result
check box

Enable/disable removing raw collector data after finalizing the result. Removing
raw data makes the result file smaller but prevents future re-finalization.

Display verbose
messages in the
Collection Log
window check box

Enable/disable detailed collection status messages in the Collection Log window.
Make sure to re-open the result to apply this change.

Show all applicable
viewpoints check
box

Display all applicable viewpoints in the viewpoint selector for every analysis type.

Specify path to the
adb executable field

Specify the path to the adb executable used to access an Android* device for
analysis with the VTune Profiler.

See Also
Set Up Android* System

Microsoft Visual Studio* Integration

Pane: Options - Result Location
To access this pane:

From Microsoft Visual Studio* IDE: Click the pull-down menu next to the Open VTune Profiler icon (

) and select Options:

From standalone VTune Profiler interface: Click the

menu button and select Options... > Intel VTune Profilerversion > Result Location.

Use the Result Location pane to configure the following options:

Do This To Do This

Result name template text
box

Change the default template defining the name of the result file and its
directory.

Intel® VTune™ Profiler User Guide 1

715

Do This To Do This

NOTE
Do not remove the @@@ part from the template. This is a placeholder
enabling multiple runs of the same analysis configuration.

See Also
VTune Profiler Filenames and Locations

Specify Result Directory from Command Line

Microsoft Visual Studio* Integration

Pane: Options - Source/Assembly
To access this pane:

Go to Tools > Options > Intel VTune Profilerversion> Source/Assembly.

Use this pane to configure the following options:

Use This To Do This

Tab size: text box Set the tab character display width in white spaces. The tab size should be an
integer starting from 1.

CPU assembly
syntax

Specify a formatting option to display the disassembled code:

• Default syntax: Show disassembled code using default syntax (MASM style
for Windows* and GAS style for Unix*).

• GAS style syntax: Show disassembled code using GNU assembler syntax.
• MASM style syntax: Show disassembled code using MASM syntax.

Cache source files
check box

Save your source files in the cache. You can go back to the cached sources at any
time in the future and explore the performance data collected per code line at that
moment of time.

If you enable this option, the VTune Profiler caches your sources in the result
database when you open the Source window for the first time and provides the
following message:

When you open the Source window for this result for the second time, one of the
following behaviors is possible:
• If the source file has not been changed, the VTune Profiler opens the source

from the located source path. The message about caching the source file
shows up at the bottom. The

Open Source File Editor toolbar button is enabled.
• If the source files has been changed, the VTune Profiler opens the source from

the cached file and provides a proper notification on this at the bottom. The

 1 Intel® VTune™ Profiler User Guide

716

Use This To Do This

Open Source File Editor toolbar button is disabled.

NOTE

• VTune Profiler opens previously cached source files even if the Cache
source files option is disabled now.

• If you have the Cache source files option enabled and open a changed
source file that does not match the selected result, the VTune Profiler will
cache it but will not use it for this result.

See Also
Source Code Analysis

Microsoft Visual Studio* Integration

Project Navigator
The Project Navigator pane provides a hierarchical
view of your projects and results based on the
directory where the opened project resides.

To access this pane: Click the

Project Navigator icon on the Intel® VTune™ Profiler toolbar in the standalone graphical interface. To
manage VTune Profiler projects/results from the Microsoft Visual Studio* IDE, use the Solution Explorer
functionality.

Use this pane to perform the following actions:

• Delete a selected project or result.
• Rename a selected project or result.
• Close all opened results.
• Copy various directory paths to the system

clipboard.

Use
This

To Do This

Project
node

Double-click to open the project. Right-click the project node to access the
project context menu.

NOTE
Opening a project closes the currently opened project.

Intel® VTune™ Profiler User Guide 1

717

Use
This

To Do This

Result
node

Double-click to open the result. Right-click the result node to access the result
context menu.

NOTE
Opening a result opens the associated project if it is not already open.

See Also
VTune Profiler Filenames and Locations

Set Up Project

Pane: Timeline
Use the Timeline pane to visualize metrics over time
at either the thread level or platform level and identify
patterns, anomalies, and trends in the data.

You can hover, zoom-in, and filter the data at interesting points in time to get more detail. Typically the
Timeline pane is located at the bottom of the window but for the views focused on the metrics distribution
over time, it may occupy the upper or central part of the window. Data presented in the Timeline pane varies
depending on the analysis type and viewpoint.

The Timeline pane typically provides the following data:

Toolbar. Navigation control to zoom in/out the view on areas of interest. For more
details on the Timeline controls, see Managing Timeline View topic.

Platform metrics. Depending on the analysis type, the Timeline pane may present
several areas with platform specific metrics such as GPU engine usage, computing queue
for OpenCL™ applications, bandwidth data, power consumption, and so on. The most
detailed analysis of the platform metrics is available with the Timeline pane in the
Platform window.

Application metrics per grouping level. Depending on the viewpoint, the data may be
represented by threads, modules, processes, cores, packages, and other units monitored
by the data collector during the analysis run. For most of the viewpoints, the Thread
grouping is default. For some viewpoints, you may change the grouping level using the
drop-down menu in the Legend area.

 1 Intel® VTune™ Profiler User Guide

718

Note that the CPU Time metric value provided in the Thread area is applicable to a
particular thread where 100% is the maximum possible utilization for a thread. For
example, for the selection above 94.2% of CPU Time utilization means that the thread
was active 94.2% of time and 5.8% it was waiting.

Selected metrics. Data on the most representative metrics may be presented as
separate rows demonstrating an overall application performance over time (for example,
CPU Usage or GPU HW metrics) or system-wide execution (for example, GPU Usage). See
Reference for Performance Metrics for detailed metrics description.

Note that the CPU Utilization metric in the Timeline pane is calculated as a sum of CPU
time per each thread where 100% is the maximum possible utilization per CPU. For
example, at the moment selected in the picture below the application utilized 1.91 of
logical CPU cores (if every CPU is 100%, then 191% is 1.91) out of 4, and 0.23 of CPU
was used by the application threads for overhead or spinning. This means that the
application utilized only 1.68 of CPUs effectively.

Legend. Types of data presented on the timeline. Filter in/out any type of data presented
in the timeline by selecting/deselecting corresponding check boxes. The list of
performance metrics presented in the view depend on the selected analysis type and
viewpoint.

VTune Profiler also uses special indicators to classify the presented data on the timeline:

•

Markers. Color markers indicate an area on the timeline when a particular task/
frame/event/etc. was executed. Hover over a marker to see the execution details for
the selected element. The following markers are available:

• Frame markers show frame duration. Available for applications using frames.
• User task markers provide information on a task executed at this particular

moment of time. Available for applications using Task API.
• CPU sample markers indicate exact points where profiling samples happened

during hardware event-based stack sampling collection. Use the markers density to
estimate the data resolution. For example, the VTune Profiler interpolates the
sampling data where accuracy depends on number of samples. In this case, the
CPU Samples markers show more accurate information discovering the sporadic
CPU utilization for the thread.

Sample markers also help understand how exactly filtering and Spin/Overhead time
calculation works. VTune Profiler filters or classifies samples as a whole, so when
you do time filtering it is important to know whether the sample point got into the
selected time interval or not. No data interpolation is done for sampling data when
filtering or classifying sample metrics.

• VSync markers for vertical synchronization. If your application uses vertical
synchronization, you can select the VSync timeline option, estimate the correlation
between VSync events and application frames, identify frames missing VSync
events and explore possible reasons.

Intel® VTune™ Profiler User Guide 1

719

• Sampling point markers point at which a data sample was read during energy
analysis. Hovering over it gives the value(s) read at that time.

• Wake-up object markers for energy analysis that show processor wake-ups on
the timeline. Hover over a yellow marker to see the time when the selected wake-
up happened and the name of the wake-up object.

• Slow tasks markers show the duration of tasks (I/O Wait, Ftrace*, Atrace*, and so
on) that is categorized as slow (according to the thresholds set up in the Summary
window)

• I/O APIs markers
• Context switches. The time threads are spending on context switches. Hover over a

context switch area to see the details on its duration, reason, and affected CPU. If you
choose the Context Switch Time option in the Call Stack pane and select a context
switch in the Timeline pane, the Call Stack pane shows a call sequence at which a
preceding thread execution quantum was interrupted.

• Transitions. The execution flow between threads where one thread signals to another
thread waiting to receive that signal. For example, one thread attempts to acquire a
lock held by another thread, which then releases it. The release acts like a signal to
the waiting thread. Hover over a transition for more details. Double-click a transition
to open the source code.

• Memory transfers. OpenCL routines responsible for transferring data from the host
system to a GPU are marked with cross-diagonal hatching on a computing queue:

• Synchronizations. OpenCL routines responsible for synchronization are marked with
vertical hatching on a computing queue:

• Scaling indicators. For GPU metrics and bandwidth graphs, the VTune Profiler
provides maximum Y-axis values used to scale the graphs. Color of such a value
corresponds to the color of the relevant metric in the legend. For example, for the GPU
L3 Cache Misses and Memory Access metrics, maximum Y value for the selected scale
is 20.153 GB/sec for GPU Memory Read Bandwidth and for the GPU Memory Write
Bandwidth, and 521849224.729 Misses/sec for GPU L3 Misses.

 1 Intel® VTune™ Profiler User Guide

720

Tooltips. Hover over a chart element to get statistics on this metric/program unit for the
selected moment of time.

For the GPU analysis of applications using OpenCL software technology, the Timeline pane in the Graphics
window provides the following tabs:

• Platform tab that focuses on a per-thread and per-process distribution of the CPU and GPU hardware
metrics collected during the analysis run.

• Architecture Diagram tab that is provided for OpenCL application analysis collected with the Analyze
Processor Graphics hardware events option on systems with Intel® HD Graphics and Intel® Iris®
Graphics. This tabs helps better understand the distribution of the GPU hardware metrics per architecture
blocks for the period the selected OpenCL kernel was running.

NOTE
Collecting energy analysis data with Intel® SoC Watch is available for target Android*, Windows*, or
Linux* devices. Import and viewing of the Intel SoC Watch results is supported with any version of the
VTune Profiler.

See Also
Window: Bottom-up

Window: Top-down Tree

Window: Event Count - Hardware Events

Window: Uncore Event Count - Hardware Events

Pane: Call Stack

Toolbar: Configure Analysis
Use the Intel® VTune™ Profiler command toolbar in the
Configure Analysis window to access the project
configuration options, manage your data collection
(start, pause, resume, and so on) and analysis result
(re-resolve, import).

The command toolbar shows up when you use one of the following options:

• Click the

(standalone GUI)/

Intel® VTune™ Profiler User Guide 1

721

https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html

(Visual Studio IDE) Configure Analysis button on the product toolbar.
• Windows* only: From the Microsoft Visual Studio* Tools > Intel VTune Profiler <version> menu,

select the Configure Analysis option.
• From the standalone interface menu, select New > Analysis....

The VTune Profiler result tab opens providing the command bar on the right. The command bar is
dynamically changing depending on the analysis phase. The following commands are available:

Use This
Command
Button

To Do This

Start/
Resume

Run the analysis, or resume the analysis after a pause. To enable this button:

• Select a system for analysis on the WHERE pane
• Specify an analysis target on the WHAT pane. If you work in Visual Studio, the

project target is automatically associated with the current project.
• Select an analysis type on the HOW pane.

Start Paused
Launch the application but run the analysis after some delay. To resume the analysis,
click the Resume button.

Pause
Pause the data collection any time you need while the application is running. To resume
the data collection, click the Resume button

Stop
Stop the data collection. This button is only enabled during collection.

Cancel
Cancel the data collection. This button is only enabled during collection.

Mark
Timeline

Mark an important moment in the application execution. These marks appear in the
Timeline pane. This button is only enabled during collection.

Search
Sources/
Binaries

Open the search dialog box with the Binary/Symbol Search tab to specify search
directories for binary and symbol files in your project and the Source Search tab to
specify search directories for source files in your project.

Re-resolve
Finalize the result again. This button shows up on the command bar when you try to run
the target after changes in the search directories settings.

Import from
CSV

Import external performance data into a VTune Profiler result as a csv file. You may
collect the external performance data with a custom collector out of the VTune Profiler or
with your target application used for the VTune Profiler analysis.

Command
Line

Generate a command line version of the selected configuration and save it to the buffer
for running from a terminal window. You can use this approach to configure and run your
remote application analysis.

See Also
Pause Data Collection

Finalization

 1 Intel® VTune™ Profiler User Guide

722

Toolbar: Filter
Use the Filter toolbar to filter the data displayed in the grid or Timeline pane. Filtering settings applied to
the currently opened result are saved for the whole project and automatically applied to the subsequent
results in this project.

Use This To Do This

Metric
filter

Mouse over the

Filter icon to enable the metric drop-down menu and select a filtering metric:

By default, you see 100% of all metric data collected in the result. Metric values vary with a
viewpoint and analysis type.

For example, for the Hotspots viewpoint available for the Hotspots analysis result (hardware
event-based sampling mode) there are CPU Time and Instructions Retired event metrics
available, where the CPU Time is selected by default. Open any filtering drop-down menu to
see the percentage of the CPU Time each module/process/thread introduces into the overall
CPU Time for the result:

If you select a program unit in the filtering drop-down menu, your grid and Timeline view will
be filtered out to display data for this particular program unit. For example, if you select the
analyze_locks process introducing 53.4% of the CPU Time, the result data will display
statistics for this process only and the Filter bar provides an indicator that only 53.4% of the
CPU Time data is currently displayed:

Module
filter

Select a module to filter the collected data by its contribution. All data related to other
modules is hidden.

By default Any Module is selected. This option does not filter any data.

Thread
filter

Select a thread to filter the collected data by its contribution. All data related to other
threads is hidden.

By default Any Thread is selected. This option does not filter any data.

Process
filter

Select a process to filter the collected data by its contribution. All data related to other
processes is hidden.

By default Any Process is selected. This option does not filter any data.

Thread
Efficienc
y filter

Select a thread efficiency level to filter the collected data by its contribution. All data related
to other efficiency levels is hidden.

By default Any Thread Efficiency is selected. This option does not filter any data.

This filter is applied to the Hotspots by Thread Concurrency and Threading Efficiency
viewpoints for user-mode sampling and tracing analysis results.

Intel® VTune™ Profiler User Guide 1

723

Use This To Do This

Utilizatio
n filter

Filter data in the grid by available CPU utilization modes.

This filter is applied to the Hotspots by CPU Utilization viewpoint for the user-mode
sampling and tracing analysis results.

Sleep
States
filter

Select a sleep state (C0 - Cn) to filter the collected data by its contribution. The deeper the
sleep state of the CPU is, the greater power savings are.

This filter is available for Energy analysis results only.

Wake-up
Reason
filter

Filter data by types of the objects that force the processor to wake up. Possible wake-up
reasons are timer, interrupt, IPI, and so on.

This filter is available for Energy analysis results only.

Timer
Type
filter

Filter data by type of the timers that force the processor to wake up. Choose between User
and Kernel Timers.

This filter is available for Energy analysis results only.

Clear
Filter
icon

Remove all filters and view all the available data.

Inline
Mode
option

Enable/Disable displaying performance data per inline functions.

This option is available if information about inline functions is available in debug information
generated by compilers. See View Data on Inline Functions for supported compilers and
options.

Call
Stack
Mode
option

Select whether to show system functions:
• Only user functions: Filter out all system functions.
• User/system functions: Do not filter any data.
• User functions + 1 (default): Filter out all system functions except those directly called

from user functions.

Loop
Mode
option

Select a type of hierarchy to display loop data in the grid. The following types are available:
• Loops only: Display loops as regular nodes in the tree. Loop name consists of:

• start address of the loop
• number of the code line where this loop is created
• name of the function where this loop is created

• Loops and functions: Display both loops and functions as separate nodes.
• Functions only (default): Display data by function with no loop information.

NOTE
If you applied filters available on the Filter bar to the data already filtered with the Filter In/Out by
Selection context menu options, all filters are combined and applied simultaneously.

See Also
Group and Filter Data

Manage Grid Views

filter
vtune option

 1 Intel® VTune™ Profiler User Guide

724

call-stack-mode
vtune option

inline-mode
vtune option

loop-mode
vtune option

Toolbar: Source/Assembly
Use the Source/Assembly toolbar to navigate between the most performance-critical code sections
(hotspots). In the Source pane, you can navigate between source code lines, in the Assembly pane you can
navigate between assembly instructions.

Use This To Do This

Source button Toggle the Source pane on/off. This button is enabled only when both source and
assembly code is available.

Assembly
button

Toggle the Assembly pane on/off. This button is enabled only when both source and
assembly code is available.

Vertical Mode
button

Tile the Source and Assembly panes vertically.

Horizontal
Mode button

Tile the Source and Assembly panes horizontally.

Go to Biggest
Function
Hotspot button

Go to the code line that has the biggest hotspot navigation metric value in the selected
function.

Go to Bigger
Function
Hotspot button

Go to the previous (by the hotspot navigation metric value) hot line in the selected
function.

Go to Smaller
Function
Hotspot button

Go to the next (by the hotspot navigation metric value) hot line in the selected
function.

Go to Smallest
Function
Hotspot button

Go to the code line that has the smallest hotspot navigation metric value in the
selected function.

Intel® VTune™ Profiler User Guide 1

725

Use This To Do This

Source File
Editor button

Edit the source code in the default code editor. This option is available for the Source
pane only.

Find button
(CTRL+F)

Search for a data string in the grid.

Assembly
grouping menu

Group assembly instructions by one of the available granularity levels:
• Address
• Basic block/Address
• Function range/Basic block/Address

NOTE
To select a hotspot navigation metric, right-click the required metric column in the Source view and
select Use for Hotspot Navigation.

See Also
Source Code Analysis

Toolbar: Intel VTune Profiler
Here are the Intel® VTune™ Profiler toolbar buttons that enable you to control the analysis run:

Use This Button To Do This

Project Navigator (standalone
client only)

Open the Project Navigator to manage the VTune Profiler projects
and analysis results.

(standalone)/

(Visual Studio*) Configure
Analysis

Open the Configure Analysis window to select, configure, and run
analysis.

New Project (standalone client
only)

Open the Create a Project dialog box to create and configure a
project.

Import Result (standalone client
only)

Open the Import window and specify result or raw data collection
file(s) to import into the current project. VTune Profiler creates a
result with the imported data and locates it in the current project.

 1 Intel® VTune™ Profiler User Guide

726

Use This Button To Do This

Compare Results

Open the Compare Results window and choose the results to
compare.

Open Result

Navigate to a VTune Profiler data collection result (*.vtune file) and
open it in the graphical interface.

Options

Set options to collect, display, and save profiling data. View privacy
information about collected data.

Help

Open the Help menu providing access to the following
documentation formats:

• Help
• Get Started that opens a start page with a list of documentation

resources and product overview.
• Developer Forum
• Video and Articles that leads you to the product web page with

How-to videos and technical articles.
• Intel Processor Event Reference

NOTE
VTune Profiler toolbar icons look slightly different in different versions of the Microsoft Visual Studio*
IDE. The Compare Results button is not available from the toolbar in the Microsoft Visual Studio*
IDE.

VTune Profiler also provides a lightweight integration to the Eclipse* development environment, adding the
following buttons in the Eclipse GUI:

Use This Button To Do This

Run Intel VTune Profiler

Open the VTune Profiler standalone graphical interface and configure
and run a performance analysis for your application.

Open Intel VTune Profiler Help

Open the VTune Profiler Get Started page providing access to the
product documentation resources.

When you view results, VTune Profiler provides an additional toolbar for the Bottom-up and Top-down
Tree windows:

Use This Button To Do This

View Stacks as a Chain/

View Stacks as a Tree

Change the stack layout for the Call Stack grouping level.

Intel® VTune™ Profiler User Guide 1

727

Use This Button To Do This

Find (CTRL+F)

Search for data in the Bottom-up, Top-down Tree, Source, or
Assembly panes.

Customize Grouping

Create a custom grouping for the current viewpoint using the Custom
Grouping dialog box.

See Also
Menu: Intel VTune Profiler

Toolbar: Configure Analysis

Window: Bandwidth - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the Bandwidth sub-tab in
the result tab.

Use the Bandwidth window to:

• Analyze the transaction rate for byte reads and writes.
• View an approximation of the different bandwidth types used by each component during collection (IA,

GFX, IO).
• Review the DDR SDRAM memory events and bandwidth usage over time.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

 1 Intel® VTune™ Profiler User Guide

728

Bandwidth Pane
The Bandwidth pane displays the bandwidth values for the data collected. Bandwidth data is collected as byte
counts and is displayed as MB/sec. The bandwidth is given in both total values and the average bandwidth by
event type and component. You can change the unit displayed by right-clicking a data cell and selecting the
Show Data As option to select an alternate unit.

The average bandwidth displayed in this pane is typically the most important metric used to determine
bandwidth usage during collection. The other columns display the number of bytes transferred by event and
by the device or component.

There are two types of bandwidth data that can be collected: approximate bandwidth and detailed
bandwidth. Approximate bandwidth is measured across all devices with a lower level of detail. Detailed
bandwidth allows in-depth collection for the specified device and events related to that device. The type of
bandwidth collected is specified when running the Intel SoC Watch collector. For more information about the
options to use for detailed bandwidth collection, see the Intel SoC Watch User's Guide for the operating
system of your target device.

Timeline Pane
Use the Timeline pane to view bandwidth changes over time. Expand the timeline vertically to improve the
data visualization and see more bandwidth values. Consider removing the Sampling Points from the timeline
while viewing the full timeline to improve visibility to the lowest bandwidth values. You can add the sampling
values again after zooming in on a section of the timeline.

Hover over the timeline to view a tooltip listing the exact bandwidth values at that time during the collection
(MB/sec). The blue sampling points indicate the time at which the sample is obtained from the hardware. The
duration between sampling points is the sampling interval that was specified at collection time.

Intel® VTune™ Profiler User Guide 1

729

Filters applied on a timeline in one window are applied on all other windows within the viewpoint. This is
useful if you identify an issue on one tab and want to see how the issue impacts the metrics shown on a
different tab.

See Also
Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Grouping Data
Managing Timeline View

Window: Bottom-up
Use the Bottom-up window to analyze performance
of each program from the bottom level when a child
function is placed directly above its parent (bottom-up
analysis).

To access this window: Click the Bottom-up tab. Depending on the analysis type, the Bottom-up window
may include the following panes:

• Bottom-up pane
• Call Stack pane
• Timeline pane

Bottom-up Pane
Data provided in the Bottom-up pane depends on the analysis, data collection type, and viewpoint you apply.

Grouping menu. Each row in the grid corresponds to a grouping level (granularity) of program units
(module, function, synchronization object, and others). For example, the data in the Hotspots
viewpoint is grouped by Function/Call Stack.

 1 Intel® VTune™ Profiler User Guide

730

Call stack. Analyze a tree hierarchy of the call stacks that lead to the selected program unit. Click
the triangle sign to expand a row and view call trees for each program unit. Each tree is a call stack
that called the selected unit. Each tree lists all the program units that had only one caller in the same
row, with an arrow

indicating the call relationship. Program units that had more than one caller are split so that each
caller has a separate row with the callers to that callee. If a function was called from different code
lines (call sites) in the same parent function, the Bottom-up pane aggregates such stacks into one
and sums up their CPU time. The full information on the stack is shown in the Call Stack pane.

The time value for a row is equal to the sum of all the nested items from that row.

NOTE

• Call stack information is always available for the results of the User-Mode Sampling
collection. It is also available for the results of the hardware event-based sampling
collection, if you enabled the Collect stacks option during the analysis configuration.
Otherwise, the Call Stack column for the event-based results shows "Unknown" entries in
the call tree.

• If you see [Unknown frame(s)] identifiers for the functions, it means that the VTune
Profiler could not locate symbol files for system or your application modules. See the
Resolving Unknown Frame(s) topic for more details.

• If the VTune Profiler does not find debug information in binaries, it statically identifies
function boundaries and assigns hotspot addresses to generated pseudo names
func@address for such functions, for example:

Performance metrics. Each data column in the grid corresponds to a performance metric. By
default, all program units are sorted in the descending order by metric values in the fist column
providing the most performance-critical program units first. You may click a column header to sort the
table by the required metric.

The list of performance metrics varies depending on the analysis type. Mouse over a column header
(metric) to read the metric description, or right-click and select the What's This Column? option
from the context menu.

If a metric has a threshold value set up by the VTune Profiler architect and this value is exceeded, the
VTune Profiler highlights such a value in pink. You may mouse over a pink cell to read the description
of the detected issue and tuning advice for this issue.

For some analysis types, you may see grayed out metric values in the grid, which indicates that the
data collected for such a metric is unreliable. This may happen, for example, if the number of
samples collected for PMU events is too low. In this case, when you hover over such an unreliable
metric value, the VTune Profiler displays a message: The amount of collected PMU samples is too low
to reliably calculate the metric.

Depending on the analysis type and viewpoint, the Bottom-up view may represent the CPU Time by
utilization levels. Focus your tuning efforts on the program units with the largest Poor value. This
means that during the execution of these program units your application underutilized the CPU time.
The overall goal of optimization is to achieve Ideal (green

Intel® VTune™ Profiler User Guide 1

731

) or OK (orange

) CPU utilization state and shorten the Poor and Over CPU utilization values.

Toolbar. Select the following options to manage the Bottom-up view:

• Click the

Customize Grouping button to open the Custom Grouping dialog box.
• Click the

Find button to open a search bar and search for a string in the grid.
• Click the

Change Stack Layout button to switch between call stack layouts.

Chain layouts

are typically more useful for the bottom-up view:

While tree layouts

are more natural for the top-down view:

See Also
Manage Data Views

Reference

View Stacks

Control Window Synchronization

 1 Intel® VTune™ Profiler User Guide

732

Window: Caller/Callee
To access this window: Click the Caller/Callee sub-tab in the result tab.

The Caller/Callee window is available in all viewpoints that provide call stack data.

Use this window to analyze parent and child functions of the selected focus function and identify the most
time-critical call paths.

Functions pane. The Functions pane displays a flat list of functions providing data per the following
metrics:
• Self time: Active processor time spent in a function.
• Total time: Active processor time spent in the function and its callees.

By default, the grid is sorted by the Total time metric. Select a function of interest in the grid (focus
function) and explore its callers and callees on the right panes.

You may select a function of interest and filter the grid to display the functions included into all
subtrees that contain the selected function at any level. To do this, select the function, right-click and
choose the Filter In by Selection context menu option. For the call tree view, switch to the Top-
down Tree window.

You can also change a focus function from the Callers or Callees panes by double-clicking a function
of interest. Alternatively, you may select a function, right-click and choose the Change Focus
Function context menu option.

VTune Profiler highlights this function in the Functions pane and updates the Callers and Callees
panes to display its parent and child functions respectively.

You can double-click a function of interest in the Functions pane to go to the source view and explore
the function performance by a source line.

Callers pane. The Callers pane shows parent functions (callers) for the function currently selected in
the Functions pane.

Callees pane. The Callees pane shows child functions (callees) for the function currently selected in
the Functions pane.

See Also
CPU Metrics Reference

Window: Cannot Find <file type> File
When you double-click a program unit in the analysis result, the Intel® VTune™ Profiler tries to open
supporting module/source/symbol files. If it cannot locate the required file, the Cannot find <file type>
file window appears, enabling you to enter the file manually. This window displays the original location of the
file and provides the following options:

Use This To Do This

Specify location of file to open
text box

Specify the correct path to the file that is not found. You may
choose the required file from the list. If the file you specify is invalid
or partially valid, the VTune Profiler displays an error message.

Intel® VTune™ Profiler User Guide 1

733

Use This To Do This
Add the directory to the search list
as check box Enable adding a new directory to the search list. This option is

active when you enter a directory in the Specify location of file to
open text box. To add a folder to the list of search directories for
the current project, select it from the drop-down list. This helps
locate the module/source/symbol files for the next analysis runs.

Assembly button on the toolbar View the disassembly code for the current selection.

OK button Close the window. If you provided a valid location in the Specify
location of file to open text box, the VTune Profiler opens the
source code for the selected item. If you cannot provide a valid
location for the file, click the Assembly button on the toolbar to
view the disassembly code or close the Source/Assembly window.

Skip button Stop searching for symbol files and open the Source/Assembly
window. This button is only available when a symbol file is not
found.

See Also
Dialog Box: Binary/Symbol Search

Dialog Box: Source Search

Search Directories

Window: Collection Log
The Collection Log window opens when you click the Start button and run the analysis.

Intel® VTune™ Profiler uses two types of data collectors: user-mode sampling and tracing collector and
hardware event-based sampling collector. During data collection and finalization the VTune Profiler provides
status messages in the Collection Log window. If required, you can click the

Clear Log button to delete the log.

NOTE
You may enable detailed collection messages by using the Display verbose messages in the
Collection Log window option, available from the Options… > Intel VTune Profilerversion >
General pane.

If analysis completes successfully, the VTune Profiler does the following:

• Creates an analysis result and saves it in the project directory. The project directory is specified in the
Configure Analysis window > WHAT pane available via the

Configure Analysis toolbar button.
• (for VTune Profiler integrated into Visual Studio) Displays the analysis result in the Solution Explorer. The

naming scheme of the analysis result is specified in the Tools > Options... > Intel VTune
Profilerversion > Result Location pane.

• Opens the result tab with the default viewpoint.

 1 Intel® VTune™ Profiler User Guide

734

Application Output
If you configured the General pane options to display the application output in the product output window,
the VTune Profiler redirects the output to the Application Output pane.

See Also
Control Data Collection

Finalization

Troubleshooting

Window: Compare Results
To access this window:

Click the Compare Results

button on the Intel® VTune™ Profiler toolbar.

You can compare two results that have common performance metrics. VTune Profiler provides comparison
data for these common metrics only.

Dialog Item Description

Result 1 /
Result 2 drop-
down menu

Specify the results you want to compare. Choose the result of the current project
from the drop-down menu, or click the Browse button to choose a result from a
different project.

Swap Results
button

Click this button to change the order of the result files you want to compare. Result 1
always serves as the basis for comparison.

Compare button Click this button to view the difference between the specified result files. This button
is only active if the selected results can be compared. Otherwise, an error message is
displayed.

When you click the Compare button, the VTune Profiler opens a new result tab with the performance data
for Result 1 and Result 2 side-by-side and their calculated delta.

See Also
Comparing Results

Bottom-up Comparison
Comparison Summary
Comparing Source Code

Window: Configure Analysis
Configure your performance analysis with the Intel
VTune Profiler by specifying WHAT you need to profile,
a target system WHERE you need to run the
collection, and select an analysis type to define HOW
you need to analyze your workload.

As soon as you created a project for analysis, the VTune Profiler opens this window that navigates you
through the analysis configuration with the following panes:

Intel® VTune™ Profiler User Guide 1

735

WHERE: Choose and set up a system for analysis.

WHAT: Choose and configure your analysis target.

HOW: Choose and configure performance analysis type.

Run and control your analysis using these toolbar buttons:

starts the analysis;

pauses the data collection at any time of the app execution;

enables you to specify binary and source files for successful post-processing finalization (for
example, for remote analysis);

creates a command line version of the selected configuration that can be copied and used on
other systems.

Window: Core Wake-ups - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the Core Wake-ups sub-
tab in the result tab.

Use the Core Wake-ups window to:

• Identify wake-up reasons on each core.
• Investigate wake-up reasons at a specific time during the collection.
• Sort data based on wake-up reason to identify common causes.
• View the objects that caused wake-ups.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

 1 Intel® VTune™ Profiler User Guide

736

Core Wake-ups Pane
The Core Wake-ups pane displays information about events that caused the core to switch from a sleep state
to an active state. This data is only collected when C-States data is collected. Display the information
grouped by core or package, wake-up reason, wake-up object, and function stack using the Grouping drop-
down. By default, the table is sorted by the Total Wake-up Count metric in the descending order providing
objects with the highest wake-up count first.

A core is active when the core sleep state is C0 and is inactive, or sleeping, when the sleep state is Cn,
where the higher the n value, the deeper the sleep state. The sleep states are displayed with a different
prefix for package (PCn), module (MCn), or core (CCn). In the example below, the first Kernel Timer has a
Core Sleep State value of CC6, which means the core was in the deepest sleep state.

NOTE
Additional details about the wake-up objects, such as Process Name or ThreadID, are available for
results collected on a Linux* or Android* system only.

Wake-up Reason Description

CLK Clock interrupt

DPC Deferred procedure call

INT Hardware interrupt

IPI Inter-processor interrupt

IRQ Interrupt request (Android*)

RDY Ready event

Scheduler Scheduler event

Timer Timer event

Unknown The operating system did not log a wake-up reason between exiting idle and
re-entering idle or the wake-up reason was not passed to Intel VTune Profiler.

Timeline Pane
The Timeline pane shows the time spent in the active state (C0) or the various sleep states (Cn) as well as
the total wake-up count for the package, package cores, and hardware cores. Use the Core Wake-ups pane
to filter the wake-up types shown in the timeline by right-clicking a wake-up reason and selecting Filter In
by Selection. Filters applied on a timeline in one window are applied on all other windows within the
viewpoint. This is useful if you identify an issue on one tab and want to see how the issue impacts the
metrics shown on a different tab.

Intel® VTune™ Profiler User Guide 1

737

Toolbar Navigation control to zoom in/out on the view on areas of
interest. For more details on the Timeline control, see Managing
Timeline View.

Legend Types of data presented on the timeline. Filter in/out any type
of data presented on the timeline by selecting/deselecting
corresponding check boxes. For example, each state is a
different color and you may only be interested in the time spent
in the active state. You can also filter in and out the hardware
or package/core data.

The Wake-up Object marker shows processor wake-ups on
the timeline. Hover over a yellow marker to see the time when
the sleep state changed to an active state and the name of the
wake-up object. Zoom in on the timeline to view individual
markers if they are not visible when viewing the timeline for
the full collection time.

Package/Module/Core C-
states

Graphical representation of the sleep states in each core and in
the overall package. Each state is a different color, which can
be filtered using the legend. Hover over the band to view the
total wake-up count. Click the

/

to expand the package and view the individual modules and
cores.

Hardware C-states Graphical representation of the sleep states on the hardware.
Each state is a different color, which can be filtered using the
legend.

 1 Intel® VTune™ Profiler User Guide

738

Wake up Band Represents the wake-up objects that caused the core to switch
from a sleep state to an active state. Each wake-up object type
uses a unique color. By hovering over the band, you can view
all of the wake-up objects at that point in time, including
details such as wake-up object type, start time, and duration.

Find an area of interest in the timeline, such as a time when
the core was active for a period of time, and then select the
Zoom In and Filter In by Selection action to view the
reasons the core became active. You can view the wake-up
reasons and additional details for the time selected in the Core
Wake-ups pane.

See Also
Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Grouping Data

Window: Correlate Metrics - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the Correlate Metrics sub-
tab in the result tab.

Use the Correlate Metrics window to:

• Assess energy-related metrics across the platform.
• View timeline data aggregated from all tabs in the Platform Power Analysis viewpoint.
• Identify trends that impacted energy usage during the collection period.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

The timelines in the Correlate Metrics window can also be found in other sub-tabs with the Platform Power
Analysis result tab. The Correlate Metrics window is a good starting point if you are interested in identifying
areas of energy inefficiency.

Intel® VTune™ Profiler User Guide 1

739

Toolbar Navigation control to zoom in/out on the view on areas of
interest. For more details on the Timeline control, see Managing
Timeline View.

Legend Types of data presented on the timeline. Filter in/out any type
of data presented on the timeline by selecting/deselecting
corresponding check boxes. For example, to remove the
timeline for the North Complex Devices from the view, uncheck
the North Complex Devices checkbox.

 1 Intel® VTune™ Profiler User Guide

740

Expandable Rows Click the

/

to expand the data and view metrics for individual cores or
devices.

Tooltips Hover over the individual timelines to see data specific to that
metric at that point during the collection. In the example, the
C-States and Wake-up Counts for the Packages, Modules, and
Cores are shown.

Wake-up Objects Processor wake-ups on the timeline. Hover over a yellow
marker to see the time when the sleep state change happened
and the name of the wake-up object. Zoom in on the timeline
to view individual wake-up markers.

Sampling Points The point at which the sample was obtained from the
hardware. The duration between sampling points is the
sampling interval, which was specified during collection. Hover
over a blue marker to see the time when the sample was
obtained. Zoom in on the timeline to view individual sampling
point markers and the time they occurred.

Examples
In the first example, the CPU starts in the active state and then drops into one of the deeper sleep states.
The spikes in the CPU activity correspond to spikes in other timelines, such as the temperature and SoC
power consumption. By viewing all data on one tab, you can identify trends and associations between
metrics. To view each metric in more detail, visit the metric-specific tab.

In the second example, the CPU spends most time in the active state, and the similar activity levels for the
Core C-States and Frequency indicates balance in the distribution of that activity.

Intel® VTune™ Profiler User Guide 1

741

See Also
Pane: Timeline

Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Managing Timeline View

Window: CPU C/P States - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the CPU C/P States sub-
tab in the result tab.

Use the CPU C/P States window to:

• Analyze the amount of time spent in each sleep state (C-State) and processor frequency (P-State).
• Identify which core spent time at what frequency.
• Understand which cores were active during which timeframes during data collection.
• Review the state residency by core, module, or package.
• Explore how the state and frequency changed over time.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

 1 Intel® VTune™ Profiler User Guide

742

CPU C/P States Pane
The CPU C/P States pane shows the time spent in sleep states (C-States) and at each processor frequency
(P-State). Intel SoC Watch can collect sleep states as requested by the OS (ACPI C-States) as well as the
actual states used at the hardware level on a Windows* system. The data can be displayed per core or per
package using the Grouping drop-down. Click the expand

/collapse

buttons in the data columns to expand or hide the columns of data for ACPI C-States, hardware C-State, and
P-States. You can change the unit displayed by right-clicking a data cell and selecting the Show Data As
option to select an alternate unit.

For example, if you are analyzing an idle scenario, you would use this report to see if most of the collection
time was spent in the deepest possible sleep state. The time spent in CPU states is shown in the Core C-
States Time by Core Sleep State columns (CC0-CCn for cores, MC0-MCn for modules, and PC0-PCn for
packages). C0 represents the active state and Cn represents a sleep state, where the larger the number, the
deeper the sleep state. Spending more time in deeper sleep states (C1-Cn) provides greater power savings.
In the example below, both cores spent the most time in the deepest CPU sleep state C7, which corresponds
to the OS request for the deepest sleep state ACPI C3. This is the desired result when the system being
tested is idle. Expand the columns under P-State by Core Frequency to read the full values for the
processor frequencies. Time in 0GHz indicates the time the processor was not running (total time in sleep
states).

Right-click in a column and select Show Data As > Percent to view the data in that column as a percent of
the total time rather than in seconds. If the core spent a higher than expected percentage of time in an
unexpected state, you can look at the timeline to identify when the core was in that state and then switch to
the Core Wake-ups window to identify reasons for the change in state.

Timeline Pane
The Timeline pane graphically displays the C-States of each core, at each point in time. Filters applied on a
timeline in one window are applied on all other windows within the viewpoint. This is useful if you identify an
issue on one tab and want to see how the issue impacts the metrics shown on a different tab.

Intel® VTune™ Profiler User Guide 1

743

Toolbar Navigation control to zoom in/out on the view on areas of
interest. For more details on the Timeline control, see Managing
Timeline View.

Legend Types of data presented on the timeline. Filter in/out any type
of data presented on the timeline by selecting/deselecting
corresponding check boxes. For example, each state is a
different color and you may only be interested in the time spent
in the active state. You can also filter in and out the hardware
or package/core data if you are only interested in frequency
metrics.

The Wake-up Object marker shows processor wake-ups on
the timeline. Hover over a yellow marker to see the time when
the sleep state change happened and the name of the wake-up
object.

Package/Core C-states Graphical representation of the sleep states in each core and in
the overall package. Each state is a different color, which can
be filtered using the legend. Hover over the band to view the
total wake-up count. Click the

/

to expand the package and view the individual cores.

Hardware C-states Graphical representation of the sleep states on the hardware.
Each state is a different color, which can be filtered using the
legend.

 1 Intel® VTune™ Profiler User Guide

744

Frequency (by core) Core frequency values at each point during the collection.
Hover over the frequency P-State line to view a tooltip listing
the frequency at each time point.

Wake up Band Represents the wake-up objects that caused the core to switch
from a sleep state to an active state. Each wake-up object type
uses a unique color. By hovering over the band, you can view
all of the wake-up objects at that point in time, including
details such as wake-up object type, start time, and duration.

See Also
Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Grouping Data
Energy Analysis Metrics

C-State
P-State

Window: Debug
By default, during data collection, all application output and collector event log displays in a separate console
window. To change the output window for the standalone GUI menu

, go to Options... > Intel VTune Profilerversion > General pane.

By default, the Debug window appears at the bottom of the view.

To choose what output to view, select an output source from the Show output from drop-down list.

See Also
Pane: General

Window: Event Count - Hardware Events
Use the Event Count window to analyze the event
count for PMU (Performance Monitoring Unit) events.

Depending on the analysis type or viewpoint, the Event Count window may include the following panes:

• Event Count pane
• Timeline pane
• Call Stack pane

Event Count Pane
The Event Count pane attributes the Hardware Event Count by Hardware Event Type to program units. The
Hardware Event Count metric estimates the number of times an event occurred during the collection.

By default, the data in the grid is sorted by the Clockticks event.

Intel® VTune™ Profiler User Guide 1

745

The list of hardware events depends on the analysis type. You may right-click an event column and select the
What's This Column context menu option to open the description of the selected event.

When you explore the hardware events statistics for a result, you may drag and drop the columns in the grid
for your convenience. VTune Profiler automatically saves your preferences and keeps the columns order for
subsequent result views.

Timeline Pane
The Timeline pane is synchronized with the Event Count pane. The Thread area of the Timeline pane
shows the number of times the selected event (CPU_CLK_UNHALTED.REF_TSC in the example below)
occurred while a thread was running. You may use the Hardware Event Count drop-down menu in the
legend area to choose a different event.

The Hardware Event Type area shows the application-level performance per each event.

Call Stack Pane
If you selected the Collect stacks option for the hardware event-based sampling analysis (for example,
Hotspots), the VTune Profiler provides the Call Stack pane. Use this pane to navigate between stacks and
analyze the distribution of the event count for the object selected in the Event Count pane. For the example
below, you select the Clockticks event to see stacks leading to the multiply1 function and contributing to
the Clockticks event count. You can use this data to identify the most performance-critical stacks with the
highest contribution to the object's Clockticks event count.

See Also
Intel Processor Events Reference

Window: Summary - Hardware Events

Switch Viewpoints

Hardware Events Report
 from command line

Window: Flame Graph
Use the Flame Graph window to find the hottest code
paths in your application.

A flame graph is a visual representation of the stacks and stack frames in your application. The graph plots
all of the functions in your application on the X-axis and displays the stack depth on the Y-axis. Functions are
stacked in order of ancestry, with parent functions directly below child functions. The width of a function
displayed in the graph is an indication of the amount of time it engaged the CPU. Therefore, the hottest
functions in your application occupy the widest portions on the flame graph.

Access the Flame Graph Window
1. Run the Hotspots analysis on your application. Ensure that you are collecting data with call stacks.

 1 Intel® VTune™ Profiler User Guide

746

a. If you are running the analysis in User-Mode Sampling mode, the option to collect CPU sampling
data with stacks is enabled by default (see Details).

b. If you are running the analysis in Hardware Event-Based Sampling mode, check the Collect
Stacks option.

2. When the analysis is complete and results display, switch to the Flame Graph tab. You can also click
on the Flame Graph link in the Insight section of the Summary window.

Elements of the Flame Graph Window

Flame Graph Area:

This section displays stacks and stack frames for your application. Every box in
the graph represents a stack frame with the complete function name. The
horizontal axis shows the stack profile population, sorted alphabetically. The
vertical axis shows the stack depth, starting from zero at the bottom.

The flame graph does not display data over time. The width of each box in the
graph indicates the percentage of the function CPU time to total CPU time. The
total function time includes processing times of the function and all of its children
(callees).

The flame graph is a graphical representation of the data contained in the tabular
Top-Down view.

• Zoom/Select Action: To learn more about a function, click on a box to zoom
in horizontally. You will then see any child functions it contains. Ancestor
frames (below the selected box) display in faded colors because their width is
only partially visible. Changes in stack pane data reflect any zoom or selection
action you take in the flame graph area.

• Filter toolbar: The flame graph responds to changes to the Global Filter
setting in the Filter toolbar. Use this toolbar to filter data in the following
ways:

• Process
• Thread
• Module
• Function Type
• Time

Intel® VTune™ Profiler User Guide 1

747

• Function colors: The flame graph uses a color scheme to identify these
function types:

• User: A function from the application module of the user
• System: A function from the System or Kernel module
• Synchronization: A synchronization function from the Threading Library

(like OpenMP Barrier)
• Overhead: An overhead function from the Threading library (lke OpenMP

Fork or OpenMP Dispatcher)

Details Area:

Hover over a flame graph element to get CPU Time as well as the percentage of
Total Time taken by the selected stack-frame.

Tooltips:

When you hover over a flame graph element, a tool tip displays these details for
the selected bar or stack frame:

• CPU Time
• Function name
• Module name
• Source file
• Function type

Legend:

The legend describes the types of functions included in the flame graph.

Navigation Bar:

Use these controls in the navigation bar to manage the flame graph display:

•

: Select the Flame Graph mode.
•

: Select the Icicle Graph mode. This inverts the flame graph display.
•

: Undo the last zoom action.
•

: Restore the flame graph to its original view.

Search:

Search for any functions in the flame graph. You can use regular expressions in
the search string. When the results display, the CPU Time and percentage of Total
Time include the times for all of the matched functions.

 1 Intel® VTune™ Profiler User Guide

748

Analyze Flame Graph Data
Use these tips to analyze the application information contained in your flame graph:

• For hot code paths in your application, analyze the time spent on each function and its callees. The
function bar displays as a fraction of CPU time.

• Choose between the Flame Graph and Icicle Graph visualizations to help with your analysis.
• Filter data through the Filter bar and/or Timeline.
• Optimize your application starting with the lowest function in the flame graph and working your way up.
• Pay close attention to the hottest user and synchronization functions. In the flame graph, they appear as

the widest functions.
• Use the stack pane to dive into the source code of a function.

Related information
• An explanation of Flame Graphs
• Hotspots View
• Java Code Analysis

Window: Graphics - GPU Compute/Media Hotspots
Use this window for GPU analysis with Intel® VTune™
Profiler to identify GPU tasks with high GPU utilization
and estimate the effectiveness of this utilization. This
view is particularly useful for analysis of OpenCL™,
SYCL, and Intel Media SDK applications doing
substantial computation work on the GPU.

To access this window: Select the GPU Compute/Media Hotspots viewpoint and click the Graphics
sub-tab in the result tab.

Along with the regular bottom-up analysis and stack data, the Graphics window correlates CPU / GPU
busyness and displays the distribution of the GPU metrics over time:

Intel® VTune™ Profiler User Guide 1

749

https://www.brendangregg.com/flamegraphs.html

Grid. Analyze basic performance metrics per program unit and identify the most time-
consuming units. If your application uses the OpenCL software technology and you ran
the analysis with the Trace GPU Programming APIs option enabled, the grid is
grouped by Computing Task Purpose granularity by default.

Analyze and optimize hot kernels with the longest Total Time values first. These include
kernels characterized by long Average Time values and kernels whose Average Time
values are not long, but they are invoked more frequently than the others (see Instance
Count values). Both groups deserve attention. For more details, see GPU OpenCL™
Application Analysis.

To understand the CPU activity (which module/function was executed and its CPU time)
while the GPU execution units were idle, queued, or busy executing some code, use the
GPU Render and EU Engine State grouping level:

Thread. Explore CPU and GPU utilization by a particular thread. The Platform tab
displays the thread name as a name of the module where the thread function resides.
For example, if you have a myFoo function that belongs to MyMegaFoo (Linux*) or
MyMegaFoo.dll (Windows*) function, the thread name is displayed as MyMegaFoo
(Linux*) or MyMegaFoo.dll (Windows*) . This approach helps easily identify the
location of the thread code producing the work displayed on the timeline.

Windows* targets only: Correlate CPU and GPU usage and estimate whether your
application is GPU bound. GPU Engines Usage bars show DMA packets on CPU threads
originating GPU tasks. The bars are colored according to the type of used GPU engine
(yellow bars in the example above correspond to the Render and GPGPU engine).

GPU hardware metrics. If you enabled the Analyze Processor Graphics hardware
events option for GPU analysis on the processors with the Intel® HD and Intel® Iris®
Graphics, the VTune Profiler displays the statistics for the selected group of metrics over
time.

For example, for the default Overview group of metrics, you may start with GPU
Execution Units: EU Array Idle metric. Idle cycles are wasted cycles. No threads are
scheduled and the EUs' precious computational resources are not being utilized. If EU
Array Idle is zero, the GPU is reasonably loaded and all EUs have threads scheduled on
them.

In most cases the optimization strategy is to minimize the EU Array Stalled metric and
maximize the EU Array Active. The exception is memory bandwidth-bound algorithms
and workloads where optimization should strive to achieve a memory bandwidth close to
the peak for the specific platform (rather than maximize EU Array Active).

Memory accesses are the most frequent reason for stalls. The importance of memory
layout and carefully designed memory accesses cannot be overestimated. If the EU
Array Stalled metric value is non-zero and correlates with the GPU L3 Misses, and if
the algorithm is not memory bandwidth-bound, you should try to optimize memory
accesses and layout.

Sampler accesses are expensive and can easily cause stalls. Sampler accesses are
measured by the Sampler Is Bottleneck and Sampler Busy metrics.

NOTE
To analyze Intel Graphics hardware events on a GPU, make sure to set up your system for
GPU analysis.

 1 Intel® VTune™ Profiler User Guide

750

Computing Queue. Analyze details on OpenCL kernels submission, in particular
distinguish the order of submission and execution, and identify the time spent in the
queue, zoom in and explore the Computing Queue data. VTune Profiler displays kernels
with the same name and global/local size in the same color. Synchronization tasks are
marked with vertical hatching

. Data transfers are marked with cross-diagonal hatching

.

You can click a kernel task to highlight the whole queue to the execution displayed at the
top layer. Hover over an object in the queue to see kernel execution parameters.

Windows targets only: Switch to the Platform window to explore how the execution
path of the OpenCL device queue correlates to the DMA packets software queue.

GPU Usage metrics. GPU usage bars are colored according to the type of used GPU
engine.

Theoretically, if the Platform tab shows that the GPU is busy most of the time and
having small idle gaps between busy intervals and the GPU software queue is rarely
decreased to zero, your application is GPU bound. If the gaps between busy intervals are
big and the CPU is busy during these gaps, your application is CPU bound. But such
obvious situations are rare and you need a detailed analysis to understand all
dependencies. For example, an application may be mistakenly considered GPU bound
when GPU engines usage is serialized (for example, when GPU engines responsible for
video processing and for rendering are loaded in turns). In this case, an ineffective
scheduling on the GPU results from the application code running on the CPU.

For further OpenCL kernel analysis, select a computing task you are interested in (for example,
AdvancedPaths) and switch to the Architecture Diagram tab. VTune Profiler displays performance data
per GPU hardware metrics for the time range when the selected kernel was executed:

Flagged values signal a performance issue. In this example, ~50% of the GPU time was spent in stalls. This
means that performance is limited by memory or sampler accesses.

See Also
GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Intel® Media SDK Program Analysis

Pane: Timeline

Window: Graphics C/P States - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the Graphics C/P States
sub-tab in the result tab.

Use the Graphics C/P States window to:

• Review the GPU sleep states (C-state) and processor frequency (P-state) by device.
• Analyze GPU sleep states and processor frequency changes over time.

Intel® VTune™ Profiler User Guide 1

751

• Identify which device spent time at a particular frequency.
• View which devices were active at a specific time.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

Graphics C/P States Pane

Shows the time spent in each state or frequency, organized by device. Click the expand

/collapse

buttons in the data columns to expand the column and show data for different C-States and P-States in each
device. You can change the unit displayed by right-clicking a data cell and selecting the Show Data As
option to select an alternate unit. For example, select Show Data As > Time and Bar to view a visual
representation of the percent of collection time spent in each state.

Timeline Pane
Displays the C-states and P-states of each device at each point in time. The states are shown in a different
color as identified by the legend to the right of the timeline. The frequency graph uses data points to indicate
that the data has been read from the hardware at discrete sampling points instead of from a residency
counter. Hover over a blue marker to see the time when the sampling point occurred.

 1 Intel® VTune™ Profiler User Guide

752

Time spent in each state is represented by a heat map. The heat map data may not be visible when viewing
the full timeline. Zoom in on a section of interest to view the heat map and details about the data points. The
heat map, represented in the example below with shades of red in the Graphics P-States timeline,
illustrates how active the device was since the previous sample. The deeper the red color, the longer it was in
the active state. The exact transitions between active and idle are not known. Hover over a point to view the
percentage of time in the active state. In the example below, the device was active for 99.2% of the time
between the two sampling points and the color is the deepest shade of red. The bars with lighter shades
indicate less time in the active state.

Use the timeline to identify times when there was a higher frequency for a longer period of time and ensure
that it matches expectations. If it does not, you can look at the CPU C/P States tab to show CPU activity at
the same time. You can also view the Bandwidth tab to see if a similar spike in activity occurs in that tab.
Filters applied on a timeline in one window are applied on all other windows within the viewpoint. This is
useful if you identify an issue on one tab and want to see how the issue impacts the metrics shown on a
different tab.

See Also
Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Grouping Data
Managing Timeline View

Window: NC Device States - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the NC Device States sub-
tab in the result tab.

Use the NC Device States window to:

• Identify the time spent in D0ix states by each device.
• Analyze the trend of D0ix state residency over time.
• Review the percent of time a device spent in a particular D0ix state.

The North complex contains the compute intensive components (for example, video decode, image
processing, and others). D0ix states are low-power states used on system on a chip (SoC) platforms.

Intel® VTune™ Profiler User Guide 1

753

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

North Complex Device States Pane

The North Complex Device States pane shows the list of devices in the North complex and displays the
sample counts for each device. Click the expand

/collapse

buttons in the data columns to expand the column and show data for different D0ix states in each device.
You can change the unit displayed by right-clicking a data cell and selecting the Show Data As option to
select an alternate unit. For example, you could select Show Data As > Percent to view the percent of
collection time a particular device spent in the active state.

A device remaining in the active state (D0i0) can prevent the system from entering a deep sleep state
(S0ix). Compare device time spent in the active state with System Sleep States or Graphics C/P State.

 1 Intel® VTune™ Profiler User Guide

754

Timeline Pane

The Timeline pane displays the D0ix states of each device at each point when the data was read. Each state
is shown in a different color. Use the legend on the right to add or remove D0ix states from the timeline.
Hover over a data point to see the percentage of time spent in each state. Zoom in or out on the timeline to
view trends in more detail. Filters applied on a timeline in one window are applied on all other windows
within the viewpoint. This is useful if you identify an issue on one tab and want to see how the issue impacts
the metrics shown on a different tab. The following example shows a zoomed-in view of the result above to
show individual data points.

See Also
Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Grouping Data
Managing Timeline View

Intel® VTune™ Profiler User Guide 1

755

Window: Platform
To access this window: Click the Platform sub-tab in the result tab.

Depending on the metrics collected during the analysis, use the Platform window to:

• Inspect CPU and GPU utilization, frame rate and memory bandwidth.
• Explore your application performance for user tasks such as Intel ITT API tasks, Ftrace*/Systrace* event

tasks, SYCL and OpenCL™ API tasks, and so on.
• Correlate CPU and GPU activity and identify whether your application/some phases of it are GPU or CPU

bound.
• Analyze СPU/GPU interactions and software queue for GPU engines at each moment of time.

The Platform window represents a distribution of the performance data over time. For example, on Linux
the Platform window displays the following data:

Frame Rate. Identify bounds for GPU and CPU frames (Windows only), where:

• CPU Frame X (Present) is the time range between the moment frame X-1 is queued for
presentation and the moment frame X is queued for presentation.

• GPU Frame X (Flip) is the time range between the moment frame X-1 is rendered on
the screen and the moment frame X is rendered on the screen.

Hover over a frame object to view a summary including data on frame duration, frame
rate, and others:

CPU and GPU frames with the same ID are displayed in the same color.

GPU Engine. Explore overall GPU utilization per GPU engine at each moment of time. By
default, the Platform window displays GPU Utilization and software queues per GPU
engine. Hover over an object executed on the GPU (in yellow) to view a short summary on
GPU utilization, where GPU Utilization is the time when a GPU engine was executing a

 1 Intel® VTune™ Profiler User Guide

756

workload. You can explore the top GPU Utilization band in the chart to estimate the
percentage of GPU engine utilization (yellow areas vs. white spaces) and options to submit
additional work to the hardware.

To view and analyze GPU software queues, select an object (packet) in the queue and the
VTune Profiler highlights the corresponding software queue bounds:

Full software queue prevents packet submissions and causes waits on a CPU side in the
user-mode driver until there is space in the queue. To check whether such a stall
decreases your performance, you may decrease a workload on the hardware and switch to
the Graphics window to see if there are less waits on the CPU in threads that spawn
packets. Another option could be to additionally load the queue by tasks and see whether
the queue length increases.

Each packet in the Platform window has its own ID that helps track its life cycle in a
software queue. The ID does not correspond to the rendered frames. You may identify
where a packet came from by the thread name (corresponding to the name of the module
where a thread entry point resides) specified in the tooltip.

Horizontal hatching is used for data that may be not accurate due to collection issues (for
example, missing event from the Intel® Graphics Driver). This type of data is identified as
Reconstructed packets in the Legend.

Windows only:

For Windows targets, you may select the Packet Type drop-down menu option in the
Legend area to explore GPU utilization and software queues per DMA packet domain:

Presents on Windows targets are displayed in a red hatch.

Computing Queue. Analyze details on OpenCL™ kernels submission, in particular
distinguish the order of submission and execution, and identify the time spent in the
queue, zoom in and explore the Computing Queue data. VTune Profiler displays kernels
with the same name and global/local size in the same color. On Windows, synchronization
tasks are marked with vertical hatching

Intel® VTune™ Profiler User Guide 1

757

. Data transfers are marked with cross-diagonal hatching

.

You can click a kernel task to highlight the whole queue to the execution displayed at the
top layer. Hover over an object in the queue to see kernel execution parameters.

Windows only:

On Windows, you can explore how the execution path (marked in blue) of the OpenCL
device queue (in orange) correlates with the DMA packets software queue (in black). The
OpenCL kernel queue expedites kernels to the driver where DMA packets of different types
are get multiplexed in the single DMA queue. In the example above, the Render and
GPGPU queue serves both graphics (GHAL3D) and compute (OpenCL)-originated packets.

Thread. Explore CPU utilization by thread. The Platform window displays the thread
name as a name of the module where the thread function resides. For example, if you
have a myFoo function that belongs to MyMegaFoo function, the thread name is displayed
as MyMegaFoo. This approach helps easily identify the location of the thread code
producing the work displayed on the timeline.

 1 Intel® VTune™ Profiler User Guide

758

If your code used the Task API to mark the tasks regions or you enabled any system tasks
for monitoring specific events, the task objects show up on the timeline and you can hover
over such an object for details:

Windows only:

Hover over a context switch area to see the details on its duration, reason, and affected
CPU. Dark-green context switches show time slices when a thread was busy with a
workload while light-green context switch objects show areas where a thread was waiting
for a synchronization object. Gray areas show inactivity periods caused by preemption
when the operating system task scheduler switched a thread off a processor to run
another, higher-priority thread.

Correlate CPU and GPU utilization and estimate whether your application is CPU or GPU
bound. GPU Engines utilization bars show DMA packets on CPU threads originating GPU
tasks. The bars are colored according to the type of used GPU engine (yellow bars in the
example below correspond to the Render and GPGPU engine). If the GPU Engine area of
the Platform window shows aggregated GPU utilization for all threads and processes in
the system, the GPU Engines Utilization bars in the Thread area show GPU engine
utilization by a particular thread.

GPU Metrics. Correlate the data on GPU activity per GPU metrics with the CPU utilization
data. The GPU Utilization bars are colored according to the type of used GPU engine.

To analyze CPU and GPU utilization per thread, switch to the Graphics window.

NOTE
To analyze Intel HD Graphics and Intel® Iris® Graphics hardware events on a GPU, make sure to
set up your system for GPU analysis.

Core Frequency. Explore the ratio between the actual and the nominal CPU frequencies.
Values above 1.0 indicate that CPU is operating in a turbo boost mode.

Intel® VTune™ Profiler User Guide 1

759

NOTE
This data is available only for the hardware event-based sampling analysis results.

DRAM Bandwidth. Explore the application performance per Uncore to DRAM Bandwidth
metrics over time.

NOTE
This data is available only for the hardware event-based sampling analysis results with the
bandwidth events collection enabled.

Interrupt. Identify the intervals where system interrupts occurred. Hover over an
interrupt object to view full details in the tooltip:

NOTE
This type of data shows up for the custom data collection results if you enabled the
corresponding Ftrace events collection during the analysis type configuration.

NOTE
To monitor general GPU utilization over time on Windows OS, run the VTune Profiler as an
Administrator.

Platform Context Summary
Explore the Context Summary provided to the right of the Timeline pane in the Platform window. It displays
the summary statistics for the context selected on the timeline. By default, the Context Summary shows data
for the whole run. To narrow down the analysis, select an area of interest on the timeline, right-click and
select Filter In by Selection:

The EU Stalled/Idle metric shows the time when execution units were stalled or idle. High values are
flagged as a performance issue with a negative impact on the compute-bound applications.

 1 Intel® VTune™ Profiler User Guide

760

See Also
GPU Compute/Media Hotspots Analysis (Preview)

GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Task Analysis

Analyze Interrupts

Window: Platform Power Analysis
Use the Platform Power Analysis viewpoint to review,
visualize, and interpret power and energy data
collected using Intel® SoC Watch.

Energy analysis data collected by Intel SoC Watch version 2.3 or later on an Android* or Linux* device can
be imported into Intel® VTune™ Profiler and visualized with the Platform Power Analysis viewpoint. The
Summary window is always present, but other windows within the viewpoint will vary depending on the
metrics collected with Intel SoC Watch. For example, the ddr-bw metrics are visualized on the DDR
Bandwidth window. The metrics available to you will depend on your device hardware and operating
system. Review the Intel SoC Watch User's Guide for your operating system for detailed information on each
metric.

Collection and Visualization Method
Energy data is collected and visualized using the following mechanisms:

• Sampled Value Data: The value is gathered by sampling energy data over regular or irregular intervals.
There can either be a set range of values (as with North Complex D0ix States) or the actual value can be
measured at the sampling point (as with Thermal temperature). The values between sampling points are
not known. The values are visualized with sampling points in the timeline pane.

For example, North Complex D0ix State values are sampled over regular intervals. At every sample point,
a D-State value is returned at the time the sample was taken and is visualized with a set color in the
timeline pane.

• Sampled Residency Data: The value is gathered by sampling data over regular intervals. There is a set
range of values. The exact time of transition between values is not known, but the percentage of time
spent in each value is calculated and displayed as a heat map in the timeline pane.

For example, the Graphics C-State status is collected at regular intervals. The value transitioned in and
out of different C-States during the collection time, but the exact transition time is not tracked. Instead, a
heat map shows that more time was spent in one state than the other. Hover over the graph to see the
exact percentage of time spent in each state.

Intel® VTune™ Profiler User Guide 1

761

• Sampled Counter Data: The value is gathered by measuring a count since the previous sampling point.
The data is then calculated into a rate per second to show the changes over time and visualized as a line
graph in the timeline pane.

For example, the DDR Bandwidth data is displayed as a line graph with different lines for read, write, read
partials, and write partials. Sampling points show when the counts were collected.

• Traced Residency Data: The value is gathered when the state changes from one value to another. The
time spent in the previous state is known and can be displayed in the timeline pane. In some cases an
additional metric is tracked, such as the frequency values for the Core P-State Residency metric.

For example, for the Core-C-State Residency Metric, a processor is in a certain C-State at any given time.
C0 is the active state and Cn is a sleep state where a larger number means a deeper sleep state. When
the processor transitions from one C-State to another, an event is emitted and the transition and time
spent in the previous state is logged. The values are visualized as colored bars indicating the time in a
certain state in the timeline pane. Drag and select an area of the timeline and then select the Zoom In
on Selection option from the menu that appears to show finer granularity in the timeline pane. For more
information, see Managing Timeline View.

• Traced Event Data: The value is gathered when a new event occurs. Each event is displayed on the
timeline with an event marker showing the exact time that the event occurred. Events of the same type
are shown with the same color marker. The legend to the right of the timeline shows what color marker
corresponds to each event type collected.

 1 Intel® VTune™ Profiler User Guide

762

Unlike other traced event data, Wakeup and Abort events are displayed as bars and triangle event points
on the timeline pane. Each event is color-coded by event type (timer, scheduled, etc.). The bar length
shows how the event corresponds with the CPU sleep state, even though the event is instantaneous. The
exact time of the wakeup or abort event is shown with the triangle.

See Also
Window: Summary - Platform Power Analysis

Window: Bandwidth - Platform Power Analysis

Window: Core Wake-ups - Platform Power Analysis

Window: Correlate Metrics - Platform Power Analysis

Window: CPU C\P States - Platform Power Analysis

Window: Graphics C\P States - Platform Power Analysis

Window: NC Device States - Platform Power Analysis

Window: SC Device States - Platform Power Analysis

Window: System Sleep States - Platform Power Analysis

Window: Temperature - Platform Power Analysis

Window: Timer Resolution - Platform Power Analysis

Window: Wakelocks - Platform Power Analysis

Window: Sample Count - Hardware Events
Use the Sample Count window to analyze the actual
number of samples collected for a processor event.

To access this window: Select the Hardware Events viewpoint and click the Sample Count sub-tab in
the result tab. Depending on the analysis type, the Sample Count window may include the following panes:

Intel® VTune™ Profiler User Guide 1

763

• Sample Count pane
• Timeline pane
• Context Summary pane

Sample Count Pane
The Sample Count pane attributes the Hardware Event Sample Count by Hardware Event Type to
program units. The Hardware Event Sample Count metric provides the actual number of samples collected
for an event.

By default, the data in the grid is sorted by the Instruction Retired event.

The list of hardware events depends on the analysis type. You may right-click an event column and select the
What's This Column context menu option to open the description of the selected event.

When you explore the hardware events statistics for a result, you may drag and drop the columns in the grid
for your convenience. VTune Profiler automatically saves your preferences and keeps the columns order for
subsequent result views.

Timeline Pane
The Timeline pane is synchronized with the Sample Count pane. The Thread area of the Timeline pane
shows the number of samples collected for the selected event (INST_RETIRED.ANY in the example below)
while a thread was running. You may use the Hardware Event Sample Count drop-down menu in the
legend area to choose a different event.

The Hardware Event Type area shows the application-level performance per each event.

Call Stack Pane
If you selected the Collect stacks option for the hardware event-based sampling analysis, the VTune Profiler
provides the Call Stack pane. Use this pane to navigate between stacks and analyze the distribution of the
sample count for the object selected in the Sample Count pane. For the example below, you select the
Instructions Retired to see stacks leading to the grid_intersect function and contributing to this event.
You can use this data to identify the most performance-critical stacks with the highest contribution to the
object's Instructions Retired value.

 1 Intel® VTune™ Profiler User Guide

764

See Also
Intel Processor Events Reference

Window: Summary - Hardware Events

Switch Viewpoints

Hardware Events Report
 from command line

Window: SC Device States - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the SC Device States sub-
tab in the result tab.

Use the SC Device States window to:

• Identify the time spent in D0ix states by each device.
• Analyze the trend of D0ix state residency over time.
• Review the percent of time a device spent in a particular D0ix state.

The South Complex contains low-intensity computing sub-systems, such as I/O and system management
components. D0ix states are low-power states used on system on a chip (SoC) platforms. The South
Complex devices are represented using logical sub-system (LSS) identifiers specific to the platform on which
the collection was run.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

South Complex Device Pane

Intel® VTune™ Profiler User Guide 1

765

The South Complex Device States pane shows the list of devices in the South Complex and displays
estimated sample counts for each device. The sample counts are not a precise measure of the length of time
each device spent in a state, but can be used as a guideline to determine if a device spent a greater amount
of time in a particular state than was expected.

Click the expand

/collapse

buttons in the data columns to expand the column and show data for different D-States in each device. You
can change the unit displayed by right-clicking a data cell and selecting the Show Data As option to select
an alternate unit. For example, you could select Show Data As > Percent to view the percent of collection
time a particular device spent in the active state.

Timeline Pane
The Timeline pane displays the D0ix states of each device, at each point in time. You can rearrange the order
of the devices in the timeline by dragging and dropping.

Toolbar Navigation control to zoom in/out on the view on areas of
interest. For more details on the Timeline control, see Managing
Timeline View.

Legend Types of data presented on the timeline. Filter in/out any type
of data presented on the timeline by selecting/deselecting
corresponding check boxes.

South Complex Devices Graphical representation of the time spent in a D-State. Each
state is a different color, which can be filtered using the legend.
Hover over the timeline for a device to view the total
percentage of time spent in a particular state.

Zoom in or out on the timeline to view trends in more detail.
Filters applied on a timeline in one window are applied on all
other windows within the viewpoint. This is useful if you
identify an issue on one tab and want to see how the issue
impacts the metrics shown on a different tab.

See Also
Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Grouping Data

 1 Intel® VTune™ Profiler User Guide

766

Window: Summary
Use the Summary window as a starting point for your analysis in the following viewpoints:

Window: Summary - Input and Output Summary

Use the Summary window as your starting point of the performance analysis with the Intel® VTune™ Profiler.
To access this window, select the Input and Output viewpoint and click the Summary sub-tab in the result
tab.

Depending on your analysis target, the Summary window provides the following application and system-
level statistics in the Disk Input and Output viewpoint:

• Analysis metrics
• SPDK Info
• SPDK Throughput
• Bandwidth Utilization Histogram
• Top Hotspots
• Disk Input and Output Histogram
• Collection and Platform Info

NOTE

• Click a metric or an object name represented in the Summary window as a hyperlink to open the
Bottom-up window with the grid data sorted by the selected metric or the selected object
highlighted. By default, the grid data is grouped by Thread/Page Faults, which helps you easier

• Сlick the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.

Analysis Metrics
Explore the list of CPU metrics to understand high-level statistics of an overall application execution.

For Linux* targets, Intel® VTune™ Profiler introduces the I/O Wait Time metric that helps you estimate
whether your application is I/O-bound:

The I/O Wait Time metric represents a portion of time when threads reside in I/O wait state while there are
idle cores on the system. For every moment of time the number of counted threads does not exceed the
number of idling cores on a system. This aggregated I/O Wait Time metric is an integral function of I/O Wait
metric that is available in the Timeline pane of the Bottom-up view. If you see that the I/O Wait Time is a
substantial part of the application Elapsed Time, as in the example above, switch to the Platform window to
have a closer look at all the metrics on the timeline and understand what caused high I/O Wait time.

VTune Profiler analyzes metrics, compares their values with the threshold values provided by Intel architects,
and, if the threshold is exceeded, it flags the metric value as a performance issue for an application as a
whole. Mouse over the flagged value to read an issue description and tuning recommendation.

Bandwidth Utilization Histogram
This histogram shows how much time the system bandwidth was utilized by a certain value (Bandwidth
Domain) and provides thresholds to categorize bandwidth utilization as High, Medium and Low. You can set
the threshold by moving sliders at the bottom.

Intel® VTune™ Profiler User Guide 1

767

NOTE
This histogram is available if you collected results with the Analyze memory bandwidth option
enabled.

SPDK Info
Explore SDPK Info section for overall IO performance statistics. To see how each device performed per
operation or metric, expand a corresponding block and identify potential IO performance imbalance among
SSDs:

SPDK Throughput
Explore the SPDK Throughput histogram and table to identify how long your workload has been under-
utilizing the throughout of the selected SPDK device (Low utilization level):

Top Hotspots
VTune Profiler displays the most performance-critical functions and their CPU Time in the Top Hotspots
section. Optimizing these functions typically results in improving overall application performance. Clicking a
function in the list opens the Bottom-up window with this function selected.

 1 Intel® VTune™ Profiler User Guide

768

The grayed-out [Others] module, if provided, displays the total value for all other functions in the application
that are not included into this table.

NOTE
You can control the number of objects in this list and displayed metrics via the viewpoint configuration
file.

Disk Input and Output Histogram
The Disk Input and Output histogram shows how quickly storage requests are served by the kernel sub-
system and helps quickly estimate latency distribution and identify slow I/O requests.

The X-axis shows the time it took to satisfy a storage request and the Y-axis shows the number of I/O
requests in this category. Use the Operation type drop-down menu to select the type of an I/O operation
you are interested in. For example, for the write type of I/O operations, type of I/O operations, 30 storage
requests in all executed for more than 0.03 seconds are qualified by the VTune Profiler as slow:

To get more details on this type I/O request, switch to the Timeline pane in the Bottom-up window.

Collection and Platform Info
This section provides the following data:

Application
Command
Line

Path to the target application.

Operating
System

Operating system used for the collection.

Computer
Name

Name of the computer used for the collection.

Result Size Size of the result collected by the VTune Profiler.

Collection
start time

Start time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Intel® VTune™ Profiler User Guide 1

769

Collection
stop time

Stop time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collector
type

Type of the data collector used for the analysis. The following types are possible:

• Driver-based sampling
• Driver-less Perf*-based sampling: per-process or system-wide
• User-mode sampling and tracing

CPU Information

Name Name of the processor used for the collection.

Frequency Frequency of the processor used for the collection.

Logical CPU
Count

Logical CPU count for the machine used for the collection.

Physical
Core Count

Number of physical cores on the system.

User Name User launching the data collection. This field is available if you enabled the per-user
event-based sampling collection mode during the product installation.

GPU Information

Name Name of the Graphics installed on the system.

Vendor GPU vendor.

Driver Version of the graphics driver installed on the system.

Stepping Microprocessor version.

EU Count Number of execution units (EUs) in the Render and GPGPU engine. This data is Intel®
HD Graphics and Intel® Iris® Graphics (further: Intel Graphics) specific.

Max EU
Thread
Count

Maximum number of threads per execution unit. This data is Intel Graphics specific.

Max Core
Frequency

Maximum frequency of the Graphics processor. This data is Intel Graphics specific.

Graphics
Performanc
e Analysis

GPU metrics collection is enabled on the hardware level. This data is Intel Graphics
specific.

NOTE
Some systems disable collection of extended metrics such as L3 misses, memory accesses,
sampler busyness, SLM accesses, and others in the BIOS. On some systems you can set a
BIOS option to enable this collection. The presence or absence of the option and its name are
BIOS vendor specific. Look for the Intel® Graphics Performance Analyzers option (or
similar) in your BIOS and set it to Enabled.

See Also
Input and Output Analysis

 1 Intel® VTune™ Profiler User Guide

770

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Comparison Summary

Window: Summary - Microarchitecture Exploration

Use the Summary window as your starting point of the performance analysis with the Intel® VTune™ Profiler.
To access this window, select the Microarchitecture Exploration viewpoint and click the Summary sub-
tab in the result tab.

Depending on the analysis type, the Summary window provides the following application-level statistics in
the Microarchitecture Exploration viewpoint:

• Microarchitecture metric diagram
• Analysis metrics
• CPU Utilization Histogram
• Collection and Platform Info

NOTE
You may click the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.

Microarchitecture Metric Diagram
Start your analysis with the hardware metric diagram representing CPU inefficiencies based on the Top-Down
Microarchitecture Analysis Method (TMA).

Treat the diagram as a pipe with an output flow equal to the ratio: Actual Instructions Retired/Possible
Maximum Instruction Retired (pipe efficiency). If there are pipeline stalls decreasing retiring, the pipe
shape gets narrow.

Analysis Metrics
The first section displays the summary statistics on the overall application execution per hardware-related
metrics measured in Pipeline Slots or Clockticks. Metrics are organized by execution categories in a list and
also represented as a µPipe diagram. To view a metric description, mouse over the help icon

:

Intel® VTune™ Profiler User Guide 1

771

In the example above, mousing over the L1 Bound metric displays the metric description in the tooltip.

A flagged metric value signals a performance issue for the whole application execution. Mouse over the
flagged value to read the issue description:

You may use the performance issues identified by the VTune Profiler as a baseline for comparison of versions
before and after optimization. Your primary performance indicator is the Elapsed time value.

Grayed out metric values indicate that the data collected for this metric is unreliable. This may happen, for
example, if the number of samples collected for PMU events is too low. In this case, when you hover over
such an unreliable metric value, the VTune Profiler displays a message:

You may either ignore this data, or rerun the collection with the data collection time, sampling interval, or
workload increased.

By default, the VTune Profiler collects Microarchitecture Exploration data in the Detailed mode. In this mode,
all metric names in the Summary view are hyperlinks. Clicking such a hyperlink opens the Bottom-up
window and sorts the data in the grid by the selected metric. The lightweight Summary collection mode is
limited to the Summary view statistics.

 1 Intel® VTune™ Profiler User Guide

772

CPU Utilization Histogram
Explore the CPU Utilization Histogram to analyze the percentage of the wall time the specific number of
CPUs were running simultaneously.

Use This To Do This

Vertical bars Hover over the bar to identify the amount of Elapsed time the application spent using the
specified number of logical CPUs.

Target
Utilization

Identify the target CPU utilization. This number is equal to the number of logical CPUs.
Consider this number as your optimization goal.

Average CPU
Utilization

Identify the average number of CPUs used aggregating the entire run. It is calculated as
CPU time / Elapsed time.

CPU utilization at any point in time cannot surpass the available number of logical CPUs.
Even when the system is oversubscribed, and there are more threads running than CPUs,
the CPU utilization is the same as the number of CPUs.

Use this number as a baseline for your performance measurements. The closer this
number to the number of logical CPUs, the better, except for the case when the CPU time
goes to spinning.

Utilization
Indicator bar

Analyze how the various utilization levels map to the number of simultaneously utilized
logical CPUs.

NOTE
In the CPU Utilization histogram, the VTune Profiler treats the Spin and Overhead time as Idle
CPU utilization. Different analysis types may recognize Spin and Overhead time differently
depending on availability of call stack information. This may result in a difference of CPU
Utilization graphical representation per analysis type.

NOTE
The Effective CPU Utilization Histogram is available for Microarchitecture Exploration results
collected in the Detailed mode only.

Collection and Platform Info
This section provides the following data:

Application
Command
Line

Path to the target application.

Operating
System

Operating system used for the collection.

Intel® VTune™ Profiler User Guide 1

773

Computer
Name

Name of the computer used for the collection.

Result Size Size of the result collected by the VTune Profiler.

Collection
start time

Start time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collection
stop time

Stop time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collector
type

Type of the data collector used for the analysis. The following types are possible:

• Driver-based sampling
• Driver-less Perf*-based sampling: per-process or system-wide
• User-mode sampling and tracing

CPU Information

Name Name of the processor used for the collection.

Frequency Frequency of the processor used for the collection.

Logical CPU
Count

Logical CPU count for the machine used for the collection.

Physical
Core Count

Number of physical cores on the system.

User Name User launching the data collection. This field is available if you enabled the per-user
event-based sampling collection mode during the product installation.

GPU Information

Name Name of the Graphics installed on the system.

Vendor GPU vendor.

Driver Version of the graphics driver installed on the system.

Stepping Microprocessor version.

EU Count Number of execution units (EUs) in the Render and GPGPU engine. This data is Intel®
HD Graphics and Intel® Iris® Graphics (further: Intel Graphics) specific.

Max EU
Thread
Count

Maximum number of threads per execution unit. This data is Intel Graphics specific.

Max Core
Frequency

Maximum frequency of the Graphics processor. This data is Intel Graphics specific.

Graphics
Performanc
e Analysis

GPU metrics collection is enabled on the hardware level. This data is Intel Graphics
specific.

 1 Intel® VTune™ Profiler User Guide

774

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE
Some systems disable collection of extended metrics such as L3 misses, memory accesses,
sampler busyness, SLM accesses, and others in the BIOS. On some systems you can set a
BIOS option to enable this collection. The presence or absence of the option and its name are
BIOS vendor specific. Look for the Intel® Graphics Performance Analyzers option (or
similar) in your BIOS and set it to Enabled.

See Also
Microarchitecture Exploration View

Top-Down Microarchitecture Analysis Method

Comparison Summary

Change Threshold Values

Window: Summary - GPU Analysis

Use the Summary window as your starting point of the GPU Offload or GPU Compute/Media Hotspots
performance analysis of the Intel® VTune™ Profiler. To access this window, click the Summary sub-tab in the
result tab.

Use the Elapsed Time metric as your primary indicator and a baseline for comparison of results before and
after optimization. Note that for multithreaded applications, the CPU Time is different from the Elapsed Time
since the CPU Time is the sum of CPU time for all application threads.

Depending on the selected GPU analysis type, the following statistics is available in the Summary window:

• GPU Utilization section helps identify whether the GPU was properly utilized.
• EU Array Stalled/Idle section helps explore the most typical reasons of the EU waits for compute-bound

applications.
• FPU Utilization section helps identify kernels over-utilizing both FPUs for FPU-bound applications.
• Bandwidth Utilization section provides statistics for memory-bound applications.

NOTE
Click the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.

GPU Utilization
If your system satisfies configuration requirements for GPU analysis (i915 ftrace event collection is
supported), VTune Profiler displays detailed GPU Utilization analysis data across all engines that had at
least one DMA packet executed. By default, the VTune Profiler flags the GPU utilization less than 80% as a
performance issue. In the example below, 85.9% of the application elapsed time was utilized by GPU
engines.

Intel® VTune™ Profiler User Guide 1

775

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html

Depending on the target platform used for GPU analysis, the GPU Utilization section in the Summary
window shows the time (in seconds) used by GPU engines. Note that GPU engines may work in parallel and
the total time taken by GPU engines does not necessarily equal the application Elapsed time.

You may correlate GPU Time data with the Elapsed Time metric. The GPU Time value shows a share of the
Elapsed time used by a particular GPU engine. If the GPU Time takes a significant portion of the Elapsed
Time, it clearly indicates that the application is GPU-bound.

If your system does not support i915 ftrace event collection, all the GPU Utilization statistics will be
calculated based on the hardware events and attributed to the Render and GPGPU engine.

The Summary view provides the Packet Queue Depth Histogram that helps you estimate the GPU
software queue depth per GPU engine during the target run:

Ideally, your goal is an effective GPU engine utilization with evenly loaded queues and minimal duration for
the zero queue depth.

For a high-level view of the DMA packet execution during the target run, review the Packet Duration
Histogram:

Select a required packet type from the drop-down menu and identify how effectively these packets were
executed on the GPU. Having high Packet Count values for the minimal duration is optimal.

To get detailed information on the packet queues and execution, switch to the Platform tab and analyze the
GPU software queue on the timeline.

For OpenCL™ applications, explore the Hottest GPU Computing Tasks section that helps you understand
which OpenCL kernels had performance issues:

 1 Intel® VTune™ Profiler User Guide

776

Mouse over a flagged computing task for details on a performance issue. For example, for the Intersect
computing task a significant portion of the GPU time was spent in stalls, which may result from frequent
sampler or memory accesses. Click a hot GPU computing task to open the Graphics window with this
computing task pre-selected for your convenience.

EU Array Stalled/Idle
For the compute-bound workloads, explore the EU Array Stalled/Idle section that shows the most typical
reasons why the execution units could be waiting. This section shows up for the analysis that collects Intel®
HD Graphics and Intel® Iris® Graphics hardware events for the GPU Compute/Media Hotspots.

Depending on the event preset you used for the configuration, the VTune Profiler analyzes metrics for stalled/
idle executions units. The GPU Compute/Media Hotspots analysis by default collects the Overview preset
including the metrics that track general GPU memory accesses, such as Sampler Busy and Sampler Is
Bottleneck, and GPU L3 bandwidth. As a result, the EU Array Stalled/Idle section displays the Sampler
Busy section with a list of GPU computing tasks with frequent access to the Sampler and hottest GPU
computing tasks bound by GPU L3 bandwidth:

If you select the Compute Basic preset during the analysis configuration, VTune Profiler analyzes metrics that
distinguish accessing different types of data on a GPU and displays the Occupancy section. See information
about GPU tasks with low occupancy and understand how you can achieve peak occupancy:

Intel® VTune™ Profiler User Guide 1

777

If the peak occupancy is flagged as a problem for your application, inspect factors that limit the use of all
the threads on the GPU. Consider modifying your code with corresponding solutions:

Factor responsible for Low Peak Occupancy Solution

SLM size requested per workgroup in a computing
task is too high

Decrease the SLM size or increase the Local size

Global size (the number of working items to be
processed by a computing task) is too low

Increase Global size

 1 Intel® VTune™ Profiler User Guide

778

Factor responsible for Low Peak Occupancy Solution

Barrier synchronization (the sync primitive can
cause low occupancy due to a limited number of
hardware barriers on a GPU subslice)

Remove barrier synchronization or increase the
Local size

If the occupancy is flagged as a problem for your application, change your code to improve hardware thread
scheduling. These are some reasons that may be responsible for ineffective thread scheduling:

• A tiny computing task could cause considerable overhead when compared to the task execution time.
• There may be high imbalance between the threads executing a computing task.

Intel® VTune™ Profiler User Guide 1

779

The Compute Basic preset also enables an analysis of the DRAM bandwidth usage. If the GPU workload is
DRAM bandwidth-bound, the corresponding metric value is flagged. You can explore the table with GPU
computing tasks heavily using the DRAM bandwidth during execution.

If you select the Full Compute preset and multiple run mode during the analysis configuration, the VTune
Profiler will use both Overview and Compute Basic event groups for data collection and provide all types of
reasons for the EU array stalled/idle issues in the same view.

NOTE
To analyze Intel® HD Graphics and Intel® Iris® Graphics hardware events, make sure to set up your
system for GPU analysis

FPU Utilization
If your application execution takes more than 80% of collection time heavily utilizing both floating point units
(FPUs), the VTune Profiler highlights such a value as an issue and lists the kernels that overutilized the FPUs:

Click a flagged kernel to switch to the Graphics tab > Timeline pane, explore the distribution of the GPU
EU Instructions metric that shows the FPU usage during the analysis run, and identify time ranges with the
highest metric values. To address high FPU utilization issue for your code, consider reducing computations.

Bandwidth Utilization
For memory-bound applications, explore the Bandwidth Utilization Histogram section that includes
statistics on the average system bandwidth and a Bandwidth Utilization histogram that shows how intensively
your application was using each bandwidth domain:

Collection and Platform Info
Explore the platform information including GPU and CPU data. The last four GPU characteristics are specific to
Intel® HD Graphics and Intel® Iris® Graphics.

GPU OpenCL™ Application Analysis

GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

GPU Compute/Media Hotspots Analysis (Preview)

Window: Summary - Hardware Events

Use the Summary window as your starting point of the performance analysis with the Intel VTune Profiler.
To access this window, select the Hardware Events viewpoint and click the Summary sub-tab in the result
tab.

 1 Intel® VTune™ Profiler User Guide

780

The Hardware Events viewpoint is enabled for all hardware event-based sampling results and is targeted
primarily for the analysis of monitored hardware events: estimated count and/or the number of samples
collected. In the Summary window, explore the following data:

• Analysis metrics
• Hardware Events
• Uncore Event Count
• Top Tasks
• Collection and Platform Info

NOTE
You may click the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.

Analysis Metrics
The Summary window displays a list of CPU metrics that help you estimate an overall application execution.
For a metric description, hover over the corresponding question mark icon

to read the pop-up help.

Use the Elapsed Time metric as your primary indicator and a baseline for comparison of results before and
after optimization. Note that for multithreaded applications, the CPU Time is different from the Elapsed Time
since the CPU Time is the sum of CPU time for all application threads.

Hardware Events
This section provides a list of hardware events monitored for this analysis and the statistics collected:

Hardware
Event Type

Event name provided as a hyperlink. Clicking an event name opens the Event Count
window sorted by the selected event. You can identify a function with the highest event/
sample count and double-click it to open the Source view and identify which code line
generated the highest count for the event of interest.

Hardware
Event
Count

Estimated number of times this event occurred during the collection.

Hardware
Event
Sample
Count

Actual number of samples collected for this event.

Events per
Sample

Number of events collected at one sample (Sample After Value).

Uncore Event Count
This section provides a list of uncore hardware events monitored for this analysis and the statistics collected:

Uncore
Event Type

Event name provided as a hyperlink. Clicking an event name opens the Uncore Event
Count window sorted by the selected event.

Uncore
Event
Count

The number of times this uncore event occurred during the collection.

Intel® VTune™ Profiler User Guide 1

781

Top Tasks
This section provides a list of tasks that took most of the time to execute, where tasks are either code
regions marked with Task API, or system tasks enabled to monitor Ftrace* events, Atrace* events, Intel
Media SDK programs, OpenCL™ kernels, and so on.

Clicking a task type in the table opens the grid view (for example, Bottom-up or Event Count) grouped by
the Task Type granularity. See Task Analysis for more information.

Collection and Platform Info
This section provides the following data:

Application
Command
Line

Path to the target application.

Operating
System

Operating system used for the collection.

Computer
Name

Name of the computer used for the collection.

Result Size Size of the result collected by the VTune Profiler.

Collection
start time

Start time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collection
stop time

Stop time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collector
type

Type of the data collector used for the analysis. The following types are possible:

• Driver-based sampling
• Driver-less Perf*-based sampling: per-process or system-wide
• User-mode sampling and tracing

CPU Information

Name Name of the processor used for the collection.

Frequency Frequency of the processor used for the collection.

Logical CPU
Count

Logical CPU count for the machine used for the collection.

Physical
Core Count

Number of physical cores on the system.

User Name User launching the data collection. This field is available if you enabled the per-user
event-based sampling collection mode during the product installation.

GPU Information

Name Name of the Graphics installed on the system.

Vendor GPU vendor.

Driver Version of the graphics driver installed on the system.

 1 Intel® VTune™ Profiler User Guide

782

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Stepping Microprocessor version.

EU Count Number of execution units (EUs) in the Render and GPGPU engine. This data is Intel®
HD Graphics and Intel® Iris® Graphics (further: Intel Graphics) specific.

Max EU
Thread
Count

Maximum number of threads per execution unit. This data is Intel Graphics specific.

Max Core
Frequency

Maximum frequency of the Graphics processor. This data is Intel Graphics specific.

Graphics
Performanc
e Analysis

GPU metrics collection is enabled on the hardware level. This data is Intel Graphics
specific.

NOTE
Some systems disable collection of extended metrics such as L3 misses, memory accesses,
sampler busyness, SLM accesses, and others in the BIOS. On some systems you can set a
BIOS option to enable this collection. The presence or absence of the option and its name are
BIOS vendor specific. Look for the Intel® Graphics Performance Analyzers option (or
similar) in your BIOS and set it to Enabled.

See Also
Sample After Value

Intel Processor Events Reference

Window: Summary - Hotspots by CPU Utilization

Use the Summary window as your starting point of the performance analysis with the Intel® VTune™ Profiler.
To access this window, select the Hotspots by CPU Utilization viewpoint and click the Summary sub-tab in
the result tab.

Depending on the analysis type, the Summary window provides the following application-level statistics in
the Hotspots by CPU Utilization viewpoint:

• Analysis metrics
• Top Hotspots
• Top Tasks
• Effective CPU Utilization Histogram
• Frame Rate Histogram
• Collection and Platform Info

NOTE
You may click the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.

Analysis Metrics
The Summary window displays a list of CPU metrics that help you estimate an overall application execution.
For a metric description, hover over the corresponding question mark icon

Intel® VTune™ Profiler User Guide 1

783

to read the pop-up help. For metric values flagged as performance issues, hover over such a value for
details:

Use the Elapsed Time metric as your primary indicator and a baseline for comparison of results before and
after optimization. Note that for multithreaded applications, the CPU Time is different from the Elapsed Time
since the CPU Time is the sum of CPU time for all application threads.

For some analysis types, the Effective CPU Time is classified per CPU utilization as follows:

Utilization
Type

Description

Idle Idle utilization. By default, if the CPU Time is insignificant (less than 50% of 1 CPU), such
CPU utilization is classified as idle.

Poor Poor utilization. By default, poor utilization is when the number of simultaneously running
CPUs is less than or equal to 50% of the target CPU utilization.

OK Acceptable (OK) utilization. By default, OK utilization is when the number of simultaneously
running CPUs is between 51-85% of the target CPU utilization.

Ideal Ideal utilization. By default, Ideal utilization is when the number of simultaneously running
CPUs is between 86-100% of the target CPU utilization.

The Overhead and Spin Time metrics, if provided (depend on the analysis), can tell you how your
application's use of synchronization and threading libraries is impacting the CPU time. Review the metrics
within these categories to learn where your application might be spending additional time making calls to
synchronization and threading libraries such as system synchronization API, Intel® oneAPI Threading Building
Blocks(oneTBB), and OpenMP*. VTune Profiler provides the following types of inefficiencies in your code
taking CPU time:

Imbalance
or Serial
Spinning
Time

Imbalance or Serial Spinning time is CPU time when working threads are spinning on a
synchronization barrier consuming CPU resources. This can be caused by load imbalance,
insufficient concurrency for all working threads or waits on a barrier in the case of serialized
execution.

Lock
Contention
Spin Time

Lock Contention time is CPU time when working threads are spinning on a lock consuming
CPU resources. High metric value may signal inefficient parallelization with highly contended
synchronization objects. To avoid intensive synchronization, consider using reduction,
atomic operations or thread local variables where possible.

Other Spin
Time

This metric shows unclassified Spin time spent in a threading runtime library.

Creation
Overhead
Time

Creation time is CPU time that a runtime library spends on organizing parallel work.

Scheduling
Overhead
Time

Scheduling time is CPU time that a runtime library spends on work assignment for threads.
If the time is significant, consider using coarse-grain work chunking.

 1 Intel® VTune™ Profiler User Guide

784

Reduction
Overhead
Time

Reduction time is CPU time that a runtime library spends on loop or region reduction
operations.

Atomics
Overhead
Time

Atomics time is CPU time that a runtime library spends on atomic operations.

Other
Overhead
Time

This metric shows unclassified Overhead time spent in a threading runtime library.

Depending on the analysis type, the VTune Profiler may analyze a metric, compare its value with the
threshold value provided by Intel architects, and highlight the metric value in pink as a performance issue for
an application as a whole. The issue description for such a value may be provided below the critical metric or
when you hover over the highlighted metric.

Each metric in the list shows up as a hyperlink. Clicking a hyperlink opens the Bottom-up window and sorts
the grid by the selected metric or highlights the selected object in the grid.

Top Hotspots
VTune Profiler displays the most performance-critical functions and their CPU Time in the Top Hotspots
section. Optimizing these functions typically results in improving overall application performance. Clicking a
function in the list opens the Bottom-up window with this function selected.

The grayed-out [Others] module, if provided, displays the total value for all other functions in the application
that are not included into this table.

NOTE
You can control the number of objects in this list and displayed metrics via the viewpoint configuration
file.

Top Tasks
This section provides a list of tasks that took most of the time to execute, where tasks are either code
regions marked with Task API, or system tasks enabled to monitor Ftrace* events, Atrace* events, Intel
Media SDK programs, OpenCL™ kernels, and so on.

Clicking a task type in the table opens the grid view (for example, Bottom-up or Event Count) grouped by
the Task Type granularity. See Task Analysis for more information.

Intel® VTune™ Profiler User Guide 1

785

Effective CPU Utilization Histogram
Explore the Effective CPU Utilization Histogram to analyze the percentage of the wall time the specific
number of logical CPUs were running simultaneously. Spin and Overhead Time adds to the Idle CPU
Utilization value.

Use This To Do This

Vertical bars Hover over the bar to identify the amount of Elapsed time the application spent using the
specified number of logical CPU cores.

Target
Utilization

Identify the target CPU utilization. This number is equal to the number of logical CPU
cores. Consider this number as your optimization goal.

Average
Effective CPU
Utilization

Identify the average number of CPUs used aggregating the entire run. It is calculated as
CPU time / Elapsed time.

CPU utilization at any point in time cannot surpass the available number of logical CPU
cores. Even when the system is oversubscribed, and there are more threads running then
CPUs, the CPU utilization is the same as the number of CPUs.

Use this number as a baseline for your performance measurements. The closer this
number to the number of logical CPU cores, the better, except for the case when the CPU
time goes to spinning.

Utilization
Indicator bar

Analyze how the various utilization levels map to the number of simultaneously utilized
logical CPU cores.

NOTE
In the CPU Utilization histogram, the VTune Profiler treats the Spin and Overhead time as Idle
CPU utilization. Different analysis types may recognize Spin and Overhead time differently
depending on availability of call stack information. This may result in a difference of CPU
utilization graphical representation per analysis type.

Frame Rate Histogram
If you used the Frame API to mark the start and finish of the code regions executed repeatedly (frames) in
your graphics application, the VTune Profiler analyzes this data and helps you identify regions that ran slowly.
Explore the Frame Rate Histogram section and identify slow and fast frame domains.

Use This To Do This

Domain drop-
down menu

Choose a frame domain to analyze with the frame rate histogram. If only one domain is
available, the drop-down menu is grayed out. Then, you can switch to the Bottom-up
window grouped by Frame Domain, filter the data by slow frames and switch to the
Function grouping to identify functions in the slow frame domains. Try to optimize your
code to keep the frame rate constant (for example, from 30 to 60 frames per second).

 1 Intel® VTune™ Profiler User Guide

786

Use This To Do This

Vertical bars Hover over a bar to see the total number of frames in your application executed with a
specific frame rate. High number of slow or fast frames signals a performance
bottleneck.

Frame rate bar Use the sliders to adjust the frame rate threshold (in frames per second) for the
currently open result and all subsequent results in the project.

Collection and Platform Info
This section provides the following data:

Application
Command
Line

Path to the target application.

Operating
System

Operating system used for the collection.

Computer
Name

Name of the computer used for the collection.

Result Size Size of the result collected by the VTune Profiler.

Collection
start time

Start time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collection
stop time

Stop time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collector
type

Type of the data collector used for the analysis. The following types are possible:

• Driver-based sampling
• Driver-less Perf*-based sampling: per-process or system-wide
• User-mode sampling and tracing

CPU Information

Name Name of the processor used for the collection.

Frequency Frequency of the processor used for the collection.

Logical CPU
Count

Logical CPU count for the machine used for the collection.

Physical
Core Count

Number of physical cores on the system.

User Name User launching the data collection. This field is available if you enabled the per-user
event-based sampling collection mode during the product installation.

GPU Information

Name Name of the Graphics installed on the system.

Vendor GPU vendor.

Driver Version of the graphics driver installed on the system.

Intel® VTune™ Profiler User Guide 1

787

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Stepping Microprocessor version.

EU Count Number of execution units (EUs) in the Render and GPGPU engine. This data is Intel®
HD Graphics and Intel® Iris® Graphics (further: Intel Graphics) specific.

Max EU
Thread
Count

Maximum number of threads per execution unit. This data is Intel Graphics specific.

Max Core
Frequency

Maximum frequency of the Graphics processor. This data is Intel Graphics specific.

Graphics
Performanc
e Analysis

GPU metrics collection is enabled on the hardware level. This data is Intel Graphics
specific.

NOTE
Some systems disable collection of extended metrics such as L3 misses, memory accesses,
sampler busyness, SLM accesses, and others in the BIOS. On some systems you can set a
BIOS option to enable this collection. The presence or absence of the option and its name are
BIOS vendor specific. Look for the Intel® Graphics Performance Analyzers option (or
similar) in your BIOS and set it to Enabled.

See Also
Comparison Summary
Thread Concurrency
CPU Utilization

Changing Threshold Values

Window: Summary - HPC Performance Characterization

Use the Summary window as your starting point of the performance analysis with the Intel® VTune™ Profiler.
To access this window, click the Summary sub-tab in the result tab.

The VTune Profiler may analyze a metric, compare its value with the threshold value provided by Intel
architects, and highlight the metric value in pink as a performance issue for an application as a whole. The
issue description for such a value may be provided below the critical metric or when you hover over the
highlighted metric.

The Summary window provides the following application-level statistics in the HPC Performance
Characterizationviewpoint:

• Analysis Metrics
• CPU Utilization
• Memory Bound
• Vectorization
• Collection and Platform Info

NOTE
You may click the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.

 1 Intel® VTune™ Profiler User Guide

788

Analysis Metrics
The Summary window displays metrics that help you estimate an overall application execution. For a metric
description, hover over the corresponding question mark icon

to read the pop-up help.

Use the Elapsed Time, GFLOPS, or GFLOPS Upper Bound (Intel® Xeon Phi™ processor only) metric as your
primary indicator and a baseline for comparison of results before and after optimization.

CPU Utilization
The CPU Utilization section displays metrics for CPU usage during the collection time.

Metrics can include:

• OpenMP Analysis Collection Time: Displays metrics for the duration of serial (outside of any parallel
region) and parallel portions of the program. If the Serial time is significant, review the Top Serial
Hotspots section and consider options to minimize serial execution, either by introducing more

Intel® VTune™ Profiler User Guide 1

789

parallelism or by doing algorithm or microarchitecture tuning for sections that seem unavoidably serial.
For high thread-count machines, serial sections have a severe negative impact on potential scaling
(Amdahl's Law) and should be minimized as much as possible.

• Top OpenMP Regions by Potential Gain: Displays the efficiency of Intel OpenMP* parallelization in the
parallel part of the code and checks for an MPI imbalance. The Potential Gain metric estimates the elapsed
time between the actual measurement and an idealized execution of parallel regions, assuming perfectly
balanced threads and zero overhead of the OpenMP runtime on work arrangement. Use this data to
understand the maximum time that you may save by improving parallel execution. If Potential Gain for a
region is significant, you can go deeper and select the link on a region name to navigate to the Bottom-
up window employing an OpenMP Region dominant grouping and the region of interest selection.

• Effective CPU Utilization Histogram: Graphical representation of the percentage of wall time the
specific number of CPUs the application was running simultaneously. The CPU usage does not contain spin
and overhead time that does not perform actual work. Hover over a vertical bar to identify the amount of
Elapsed Time the application spent using the specified number of logical CPU cores. Use the Average
Physical Core Utilization and Average Logical Core Utilization numbers as a baseline for your performance
measurements. The CPU usage at any point cannot surpass the available number of logical CPU cores.

Memory Bound

A high Memory Bound value might indicate that a significant portion of execution time was lost while fetching
data. The section shows a fraction of cycles that were lost in stalls being served in different cache hierarchy
levels (L1, L2, L3) or fetching data from DRAM. For last level cache misses that lead to DRAM, it is important
to distinguish if the stalls were because of a memory bandwidth limit since they can require specific
optimization techniques when compared to latency bound stalls. VTune Profiler shows a hint about identifying
this issue in the DRAM Bound metric issue description. This section also offers the percentage of accesses to
a remote socket compared to a local socket to see if memory stalls can be connected with NUMA issues.

For Intel® Xeon Phi™ processors formerly code named Knights Landing, there is no way to measure memory
stalls to assess memory access efficiency in general. Therefore Back-end Bound stalls that include memory-
related stalls as a high-level characterization metric are shown instead. The second level metrics are focused
particularly on memory access efficiency.

• A high L2 Hit Bound or L2 Miss Bound value indicates that a high ratio of cycles were spent handing L2
hits or misses.

• The L2 Miss Bound metric does not take into account data brought into the L2 cache by the hardware
prefetcher. However, in some cases the hardware prefetcher can generate significant DRAM/MCDRAM
traffic and saturate the bandwidth. The Demand Misses and HW Prefetcher metrics show the
percentages of all L2 cache input requests that are caused by demand loads or the hardware prefetcher.

 1 Intel® VTune™ Profiler User Guide

790

• A high DRAM Bandwidth Bound or MCDRAM Bandwidth Bound value indicates that a large
percentage of the overall elapsed time was spent with high bandwidth utilization. A high DRAM
Bandwidth Bound value is an opportunity to run the Memory Access analysis to identify data structures
that can be allocated in high bandwidth memory (MCDRAM), if it is available.

The Bandwidth Utilization Histogram shows how much time the system bandwidth was utilized by a
certain value (Bandwidth Domain) and provides thresholds to categorize bandwidth utilization as High,
Medium and Low. The thresholds are calculated based on benchmarks that calculate the maximum value. You
can also set the threshold by moving the sliders at the bottom of the histogram. The modified values are
applied to all subsequent results in the project.

If your application is memory bound, consider running a Memory Access analysis to identify deeper memory
issues and examine memory objects in more detail.

Vectorization

Intel® VTune™ Profiler User Guide 1

791

NOTE
Vectorization and GFLOPS metrics are supported on Intel® microarchitectures formerly code named Ivy
Bridge, Broadwell, and Skylake. Limited support is available for Intel® Xeon Phi™ processors formerly
code named Knights Landing. The metrics are not currently available on 4th Generation Intel
processors. Expand the Details section on the analysis configuration pane to view the processor
family available on your system.

This metric shows how efficiently the application is using floating point units for vectorization. Expand the
GFLOPS or GFLOPS Upper Bound (Intel Xeon Phi processors only) section to show the number of Scalar
and Packed GFLOPS. This section provides a quick estimate of the amount of FLOPs that were not vectorized.

The Top Loops/Functions with FPU Usage by CPU Time table shows the top functions that contain
floating point operations sorted by CPU time and allows for a quick estimate of the fraction of vectorized
code, the vector instruction set used in the loop/function, and the loop type.

For example, if a floating point loop (function) is bandwidth bound, use the Memory Access analysis to
resolve the bandwidth bound issue. If a floating point loop is vectorized, use the Intel Advisor to improve the
vectorization. If the loop is also bandwidth bound, the bandwidth bound issue should be resolved prior to
improving vectorization. Click one of the function names to switch to the Bottom-up window and evaluate if
the function is memory bound.

Intel® Omni-Path Fabric Usage
Intel® Omni-Path Fabric (Intel® OP Fabric) metrics are available for analysis of compute nodes equipped with
Intel OP Fabric interconnect. They help to understand if MPI communication has bottlenecks connected with
reaching interconnect hardware limits. The section shows two aspects interconnect usage: bandwidth and
packet rate. Both bandwidth and packet rate split the data into outgoing and incoming data because the
interconnect is bi-directional. A bottleneck can be connected with one of the directions.

 1 Intel® VTune™ Profiler User Guide

792

• Outgoing and Incoming Bandwidth Bound metrics shows the percent of elapsed time that an
application spent in communication closer to or reaching interconnect bandwidth limit.

• Bandwidth Utilization Histogram shows how much time the interconnect bandwidth was utilized by a
certain value (Bandwidth Domain) and provides thresholds to categorize bandwidth utilization as High,
Medium, and Low.

• Outgoing and Incoming Packet Rate metrics shows the percent of elapsed time that an application
spent in communication closer to or reaching interconnect packet rate limit.

• Packet Rate Histogram shows how much time the interconnect packet rate was reached by a certain
value and provides thresholds to categorize packet rate as High, Medium, and Low.

Collection and Platform Info
This section provides the following data:

Application
Command
Line

Path to the target application.

Operating
System

Operating system used for the collection.

Computer
Name

Name of the computer used for the collection.

Result Size Size of the result collected by the VTune Profiler.

Collection
start time

Start time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collection
stop time

Stop time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

CPU Information

Name Name of the processor used for the collection.

Frequency Frequency of the processor used for the collection.

Logical CPU
Count

Logical CPU core count for the machine used for the collection.

Physical
Core Count

Number of physical cores on the system.

User Name User launching the data collection. This field is available if you enabled the per-user
event-based sampling collection mode during the product installation.

See Also
HPC Performance Characterization View

Reference

Comparison Summary

Change Threshold Values

Intel® VTune™ Profiler User Guide 1

793

Window: Summary - Memory Consumption

Use the Summary window as your starting point of the Memory Consumption analysis with the Intel® VTune™
Profiler and identify top memory-consuming functions and memory allocation sizes. To access this window,
select the Memory Consumptionviewpoint and click the Summary sub-tab in the result tab.

Depending on the analysis type, the Summary window provides the following application-level statistics in
the Memory Consumption viewpoint:

• Analysis metrics
• Top Memory-Consuming Objects
• Collection and Platform Info

NOTE
Click the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.

Analysis Metrics
The first section displays the summary statistics on the overall application execution:

All metric names are hyperlinks. Clicking such a hyperlink opens the Bottom-up window and sorts the data
in the grid by the selected metric.

Top Memory-Consuming Objects
This section displays a list of top memory-consuming functions. For example, the foo function has the
highest Memory Consumption metric value and could be a candidate for optimization:

Collection and Platform Info
This section provides the following data:

Application
Command
Line

Path to the target application.

Operating
System

Operating system used for the collection.

 1 Intel® VTune™ Profiler User Guide

794

Computer
Name

Name of the computer used for the collection.

Result Size Size of the result collected by the VTune Profiler.

Collection
start time

Start time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collection
stop time

Stop time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collector
type

Type of the data collector used for the analysis. The following types are possible:

• Driver-based sampling
• Driver-less Perf*-based sampling: per-process or system-wide
• User-mode sampling and tracing

CPU Information

Name Name of the processor used for the collection.

Frequency Frequency of the processor used for the collection.

Logical CPU
Count

Logical CPU count for the machine used for the collection.

Physical
Core Count

Number of physical cores on the system.

User Name User launching the data collection. This field is available if you enabled the per-user
event-based sampling collection mode during the product installation.

GPU Information

Name Name of the Graphics installed on the system.

Vendor GPU vendor.

Driver Version of the graphics driver installed on the system.

Stepping Microprocessor version.

EU Count Number of execution units (EUs) in the Render and GPGPU engine. This data is Intel®
HD Graphics and Intel® Iris® Graphics (further: Intel Graphics) specific.

Max EU
Thread
Count

Maximum number of threads per execution unit. This data is Intel Graphics specific.

Max Core
Frequency

Maximum frequency of the Graphics processor. This data is Intel Graphics specific.

Graphics
Performanc
e Analysis

GPU metrics collection is enabled on the hardware level. This data is Intel Graphics
specific.

Intel® VTune™ Profiler User Guide 1

795

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

NOTE
Some systems disable collection of extended metrics such as L3 misses, memory accesses,
sampler busyness, SLM accesses, and others in the BIOS. On some systems you can set a
BIOS option to enable this collection. The presence or absence of the option and its name are
BIOS vendor specific. Look for the Intel® Graphics Performance Analyzers option (or
similar) in your BIOS and set it to Enabled.

See Also
Memory Consumption Analysis

Memory Consumption and Allocations View

Window: Summary - Memory Usage

Use the Summary window as your starting point of the performance analysis with the Intel® VTune™ Profiler.
To access this window, select the Memory Usage viewpoint and click the Summary sub-tab in the result
tab.

Depending on the analysis type, the Summary window provides the following application-level statistics in
the Memory Usage viewpoint:

• Analysis metrics
• System Bandwidth
• Bandwidth Utilization Histogram
• Top Memory Objects
• Top Tasks
• Latency Histogram
• Collection and Platform Info

NOTE
You may click the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.

Analysis Metrics
The Summary window displays a list of memory-related CPU metrics that help you estimate an overall
memory usage during application execution. For a metric description, hover over the corresponding question
mark icon

to read the pop-up help:

 1 Intel® VTune™ Profiler User Guide

796

Memory Bound metrics are measured either as Clockticks or as Pipeline Slots. Metrics measured in Clockticks
are less precise compared to the metrics measured in Pipeline Slots since they may overlap and their sum at
some level does not necessarily match the parent metric value. But such metrics are still useful for
identifying the dominant performance bottleneck in the code.

Mouse over a flagged value with the performance issue and read the recommendation for further analysis.
For example, a high Memory Bound value typically indicates that a significant fraction of the execution
pipeline slots could be stalled due to a demand memory load and stores. For further details, you may switch
to the Bottom-up window and explore metric data per memory object.

A high DRAM Bandwidth Bound metric value indicates that your system spent much time heavily utilizing the
DRAM bandwidth. The calculation of this metric relies on the accurate maximum system DRAM bandwidth
measurement provided in the System Bandwidth section below.

System Bandwidth
This section provides various system bandwidth-related properties detected by the product. Depending on
the number of sockets on your system, the following types of system bandwidth are measured:

Max DRAM
System
Bandwidth

Maximum DRAM bandwidth measured for the whole system (across all packages) by
running a micro-benchmark before the collection starts. If the system has already
been actively loaded at the moment of collection start (for example, with the attach
mode), the value may be less accurate.

Max DRAM
Single-Package
Bandwidth

Maximum DRAM bandwidth for single package measured by running a micro-
benchmark before the collection starts. If the system has already been actively loaded
at the moment of collection start (for example, with the attach mode), the value may
be less accurate.

These values are used to define default High, Medium and Low bandwidth utilization thresholds for the
Bandwidth Utilization Histogram and to scale over-time bandwidth graphs in the Bottom-up view. By
default, for Memory Analysis results the system bandwidth is measured automatically. To enable this
functionality for custom analysis results, make sure to select the Evaluate max DRAM bandwidth option.

Intel® VTune™ Profiler User Guide 1

797

Bandwidth Utilization Histogram
This histogram shows how much time the system bandwidth was utilized by a certain value (Bandwidth
Domain) and provides thresholds to categorize bandwidth utilization as High, Medium and Low. You can set
the threshold by moving sliders at the bottom.

If you switch to the Bottom-up window and group the grid data by ../Bandwidth Utilization Type/.., you
can identify functions or memory objects with high bandwidth utilization in the specific bandwidth domain.

If you select the Interconnect domain, you will be able to check whether the performance of your
application is limited by the bandwidth of Interconnect links (inter-socket connections). Then, you may
switch to the Bottom-up window and identify code and memory objects with NUMA issues.

Single-Package domains are displayed for the systems with two or more CPU packages and the histogram
for them shows the distribution of the elapsed time per maximum bandwidth utilization among all packages.
Use this data to identify situations where your application utilizes bandwidth only on a subset of CPU
packages. In this case, the whole system bandwidth utilization represented by domains like DRAM may be
low whereas the performance is in fact limited by bandwidth utilization.

NOTE

• Interconnect bandwidth analysis is supported by the VTune Profiler for Intel microarchitecture code
name Ivy Bridge EP and later.

• To learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks
to measure them; for example, Intel Memory Latency Checker can provide maximum achievable
DRAM and Interconnect bandwidth.

Top Memory Objects by Latency (Linux* Targets Only)
If you enabled the Analyze memory object configuration option for the Memory Access analysis, the
Summary window in the Memory Usage viewpoint displays memory objects (variables, data structures,
arrays) that introduced the highest latency to the execution of your application.

 1 Intel® VTune™ Profiler User Guide

798

NOTE

• Memory objects identification is supported only for Linux targets and only for processors based on
Intel microarchitecture code named Haswell and newer architectures.

• Only metrics based on DLA-capable hardware events are applicable to the memory objects analysis.
For example, the CPU Time metric is based on a non DLA-capable Clockticks event, so cannot be
applied to memory objects. Examples of applicable metrics are Loads, Stores, LLC Miss Count, and
Average Latency.

Clicking an object in the table opens the Bottom-up window with the grid data grouped by Memory
Object/Function/Allocation Stack. The selected hotspot object is highlighted.

Top Tasks
This section provides a list of tasks that took most of the time to execute, where tasks are either code
regions marked with Task API, or system tasks enabled to monitor Ftrace* events, Atrace* events, Intel
Media SDK programs, OpenCL™ kernels, and so on.

Clicking a task type in the table opens the grid view (for example, Bottom-up or Event Count) grouped by
the Task Type granularity. See Task Analysis for more information.

Latency Histogram
This histogram shows a distribution of loads per latency (in cycles).

Collection and Platform Info
This section provides the following data:

Application
Command
Line

Path to the target application.

Operating
System

Operating system used for the collection.

Computer
Name

Name of the computer used for the collection.

Result Size Size of the result collected by the VTune Profiler.

Collection
start time

Start time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collection
stop time

Stop time (in UTC format) of the external collection. Explore the Timeline pane to track
the performance statistics provided by the custom collector over time.

Collector
type

Type of the data collector used for the analysis. The following types are possible:

• Driver-based sampling
• Driver-less Perf*-based sampling: per-process or system-wide
• User-mode sampling and tracing

CPU Information

Name Name of the processor used for the collection.

Frequency Frequency of the processor used for the collection.

Intel® VTune™ Profiler User Guide 1

799

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/profiling-hardware-without-sampling-drivers.html

Logical CPU
Count

Logical CPU count for the machine used for the collection.

Physical
Core Count

Number of physical cores on the system.

User Name User launching the data collection. This field is available if you enabled the per-user
event-based sampling collection mode during the product installation.

GPU Information

Name Name of the Graphics installed on the system.

Vendor GPU vendor.

Driver Version of the graphics driver installed on the system.

Stepping Microprocessor version.

EU Count Number of execution units (EUs) in the Render and GPGPU engine. This data is Intel®
HD Graphics and Intel® Iris® Graphics (further: Intel Graphics) specific.

Max EU
Thread
Count

Maximum number of threads per execution unit. This data is Intel Graphics specific.

Max Core
Frequency

Maximum frequency of the Graphics processor. This data is Intel Graphics specific.

Graphics
Performanc
e Analysis

GPU metrics collection is enabled on the hardware level. This data is Intel Graphics
specific.

NOTE
Some systems disable collection of extended metrics such as L3 misses, memory accesses,
sampler busyness, SLM accesses, and others in the BIOS. On some systems you can set a
BIOS option to enable this collection. The presence or absence of the option and its name are
BIOS vendor specific. Look for the Intel® Graphics Performance Analyzers option (or
similar) in your BIOS and set it to Enabled.

See Also
Memory Usage View

HPC Performance Characterization View

Comparison Summary

CPU Metrics Reference

Change Threshold Values

Window: Summary - Platform Power Analysis

To access this window: Select the Platform Power Analysis viewpoint and click the Summary sub-tab in
the result tab.

Use the Summary window to:

 1 Intel® VTune™ Profiler User Guide

800

• Begin analyzing data collected by Intel SoC Watch.
• Review the overall statistics for the collected period.
• Understand the high-level indicators of energy inefficiency.
• View basic graphs of time spent in active and sleep states.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

Depending on the options selected when running the Intel SoC Watch collector and the operating system or
platform on which the analysis was run, the Summary window provides the following statistics in the
Platform Power Analysis viewpoint:

• Wake-ups/sec per Core
• Top 5 Frequencies
• Top 5 Causes of Core Wake-ups
• Top 5 Kernel Wakelocks
• Core Frequency Histogram
• Elapsed Time per Core Sleep State Histogram
• Elapsed Time per System Sleep State Histogram
• Elapsed Time per Graphics Device State Histogram
• Collection and Platform Information

After reviewing the information on the Summary window, switch to the Correlate Metrics window to view
all timeline data on one window. The Correlate Metrics window is another method of identifying energy
trends in the collected data.

Tip

• Click the

Copy to Clipboard button to copy the content of the selected summary section to the clipboard.
• Click the Details link next to the table or graph title on the Summary tab to view more

information about that metric in another window of the Platform Power Analysis viewpoint.

Wake-ups/sec per Core
The Summary window displays a list of CPU sleep state metrics that help you estimate overall energy
efficiency during collection. For a metric description, hover over the corresponding question mark icon

to read the pop-up help.

A wake-up is a shift from an inactive state (Cn) to an active state (C0).

Intel® VTune™ Profiler User Guide 1

801

Elapsed Time Total execution time for the collection.

Available Core Time Total execution time across all cores (elapsed time
X number of cores).

CPU Utilization (%) Percentage of time spent in the active state (C0)
during collection.

A greater percentage time spent in the active state
(C0) is an indication of higher energy consumption.

Total Time in Non-C0 States Total time spent in sleep states (C1-Cn) across all
cores. The larger the C-State number, the deeper
the sleep state and the greater the energy savings.

Total Wake-up Count Total number of wake-ups across all cores.

A high number of wake-ups indicates that the
device spent a lot of time switching from idle states
to the active state. It is more energy efficient for
the device to remain in either an active or inactive
state than to continuously switch between idle
states to the active state.

Wake-up count due to <reason> Total number of wake-ups caused by a particular
event type. For example, the total number of wake-
ups caused by Clock Interrupt events.

See Window: Core Wake-ups - Platform Power Analysis for more information.

Top 5 Frequencies
View the total time and total percentage of time spent in each of the top 5 processor frequencies. The 0GHz
frequency is time when the processor was inactive (in a sleep state). Switch to the CPU C/P States sub-tab
to view more detailed information about core frequency. See Window: CPU C\P States - Platform Power
Analysis for more information.

Top 5 Causes of Core Wake-ups
Identifies the objects that caused the cores to wake-up the most. Objects include system events such as a
clock interrupt, or a particular thread. Switch to the Core Wake-ups sub-tab to view more detailed
information about the number of core wake-ups and wake-up reasons. See Window: Core Wake-ups -
Platform Power Analysis for more information.

 1 Intel® VTune™ Profiler User Guide

802

Top 5 Kernel Wakelocks
Identifies the locking processes with the most wakelock counts and longest duration. Switch to the
Wakelocks sub-tab to view more detailed information about the kernel wakelocks, locking processes, and
locking threads. See Window: Wakelocks - Platform Power Analysis for more information.

Core Frequency Histogram
Graphical representation of the amount of time spent at each frequency. Hover over a bar to see the number
of seconds the CPU executed in a frequency. More than one frequency value may be represented by a single
bar. Increased time spent in the high-frequencies leads to higher power consumption. Switch to the CPU C/P
States sub-tab to view more detailed information about core frequency. See Window: CPU C\P States -
Platform Power Analysis for more information.

Elapsed Time per Core Sleep State Histogram
Graphical representation of the amount of time spent in each core sleep state (C-State). Hover over a bar to
see the number of seconds the system spent in a specific sleep state.

Intel® VTune™ Profiler User Guide 1

803

Cn represents the inactive or sleep state during which the device consumes the least energy. The larger the
C-State number, the deeper the sleep state. A greater amount of time spent in the C0 or active state is an
indication of higher energy consumption. Switch to the Core Wake-ups sub-tab to view more detailed
information about the reasons the cores spent time in active states and to view a timeline indicating when
the cores were active. See Window: Core Wake-ups - Platform Power Analysis for more information.

Elapsed Time per System Sleep State Histogram
Graphical representation of the amount of time spent in each system sleep state (S-State). Hover over a bar
to see the number of seconds the system spent in a specific sleep state. Switch to the System Sleep States
sub-tab to view more detailed information about the time spent in each state. See Window: System Sleep
States - Platform Power Analysis for more information.

Elapsed Time per Graphics Device Sleep State Histogram
Graphical representation of the amount of time spent in each GPU sleep state (C-State). Hover over a bar to
see the number of seconds your application executed in a specific sleep state. Switch to the Graphics C/P
States sub-tab to view more detailed information about the time spent in each state, including graphics
frequency changes over time. See Window: Graphics C\P States - Platform Power Analysis for more
information.

 1 Intel® VTune™ Profiler User Guide

804

Collection and Platform Info
Provides basic details about the data collected (result size) and the device on which it was collected
(operating system, CPU count, core count).

See Also
Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Energy Analysis Metrics

Window: Correlate Metrics - Platform Power Analysis

Window: System Sleep States - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the System Sleep States
sub-tab in the result tab.

Use the System Sleep States window to:

• Analyze the time spent in different ACPI-defined system sleep states (S-States).

System sleep states are available for system on a chip (SoC) platforms when the display is disabled, but the
system may still be active. As with other active and inactive states, the S0i0 state is the active state. The
S0ix state is when the CPU is inactive, but another device is active. For example, the display may be turned

Intel® VTune™ Profiler User Guide 1

805

off, but audio playback is enabled, which does not allow the system to enter the deepest sleep state. The
S0i3 is the deepest sleep state, which is achieved when the device is in power-saving mode (referred to as
connected standby for Windows* devices).

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

System Sleep States Pane
The System Sleep States pane lists the different S-States and the amount of time the system spent in each
state. Click the expand

/collapse

buttons in the data columns to expand the column and show data for different S-States in each device. You
can change the unit displayed by right-clicking a data cell and selecting the Show Data As option to select
an alternate unit. For example, you could select Show Data As > Percent to view the percent of collection
time a particular device spent in the active state.

In the following example, the system never leaves the active S0i0 state. Either the CPU is active or one or
more devices kept the system active during collection. The active devices can be identified by switching to
the NC Device States tab or the SC Device States tab and looking for a device or devices that were active
during the collection. Use the CPU C/P States window to check the CPU activity level.

 1 Intel® VTune™ Profiler User Guide

806

Timeline Pane
The Timeline pane displays the S-States of the system at each point in time. Each state is shown in a
different color. Use the legend on the right to see the colors related to the different states or features. Zoom
in on the timeline to better view the transitions between inactive and active states. Hover over the timeline
to view the percent of time spent in each state.

Filters applied on a timeline in one window are applied on all other windows within the viewpoint. This is
useful if you identify an issue on one tab and want to see how the issue impacts the metrics shown on a
different tab.

See Also
Interpreting Energy Analysis Data

Viewing Energy Analysis Data
Window: Summary

Window: Temperature/Thermal Sample - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the Temperature
(Windows*) or Thermal Sample (Linux*/Android*) sub-tab in the result tab.

Use this window to:

• Identify how much time each core spent in each temperature.
• Review the systems on a core (SOC) temperature samples (Intel Atom® cores only).

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

Intel® VTune™ Profiler User Guide 1

807

Temperature Pane
The Temperature pane shows the sample counts at each temperature reading in degrees Celsius (oC) for
each core or device. A greater number of sample counts indicates that the device or core spent more of the
collection time at that temperature. Click the expand

/collapse

buttons in the data columns to expand the column and show data for different temperature readings in each
device. You can change the unit displayed by right-clicking a data cell and selecting the Show Data As
option to select an alternate unit. For example, you can display the sample counts as a percentage of the
total sample counts.

Timeline Pane
The Timeline pane displays the temperatures of each core at each point in time during the collection. Expand
the timeline rows vertically to view subtle temperature shifts. Zoom in on the timeline to view sampling
points. Filters applied on a timeline in one window are applied on all other windows within the viewpoint. This
is useful if you identify an issue on one tab and want to see how the issue impacts the metrics shown on a
different tab.

Shifts in core temperature often mirror shifts in processor frequency. When the processor runs at a higher
frequency, the temperature also rises. In the following example of the Correlated Metrics tab showing both
Thermal Sample and Core P-State Frequency data, both the temperature and the frequency fluctuate for the
first 4 seconds of collection and then remain fairly stable.

 1 Intel® VTune™ Profiler User Guide

808

If the temperature is high, but the frequency is low, it could mean that the CPU is being throttled to lower
core temperature.

See Also
Interpreting Energy Analysis Data
Viewpoint

Grouping Data
Window: CPU C\P States - Platform Power Analysis

Window: Timer Resolution - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the Timer Resolution sub-
tab in the result tab. The Timer Resolution window is only available for Windows* platforms.

Use the Timer Resolution to:

• View when timer resolution changes occurred during the collection.
• Analyze the time spent at each resolution.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

Timer Resolution Pane
Total amount of time in seconds that the system spent at each timer resolution value. A value of 15.6 is the
normal and recommended timer resolution in most cases. It is less energy efficient to spend a large amount
of time at a lower timer resolution value because there are an increased number of wake-ups. You can
change the unit displayed by right-clicking a data cell and selecting the Show Data As option to select an
alternate unit. For example, you may want to change the unit to Percent to view the percent of time spent at
each value and evaluate if it meets your expectations.

Intel® VTune™ Profiler User Guide 1

809

In the following example, most of the collection time was spent at a low timer resolution value of 4 ms.
Applications generally request more frequent system timer wakeups like this to ensure a faster response.
Such changes in the system timer should be restricted to critical regions in the application since it impacts
the entire system. Use the Timeline pane to see which process or processes caused the change in timer
resolution.

Timeline Pane
The Timeline pane shows a graphical representation of the timer resolution value changes and the duration
each application spent at each resolution value.

Toolbar Navigation control to zoom in/out on the view on areas of interest.
Filters applied on a timeline in one window are applied on all other
windows within the viewpoint. This is useful if you identify an issue
on one tab and want to see how the issue impacts the metrics
shown on a different tab. For more details on the Timeline control,
see Managing Timeline View.

Legend Types of data presented on the timeline. Filter in/out any type of
data presented on the timeline by selecting/deselecting
corresponding check boxes.

System Timer
Resolution

Timer resolution value changes over time. The black line illustrates
the change in timer resolution. The colored bar at the bottom
illustrates the duration at each timer resolution value.

Requested/
Application Timer
Resolution

Requests for timer resolution change and duration by application.
Hover over the timeline to view a tooltip listing information about
the request, including start time, duration, application requesting
the change, and requested resolution value (ms). Zoom in on the
timeline to view changes in timer resolution value.

 1 Intel® VTune™ Profiler User Guide

810

See Also
Interpreting Energy Analysis Data
Viewing Energy Analysis Data
Viewpoint

Grouping Data

Window: Top-down Tree
Use the Top-down Tree window to explore the call
sequence flow of the application and analyze the time
spent in each program unit and on its callees.

To access this pane: Run a performance analysis type collecting stacks and click the Top-down Tree tab
when the collection result opens.

Intel® VTune™ Profiler User Guide 1

811

Function
Stack

The Function Stack column represents call sequences (stacks) detected during collection
phase starting from the application root (usually, the main() function). The time value for
a row is equal to the sum of all the nested items from that row. Use this data to see the
impact of program units together with their callees. This type of investigation is known as
a top-down analysis.

In this example above, the hotspot thread_video function has three callees, where
rt_renderscene is the first candidate for optimization.

The call stacks are always available for the results of the user-mode sampling and tracing
collection. They are also available for the results of the hardware event-based sampling
collection, if you enabled the Collect stacks option during the analysis configuration.
Otherwise, the Function Stack column for the event-based sampling results shows a flat
list of the functions.

<Performan
ce metrics>

Each data column in the Top-Down Tree grid corresponds to a performance metric. The
list of performance metrics varies with the analysis type and selected viewpoint. In the
Top-down Tree window, the Intel® VTune™ Profiler provides two types of metrics:
• Self metrics show performance data collected within particular procedures and

functions.
• Total metrics show performance data collected within functions AND children (callees).

By default, all program units are sorted in a descending order by the metric values in the
first column (for example, CPU Time: Total) providing the most performance-critical
program units first. You may click a column header to re-sort the table by the required
metric.

NOTE
Mouse over a column header to see a metric description.

See Also
Manage Data Views

User-Mode Sampling and Tracing Collection

Control Window Synchronization

Top-down Tree Comparison

Window: Uncore Event Count - Hardware Events
Use the Uncore Event Count window to analyze the
event count for uncore events.

To access this window: Select the Hardware Events viewpoint and click the Uncore Event Count sub-
tab in the result tab.

The Uncore Event Count window includes the following panes:

• Uncore Events pane
• Timeline pane

Uncore Events Pane
Uncore events happen on structures shared between all CPUs in a package (for example, 10 CPUs on a single
package). This makes it impossible to associate any single uncore event with any code context and show call
stacks.

By default, the uncore events are grouped by package:

 1 Intel® VTune™ Profiler User Guide

812

Timeline Pane

NOTE
If there are no uncore events selected for the analysis, the Timeline pane is empty.

Window: Wakelocks - Platform Power Analysis
To access this window: Select the Platform Power Analysis viewpoint and click the Wakelocks sub-tab in
the result tab. The Wakelocks window is available for platform power analysis on Android* target systems
only.

Use the Wakelocks window to:

• View lock duration and locking/unlocking reasons.
• Review kernel, or system, wakelocks and understand how they change over time.
• Understand which applications cause locks, the user locking process, and the user wakelock tag.
• Analyze user and application wakelock changes over time.

NOTE
Platform Power Analysis viewpoint is available as part of energy analysis. Collecting energy analysis
with Intel® SoC Watch is available for target Android*, Windows*, or Linux* devices. Import and
viewing of the Intel SoC Watch results is supported with any version of the VTune Profiler.

Wakelock Pane
The Wakelock pane shows the list of wakelock objects for the user/application or kernel, depending on the
grouping selected. Change the grouping selection to view data about either kernel or application/user
wakelocks and the process that caused the lock or unlock. The following grouping levels and combinations of
these grouping levels are available from the Grouping drop-down menu:

• Kernel wakelock
• Locking processes
• Application name
• User locking process
• User wakelock tag

The grid displays the sample counts for each object. Click the expand

/collapse

buttons in the data columns to expand the column and show data for different wakelock objects. By default,
the table is sorted by the Kernel Wakelock/Locking Process/Locking Thread grouping in ascending
order, which provides the objects with the highest total lock duration first. You can change the unit displayed
by right-clicking a data cell and selecting the Show Data As option to select an alternate unit.

The following columns are available for kernel wakelocks.

Intel® VTune™ Profiler User Guide 1

813

Total Lock Duration Duration of the lock in seconds.

Kernel Wakelock Count Number of kernel wakelocks that occurred.

Wakelock Lock Count by Lock Reason Number of wakelocks for the following reasons:
Process, Existing Lock, Unknown. An Existing Lock
was already started when the collection began.

Wakelock Unlock Count by Unlock Reason The number of wakelock unlocks for the following
reasons: Process, Timeout, Overwritten, Unknown.
An Unknown wakelock unlock reason may mean
that the wakelock continued after the collection
ended.

Locking PID Identifier of the process that caused the wakelock
lock.

Locking TID Identifier of the thread that caused the wakelock
lock.

In the following example, the PowerManagerService.Wakelocks kernel wakelock had already started before
the collection began and continued after the collection ended.

Application/user wakelocks show information for the APK name rather than the wakelock name like kernel
wakelocks. The following columns are available for application/user wakelocks:

Total Lock Duration Duration of the lock in seconds.

User Wakelock Count Number of user wakelocks that occurred.

User Wakelock Flag The type of wakelock.

User UID Identifier of the application that caused the
wakelock lock or unlock.

User Locking/Unlocking PID Identifier of the application that caused the
wakelock lock or unlock.

In the following example, two wakelocks originated from the com.intel.wakelockapp APK.

 1 Intel® VTune™ Profiler User Guide

814

Timeline Pane

Toolbar Navigation control to zoom in/out on the view on areas of
interest. For more details on the Timeline control, see Managing
Timeline View.

Legend Types of data presented on the timeline. Filter in/out any type
of data presented on the timeline by selecting/deselecting
corresponding check boxes. For example, you may only be
interested in the application/user wakelock data and want to
remove the kernel wakelock timelines for an expanded view of
the application/user wakelock data.

Application Name Graphical representation of the wakelock duration for each
application APK.

Wakelock Graphical representation of the kernel wakelock duration
through the collection time.

Wakelock Details Hover over the timeline of an application to view tooltips with
details such as the wakelock type, start time, duration, locking
and unlocking process name, and application name.

Hover over the timeline of a kernel wakelock to view tooltips
with details such as the wakelock type, start time, duration,
locking and unlocking reasons, and locking process.

Zoom in on the timeline to view the exact time when the
wakelock started and when it was released. It is possible for
one wakelock to begin before another ends, causing an overlap.

Intel® VTune™ Profiler User Guide 1

815

Filters applied on a timeline in one window are applied on all other windows within the viewpoint. This is
useful if you identify an issue on one tab and want to see how the issue impacts the metrics shown on a
different tab. For more details on the timeline control, see Managing Timeline View.

See Also
Interpreting Energy Analysis Data
Viewpoint

Grouping Data

CPU Metrics Reference

Assists
Metric Description

This metric estimates cycles fraction the CPU retired uops delivered by the Microcode_Sequencer as a result
of Assists. Assists are long sequences of uops that are required in certain corner-cases for operations that
cannot be handled natively by the execution pipeline. For example, when working with very small floating
point values (so-called Denormals), the FP units are not set up to perform these operations natively. Instead,
a sequence of instructions to perform the computation on the Denormals is injected into the pipeline. Since
these microcode sequences might be hundreds of uops long, Assists can be extremely deleterious to
performance and they can be avoided in many cases.

Possible Issues

A significant portion of execution time is spent in microcode assists.

Tips:

1. Examine the FP_ASSIST and OTHER_ASSISTS events to determine the specific cause.

 1 Intel® VTune™ Profiler User Guide

816

2. Add options eliminating x87 code and set the compiler options to enable DAZ (denormals-are-zero) and
FTZ (flush-to-zero).

Available Core Time
Metric Description

Total execution time over all cores.

Average Bandwidth
Metric Description

Average bandwidth utilization during the analysis.

Average CPU Frequency
Metric Description

Average actual CPU frequency. Values above nominal frequency indicate that the CPU is operating in a turbo
boost mode.

Average CPU Usage
Metric Description

The metric shows average CPU utilization by computations of the application. Spin and Overhead time are
not counted. Ideal average CPU usage is equal to the number of logical CPU cores.

Average Frame Time
Metric Description

Average amount of time spent within a frame.

Average Latency (cycles)
Metric Description

This metric shows average load latency in cycles

Average Logical Core Utilization
Metric Description

The metric shows average logical cores utilization by computations of the application. Spin and Overhead
time are not counted. Ideal average CPU utilization is equal to the number of logical CPU cores.

Average Physical Core Utilization
Metric Description

The metric shows average physical cores utilization by computations of the application. Spin and Overhead
time are not counted. Ideal average CPU utilization is equal to the number of physical CPU cores.

Average Task Time
Metric Description

Average amount of time spent within a task.

Intel® VTune™ Profiler User Guide 1

817

Back-End Bound
Metric Description

Back-End Bound metric represents a Pipeline Slots fraction where no uOps are being delivered due to a lack
of required resources for accepting new uOps in the Back-End. Back-End is a portion of the processor core
where an out-of-order scheduler dispatches ready uOps into their respective execution units, and, once
completed, these uOps get retired according to program order. For example, stalls due to data-cache misses
or stalls due to the divider unit being overloaded are both categorized as Back-End Bound. Back-End Bound is
further divided into two main categories: Memory Bound and Core Bound.

Possible Issues

A significant proportion of pipeline slots are remaining empty. When operations take too long in the back-
end, they introduce bubbles in the pipeline that ultimately cause fewer pipeline slots containing useful work
to be retired per cycle than the machine is capable of supporting. This opportunity cost results in slower
execution. Long-latency operations like divides and memory operations can cause this, as can too many
operations being directed to a single execution port (for example, more multiply operations arriving in the
back-end per cycle than the execution unit can support).

Memory Bandwidth
Metric Description

This metric represents a fraction of cycles during which an application could be stalled due to approaching
bandwidth limits of the main memory (DRAM). This metric does not aggregate requests from other threads/
cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-socket
systems.

Contested Accesses (Intra-Tile)
Metric Description

Contested accesses occur when data written by one thread is read by another thread on a different core.
Examples of contested accesses include synchronizations such as locks, true data sharing such as modified
locked variables, and false sharing. Contested accesses metric is a ratio of the number of contested accesses
to all demand loads and stores. This metrics only accounts for contested accesses between two cores on the
same tile.

Possible Issues

There is a high number of contested accesses to cachelines modified by another core. Consider either using
techniques suggested for other long latency load events (for example, LLC Miss) or reducing the contested
accesses. To reduce contested accesses, first identify the cause. If it is synchronization, try increasing
synchronization granularity. If it is true data sharing, consider data privatization and reduction. If it is false
data sharing, restructure the data to place contested variables in distinct cachelines. This may increase the
working set due to padding, but false sharing can always be avoided.

LLC Miss
Metric Description

The LLC (last-level cache) is the last, and longest-latency, level in the memory hierarchy before main
memory (DRAM). Any memory requests missing here must be serviced by local or remote DRAM, with
significant latency. The LLC Miss metric shows a ratio of cycles with outstanding LLC misses to all cycles.

Possible Issues

A high number of CPU cycles is being spent waiting for LLC load misses to be serviced. Possible optimizations
are to reduce data working set size, improve data access locality, blocking and consuming data in chunks
that fit in the LLC, or better exploit hardware prefetchers. Consider using software prefetchers but they can
increase latency by interfering with normal loads, and can increase pressure on the memory system.

 1 Intel® VTune™ Profiler User Guide

818

UTLB Overhead
Metric Description

This metric represents a fraction of cycles spent on handling first-level data TLB (or UTLB) misses. As with
ordinary data caching, focus on improving data locality and reducing working-set size to reduce UTLB
overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on
the same page. Try using larger page sizes for large amounts of frequently-used data. This metric does not
include store TLB misses.

Possible Issues

A significant proportion of cycles is being spent handling first-level data TLB misses. As with ordinary data
caching, focus on improving data locality and reducing working-set size to reduce UTLB overhead.
Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the same
page. Try using larger page sizes for large amounts of frequently-used data.

Port Utilization
Metric Description

This metric represents a fraction of cycles during which an application was stalled due to Core non-divider-
related issues. For example, heavy data-dependency between nearby instructions, or a sequence of
instructions that overloads specific ports. Hint: Loop Vectorization - most compilers feature auto-
Vectorization options today - reduces pressure on the execution ports as multiple elements are calculated
with same uop.

Possible Issues

A significant fraction of cycles was stalled due to Core non-divider-related issues.

Tips

Use vectorization to reduce pressure on the execution ports as multiple elements are calculated with same
uOp.

Port 0
Metric Description

This metric represents Core cycles fraction CPU dispatched uops on execution port 0 (SNB+: ALU; HSW
+:ALU and 2nd branch)

Port 1
Metric Description

This metric represents Core cycles fraction CPU dispatched uops on execution port 1 (ALU)

Port 2
Metric Description

This metric represents Core cycles fraction CPU dispatched uops on execution port 2 (Loads and Store-
address)

Port 3
Metric Description

This metric represents Core cycles fraction CPU dispatched uops on execution port 3 (Loads and Store-
address)

Intel® VTune™ Profiler User Guide 1

819

Port 4
Metric Description

This metric represents Core cycles fraction CPU dispatched uops on execution port 4 (Store-data)

Possible Issues

This metric represents Core cycles fraction CPU dispatched uops on execution port 4 (Store-data). Note that
this metric value may be highlighted due to Split Stores issue.

Port 5
Metric Description

This metric represents Core cycles fraction CPU dispatched uops on execution port 5 (SNB+: Branches and
ALU; HSW+: ALU)

Port 6
Metric Description

This metric represents Core cycles fraction CPU dispatched uops on execution port 6 (Branches and simple
ALU)

Port 7
Metric Description

This metric represents Core cycles fraction CPU dispatched uops on execution port 7 (simple Store-address)

BACLEARS
Metric Description

This metric estimates a fraction of cycles lost due to the Branch Target Buffer (BTB) prediction corrected by a
later branch predictor.

Possible Issues

A significant number of CPU cycles lost due to the Branch Target Buffer (BTB) prediction corrected by a later
branch predictor. Consider reducing the amount of taken branches.

Bad Speculation (Cancelled Pipeline Slots)
Metric Description

Bad Speculation represents a Pipeline Slots fraction wasted due to incorrect speculations. This includes slots
used to issue uOps that do not eventually get retired and slots for which the issue-pipeline was blocked due
to recovery from an earlier incorrect speculation. For example, wasted work due to mispredicted branches is
categorized as a Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is
another example.

Possible Issues

A significant proportion of pipeline slots containing useful work are being cancelled. This can be caused by
mispredicting branches or by machine clears. Note that this metric value may be highlighted due to Branch
Resteers issue.

Bad Speculation (Back-End Bound Pipeline Slots)
Metric Description

 1 Intel® VTune™ Profiler User Guide

820

Superscalar processors can be conceptually divided into the 'front-end', where instructions are fetched and
decoded into the operations that constitute them; and the 'back-end', where the required computation is
performed. Each cycle, the front-end generates up to four of these operations placed into pipeline slots that
then move through the back-end. Thus, for a given execution duration in clock cycles, it is easy to determine
the maximum number of pipeline slots containing useful work that can be retired in that duration. The actual
number of retired pipeline slots containing useful work, though, rarely equals this maximum. This can be due
to several factors: some pipeline slots cannot be filled with useful work, either because the front-end could
not fetch or decode instructions in time ('Front-end bound' execution) or because the back-end was not
prepared to accept more operations of a certain kind ('Back-end bound' execution). Moreover, even pipeline
slots that do contain useful work may not retire due to bad speculation. Front-end bound execution may be
due to a large code working set, poor code layout, or microcode assists. Back-end bound execution may be
due to long-latency operations or other contention for execution resources. Bad speculation is most
frequently due to branch misprediction.

Possible Issues

A significant proportion of pipeline slots are remaining empty. When operations take too long in the back-
end, they introduce bubbles in the pipeline that ultimately cause fewer pipeline slots containing useful work
to be retired per cycle than the machine is capable of supporting. This opportunity cost results in slower
execution. Long-latency operations like divides and memory operations can cause this, as can too many
operations being directed to a single execution port (for example, more multiply operations arriving in the
back-end per cycle than the execution unit can support).

FP Arithmetic
Metric Description

This metric represents an overall arithmetic floating-point (FP) uOps fraction the CPU has executed (retired).

FP Assists
Metric Description

Certain floating point operations cannot be handled natively by the execution pipeline and must be performed
by microcode (small programs injected into the execution stream). For example, when working with very
small floating point values (so-called denormals), the floating-point units are not set up to perform these
operations natively. Instead, a sequence of instructions to perform the computation on the denormal is
injected into the pipeline. Since these microcode sequences might be hundreds of instructions long, these
microcode assists are extremely deleterious to performance.

Possible Issues

A significant portion of execution time is spent in floating point assists.

Tips

Consider enabling the DAZ (Denormals Are Zero) and/or FTZ (Flush To Zero) options in your compiler to flush
denormals to zero. This option may improve performance if the denormal values are not critical in your
application. Also note that the DAZ and FTZ modes are not compatible with the IEEE Standard 754.

FP Scalar
Metric Description

This metric represents an arithmetic floating-point (FP) scalar uops fraction the CPU has executed. Analyze
metric values to identify why vector code is not generated, which is typically caused by the selected
algorithm or missing/wrong compiler switches.

FP Vector
Metric Description

Intel® VTune™ Profiler User Guide 1

821

This metric represents an arithmetic floating-point (FP) vector uops fraction the CPU has executed. Make sure
vector width is expected.

FP x87
Metric Description

This metric represents a floating-point (FP) x87 uops fraction the CPU has executed. It accounts for
instructions beyond X87 FP arithmetic operations; hence may be used as a thermometer to avoid X87 high
usage and preferably upgrade to modern ISA. Consider compiler flags to generate newer AVX (or SSE)
instruction sets, which typically perform better and feature vectors.

MS Assists
Metric Description

Certain corner-case operations cannot be handled natively by the execution pipeline and must be performed
by the microcode sequencer (MS), where 1 or more uOps are issued. The microcode sequencer performs
microcode assists (small programs injected into the execution stream), inserting flows, and writing to the
instruction queue (IQ). For example, when working with very small floating point values (so-called
denormals), the floating-point units are not set up to perform these operations natively. Instead, a sequence
of instructions to perform the computation on the denormal is injected into the pipeline. Since these
microcode sequences might be hundreds of instructions long, these microcode assists are extremely
deleterious to performance.

Possible Issues

A significant portion of execution time is spent in microcode assists, inserted flows, and writing to the
instruction queue (IQ). Examine the FP Assist and SIMD Assist metrics to determine the specific cause.

Branch Mispredict
Metric Description

When a branch mispredicts, some instructions from the mispredicted path still move through the pipeline. All
work performed on these instructions is wasted since they would not have been executed had the branch
been correctly predicted. This metric represents slots fraction the CPU has wasted due to Branch
Misprediction. These slots are either wasted by uOps fetched from an incorrectly speculated program path, or
stalls when the out-of-order part of the machine needs to recover its state from a speculative path.

Possible Issues

A significant proportion of branches are mispredicted, leading to excessive wasted work or Back-End stalls
due to the machine need to recover its state from a speculative path.

Tips

1. Identify heavily mispredicted branches and consider making your algorithm more predictable or reducing
the number of branches. You can add more work to 'if' statements and move them higher in the code flow for
earlier execution. If using 'switch' or 'case' statements, put the most commonly executed cases first. Avoid
using virtual function pointers for heavily executed calls.

2. Use profile-guided optimization in the compiler.

See the Intel 64 and IA-32 Architectures Optimization Reference Manual for general strategies to address
branch misprediction issues.

Bus Lock
Metric Description

 1 Intel® VTune™ Profiler User Guide

822

Intel processors provide a LOCK# signal that is asserted automatically during certain critical memory
operations to lock the system bus or equivalent link. While this output signal is asserted, requests from other
processors or bus agents for control of the bus are blocked. This metric measures the ratio of bus cycles,
during which a LOCK# signal is asserted on the bus. The LOCK# signal is asserted when there is a locked
memory access due to uncacheable memory, locked operation that spans two cache lines, and page-walk
from an uncacheable page table.

Possible Issues

Bus locks have a very high performance penalty. It is highly recommended to avoid locked memory accesses
to improve memory concurrency.

Tips

Examine the BUS_LOCK_CLOCKS.SELF event in the source/assembly view to determine where the LOCK#
signals are asserted from. If they come from themselves, look at Back-end issues, such as memory latency
or reissues. Account for skid.

Cache Bound
Metric Description

This metric shows how often the machine was stalled on L1, L2, and L3 caches. While cache hits are serviced
much more quickly than hits in DRAM, they can still incur a significant performance penalty. This metric also
includes coherence penalties for shared data.

Possible Issues

A significant proportion of cycles are being spent on data fetches from caches. Check Memory Access analysis
to see if accesses to L2 or L3 caches are problematic and consider applying the same performance tuning as
you would for a cache-missing workload. This may include reducing the data working set size, improving data
access locality, blocking or partitioning the working set to fit in the lower cache levels, or exploiting hardware
prefetchers. Consider using software prefetchers, but note that they can interfere with normal loads, increase
latency, and increase pressure on the memory system. This metric includes coherence penalties for shared
data. Check Microarchitecture Exploration analysis to see if contested accesses or data sharing are indicated
as likely issues.

Clears Resteers
Metric Description

This metric measures the fraction of cycles the CPU was stalled due to Branch Resteers as a result of Machine
Clears.

Possible Issues

A significant fraction of cycles could be stalled due to Branch Resteers as a result of Machine Clears.

Clockticks per Instructions Retired (CPI)
Metric Description

Clockticks per Instructions Retired (CPI) event ratio, also known as Cycles per Instructions, is one of the
basic performance metrics for the hardware event-based sampling collection, also known as Performance
Monitoring Counter (PMC) analysis in the sampling mode. This ratio is calculated by dividing the number of
unhalted processor cycles (Clockticks) by the number of instructions retired. On each processor the exact
events used to count clockticks and instructions retired may be different, but VTune Profiler knows the
correct ones to use.

What is the significance of CPI?

Intel® VTune™ Profiler User Guide 1

823

The CPI value of an application or function is an indication of how much latency affected its execution. Higher
CPI values mean there was more latency in your system - on average, it took more clockticks for an
instruction to retire. Latency in your system can be caused by cache misses, I/O, or other bottlenecks.

When you want to determine where to focus your performance tuning effort, the CPI is the first metric to
check. A good CPI rate indicates that the code is executing optimally.

The main way to use CPI is by comparing a current CPI value to a baseline CPI for the same workload. For
example, suppose you made a change to your system or your code and then ran the VTune Profiler and
collected CPI. If the performance of the application decreased after the change, one way to understand what
may have happened is to look for functions where CPI increased. If you have made an optimization that
improved the runtime of your application, you can look at VTune Profiler data to see if CPI decreased. If it
did, you can use that information to help direct you toward further investigations. What caused CPI to
decrease? Was it a reduction in cache misses, fewer memory operations, lower memory latency, and so on.

How do I know when CPI is high?

The CPI of a workload depends both on the code, the processor, and the system configuration.

VTune Profiler analyzes the CPI value against the threshold set up by Intel architects. These numbers can be
used as a general guide:

Good Poor

0.75 4

A CPI < 1 is typical for instruction bound code, while a CPI > 1 may show up for a stall cycle bound
application, also likely memory bound.

If a CPI value exceeds the threshold, the VTune Profiler highlights this value in pink.

A high value for this ratio (>1) indicates that over the current code region, instructions are taking a high
number of processor clocks to execute. This could indicate a problem if most of the instructions are not
predominately high latency instructions and/or coming from microcode ROM. In this case there may be
opportunities to modify your code to improve the efficiency with which instructions are executed within the
processor.

For processors with Inte® Hyper-Threading Technology, this ratio measures the CPI for the phases where the
physical package is not in any sleep mode, that is, at least one logical processor in the physical package is in
use. Clockticks are continuously counted on logical processors even if the logical processor is in a halted
stated (not executing instructions). This can impact the logical processors CPI ratio because the Clockticks

 1 Intel® VTune™ Profiler User Guide

824

event continues to be accumulated while the Instructions Retired event is unchanged. A high CPI value still
indicates a performance problem however a high CPI value on a specific logical processor could indicate poor
CPU usage and not an execution problem.

If your application is threaded, CPI at all code levels is affected. The Clockticks event counts independently
on each logical processors parallel execution is not accounted for.

For example, consider the following:

Function XYZ on logical processor 0 |------------------------| 4000 Clockticks / 1000 Instructions

Function XYZ on logical processor 1 |------------------------| 4000 Clockticks / 1000 Instructions

The CPI for the function XYZ is (8000 / 2000) 4.0. If parallel execution is taken into account in Clockticks
the CPI would be (4000 / 2000) 2.0. Knowledge of the application behavior is necessary in interpreting the
Clockticks event data.

What are the pitfalls of using CPI?

CPI can be misleading, so you should understand the pitfalls. CPI (latency) is not the only factor affecting the
performance of your code on your system. The other major factor is the number of instructions executed
(sometimes called path length). All optimizations or changes you make to your code will affect either the
time to execute instructions (CPI) or the number of instructions to execute, or both. Using CPI without
considering the number of instructions executed can lead to an incorrect interpretation of your results. For
example, you vectorized your code and converted your math operations to operate on multiple pieces of data
at once. This would have the effect of replacing many single-data math instructions with fewer multiple-data
math instructions. This would reduce the number of instructions executed overall in your code, but it would
likely raise your CPI because multiple-data instructions are more complex and take longer to execute. In
many cases, this vectorization would increase your performance, even though CPI went up.

It is important to be aware of your total instructions executed as well. The number of instructions executed is
generally called INST_RETIRED in the VTune Profiler. If your instructions retired is remaining fairly constant,
CPI can be a good indicator of performance (this is the case with system tuning, for example). If both the
number of instructions and CPI are changing, you need to look at both metrics to understand why your
performance increased or decreased. Finally, an alternative to looking at CPI is applying the top-down
method.

Clockticks Vs. Pipeline Slots Based Metrics

CPI Rate
Metric Description

Cycles per Instruction Retired, or CPI, is a fundamental performance metric indicating approximately how
much time each executed instruction took, in units of cycles. Modern superscalar processors issue up to four
instructions per cycle, suggesting a theoretical best CPI of 0.25. But various effects (long-latency memory,
floating-point, or SIMD operations; non-retired instructions due to branch mispredictions; instruction
starvation in the front-end) tend to pull the observed CPI up. A CPI of 1 is generally considered acceptable
for HPC applications but different application domains will have very different expected values. Nonetheless,
CPI is an excellent metric for judging an overall potential for application performance tuning.

Possible Issues

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation,
branch misprediction or long latency instructions. Explore the other hardware-related metrics to identify what
is causing high CPI.

CPI Rate (Intel Atom® processor)
Metric Description

Intel® VTune™ Profiler User Guide 1

825

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html

Cycles per Instructions Retired is a fundamental performance metric indicating an average amount of time
each instruction took to execute, in units of cycles. For Intel Atom processors, the theoretical best CPI per
thread is 0.50, but CPI's over 2.0 warrant investigation. High CPI values may indicate latency in the system
that could be reduced such as long-latency memory, floating-point operations, non-retired instructions due to
branch mispredictions, or instruction starvation in the front-end. Beware that some optimizations such as
SIMD will use less instructions per cycle (increasing CPI), and debug code can use redundant instructions
creating more instructions per cycle (decreasing CPI).

Possible Issues

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation,
branch misprediction or long latency instructions. Explore the other hardware-related metrics to identify what
is causing high CPI.

CPU Time
Metric Description

CPU Time is time during which the CPU is actively executing your application.

Core Bound
Metric Description

This metric represents how much Core non-memory issues were of a bottleneck. Shortage in hardware
compute resources, or dependencies software's instructions are both categorized under Core Bound. Hence it
may indicate the machine ran out of an OOO resources, certain execution units are overloaded or
dependencies in program's data- or instruction- flow are limiting the performance (e.g. FP-chained long-
latency arithmetic operations).

CPU Frequency
Metric Description

Frequency calculated with APERF/MPERF MSR registers captured on the clockcycles event.

It is a software frequency showing the average logical core frequency between two samples. The smaller the
sampling interval is, the closer the metric is to the real HW frequency.

CPU Time
Metric Description

CPU Time is time during which the CPU is actively executing your application.

CPU Utilization
Metric Description

This metric evaluates the parallel efficiency of your application. It estimates the percentage of all the logical
CPU cores in the system that is used by your application -- without including the overhead introduced by the
parallel runtime system. 100% utilization means that your application keeps all the logical CPU cores busy for
the entire time that it runs.

Depending on the analysis type, you can see the CPU Utilization data in the Bottom-up grid (HPC
Performance Characterization), on the Timeline pane, and in the Summary window on the Effective CPU
Utilization histogram:

 1 Intel® VTune™ Profiler User Guide

826

Utilization Histogram

For the histogram, the Intel® VTune™ Profiler identifies a processor utilization scale, calculates the target CPU
utilization, and defines default utilization ranges depending on the number of processor cores. You can
change the utilization ranges by dragging the sliders, if required.

Utiliza
tion
Type

Default
color

Description

Idle Idle utilization. By default, if the CPU Time on all threads is less than 0.5 of 100%
CPU Time on 1 core, such CPU utilization is classified as idle. Formula:
Σi=1,ThreadsCount(CPUTime(T,i)/T) < 0.5, where CPUTime(T,i) is the total CPU
Time on thread i on interval T.

Poor Poor utilization. By default, poor utilization is when the number of simultaneously
running CPUs is less than or equal to 50% of the target CPU utilization.

OK Acceptable (OK) utilization. By default, OK usage is when the number of
simultaneously running CPUs is between 51-85% of the target CPU utilization.

Ideal Ideal utilization. By default, Ideal utilization is when the number of simultaneously
running CPUs is between 86-100% of the target CPU utilization.

VTune Profiler treats the Spin and Overhead time as Idle CPU utilization. Different analysis types may
recognize Spin and Overhead time differently depending on availability of call stack information. This may
result in a difference of CPU Utilization graphical representation per analysis type.

For the HPC Performance Characterization analysis, the VTune Profiler differentiates Effective Physical Core
Utilization vs. Effective Logical Core Utilization for all systems other than Inte® Xeon Phi processors
code named Knights Mill and Knights Landing.

For Intel® Xeon Phi processors code named Knights Mill and Knights Landing, as well as systems with Intel
Hyper-Threading Technology (Intel HT Technology) OFF, only generic Effective CPU Utilization metric is
provided.

CPU Utilization vs. Thread Efficiency

CPU Utilization may be higher than the Thread Efficiency (available for Threading analysis) if a thread is
executing code on a CPU while it is logically waiting (that is, the thread is spinning).

CPU Utilization may be lower than the Thread Efficiency if:

1. The concurrency level is higher than the number of available cores (oversubscription) and, thus,
reaching this level of CPU utilization is not possible. Generally, large oversubscription negatively impacts
the application performance since it causes excessive context switching.

2. There was a period when the profiled process was swapped out. Thus, while it was not logically waiting,
it was not scheduled for any CPU either.

Possible Issues

Intel® VTune™ Profiler User Guide 1

827

The metric value is low, which may signal a poor logical CPU cores utilization caused by load imbalance,
threading runtime overhead, contended synchronization, or thread/process underutilization. Explore CPU
Utilization sub-metrics to estimate the efficiency of MPI and OpenMP parallelism or run the Threading
analysis to identify parallel bottlenecks for other parallel runtimes.

CPU Utilization (OpenMP)
Metric Description

This metric represents how efficiently the application utilized the CPUs available and helps evaluate the
parallel efficiency of the application. It shows the percent of average CPU utilization by all logical CPUs on the
system. Average CPU utilization contains only effective time and does not contain spin and overhead. A CPU
utilization of 100% means that all of the logical CPUs were loaded by computations of the application.

Possible Issues

The metric value is low, which may signal a poor logical CPU cores utilization caused by load imbalance,
threading runtime overhead, contended synchronization, or thread/process underutilization. Explore CPU
Utilization sub-metrics to estimate the efficiency of MPI and OpenMP parallelism or run the Threading
analysis to identify parallel bottlenecks for other parallel runtimes.

Cycles of 0 Ports Utilized
Metric Description

This metric represents a fraction of cycles with no uOps executed by the CPU on any execution port. Long-
latency instructions like divides may contribute to this metric.

Possible Issues

CPU executed no uOps on any execution port during a significant fraction of cycles. Long-latency instructions
like divides may contribute to this issue. Check the Assembly view and Appendix C in the Optimization Guide
to identify instructions with 5 or more cycles latency.

Cycles of 1 Port Utilized
Metric Description

This metric represents cycles fraction where the CPU executed total of 1 uop per cycle on all execution ports.
This can be due to heavy data-dependency among software instructions, or oversubscribing a particular
hardware resource. In some other cases with high 1_Port_Utilized and L1 Bound, this metric can point to L1
data-cache latency bottleneck that may not necessarily manifest with complete execution starvation (due to
the short L1 latency e.g. walking a linked list) - looking at the assembly can be helpful.

Possible Issues

This metric represents cycles fraction where the CPU executed total of 1 uop per cycle on all execution ports.
This can be due to heavy data-dependency among software instructions, or oversubscribing a particular
hardware resource. In some other cases with high 1_Port_Utilized and L1 Bound, this metric can point to L1
data-cache latency bottleneck that may not necessarily manifest with complete execution starvation (due to
the short L1 latency e.g. walking a linked list) - looking at the assembly can be helpful. Note that this metric
value may be highlighted due to L1 Bound issue.

Cycles of 2 Ports Utilized
Metric Description

This metric represents cycles fraction CPU executed total of 2 uops per cycle on all execution ports. Tip: Loop
Vectorization - most compilers feature auto-Vectorization options today- reduces pressure on the execution
ports as multiple elements are calculated with same uop.

 1 Intel® VTune™ Profiler User Guide

828

Cycles of 3+ Ports Utilized
Metric Description

This metric represents Core cycles fraction CPU executed total of 3 or more uops per cycle on all execution
ports.

Divider
Metric Description

Not all arithmetic operations take the same amount of time. Divides and square roots, both performed by the
DIV unit, take considerably longer than integer or floating point addition, subtraction, or multiplication. This
metric represents cycles fraction where the Divider unit was active.

Possible Issues

The DIV unit is active for a significant portion of execution time.

Tips

Locate the hot long-latency operation(s) and try to eliminate them. For example, if dividing by a constant,
consider replacing the divide by a product of the inverse of the constant. If dividing an integer, consider using
a right-shift instead.

(Info) DSB Coverage
Metric Description

Fraction of uOps delivered by the DSB (known as Decoded ICache or uOp Cache).

Possible Issues

A significant fraction of uOps was not delivered by the DSB (known as Decoded ICache or uOp Cache). This
may happen if a hot code region is too large to fit into the DSB.

Tips

Consider changing the code layout (for example, via profile-guided optimization) to help your hot regions fit
into the DSB.

See the "Optimization for Decoded ICache" section in the Intel 64 and IA-32 Architectures Optimization
Reference Manual.

DTLB Store Overhead
Metric Description

This metric represents a fraction of cycles spent on handling first-level data TLB store misses. As with
ordinary data caching, focus on improving data locality and reducing working-set size to reduce DTLB
overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on
the same page. Try using larger page sizes for large amounts of frequently-used data.

Effective CPU Utilization
Metric Description

How many of the logical CPU cores are used by your application? This metric helps evaluate the parallel
efficiency of your application. It estimates the percentage of all the logical CPU cores in the system that is
spent in your application -- without including the overhead introduced by the parallel runtime system. 100%
utilization means that your application keeps all the logical CPU cores busy for the entire time that it runs.

Effective Physical Core Utilization
Metric Description

Intel® VTune™ Profiler User Guide 1

829

This metric represents how efficiently the application utilized the physical CPU cores available and helps
evaluate the parallel efficiency of the application. It shows the percent of average utilization by all physical
CPU cores on the system. Effective Physical Core Utilization contains only effective time and does not contain
spin and overhead. An utilization of 100% means that all of the physical CPU cores were loaded by
computations of the application.

Possible Issues

The metric value is low, which may signal a poor physical CPU cores utilization caused by:

• load imbalance
• threading runtime overhead
• contended synchronization
• thread/process underutilization
• incorrect affinity that utilizes logical cores instead of physical cores

Explore sub-metrics to estimate the efficiency of MPI and OpenMP parallelism or run the Locks and Waits
analysis to identify parallel bottlenecks for other parallel runtimes.

Effective Time
Metric Description

Effective Time is CPU time spent in the user code. This metric does not include Spin and Overhead time.

Elapsed Time
Metric Description

Elapsed time is the wall time from the beginning to the end of collection.

Elapsed Time (Global)
Metric Description

Elapsed time is the wall time from the beginning to the end of collection.

Elapsed Time (Total)
Metric Description

Elapsed time is the wall time from the beginning to the end of collection.

Estimated BB Execution Count
Metric Description

Statistical estimation of the basic block execution count.

Estimated Ideal Time
Metric Description

Ideal Time is the estimated time for all parallel regions potentially load-balanced with zero OpenMP runtime
overhead according to the formula: Total User CPU time in all regions/Number of OpenMP threads.

Execution Stalls
Metric Description

Execution stalls may signify that a machine is running at full capacity, with no computation resources wasted.
Sometimes, however, long-latency operations can serialize while waiting for critical computation resources.
This metric is the ratio of cycles with no micro-operations executed to all cycles.

 1 Intel® VTune™ Profiler User Guide

830

Possible Issues

The percentage of cycles with no micro-operations executed is high. Look for long-latency operations at code
regions with high execution stalls and try to use alternative methods or lower latency operations. For
example, consider replacing 'div' operations with right-shifts, or try to reduce the latency of memory
accesses.

False Sharing
Metric Description

This metric shows how often CPU was stalled on store operations to a shared cache line. It can be easily
avoided by padding to make threads access different lines.

Far Branch
Metric Description

This metric indicates when a call/return is using a far pointer. A far call is often used to transfer from user
code to privileged code.

Possible Issues

Transferring from user to privileged code may be too frequent. Consider reducing calls to system APIs.

Flags Merge Stalls
Metric Description

Shift cl operations require a potentially expensive flag merge. This metric estimates the performance penalty
of that merge.

Possible Issues

A significant proportion of cycles were spent handling flags merge operations. Use the source view to
discover the responsible instructions and try to avoid their use.

FPU Utilization
Metric Description

This metric represents how intensively your program uses the FPU. 100% means that the FPU is fully loaded
and is retiring a vector instruction with full capacity every cycle of the application execution.

Possible Issues

The metric value is low. This can indicate poor FPU utilization because of non-vectorized floating point
operations, or inefficient vectorization due to legacy vector instruction set or memory access pattern issues.
Consider using vector analysis in Intel Advisor for data and tips to improve vectorization efficiency in your
application.

% of Packed FP Instructions
Metric Description

This metric represents the percentage of all packed floating point instructions.

% of 128-bit Packed Floating Point Instructions
Metric Description

The metric represents % of 128-bit packed floating point instructions.

Intel® VTune™ Profiler User Guide 1

831

% of 256-bit Packed Floating Point Instructions
Metric Description

The metric represents % of 256-bit packed floating point instructions.

% of Packed SIMD Instructions
Metric Description

This metric represents the percentage of all packed floating point instructions.

% of Scalar FP Instructions
Metric Description

This metric represents the percentage of scalar floating point instructions.

% of Scalar SIMD Instructions
Metric Description

The metric represents the percentage of scalar SIMD instructions.

FP Arithmetic/Memory Read Instructions Ratio
Metric Description

This metric represents the ratio between arithmetic floating point instructions and memory read instructions.
A value less than 0.5 indicates unaligned data access for vector operations, which can negatively impact the
performance of vector instruction execution.

FP Arithmetic/Memory Write Instructions Ratio
Metric Description

This metric represents the ratio between arithmetic floating point instructions and memory write instructions.
A value less than 0.5 indicates unaligned data access for vector operations, which can negatively impact the
performance of vector instruction execution.

Loop Type
Metric Description

Displays a loop type (body, peel, reminder) based on the Intel Compiler optreport information.

SP FLOPs per Cycle
Metric Description

Number of single precision floating point operations (FLOPs) per clocktick. This metric shows the efficiency of
both vector code generation and execution. Explore the list of generated issues on the metric to see the
reasons behind the low FLOP numbers. The maximum number of FLOPs per cycle depends on your hardware
platform. All double operations are converted to two single operations.

Vector Capacity Usage
Metric Description

This metric represents how the application code vectorization relates to the floating point computations. A
value of 100% means that all floating point instructions are vectorized with the full vector capacity.

 1 Intel® VTune™ Profiler User Guide

832

Vector Instruction Set
Metric Description

Displays the Vector Instruction Set used for arithmetic floating point computations and memory access
operations.

Possible Issues

You are not using a modern vectorization instruction set. Consider recompiling your code using compiler
options that allow using a modern vectorization instruction set. See the compiler User and Reference Guide
for C++ or Fortran for more details.

Front-End Bandwidth
Metric Description

This metric represents a fraction of slots during which CPU was stalled due to front-end bandwidth issues,
such as inefficiencies in the instruction decoders or code restrictions for caching in the DSB (decoded uOps
cache). In such cases, the front-end typically delivers a non-optimal amount of uOps to the back-end.

Front-End Bandwidth DSB
Metric Description

This metric represents a fraction of cycles during which CPU was likely limited due to DSB (decoded uop
cache) fetch pipeline. For example, inefficient utilization of the DSB cache structure or bank conflict when
reading from it, are categorized here.

Front-End Bandwidth LSD
Metric Description

This metric represents a fraction of cycles during which CPU operation was limited by the LSD (Loop Stream
Detector) unit. Typically, LSD provides good uOp supply. However, in some rare cases, optimal uOp delivery
cannot be reached for small loops whose size (in terms of number of uOps) does not suit well the LSD
structure.

Possible Issues

A significant number of CPU cycles is spent waiting for uOps for the LSD (Loop Stream Detector) unit.
Typically, LSD provides good uOp support. However, in some rare cases, optimal uOp delivery cannot be
reached for small loops whose size (in terms of number of uOps) does not suit well the LSD structure.

Front-End Bandwidth MITE
Metric Description

This metric represents a fraction of cycles during which CPU was stalled due to the MITE fetch pipeline issues,
such as inefficiencies in the instruction decoders.

Front-End Bound
Metric Description

Front-End Bound metric represents a slots fraction where the processor's Front-End undersupplies its Back-
End. Front-End denotes the first part of the processor core responsible for fetching operations that are
executed later on by the Back-End part. Within the Front-End, a branch predictor predicts the next address to
fetch, cache-lines are fetched from the memory subsystem, parsed into instructions, and lastly decoded into
micro-ops (uOps). Front-End Bound metric denotes unutilized issue-slots when there is no Back-End stall
(bubbles where Front-End delivered no uOps while Back-End could have accepted them). For example, stalls
due to instruction-cache misses would be categorized as Front-End Bound.

Intel® VTune™ Profiler User Guide 1

833

Possible Issues

A significant portion of Pipeline Slots is remaining empty due to issues in the Front-End.

Tips

Make sure the code working size is not too large, the code layout does not require too many memory
accesses per cycle to get enough instructions for filling four pipeline slots, or check for microcode assists.

Front-End Other
Metric Description

This metric accounts for those slots that were not delivered by the front-end and do not count as a common
front-end stall.

Possible Issues

The front-end did not deliver a significant portion of pipeline slots that do not classify as a common front-end
stall.

Branch Resteers
Metric Description

This metric represents cycles fraction the CPU was stalled due to Branch Resteers.

Possible Issues

A significant fraction of cycles was stalled due to Branch Resteers. Branch Resteers estimate the Front-End
delay in fetching operations from corrected path, following all sorts of mispredicted branches. For example,
branchy code with lots of mispredictions might get categorized as Branch Resteers. Note the value of this
node may overlap its siblings.

DSB Switches
Metric Description

The Decoded Stream Buffer (DSB) cache stores uOps that have already been decoded. This helps to avoid
several penalties of the legacy decode pipeline, called the MITE (Micro-instruction Translation Engine).
However, when control flows out of the region cached in the DSB, the front-end incurs a penalty as uOp issue
switches from the DSB to the MITE. The DSB Switches metric measures this penalty.

Possible Issues

A significant portion of cycles is spent switching from the DSB to the MITE. This may happen if a hot code
region is too large to fit into the DSB.

Tips

Consider changing code layout (for example, via profile-guided optimization) to help your hot regions fit into
the DSB.

See the "Optimization for Decoded ICache" section in the Intel 64 and IA-32 Architectures Optimization
Reference Manual for more details.

ICache Misses
Metric Description

To introduce new uOps into the pipeline, the core must either fetch them from a decoded instruction cache,
or fetch the instructions themselves from memory and then decode them. In the latter path, the requests to
memory first go through the L1I (level 1 instruction) cache that caches the recent code working set. Front-
end stalls can accrue when fetched instructions are not present in the L1I. Possible reasons are a large code

 1 Intel® VTune™ Profiler User Guide

834

working set or fragmentation between hot and cold code. In the latter case, when a hot instruction is fetched
into the L1I, any cold code on its cache line is brought along with it. This may result in the eviction of other,
hotter code.

Possible Issues

A significant proportion of instruction fetches are missing in the instruction cache.

Tips

1. Use profile-guided optimization to reduce the size of hot code regions.

2. Consider compiler options to reorder functions so that hot functions are located together.

3. If your application makes significant use of macros, try to reduce this by either converting the relevant
macros to functions or using linker options to eliminate repeated code.

4. Consider the Os/O1 optimization level or the following subset of optimizations to decrease your code
footprint:

• Use inlining only when it decreases the footprint.
• Disable loop unrolling.
• Disable intrinsic inlining.

ITLB Overhead
Metric Description

In x86 architectures, mappings between virtual and physical memory are facilitated by a page table, which is
kept in memory. To minimize references to this table, recently-used portions of the page table are cached in
a hierarchy of 'translation look-aside buffers', or TLBs, which are consulted on every virtual address
translation. As with data caches, the farther a request has to go to be satisfied, the worse the performance
impact. This metric estimates the performance penalty of page walks induced on ITLB (instruction TLB)
misses.

Possible Issues

A significant proportion of cycles is spent handling instruction TLB misses.

Tips

1. Use profile-guided optimization and IPO to reduce the size of hot code regions.

2. Consider compiler options to reorder functions so that hot functions are located together.

3. If your application makes significant use of macros, try to reduce this by either converting the relevant
macros to functions or using linker options to eliminate repeated code.

4. For Windows targets, add function splitting.

5. Consider using large code pages.

Length Changing Prefixes
Metric Description

This metric represents a fraction of cycles during which CPU was stalled due to Length Changing Prefixes
(LCPs). To avoid this issue, use proper compiler flags. Intel Compiler enables these flags by default.

Possible Issues

This metric represents a fraction of cycles during which CPU was stalled due to Length Changing Prefixes
(LCPs).

Tips

To avoid this issue, use proper compiler flags. Intel Compiler enables these flags by default.

Intel® VTune™ Profiler User Guide 1

835

See the "Length-Changing Prefixes (LCP)" section in the Intel 64 and IA-32 Architectures Optimization
Reference Manual.

MS Switches
Metric Description

This metric represents a fraction of cycles when the CPU was stalled due to switches of uop delivery to the
Microcode Sequencer (MS). Commonly used instructions are optimized for delivery by the DSB or MITE
pipelines. Certain operations cannot be handled natively by the execution pipeline, and must be performed
by microcode (small programs injected into the execution stream). Switching to the MS too often can
negatively impact performance. The MS is designated to deliver long uOp flows required by CISC instructions
like CPUID, or uncommon conditions like Floating Point Assists when dealing with Denormals.

Possible Issues

A significant fraction of cycles was stalled due to switches of uOp delivery to the Microcode Sequencer (MS).
Commonly used instructions are optimized for delivery by the DSB or MITE pipelines. Certain operations
cannot be handled natively by the execution pipeline, and must be performed by microcode (small programs
injected into the execution stream). Switching to the MS too often can negatively impact performance. The
MS is designated to deliver long uOp flows required by CISC instructions like CPUID, or uncommon conditions
like Floating Point Assists when dealing with Denormals. Note that this metric value may be highlighted due
to Microcode Sequencer issue.

Front-End Latency
Metric Description

This metric represents a fraction of slots during which CPU was stalled due to front-end latency issues, such
as instruction-cache misses, ITLB misses or fetch stalls after a branch misprediction. In such cases, the front-
end delivers no uOps.

General Retirement
Metric Description

This metric represents a fraction of slots during which CPU was retiring uOps not originated from the
Microcode Sequencer. This correlates with the total number of instructions executed by the program. A uOps-
per-Instruction ratio of 1 is expected. While this is the most desirable of the top 4 categories, high values
may still indicate areas for improvement. If possible focus on techniques that reduce instruction count or
result in more efficient instructions generation such as vectorization.

Hardware Event Count

Hardware Event Sample Count

ICache Line Fetch
Metric Description

This metric estimates a fraction of cycles lost due to the instruction cacheline fetching.

Possible Issues

A significant number of CPU cycles lost due to the instruction cacheline fetching.

Ideal Time
Metric Description

 1 Intel® VTune™ Profiler User Guide

836

Ideal Time is the estimated time for all parallel regions potentially load-balanced with zero OpenMP runtime
overhead according to the formula: Total User CPU time in all regions/Number of OpenMP threads.

Imbalance or Serial Spinning
Metric Description

Imbalance or Serial Spin time is wall time when working threads are spinning on a synchronization barrier
consuming CPU resources. High metric value on parallel regions can be caused by load imbalance or
inefficient concurrency of all working threads. To address load imbalance, consider applying dynamic work
scheduling. High metric value on serial execution (Serial - outside any region) can indicate that serial
application time is significant and limiting efficient processor utilization. Explore options for parallelization,
algorithm or microarchitecture tuning of the serial part of the application.

Possible Issues

CPU time spent waiting on an OpenMP barrier inside of a parallel region can be a result of load imbalance.
Where relevant, try dynamic work scheduling to reduce the imbalance. High metric value on serial execution
(Serial - outside any region) may signal significant serial application time that is limiting efficient processor
utilization. Explore options for parallelization, algorithm or microarchitecture tuning of the serial part of the
application.

Inactive Sync Wait Count
Metric Description

Inactive Sync Wait Count is the number of context switches a thread experiences when it is excluded from
execution by the OS scheduler due to synchronization. Excessive number of thread context switches may
negatively impact application performance. Apply optimization techniques to reduce synchronization
contention and eliminate the problem.

Inactive Sync Wait Time
Metric Description

Inactive Sync Wait Time is the time when a thread remains inactive and excluded from execution by the OS
scheduler due to synchronization. Significant Inactive Sync Wait Time on the critical path of an application
execution, combined with a poor CPU Utilization, negatively impacts application parallelism. Explore wait
stacks to identify contended synchronization objects and apply optimization techniques to reduce the
contention.

Possible Issues

Avarage wait time per synchronization context switch is low that can signal high contended synchronization
between threads or inefficient use of system API

Inactive Time
Metric Description

The time while threads were preempted by the system and remained inactive.

Inactive Wait Count
Metric Description

Inactive Wait Count is the number of context switches a thread experiences when it is excluded from
execution by the OS scheduler due to either synchronization or preemption. Excessive number of thread
context switches may negatively impact application performance. Reduce synchronization contention to
minimize synchronization context switches, or eliminate thread oversubscription to minimize thread
preemption.

Intel® VTune™ Profiler User Guide 1

837

Inactive Wait Time
Metric Description

Inactive Wait Time is the time when a thread remains inactive and excluded from execution by the OS
scheduler due to either synchronization or preemption. Significant Inactive Wait Time on the critical path of
an application execution, combined with a poor CPU Utilization, negatively impacts application parallelism.
Explore wait stacks to identify contended synchronization objects and apply optimization techniques to
reduce the contention.

Inactive Wait Time with poor CPU Utilization
Metric Description

Inactive Wait Time is the time when a thread remains inactive and excluded from execution by the OS
scheduler due to either synchronization or preemption. Significant Inactive Wait Time on the critical path of
an application execution, combined with a poor CPU Utilization, negatively impacts application parallelism.
Explore wait stacks to identify contended synchronization objects and apply optimization techniques to
reduce the contention.

Incoming Bandwidth Bound
Metric Description

This metric represents a percentage of elapsed time the system spent with a high incoming bandwidth
utilization of the Intel Omni-Path Fabric. Note that the metric is calculated towards theoretical maximum
networking bandwidth and does not take into account dynamic network conditions such as link
oversubscription that can reduce the theoretical maximum.

Possible Issues

High incoming network bandwidth utilization was detected. This may lead to increased communication time.
You may use Intel Trace Analyzer and Collector for communication pattern analysis.

Incoming Packet Rate Bound
Metric Description

This metric represents a percentage of elapsed time the system spent with a high incoming packet rate of
the Intel Omni-Path Fabric. Explore the Packet Rate Histogram to scale the issue.

Possible Issues

High incoming network packet rate was detected. This may lead to increased communication time. You may
use Intel Trace Analyzer and Collector for communication pattern analysis.

Instruction Starvation
Metric Description

A large code working set size or a high degree of branch misprediction can induce instruction delivery stalls
at the front-end, such as misses in the L1I. Such stalls are called Instruction Starvation. This metric is the
ratio of cycles generated when no instruction was issued by the front-end to all cycles.

Possible Issues

A significant number of CPU cycles is spent waiting for code to be delivered due to L1I misses or other
problems. Look for ways to reduce the code working set, branch misprediction, and the use of virtual
functions.

 1 Intel® VTune™ Profiler User Guide

838

Interrupt Time

I/O Wait Time
Metric Description

This metric represents a portion of time when threads reside in I/O wait state while there are idle cores on
the system

IPC
Metric Description

Instructions Retired per Cycle, or IPC shows average number of retired instructions per cycle. Modern
superscalar processors issue up to four instructions per cycle, suggesting a theoretical best IPC of 4. But
various effects (long-latency memory, floating-point, or SIMD operations; non-retired instructions due to
branch mispredictions; instruction starvation in the front-end) tend to pull the observed IPC down. A IPC of 1
is generally considered acceptable for HPC applications but different application domains will have very
different expected values. Nonetheless, IPC is an excellent metric for judging an overall potential for
application performance tuning.

Possible Issues

The IPC may be too low. This could be caused by issues such as memory stalls, instruction starvation, branch
misprediction or long latency instructions. Explore the other hardware-related metrics to identify what is
causing low IPC.

L1 Bound
Metric Description

This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically
has the shortest latency. However, in certain cases like loads blocked on older stores, a load might suffer a
high latency even though it is being satisfied by the L1.

Possible Issues

This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically
has the shortest latency. However, in certain cases like loads blocked on older stores, a load might suffer a
high latency even though it is being satisfied by the L1. Note that this metric value may be highlighted due to
DTLB Overhead or Cycles of 1 Port Utilized issues.

4K Aliasing
Metric Description

This metric estimates how often memory load accesses were aliased by preceding stores (in the program
order) with a 4K address offset. Possible false match may incur a few cycles to re-issue a load. However, a
short re-issue duration is often hidden by the out-of-order core and HW optimizations. Hence, you may safely
ignore a high value of this metric unless it propagates up into parent nodes of the hierarchy (for example, to
L1_Bound).

Possible Issues

A significant proportion of cycles is spent dealing with false 4k aliasing between loads and stores.

Tips

Use the source/assembly view to identify the aliasing loads and stores, and then adjust your data layout so
that the loads and stores no longer alias. See the Intel 64 and IA-32 Architectures Optimization Reference
Manual for more details.

Intel® VTune™ Profiler User Guide 1

839

DTLB Overhead
Metric Description

In x86 architectures, mappings between virtual and physical memory are facilitated by a page table, which is
kept in memory. To minimize references to this table, recently-used portions of the page table are cached in
a hierarchy of 'translation look-aside buffers', or TLBs, which are consulted on every virtual address
translation. As with data caches, the farther a request has to go to be satisfied, the worse the performance
impact. This metric estimates the performance penalty paid for missing the first-level data TLB (DTLB) that
includes hitting in the second-level data TLB (STLB) as well as performing a hardware page walk on an STLB
miss.

Possible Issues

A significant proportion of cycles is being spent handling first-level data TLB misses.

Tips

1. As with ordinary data caching, focus on improving data locality and reducing the working-set size to
minimize the DTLB overhead.

2. Consider using profile-guided optimization (PGO) to collocate frequently-used data on the same page.

3. Try using larger page sizes for large amounts of frequently-used data.

FB Full
Metric Description

This metric does a rough estimation of how often L1D Fill Buffer unavailability limited additional L1D miss
memory access requests to proceed. The higher the metric value, the deeper the memory hierarchy level the
misses are satisfied from. Often it hints on approaching bandwidth limits (to L2 cache, L3 cache or external
memory).

Possible Issues

This metric does a rough estimation of how often L1D Fill Buffer unavailability limited additional L1D miss
memory access requests to proceed. The higher the metric value, the deeper the memory hierarchy level the
misses are satisfied from. Often it hints on approaching bandwidth limits (to L2 cache, L3 cache or external
memory). Avoid adding software prefetches if indeed memory BW limited.

Loads Blocked by Store Forwarding
Metric Description

To streamline memory operations in the pipeline, a load can avoid waiting for memory if a prior store, still in
flight, is writing the data that the load wants to read (a 'store forwarding' process). However, in some cases,
generally when the prior store is writing a smaller region than the load is reading, the load is blocked for a
signficant time pending the store forward. This metric measures the performance penalty of such blocked
loads.

Possible Issues

Loads are blocked during store forwarding for a significant proportion of cycles.

Tips

Use source/assembly view to identify the blocked loads, then identify the problematically-forwarded stores,
which will typically be within the ten dynamic instructions prior to the load. If the forwarding store is smaller
than the load, change the store to be the same size as the load.

Lock Latency
Metric Description

 1 Intel® VTune™ Profiler User Guide

840

This metric represents cycles fraction the CPU spent handling cache misses due to lock operations. Due to
the microarchitecture handling of locks, they are classified as L1 Bound regardless of what memory source
satisfied them.

Possible Issues

A significant fraction of CPU cycles spent handling cache misses due to lock operations. Due to the
microarchitecture handling of locks, they are classified as L1 Bound regardless of what memory source
satisfied them. Note that this metric value may be highlighted due to Store Latency issue.

Split Loads
Metric Description

Throughout the memory hierarchy, data moves at cache line granularity - 64 bytes per line. Although this is
much larger than many common data types, such as integer, float, or double, unaligned values of these or
other types may span two cache lines. Recent Intel architectures have significantly improved the
performance of such 'split loads' by introducing split registers to handle these cases, but split loads can still
be problematic, especially if many split loads in a row consume all available split registers.

Possible Issues

A significant proportion of cycles is spent handling split loads.

Tips

Consider aligning your data to the 64-byte cache line granularity. See the Intel 64 and IA-32 Architectures
Optimization Reference Manual for more details.

L1 Hit Rate
Metric Description

The L1 cache is the first, and shortest-latency, level in the memory hierarchy. This metric provides the ratio
of demand load requests that hit the L1 cache to the total number of demand load requests.

L1D Replacement Percentage
Metric Description

When a cache line is brought into the L1 cache, another line must be evicted to make room for it. When lines
in active use are evicted, a performance problem may arise from continually rotating data back into the
cache. This metric measures the percentage of all replacements due to each row. For example, if the
grouping is set to 'Function', this metric shows the percentage of all replacements due to each function,
summing up to 100%.

Possible Issues

This row is responsible for a majority of all L1 cache replacements. Some replacements are unavoidable, and
a high level of replacements may not indicate a problem. Consider this metric only when looking for the
source of a significant number of L1 cache misses for a particular grouping. If these replacements are
marked as a problem, try rearranging data structures (for example, moving infrequently-used data away
from more-frequently-used data so that unused data is not taking up cache space) or re-ordering operations
(to get as much use as possible out of data before it is evicted).

L1D Replacements
Metric Description

Replacements into the L1D

Intel® VTune™ Profiler User Guide 1

841

L1I Stall Cycles
Metric Description

In a shared-memory machine, instructions and data are stored in the same memory address space. However,
for performance, they are cached separately. Large code working set, branch misprediction, including one
caused by excessive use of virtual functions, can induce misses into L1I and so cause instruction starvation
that badly influence application performance.

Possible Issues

A significant number of CPU cycles is spent waiting for code to arrive into L1I. Review application code for the
patterns causing instruction starvation and rearrange the code.

L2 Bound
Metric Description

This metric shows how often machine was stalled on L2 cache. Avoiding cache misses (L1 misses/L2 hits) will
improve the latency and increase performance.

L2 Hit Bound
Metric Description

The L2 is the last and longest-latency level in the memory hierarchy before the main memory (DRAM) or
MCDRAM. While L2 hits are serviced much more quickly than hits in DRAM or MCDRAM, they can still incur a
significant performance penalty. This metric also includes coherence penalties for shared data. The L2 Hit
Bound metric shows a ratio of cycles spent handling L2 hits to all cycles. The cycles spent handling L2 hits
are calculated as L2 CACHE HIT COST * L2 CACHE HIT COUNT where L2 CACHE HIT COST is a constant
measured as typical L2 access latency in cycles.

Possible Issues

A significant proportion of cycles is being spent on data fetches that miss the L1 but hit the L2. This metric
includes coherence penalties for shared data.

Tips

1. If contested accesses or data sharing are indicated as likely issues, address them first. Otherwise, consider
the performance tuning applicable to an L2-missing workload: reduce the data working set size, improve
data access locality, consider blocking or partitioning your working set so that it fits into the L1, or better
exploit hardware prefetchers.

2. Consider using software prefetchers, but note that they can interfere with normal loads, potentially
increasing latency, as well as increase pressure on the memory system.

L2 Hit Rate
Metric Description

The L2 is the last and longest-latency level in the memory hierarchy before DRAM or MCDRAM. While L2 hits
are serviced much more quickly than hits in DRAM or MCDRAM, they can still incur a significant performance
penalty. This metric provides a ratio of the demand load requests that hit the L2 to the total number of the
demand load requests serviced by the L2. This metric does not include instruction fetches.

Possible Issues

The L2 is the last and longest-latency level in the memory hierarchy before DRAM or MCDRAM. While L2 hits
are serviced much more quickly than hits in DRAM, they can still incur a significant performance penalty. This
metric provides the ratio of demand load requests that hit the L2 to the total number of the demand load
requests serviced by the L2. This metric does not include instruction fetches.

 1 Intel® VTune™ Profiler User Guide

842

L2 HW Prefetcher Allocations
Metric Description

The number of L2 allocations caused by HW Prefetcher.

L2 Input Requests
Metric Description

A total number of L2 allocations. This metric accounts for both demand loads and HW prefetcher requests.

L2 Miss Bound
Metric Description

The L2 is the last and longest-latency level in the memory hierarchy before the main memory (DRAM) or
MCDRAM. Any memory requests missing here must be serviced by local or remote DRAM or MCDRAM, with
significant latency. The L2 Miss Bound metric shows a ratio of cycles spent handling L2 misses to all cycles.
The cycles spent handling L2 misses are calculated as L2 CACHE MISS COST * L2 CACHE MISS COUNT where
L2 CACHE MISS COST is a constant measured as typical DRAM access latency in cycles.

Possible Issues

A high number of CPU cycles is being spent waiting for L2 load misses to be serviced.

Tips

1. Reduce the data working set size, improve data access locality, blocking and consuming data in chunks
that fit into the L2, or better exploit hardware prefetchers.

2. Consider using software prefetchers but note that they can increase latency by interfering with normal
loads, as well as increase pressure on the memory system.

L2 Miss Count
Metric Description

The L2 is the last and longest-latency level in the memory hierarchy before the main memory (DRAM) or
MCDRAM. Any memory requests missing here must be serviced by local or remote DRAM or MCDRAM, with
significant latency. The L2 Miss Count metric shows the total number of demand loads that missed the L2.
Misses due to the HW prefetcher are not included.

L2 Replacement Percentage
Metric Description

When a cache line is brought into the L2 cache, another line must be evicted to make room for it. When lines
in active use are evicted, a performance problem may arise from continually rotating data back into the
cache. This metric measures the percentage of all replacements due to each row. For example, if the
grouping is set to 'Function', this metric shows the percentage of all replacements due to each function,
summing up to 100%.

Possible Issues

This row is responsible for a majority of all L2 cache replacements. Some replacements are unavoidable, and
a high level of replacements may not indicate a problem. Consider this metric only when looking for the
source of a significant number of L2 cache misses for a particular grouping. If these replacements are
marked as a problem, try rearranging data structures (for example, moving infrequently-used data away
from more-frequently-used data so that unused data is not taking up cache space) or re-ordering operations
(to get as much use as possible out of data before it is evicted).

Intel® VTune™ Profiler User Guide 1

843

L2 Replacements
Metric Description

Replacements into the L2

L3 Bound
Metric Description

This metric shows how often CPU was stalled on L3 cache, or contended with a sibling Core. Avoiding cache
misses (L2 misses/L3 hits) improves the latency and increases performance.

Contested Accesses
Metric Description

Contested accesses occur when data written by one thread is read by another thread on a different core.
Examples of contested accesses include synchronizations such as locks, true data sharing such as modified
locked variables, and false sharing. This metric is a ratio of cycles generated while the caching system was
handling contested accesses to all cycles.

Possible Issues

There is a high number of contested accesses to cachelines modified by another core. Consider either using
techniques suggested for other long latency load events (for example, LLC Miss) or reducing the contested
accesses. To reduce contested accesses, first identify the cause. If it is synchronization, try increasing
synchronization granularity. If it is true data sharing, consider data privatization and reduction. If it is false
data sharing, restructure the data to place contested variables in distinct cachelines. This may increase the
working set due to padding, but false sharing can always be avoided.

Data Sharing
Metric Description

Data shared by multiple threads (even just read shared) may cause increased access latency due to cache
coherency. This metric measures the impact of that coherency. Excessive data sharing can drastically harm
multithreaded performance. This metric is defined by the ratio of cycles while the caching system is handling
shared data to all cycles. It does not measure waits due to contention on a variable, which is measured by
the analysis.

Possible Issues

Significant data sharing by different cores is detected.

Tips

1. Examine the Contested Accesses metric to determine whether the major component of data sharing is due
to contested accesses or simple read sharing. Read sharing is a lower priority than Contested Accesses or
issues such as LLC Misses and Remote Accesses.

2. If simple read sharing is a performance bottleneck, consider changing data layout across threads or
rearranging computation. However, this type of tuning may not be straightforward and could bring more
serious performance issues back.

L3 Latency
Metric Description

This metric shows a fraction of cycles with demand load accesses that hit the L3 cache under unloaded
scenarios (possibly L3 latency limited). Avoiding private cache misses (i.e. L2 misses/L3 hits) will improve
the latency, reduce contention with sibling physical cores and increase performance. Note the value of this
node may overlap with its siblings.

 1 Intel® VTune™ Profiler User Guide

844

LLC Hit
Metric Description

The LLC (last-level cache) is the last, and longest-latency, level in the memory hierarchy before main
memory (DRAM). While LLC hits are serviced much more quickly than hits in DRAM, they can still incur a
significant performance penalty. This metric also includes coherence penalties for shared data.

Possible Issues

A significant proportion of cycles is being spent on data fetches that miss in the L2 but hit in the LLC. This
metric includes coherence penalties for shared data.

Tips

1. If contested accesses or data sharing are indicated as likely issues, address them first. Otherwise, consider
the performance tuning applicable to an LLC-missing workload: reduce the data working set size, improve
data access locality, consider blocking or partitioning your working set so that it fits into the low-level cache,
or better exploit hardware prefetchers.

2. Consider using software prefetchers, but note that they can interfere with normal loads, potentially
increasing latency, as well as increase pressure on the memory system.

SQ Full
Metric Description

This metric measures fraction of cycles where the Super Queue (SQ) was full taking into account all request-
types and both hardware SMT threads. The Super Queue is used for requests to access the L2 cache or to go
out to the Uncore.

LLC Load Misses Serviced By Remote DRAM
Metric Description

In NUMA (non-uniform memory architecture) machines, memory requests missing in LLC may be serviced
either by local or remote DRAM. Memory requests to remote DRAM incur much greater latencies than those
to local DRAM. It is recommended to keep as much frequently accessed data local as possible. This metric is
defined by the ratio of cycles when LLC load misses are serviced by remote DRAM to all cycles.

Possible Issues

A significant amount of time is spent servicing memory requests from remote DRAM. Wherever possible, try
to consistently use data on the same core, or at least the same package, as it was allocated on.

LLC Miss Count
Metric Description

The LLC (last-level cache) is the last, and longest-latency, level in the memory hierarchy before main
memory (DRAM). Any memory requests missing here must be serviced by local or remote DRAM, with
significant latency. The LLC Miss Count metric shows total number of demand loads which missed LLC. Misses
due to HW prefetcher are not included.

LLC Replacement Percentage
Metric Description

When a cache line is brought into the last-level cache, another line must be evicted to make room for it.
When lines in active use are evicted, a performance problem may arise from continually rotating data back
into the cache. This metric measures the percentage of all replacements due to each row. For example, if the
grouping is set to 'Function', this metric shows the percentage of all replacements due to each function,
summing up to 100%.

Intel® VTune™ Profiler User Guide 1

845

Possible Issues

This row is responsible for a majority of all last-level cache replacements. Some replacements are
unavoidable, and a high level of replacements may not indicate a problem. Consider this metric only when
looking for the source of a significant number of last-level cache misses for a particular grouping. If these
replacements are marked as a problem, try rearranging data structures (for example, moving infrequently-
used data away from more-frequently-used data so that unused data is not taking up cache space) or re-
ordering operations (to get as much use as possible out of data before it is evicted).

LLC Replacements
Metric Description

Replacements into the LLC

Local DRAM Access Count
Metric Description

This metric shows the total number of LLC misses serviced by the local memory. Misses due to HW prefetcher
are not included.

Logical Core Utilization
Metric Description

This metric represents how efficiently the application utilized the CPUs available and helps evaluate the
parallel efficiency of the application. It shows the percent of average CPU utilization by all logical CPUs on the
system.

Loop Entry Count
Metric Description

Statistical estimation of the number of times the loop was entered from the outside. Values of this metric are
not aggregated per call stack filter mode.

(Info) LSD Coverage
Metric Description

This metric shows a fraction of uOps delivered by the LSD (Loop Stream Detector or Loop Cache).

Machine Clears
Metric Description

Certain events require the entire pipeline to be cleared and restarted from just after the last retired
instruction. This metric measures three such events: memory ordering violations, self-modifying code, and
certain loads to illegal address ranges. Machine Clears metric represents slots fraction the CPU has wasted
due to Machine Clears. These slots are either wasted by uOps fetched prior to the clear, or stalls the out-of-
order portion of the machine needs to recover its state after the clear.

Possible Issues

A significant portion of execution time is spent handling machine clears.

Tips

Examine the MACHINE_CLEARS events to determine the specific cause. See the "Memory Disambiguation"
section in the Intel 64 and IA-32 Architectures Optimization Reference Manual for more details.

 1 Intel® VTune™ Profiler User Guide

846

Max DRAM Single-Package Bandwidth
Metric Description

Maximum DRAM bandwidth for single package measured by running a micro-benchmark before the collection
starts. If the system has already been actively loaded at the moment of collection start (for example, with
the attach mode), the value may be less accurate.

Max DRAM System Bandwidth
Metric Description

Maximum DRAM bandwidth measured for the whole system (across all packages) by running a micro-
benchmark before the collection starts. If the system has already been actively loaded at the moment of
collection start (for example, with the attach mode), the value may be less accurate.

MCDRAM Bandwidth Bound
Metric Description

This metric represents percentage of elapsed time the system spent with high MCDRAM bandwidth utilization.
Review the Bandwidth Utilization Histogram to estimate the scale of the issue.

Possible Issues

The system spent a significant percentage of elapsed time with high MCDRAM bandwidth utilization. Review
the Bandwidth Utilization Histogram to estimate the scale of the issue. Consider improving data locality and
L1/L2 cache reuse.

MCDRAM Cache Bandwidth Bound
Metric Description

This metric represents percentage of elapsed time the system spent with high MCDRAM Cache bandwidth
utilization. Review the Bandwidth Utilization Histogram to estimate the scale of the issue.

Possible Issues

The system spent a significant percentage of elapsed time with high MCDRAM Cache bandwidth utilization.
Review the Bandwidth Utilization Histogram to estimate the scale of the issue. Consider improving data
locality and L1/L2 cache reuse.

MCDRAM Flat Bandwidth Bound
Metric Description

This metric represents percentage of elapsed time the system spent with high MCDRAM Flat bandwidth
utilization. Review the Bandwidth Utilization Histogram to estimate the scale of the issue.

Possible Issues

The system spent a significant percentage of elapsed time with high MCDRAM Flat bandwidth utilization.
Review the Bandwidth Utilization Histogram to estimate the scale of the issue. Consider improving data
locality and/or merging compute-intensive code with bandiwdth-intensive code.

Memory Bandwidth
Metric Description

This metric represents a fraction of cycles during which an application could be stalled due to approaching
bandwidth limits of the main memory (DRAM). This metric does not aggregate requests from other threads/
cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-socket
systems.

Intel® VTune™ Profiler User Guide 1

847

Possible Issues

A significant fraction of cycles were stalled due to to approaching bandwidth limits of the main memory
(DRAM).

Tips

Improve data accesses to reduce cacheline transfers from/to memory using these possible techniques:

• Consume all bytes of each cacheline before it is evicted (for example, reorder structure elements and split
non-hot ones).

• Merge compute-limited and bandwidth-limited loops.
• Use NUMA optimizations on a multi-socket system.

NOTE
Software prefetches do not help a bandwidth-limited application.

Memory Bound
Metric Description

This metric shows how memory subsystem issues affect the performance. Memory Bound measures a
fraction of slots where pipeline could be stalled due to demand load or store instructions. This accounts
mainly for incomplete in-flight memory demand loads that coincide with execution starvation in addition to
less common cases where stores could imply back-pressure on the pipeline.

Possible Issues

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be
stalled due to demand memory load and stores. Use Memory Access analysis to have the metric breakdown
by memory hierarchy, memory bandwidth information, correlation by memory objects.

DRAM Bound
Metric Description

This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the
latency and increases performance.

DRAM Bandwidth Bound
Metric Description

This metric represents percentage of elapsed time the system spent with high DRAM bandwidth utilization.
Since this metric relies on the accurate peak system DRAM bandwidth measurement, explore the Bandwidth
Utilization Histogram and make sure the Low/Medium/High utilization thresholds are correct for your system.
You can manually adjust them, if required.

Possible Issues

The system spent much time heavily utilizing DRAM bandwidth. Improve data accesses to reduce cacheline
transfers from/to memory using these possible techniques: 1) consume all bytes of each cacheline before it
is evicted (for example, reorder structure elements and split non-hot ones); 2) merge compute-limited and
bandwidth-limited loops; 3) use NUMA optimizations on a multi-socket system. Note: software prefetches do
not help a bandwidth-limited application. Run Memory Access analysis to identify data structures to be
allocated in High Bandwidth Memory (HBM), if available.

UPI Utilization Bound
Metric Description

 1 Intel® VTune™ Profiler User Guide

848

This metric represents percentage of elapsed time the system spent with high UPI utilization. Explore the
Bandwidth Utilization Histogram and make sure the Low/Medium/High utilization thresholds are correct for
your system. You can manually adjust them, if required.

NOTE
The UPI Utilization metric replaced QPI Utilization starting with systems based on Intel®
microarchitecture code name Skylake.

Possible Issues

The system spent much time heavily utilizing UPI bandwidth. Improve data accesses using NUMA
optimizations on a multi-socket system.

Memory Latency
Metric Description

This metric represents a fraction of cycles during which an application could be stalled due to the latency of
the main memory (DRAM). This metric does not aggregate requests from other threads/cores/sockets (see
Uncore counters for that). Consider optimizing data layout or using Software Prefetches (through the
compiler).

Possible Issues

This metric represents a fraction of cycles during which an application could be stalled due to the latency of
the main memory (DRAM).

Tips

Improve data accesses or interleave them with compute using such possible techniques as data layout re-
structuring or software prefetches (through the compiler).

Local DRAM
Metric Description

This metric shows how often CPU was stalled on loads from local memory. Caching will improve the latency
and increase performance.

Possible Issues

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to
improve the latency and increase the performance.

Remote Cache
Metric Description

This metric shows how often CPU was stalled on loads from remote cache in other sockets. This is caused
often due to non-optimal NUMA allocations.

Possible Issues

The number of CPU stalls on loads from the remote cache exceeds the threshold. This is often caused by
non-optimal NUMA memory allocations.

Remote DRAM
Metric Description

This metric shows how often CPU was stalled on loads from remote memory. This is caused often due to non-
optimal NUMA allocations.

Intel® VTune™ Profiler User Guide 1

849

Possible Issues

The number of CPU stalls on loads from the remote memory exceeds the threshold. This is often caused by
non-optimal NUMA memory allocations.

NUMA: % of Remote Accesses
Metric Description

In Non-uniform Memory Architecture (NUMA) machines, memory requests without LLC may be serviced by
local or remote DRAM. Memory requests to remote DRAM incur much greater latencies than requests to local
DRAM. This metric shows the percentage of remote accesses. As far as possible, keep this metric low and
frequently accessed data local. This metric does not take into account memory accesses serviced by remote
cache.

Possible Issues

A significant amount of DRAM loads were serviced from remote DRAM. Wherever possible, try to consistently
use data on the same core, or at least the same package, as it was allocated on.

Memory Efficiency
Metric Description

This metric represents how efficiently the memory subsystem was used by the application. It shows the
percent of cycles where the pipeline was not stalled due to demand load or store instructions. The metric is
based on the Memory Bound measurement.

Microarchitecture Usage
Metric Description

Microarchitecture Usage metric is a key indicator that helps estimate (in %) how effectively your code runs
on the current microarchitecture. Microarchitecture Usage can be impacted by long-latency memory, floating-
point, or SIMD operations; non-retired instructions due to branch mispredictions; instruction starvation in the
front-end.

Possible Issues

You code efficiency on this platform is too low.

Possible cause: memory stalls, instruction starvation, branch misprediction or long latency instructions.

Tips

Run Microarchitecture Exploration analysis to identify the cause of the low microarchitecture usage efficiency.

Microcode Sequencer
Metric Description

This metric represents a fraction of slots during which CPU was retiring uOps fetched by the Microcode
Sequencer (MS) ROM. The MS is used for CISC instructions not fully decoded by the default decoders (like
repeat move strings), or by microcode assists used to address some modes of operation (like in Floating-
Point assists).

Possible Issues

A significant fraction of cycles was spent retiring uOps fetched by the Microcode Sequencer.

Tips

1. Make sure the /arch compiler flags are correct.

2. Check the child Assists metric and, if it is highlighted as an issue, follow the provided recommendations.

 1 Intel® VTune™ Profiler User Guide

850

Note that this metric value may be highlighted due to MS Switches issue.

Mispredicts Resteers
Metric Description

This metric measures the fraction of cycles the CPU was stalled due to Branch Resteers as a result of Branch
Misprediction at execution stage.

Possible Issues

A significant fraction of cycles could be stalled due to Branch Resteers as a result of Branch Misprediction at
execution stage.

MO Machine Clear Overhead
Metric Description

Certain events require the entire pipeline to be cleared and restarted from just after the last retired
instruction. This metric estimates the overhead of machine clears due to Memory Ordering. The memory
ordering (MO) machine clear happens when a snoop request from another processor matches a source for a
data operation in the pipeline. In this situation the pipeline is cleared before the loads and stores in progress
are retired. Then the pipeline is restarted from the previous retired instruction, ensuring that memory
ordering of loads and stores can be preserved, both within one core and across cores. Memory ordering
issues cause a severe penalty in all processors based on Intel architecture.

Possible Issues

A significant portion of execution time is spent clearing the machine to handle memory ordering
requirements. To avoid this, reorder your load and store instructions, particularly loads and stores of data
that is shared, or reduce sharing requirements.

MPI Imbalance
Metric Description

MPI Imbalance shows the CPU time spent by ranks spinning in waits on communication operations,
normalized by the number of ranks. High metric value can be caused by application workload imbalance
between ranks, nonoptimal communication schema or settings of MPI library. Explore details on
communication inefficiencies with Intel Trace Analyzer and Collector.

MPI Rank on the Critical Path
Metric Description

The section contains metrics for the rank with minimum MPI Busy Wait time that is on the critical path of
application execution on this node. Consider exploring CPU utilization efficiency for this rank.

MS Entry
Metric Description

This metric estimates a fraction of cycles lost due to the Microcode Sequencer entry.

Possible Issues

A significant number of CPU cycles lost due to the Microcode Sequencer entry.

MUX Reliability
Metric Description

Intel® VTune™ Profiler User Guide 1

851

This metric estimates reliability of HW event-related metrics. Since the number of collected HW events
exceeds the number of counters, Intel® VTune™ Profiler uses event multiplexing (MUX) to share HW counters
and collect different subsets of events over time. This may affect the precision of collected event data. The
ideal value for this metric is 1. If the value is less than 0.7, the collected data may be not reliable.

Possible Issues

Precision of collected HW event data is not enough. Metrics data may be unreliable. Consider increasing your
application execution time, using the multiple runs mode instead of event multiplexing, or creating a custom
analysis with a limited subset of HW events. If you are using a driverless collection, consider reducing the
value of /sys/bys/event_source/devices/cpu/perf_event_mux_interval_ms file.

NOTE
A high value for this metric does not guarantee an accuracy of the hardware-based metrics. However,
a low value definitely puts the metrics in question and you should re-run the analysis using the Allow
multiple runs option or increase the execution time to improve the accuracy.

OpenMP* Analysis. Collection Time
Metric Description

Collection Time is wall time from the beginning to the end of collection, excluding Paused Time.

OpenMP Region Time
Metric Description

OpenMP Region Time is a duration of all the lexical region instances.

Other
Metric Description

This metric represents a non-floating-point (FP) uop fraction the CPU has executed. If your application has no
FP operations, this is likely to be the biggest fraction.

Outgoing Bandwidth Bound
Metric Description

This metric represents a percentage of elapsed time the system spent with a high outgoing bandwidth
utilization of the Intel Omni-Path Fabric. Note that the metric is calculated towards theoretical maximum
networking bandwidth and does not take into account dynamic network conditions such as link
oversubscription that can reduce the theoretical maximum.

Possible Issues

High outgoing network bandwidth utilization was detected. This may lead to increased communication time.
You may use Intel Trace Analyzer and Collector for communication pattern analysis.

Outgoing Packet Rate Bound
Metric Description

This metric represents a percentage of elapsed time the system spent with high Intel Omni-Path Fabric
outgoing packet rate. Explore the Packet Rate Histogram to scale the issue.

Possible Issues

High outgoing network packet rate was detected. This may lead to increased communication time. You may
use Intel Trace Analyzer and Collector for communication pattern analysis.

 1 Intel® VTune™ Profiler User Guide

852

Overhead Time
Metric Description

Overhead time is CPU time spent on the overhead of known synchronization and threading libraries, such as
system synchronization APIs, Intel® oneAPI Threading Building Blocks(oneTBB), and OpenMP.

Possible Issues

A significant portion of CPU time is spent in synchronization or threading overhead. Consider increasing task
granularity or the scope of data synchronization.

Page Walk
Metric Description

In x86 architectures, mappings between virtual and physical memory are facilitated by a page table that is
kept in memory. To minimize references to this table, recently-used portions of the page table are cached in
a hierarchy of 'translation look-aside buffers', or TLBs, which are consulted on every virtual address
translation. As with data caches, the farther a request has to go to be satisfied, the worse the performance
impact is. This metric estimates the performance penalty paid for missing the first-level TLB that includes
hitting in the second-level data TLB (STLB) as well as performing a hardware page walk on an STLB miss.

Possible Issues

Page Walks have a large performance penalty because they involve accessing the contents of multiple
memory locations to calculate the physical address. Since this metric includes the cycles handling both
instruction and data TLB misses, look at ITLB Overhead and DTLB Overhead and follow the instructions to
improve performance. Also examine PAGE_WALKS.D_SIDE_CYCLES and PAGE_WALKS.I_SIDE_CYCLES
events in the source/assembly view for further breakdown. Account for skid.

Parallel Region Time
Metric Description

Parallel Region Time is the total duration for all instances of all lexical parallel regions. Percent value is based
on Collection Time.

Paused Time
Metric Description

Paused time is the amount of Elapsed time during which the analysis was paused using either the GUI, CLI
commands, or user API.

Persistent Memory Bound
Metric Description

This metric estimates how frequently the CPU was stalled on accesses to external Intel Optane DC Persistent
Memory by loads. This metric is defined on machines with Intel Optane DC Persistent Memory App Direct
Mode.

Pipeline Slots
Metric Description

A pipeline slot represents hardware resources needed to process one uOp.

The Top-Down Characterization assumes that for each CPU core, on each clock cycle, there are several
pipeline slots available. This number is called Pipeline Width.

Intel® VTune™ Profiler User Guide 1

853

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/current/top-down-microarchitecture-analysis-method.html

OpenMP* Potential Gain
Metric Description

Potential Gain shows the maximum time that could be saved if the OpenMP region is optimized to have no
load imbalance assuming no runtime overhead (Parallel Region Time minus Region Ideal Time). If the
Potential Gain is large, make sure the workload for this region is enough and the loop schedule is optimal.

VTune Profiler uses the following methodology to calculate the Potential Gain metric that is a sum of
inefficiencies normalized by the number of threads:

Possible Issues

The time wasted on load imbalance or parallel work arrangement is significant and negatively impacts the
application performance and scalability. Explore OpenMP regions with the highest metric values. Make sure
the workload of the regions is enough and the loop schedule is optimal.

Imbalance
Metric Description

OpenMP Potential Gain Imbalance shows maximum elapsed time that could be saved if the OpenMP construct
is optimized to have no imbalance. It is calculated as summary of CPU time by all OpenMP threads spinning
on a barrier divided by the number of OpenMP threads.

Possible Issues

Significant time spent waiting on an OpenMP barrier inside of a parallel region can be a result of load
imbalance. Consider using dynamic work scheduling to reduce the imbalance, where possible.

Lock Contention
Metric Description

OpenMP Potential Gain Lock Contention shows elapsed time cost of OpenMP locks and ordered
synchronization. High metric value may signal inefficient parallelization with highly contended
synchronization objects. To avoid intensive synchronization, consider using reduction, atomic operations or
thread local variables where possible. This metric is based on CPU sampling and does not include passive
waits.

Possible Issues

When synchronization objects are used inside a parallel region, threads can spend CPU time waiting on a lock
release, contending with other threads for a shared resource. Where possible, reduce synchronization by
using reduction or atomic operations, or minimize the amount of code executed inside the critical section.

 1 Intel® VTune™ Profiler User Guide

854

Pre-Decode Wrong
Metric Description

This metric estimates a fraction of cycles lost due to the decoder predicting wrong instruction length.

Possible Issues

A significant number of CPU cycles lost due to the decoder predicting wrong instruction length.

Remote Cache Access Count
Metric Description

This metric shows the total number of LLC misses serviced by the remote cache in other sockets. Misses due
to HW prefetcher are not included.

Remote DRAM Access Count
Metric Description

This metric shows the total number of LLC misses serviced by the remote memory. Misses due to HW
prefetcher are not included.

Remote / Local DRAM Ratio
Metric Description

In NUMA (non-uniform memory architecture) machines, memory requests missing LLC may be serviced
either by local or remote DRAM. Memory requests to remote DRAM incur much greater latencies than those
to local DRAM. It is recommended to keep as much frequently accessed data local as possible. This metric is
defined by the ratio of remote DRAM loads to local DRAM loads.

Possible Issues

A significant amount of DRAM loads were serviced from remote DRAM. Wherever possible, try to consistently
use data on the same core, or at least the same package, as it was allocated on.

Retire Stalls
Metric Description

This metric is defined as a ratio of the number of cycles when no micro-operations are retired to all cycles. In
the absence of performance issues, long latency operations, and dependency chains, retire stalls are
insignificant. Otherwise, retire stalls result in a performance penalty.

Possible Issues

A high number of retire stalls is detected. This may result from branch misprediction, instruction starvation,
long latency operations, and other issues. Use this metric to find where you have stalled instructions. Once
you have located the problem, analyze metrics such as LLC Miss, Execution Stalls, Remote Accesses, Data
Sharing, and Contested Accesses, or look for long-latency instructions like divisions and string operations to
understand the cause.

Retiring
Metric Description

Retiring metric represents a Pipeline Slots fraction utilized by useful work, meaning the issued uOps that
eventually get retired. Ideally, all Pipeline Slots would be attributed to the Retiring category. Retiring of 100%
would indicate the maximum possible number of uOps retired per cycle has been achieved. Maximizing
Retiring typically increases the Instruction-Per-Cycle metric. Note that a high Retiring value does not
necessary mean no more room for performance improvement. For example, Microcode assists are
categorized under Retiring. They hurt performance and can often be avoided.

Intel® VTune™ Profiler User Guide 1

855

Possible Issues

A high fraction of pipeline slots was utilized by useful work.

Tips

While the goal is to make this metric value as big as possible, a high Retiring value for non-vectorized code
could prompt you to consider code vectorization. Vectorization enables doing more computations without
significantly increasing the number of instructions, thus improving the performance. Note that this metric
value may be highlighted due to Microcode Sequencer (MS) issue, so the performance can be improved by
avoiding using the MS.

Self Time and Total Time
Self Time

Self time is the time spent in a particular program unit. For example, Self time for a source line shows the
time the application spent at this particular source line. Self time can help you understand the impact that a
function has on the program. Investigating the impact of single functions is also known as bottom-up
analysis.

For example, in a single-threaded program with negligible Wait time, the Self time for the function foo() is
10% of the program CPU time. If you optimize foo() so that it is twice as fast, the Elapsed time for the
program improves by 5%.

The impact of Self time on the Elapsed time of a parallel application depends on the utilization of different
threads. Reducing the time that a given function runs to zero may have no impact on the Elapsed time of the
application

Total Time

Total time is the accumulated time that a program unit incurs. For functions, Total time includes Self time of
the function itself and Self time of all functions that were called from that function. Total time enables a high-
level understanding of how time is spent in the application. Investigating the impact of functions together
with their callees is also known as top-down analysis.

Serial CPU Time
Metric Description

Serial CPU Time is the CPU time (compare with Serial Time outside parallel regions) spent by the application
outside any OpenMP region in the master thread during collection. It directly impacts application Collection
Time and scaling. High values signal a performance problem to be solved via code parallelization or algorithm
tuning.

MPI Busy Wait Time
Metric Description

MPI Busy Wait Time is CPU time when MPI runtime library is spinning on waits in communication operations.
High metric value can be caused by load imbalance between ranks, active communications or nonoptimal
settings of MPI library. Explore details on communication inefficiencies with Intel® Trace Analyzer and
Collector.

Possible Issues

CPU time spent on waits for MPI communication operations is significant and can negatively impact the
application performance and scalability. This can be caused by load imbalance between ranks, active
communications or non-optimal settings of MPI library. Explore details on communication inefficiencies with
Intel Trace Analyzer and Collector.

 1 Intel® VTune™ Profiler User Guide

856

Other
Metric Description

This metric shows unclassified Serial CPU Time.

Serial Time (outside parallel regions)
Metric Description

Serial Time is the time spent by the application outside any OpenMP region in the master thread during
collection. It directly impacts application Collection Time and scaling. High values signal a performance
problem to be solved via code parallelization or algorithm tuning.

Possible Issues

Serial Time of your application is high. It directly impacts application Elapsed Time and scalability. Explore
options for parallelization, algorithm or microarchitecture tuning of the serial part of the application.

SIMD Assists
Metric Description

SIMD assists are invoked when an EMMS instruction is executed after MMX technology code has changed the
MMX state in the floating point stack. The EMMS instruction clears the MMX technology state at the end of all
MMX technology procedures or subroutines and before calling other procedures or subroutines that may
execute x87 floating-point instructions, which can incur a performance penalty when intermixing MMX and
X87 instructions. The SIMD assists are required in the streaming SIMD Extensions (SSE) instructions with
denormal input when the DAZ (Denormals Are Zeros) flag is off or underflow result when the FTZ (Flush To
Zero) flag is off.

Possible Issues

A significant portion of execution time is spent in SIMD assists. Consider enabling the DAZ (Denormals Are
Zero) and/or FTZ (Flush To Zero) options in your compiler to flush denormals to zero. This option may
improve performance if the denormal values are not critical in your application. Also note that the DAZ and
FTZ modes are not compatible with the IEEE Standard 754.

SIMD Compute-to-L1 Access Ratio
Metric Description

This metric provides the ratio of SIMD compute instructions to the total number of memory loads, each of
which will first access the L1 cache. On this platform, it is important that this ratio is large to ensure efficient
usage of compute resources.

SIMD Compute-to-L2 Access Ratio
Metric Description

This metric provides the ratio of SIMD compute instructions to the total number of memory loads that hit the
L2 cache. On this platform, it is important that this ratio is large to ensure efficient usage of compute
resources.

SIMD Instructions per Cycle
Metric Description

This metric represents how intensively your program uses the FPU. 100% means that the FPU is fully loaded
and is retiring a vector instruction with full capacity every cycle of the application execution.

Intel® VTune™ Profiler User Guide 1

857

Slow LEA Stalls
Metric Description

Some Load Effective Address (LEA) instructions (like three-operand LEA instructions) have increased latency
and reduced dispatch port choices. The Slow LEA Stalls metric estimates the performance penalty of such
slow LEAs.

Possible Issues

A significant proportion of cycles were spent handling slow LEA operations. Use the source view to discover
the responsible instructions and try to avoid their use.

SMC Machine Clear
Metric Description

Certain events require the entire pipeline to be cleared and restarted from just after the last retired
instruction. This metric measures only self-modifying code (SMC) events. This event counts the number of
times a program writes to a code section that is shared with another processor or itself as a data page,
causing the entire pipeline and the trace caches to be cleared. Self-modifying code causes a severe penalty in
all processors based on Intel architecture.

Possible Issues

A significant portion of execution time is spent handling machine clears incurred by self-modifying code
event. Dynamically-modified code (for example, target fix-ups) is likely to suffer from performance
degradation due to SMC. To avoid this, introduce indirect branches and use data tables on data pages (not
code pages) with register-indirect calls.

SP FLOPs per Cycle
Metric Description

Number of single precision floating point operations (FLOPs) per clocktick. This metric shows the efficiency of
both vector code generation and execution. Explore the list of generated issues on the metric to see the
reasons behind the low FLOP numbers. The maximum number of FLOPs per cycle depends on your hardware
platform. All double operations are converted to two single operations.

SP GFLOPS
Metric Description

Number of single precision giga-floating point operations calculated per second. All double operations are
converted to two single operations.

Spin Time
Metric Description

Spin time is Wait Time during which the CPU is busy. This often occurs when a synchronization API causes
the CPU to poll while the software thread is waiting. Some Spin Time may be preferable to the alternative of
increased thread context switches. Too much Spin Time, however, can reflect lost opportunity for productive
work.

Possible Issues

A significant portion of CPU time is spent waiting. Use this metric to discover which synchronizations are
spinning. Consider adjusting spin wait parameters, changing the lock implementation (for example, by
backing off then descheduling), or adjusting the synchronization granularity.

 1 Intel® VTune™ Profiler User Guide

858

Communication (MPI)
Metric Description

MPI Busy Wait Time is CPU time when MPI runtime library is spinning on waits in communication operations.
High metric value can be caused by load imbalance between ranks, active communications or nonoptimal
settings of MPI library. Explore details on communication inefficiencies with Intel Trace Analyzer and Collector.

Possible Issues

CPU time spent on waits for MPI communication operations is significant and can negatively impact the
application performance and scalability. This can be caused by load imbalance between ranks, active
communications or non-optimal settings of MPI library. Explore details on communication inefficiencies with
Intel Trace Analyzer and Collector.

Imbalance or Serial Spinning
Metric Description

Imbalance or Serial Spinning time is CPU time when working threads are spinning on a synchronization
barrier consuming CPU resources. This can be caused by load imbalance, insufficient concurrency for all
working threads or waits on a barrier in the case of serialized execution.

Possible Issues

The threading runtime function related to time spent on imbalance or serial spinning consumed a significant
amount of CPU time. This can be caused by a load imbalance, insufficient concurrency for all working
threads, or busy waits of worker threads while serial code is executed. If there is an imbalance, apply
dynamic work scheduling or reduce the size of work chunks or tasks. If there is insufficient concurrency,
consider collapsing the outer and inner loops. If there is a wait for completion of serial code, explore options
for parallelization with Intel Advisor, algorithm, or microarchitecture tuning of the application's serial code
with VTune Profiler Hotspots or Microarchitecture Exploration analysis respectively. For OpenMP* applications,
use the Per-Barrier OpenMP Potential Gain metric set in the HPC Performance Characterization analysis to
discover the reason for high imbalance or serial spin time.

Lock Contention
Metric Description

Lock Contention time is CPU time when working threads are spinning on a lock consuming CPU resources.
High metric value may signal inefficient parallelization with highly contended synchronization objects. To
avoid intensive synchronization, consider using reduction, atomic operations or thread local variables where
possible.

Possible Issues

When synchronization objects are used inside a parallel region, threads can spend CPU time waiting on a lock
release, contending with other threads for a shared resource. Where possible, reduce synchronization by
using reduction or atomic operations, or minimize the amount of code executed inside the critical section.

Other (Spin)
Metric Description

This metric shows unclassified Spin time spent in a threading runtime library.

Spin and Overhead Time
Overhead Time

Overhead time is the time the system takes to deliver a shared resource from a releasing owner to an
acquiring owner. Ideally, the Overhead time should be close to zero because it means the resource is not
being wasted through idleness. However, not all CPU time in a parallel application may be spent on doing real

Intel® VTune™ Profiler User Guide 1

859

payload work. In cases when a parallel runtime (for example, Intel® Threading Building Blocks, Intel® Cilk™,
OpenMP*) is used inefficiently, a significant portion of time may be spent inside the parallel runtime wasting
CPU time at high concurrency levels. For example, if you increase the number of threads performing some
fixed load of work in parallel, each thread gets less work and the overhead, as a relative measure, will get
larger. It is a basic application of Amdahl's Law.

To detect this wasted CPU time, Intel® VTune™ Profiler analyzes the call stack at the point of interest and
computes the Overhead time performance metric. VTune Profiler classifies the stack layers into user, system,
and overhead layers and attributes the CPU time spent in system functions called by overhead functions to
the overhead functions.

Spin Time

Spin time is the Wait time during which the CPU is busy. This often occurs when a synchronization API causes
the CPU to poll while the software thread is waiting. Some Spin time may be preferable to the alternative of
increased thread context switches. Too much Spin time, however, can reflect lost opportunity for productive
work.

Overhead and Spin Time

VTune Profiler provides the combined Overhead and Spin Time metric in the grid and Timeline view of the
Hotspots by CPU Utilization, Hotspots by Thread Concurrency, and Hotspots viewpoints. This metric
represents the sum of the Overhead and Spin time values calculated as CPU Time where Call Site Type is
Overhead + CPU Time where Call Site Type is Synchronization. To view the Overhead and Spin time
values separately, expand the column by clicking the

symbol.

NOTE
VTune Profiler ignores the Overhead and Spin time when calculating the CPU Utilization metric.

Possible Issues

A significant portion of CPU time is spent in synchronization or threading overhead. Consider increasing task
granularity or the scope of data synchronization.

Atomics
Metric Description

Atomics time is CPU time that a runtime library spends on atomic operations.

Possible Issues

CPU time spent on atomic operations is significant. Consider using reduction operations where possible.

Creation
Metric Description

Creation time is CPU time that a runtime library spends on organizing parallel work.

Possible Issues

CPU time spent on parallel work arrangement can be a result of too fine-grain parallelism. Try parallelizing
outer loops, rather than inner loops, to reduce the work arrangement overhead.

Other (Overhead)
Metric Description

 1 Intel® VTune™ Profiler User Guide

860

This metric shows unclassified Overhead time spent in a threading runtime library.

Reduction
Metric Description

Reduction time is CPU time that a runtime library spends on loop or region reduction operations.

Possible Issues

A significant portion of CPU time is spent on doing reduction.

Scheduling
Metric Description

Scheduling time is CPU time that a runtime library spends on work assignment for threads. If the time is
significant, consider using coarse-grain work chunking.

Possible Issues

Dynamic scheduling with small work chunks can cause increased overhead due to threads frequently
returning to the scheduler for more work. Try increasing the chunk size to reduce this overhead.

Tasking
Metric Description

Tasking time is CPU time that a runtime library spends on allocating and completing tasks.

Split Stores
Metric Description

Throughout the memory hierarchy, data moves at cache line granularity - 64 bytes per line. Although this is
much larger than many common data types, such as integer, float, or double, unaligned values of these or
other types may span two cache lines. Recent Intel architectures have significantly improved the
performance of such 'split stores' by introducing split registers to handle these cases. But split stores can still
be problematic, especially if they consume split registers which could be servicing other split loads.

Possible Issues

A significant portion of cycles is spent handling split stores.

Tips

Consider aligning your data to the 64-byte cache line granularity.

Note that this metric value may be highlighted due to Port 4 issue.

Store Bound
Metric Description

This metric shows how often CPU was stalled on store operations. Even though memory store accesses do
not typically stall out-of-order CPUs there are few cases where stores can lead to actual stalls.

Possible Issues

CPU was stalled on store operations for a significant fraction of cycles.

Tips

Consider False Sharing analysis as your next step.

Intel® VTune™ Profiler User Guide 1

861

Store Latency
Metric Description

This metric represents cycles fraction the CPU spent handling long-latency store misses (missing 2nd level
cache).

Possible Issues

This metric represents a fraction of cycles the CPU spent handling long-latency store misses (missing the 2nd
level cache). Consider avoiding/reducing unnecessary (or easily loadable/computable) memory store. Note
that this metric value may be highlighted due to a Lock Latency issue.

Task Time
Metric Description

Total amount of time spent within a task.

Thread Concurrency

Thread Oversubscription
Metric Description

Thread Oversubscription indicates time spent in the code with the number of simultaneously working threads
more than the number of available logical cores on the system.

Possible Issues

Significant amount of time application spent in thread oversubscription. This can negatively impact parallel
performance because of thread preemption and context switch cost.

Total Iteration Count
Metric Description

Statistical estimation of the total loop iteration count. Values of this metric are not aggregated per call stack
filter mode.

[uOps]
Metric Description

uOp, or micro-op, is a low-level hardware operation. The CPU Front-End is responsible for fetching the
program code represented in architectural instructions and decoding them into one or more uOps.

VPU Utilization
Metric Description

This metric measures the fraction of micro-ops that performed packed vector operations of any vector length
and any mask. VPU utilization metric can be used in conjunction with the compiler's vectorization report to
assess VPU utilization and to understand the compiler's judgement about the code. Note that this metric does
not account for loads and stores and does not take into consideration vector length as well as masking.
Includes integer packed simd.

Possible Issues

 1 Intel® VTune™ Profiler User Guide

862

This metric measures the fraction of micro-ops that performed packed vector operations of any vector length
and any mask. VPU utilization metric can be in conjunction with the compiler's vectorization report to assess
VPU utilization and to understand the compiler's judgement about the code. Note that this metric does not
account for loads and stores and does not take into consideration vector length as well as masking. This
metric includes integer packed SIMD.

Wait Count
Metric Description

Wait Count measures the number of times software threads wait due to APIs that block or cause
synchronization.

Wait Rate
Metric Description

Average Wait time (in milliseconds) per synchronization context switch. Low metric value may signal an
increased contention between threads and inefficient use of system API.

Possible Issues

The average Wait time is too low. This could be caused by small timeouts, high contention between threads,
or excessive calls to system synchronization functions. Explore the call stack, the timeline, and the source
code to identify what is causing low wait time per synchronization context switch.

Wait Time
Metric Description

Wait Time occurs when software threads are waiting due to APIs that block or cause synchronization. Wait
Time is per-thread, therefore the total Wait Time can exceed the application Elapsed Time.

GPU Metrics Reference

NOTE Families of Intel® Xe graphics products starting with Intel® Arc™ Alchemist (formerly DG2) and
newer generations feature GPU architecture terminology that shifts from legacy terms. For more
information on the terminology changes and to understand their mapping with legacy content, see
GPU Architecture Terminology for Intel® Xe Graphics.

Intel® VTune™ Profiler collects and analyzes the following groups of GPU metrics for Intel® HD Graphics and
Intel® Iris® Graphics:

• Overview metrics:

• Memory Read Bandwidth
• Memory Write Bandwidth
• ALU0 Active
• ALU0 Instructions
• ALU1 Active
• ALU1 Instructions
• ALU2 Active
• ALU2 Instructions
• ALU0 and ALU1 Active
• ALU0 and ALU2 Active

The fifth and subsequent generations of the Intel® Core™ processor family code named Broadwell include
these metrics:

• L3 Shader Bandwidth

Intel® VTune™ Profiler User Guide 1

863

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

• Shared Local Memory Read Bandwidth
• Shared Local Memory Write Bandwidth

• Global Memory Accesses metrics:

• Shared Local Memory Read Bandwidth
• Shared Local Memory Write Bandwidth
• Render/GPGPU Command Streamer Loaded
• GPU EU Array Usage

The fifth and subsequent generations of the Intel® Core™ processor family include these metrics:

• EU Threads Occupancy
• EU Send Pipeline Active
• L3 Shader Bandwidth

The first and subsequent generations of the Intel® Arc™ GPUs (codenamed Alchemist) include these
metrics:

• L3 Read Bandwidth
• L3 Write Bandwidth
• Stack-to-stack Incoming Bandwidth
• Stack-to-stack Outgoing Bandwidth
• Host-to-GPU Memory Read Bandwidth
• Host-to-GPU Memory Write Bandwidth
• System Memory Read Bandwidth
• System Memory Write Bandwidth

• The Full Compute group of metrics combines metrics from the Overview and Global Memory
Accesses groups. Use this information to explore the reasons why the GPU execution units were waiting
using the same data view.

• Render Basic (preview) metrics:

• Samples Killed in PS, pixels
• Samples Written
• Samples Blended
• PS EU Active %
• PS EU Stall %
• VS EU Active
• VS EU Stall

All groups also include the following metrics which track EU activity:

• EU Array Active
• EU Array Stalled
• EU Array Idle
• EU Threads Occupancy
• Computing Threads Started
• GPU Core Frequency

NOTE
To analyze Intel® HD Graphics and Intel® Iris® Graphics hardware events, make sure to set up your
system for GPU analysis

See Also
Running GPU Analysis from Command Line

GPU Architecture Terminology for Intel® Xe Graphics

 1 Intel® VTune™ Profiler User Guide

864

https://www.intel.com/content/www/us/en/developer/articles/technical/gpu-terminology-for-intel-xe.html

ALU0 Active

Metric Description
The normalized sum of all cycles on all cores when the XVE ALU0 pipeline was actively processing .

See Also
Reference for Performance Metrics

ALU0 Instructions

Metric Description
The number of floating point instructions executed in the XVE ALU0 pipeline.

See Also
Reference for Performance Metrics

ALU1 Active

Metric Description
The normalized sum of all cycles on all cores when the XVE ALU1 pipeline was actively processing.

See Also
Reference for Performance Metrics

ALU1 Instructions

Metric Description
The number of floating point instructions executed in the XVE ALU1 pipeline.

See Also
Reference for Performance Metrics

ALU2 Active

Metric Description
The normalized sum of all cycles on all cores when the XVE ALU2 pipeline was active.

See Also
Reference for Performance Metrics

ALU2 Instructions

Metric Description
The number of instructions executed in the XVE ALU2 pipeline.

Intel® VTune™ Profiler User Guide 1

865

See Also
Reference for Performance Metrics

ALU0 and ALU1 Active

Metric Description
The percentage of GPU time when the ALU0 pipeline (which performs floating point instructions) and the
ALU1 pipeline (which performs control, send, math, and integer instructions) were both utilized.

See Also
Reference for Performance Metrics

ALU0 and ALU2 Active

Metric Description
The percentage of GPU time when both ALU0 and ALU2 pipelines were utilized.

See Also
Reference for Performance Metrics

Average Time

Metric Description
Average amount of time spent in the task.

See Also
Reference for Performance Metrics

Computing Threads Started

Metric Description
Number of threads started across all EUs for compute work.

Possible Issues
High thread issue rate lowers GPU usage efficiency due to thread creation overhead even for lightweight GPU
threads. To improve performance, change the kernel code to increase the load in a working item, adjust
global working size, and so decrease the number of GPU threads.

See Also
Reference for Performance Metrics

Computing Threads Started, Threads/sec

Metric Description
Number of threads started across all EUs for compute work per second.

See Also
Reference for Performance Metrics

 1 Intel® VTune™ Profiler User Guide

866

CPU Time

Metric Description
CPU Time is time during which the CPU is actively executing your application.

See Also
Reference for Performance Metrics

EU 2 FPU Pipelines Active

Metric Description
The normalized sum of all cycles on all cores when both EU FPU pipelines were actively processing

See Also
Reference for Performance Metrics

EU Array Active

Metric Description
The normalized sum of all cycles on all cores spent actively executing instructions.

See Also
Reference for Performance Metrics

EU Array Idle

Metric Description
The normalized sum of all cycles on all cores when no threads were scheduled on a core.

Possible Issues
A significant portion of GPU time is spent idle. That is usually caused by imbalance or thread scheduling
problems.

See Also
Reference for Performance Metrics

EU Array Stalled/Idle

Metric Description
The average time the EUs were stalled or idle.

Possible Issues
The time when the EUs were stalled or idle is high, which has a negative impact on compute-bound
applications.

Intel® VTune™ Profiler User Guide 1

867

See Also
Reference for Performance Metrics

EU Array Stalled

Metric Description
The normalized sum of all cycles on all cores spent stalled. At least one thread is loaded, but the core is
stalled for some reason.

Possible Issues
A significant portion of GPU time is spent in stalls. For compute bound code it indicates that the performance
might be limited by memory or sampler accesses.

See Also
Reference for Performance Metrics

EU IPC Rate

Metric Description
The average rate of instructions per cycle (IPC) calculated for 2 FPU pipelines

See Also
Reference for Performance Metrics

EU Send pipeline active

Metric Description
The normalized sum of all cycles on all cores when EU send pipeline was actively processing

See Also
Reference for Performance Metrics

EU Threads Occupancy

Metric Description
The normalized sum of all cycles on all cores and thread slots when a slot has a thread scheduled.

See Also
Reference for Performance Metrics

Host to GPU Memory Read Bandwidth

Metric Description
This metric counts the number of host reads to the GPU local (HBM) memory downstream.

 1 Intel® VTune™ Profiler User Guide

868

See Also
Reference for Performance Metrics

Host-to-GPU Memory Write Bandwidth

Metric Description
This metric counts the number of host writes to the GPU local (HBM) memory downstream.

See Also
Reference for Performance Metrics

Global

Metric Description
Total working size of a computing task.

See Also
Reference for Performance Metrics

GPU EU Array Usage

Metric Description
The normalized sum of all cycles on all cores with at least one thread loaded.

See Also
Reference for Performance Metrics

GPU L3 Bound

Metric Description
This metric shows how often the GPU was idle or stalled on the L3 cache.

Possible Issues
L3 bandwidth was high when EUs were stalled or idle. Consider improving cache reuse.

See Also
Reference for Performance Metrics

GPU L3 Miss Ratio

Metric Description
Read and write miss ratio in GPU L3 cache. This doesn't count code lookups.

See Also
Reference for Performance Metrics

Intel® VTune™ Profiler User Guide 1

869

GPU L3 Misses

Metric Description
Read and write misses in GPU L3 cache.

See Also
Reference for Performance Metrics

GPU L3 Misses, Misses/sec

Metric Description
Read and write misses in GPU L3 cache. This doesn't count code lookups.

See Also
Reference for Performance Metrics

GPU Memory Read Bandwidth, GB/sec

Metric Description
GPU memory read bandwidth between the GPU, chip uncore (LLC) and main memory. This metric counts all
memory accesses that miss the internal GPU L3 cache or bypass it and are serviced either from uncore or
main memory.

See Also
Reference for Performance Metrics

GPU Memory Texture Read Bandwidth, GB/sec

Metric Description
Sampler unit misses in sampler cache.

See Also
Reference for Performance Metrics

GPU Memory Write Bandwidth, GB/sec

Metric Description
GPU write bandwidth between the GPU, chip uncore (LLC) and main memory. This metric counts all memory
accesses that miss the internal GPU L3 cache or bypass it and are serviced either from uncore or main
memory.

See Also
Reference for Performance Metrics

 1 Intel® VTune™ Profiler User Guide

870

GPU Texel Quads Count, Count/sec

Metric Description
Number of texels returned from the sampler.

See Also
Reference for Performance Metrics

GPU Utilization

Metric Description
The percentage of time when GPU engine was utilized.

VTune Profiler collects high level information about the GPU Utilization metric when you run the GPU
Offload and GPU Compute/Media Hotspots analyses. This information is available in the GPU Offload
viewpoint. To see more detailed metric information, rebuild the Linux kernel to enable i915 ftrace events.

Use the Summary, Platform, and Graphics window to explore the GPU utilization at the application and
computing task level.

GPU Utilization in the Summary Window

If your system satisfies configuration requirements for GPU analysis (i915 ftrace event collection is
supported), VTune Profiler displays detailed GPU Utilization analysis data across all engines that had at
least one DMA packet executed. By default, the VTune Profiler flags the GPU utilization less than 80% as a
performance issue. In the example below, 85.9% of the application elapsed time was utilized by GPU
engines.

Depending on the target platform used for GPU analysis, the GPU Utilization section in the Summary
window shows the time (in seconds) used by GPU engines. Note that GPU engines may work in parallel and
the total time taken by GPU engines does not necessarily equal the application Elapsed time.

You may correlate GPU Time data with the Elapsed Time metric. The GPU Time value shows a share of the
Elapsed time used by a particular GPU engine. If the GPU Time takes a significant portion of the Elapsed
Time, it clearly indicates that the application is GPU-bound.

If your system does not support i915 ftrace event collection, all the GPU Utilization statistics will be
calculated based on the hardware events and attributed to the Render and GPGPU engine.

GPU Utilization in the Platform Window
Explore overall GPU utilization per GPU engine at each moment of time. By default, the Platform window
displays GPU Utilization and software queues per GPU engine. Hover over an object executed on the GPU (in
yellow) to view a short summary on GPU utilization, where GPU Utilization is the time when a GPU engine
was executing a workload. You can explore the top GPU Utilization band in the chart to estimate the
percentage of GPU engine utilization (yellow areas vs. white spaces) and options to submit additional work to
the hardware.

To view and analyze GPU software queues, select an object (packet) in the queue and the VTune Profiler
highlights the corresponding software queue bounds:

Intel® VTune™ Profiler User Guide 1

871

Full software queue prevents packet submissions and causes waits on a CPU side in the user-mode driver
until there is space in the queue. To check whether such a stall decreases your performance, you may
decrease a workload on the hardware and switch to the Graphics window to see if there are less waits on
the CPU in threads that spawn packets. Another option could be to additionally load the queue by tasks and
see whether the queue length increases.

Possible Issues
GPU utilization is low. Consider offloading more work to the GPU to increase overall application performance.

See Also
GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics

Reference for Performance Metrics

Instance Count

Metric Description
Total number of times a task is run.

See Also
Reference for Performance Metrics

L3 Read Bandwidth

Metric Description
Total number of bytes read from L3 cache to XVE array.

See Also
Reference for Performance Metrics

L3 Write Bandwidth

Metric Description
Total number of bytes written to L3 cache by XVE array.

See Also
Reference for Performance Metrics

L3 Sampler Bandwidth, GB/sec

Metric Description
Total number of bytes transferred between Samplers and L3 caches.

See Also
Reference for Performance Metrics

 1 Intel® VTune™ Profiler User Guide

872

L3 Shader Bandwidth, GB/sec

Metric Description
Total number of bytes transferred directly between EUs and L3 caches.

See Also
Reference for Performance Metrics

LLC Miss Rate due GPU Lookups

Metric Description
The Last Level Uncore cache (LLC) miss rate across all look-ups done from the GPU.

See Also
Reference for Performance Metrics

LLC Miss Ratio due GPU Lookups

Metric Description
The Last Level Uncore cache (LLC) miss count across all lookups done from the GPU.

See Also
Reference for Performance Metrics

Local

Metric Description
Local space size of a computing task. For example, for an OpenCL kernel, it is a working group size.

See Also
Reference for Performance Metrics

Maximum GPU Utilization

Metric Description
Maximum GPU usage across engines that had at least one packet on them.

See Also
Reference for Performance Metrics

Occupancy

Metric Description
The normalized sum of all cycles on all core and thread slots when a slot has a thread scheduled.

Intel® VTune™ Profiler User Guide 1

873

Possible Issues
Low value of the occupancy metric may be be caused by iniefficient work scheduling. Make sure work items
are niether too small nor too large.

See Also
Reference for Performance Metrics

PS EU Active %

The metric PS EU Active % represents the percentage of overall GPU time that the EUs were actively
executing Pixel Shader instructions.

This metric is important if pixel shading seems to be the bottleneck for selected rendering calls.

Possible Issues
• IfPS EU Active % is 50%, it means that half of the overall GPU time was spent actively executing Pixel

Shader instructions.
• If PS EU Active % is 0%, it means that no Pixel Shader was associated with the selected draw calls, or

that the amount of time actively executing Pixel Shader instructions was negligible.

To improve performance:

•
• If PS EU Active % accounts for most of the EU active time, then to improve performance you may need

to simplify the pixel shader.
• If PS EU Active % is larger than you would expect and you are encountering slow rendering times, you

should examine the pixel shader code for potential reasons why these stalls may be occurring.

See Also
GPU Rendering Analysis (Preview)

PS EU Stall %

Metric Description
The metric PS EU Stall % represents the percentage of overall GPU time that the EUs were stalled in Pixel
Shader instructions. This metric is important if pixel shading seems to be the bottleneck for selected
rendering calls.

NOTE
This metric does not show total amount of stalled time in the pixel shader, but only the fraction of time
when pixel shader stalls caused the entire EU to stall. The entire EU stalls when all of its threads are
stalled.

Possible Issues
• If PS EU Stall % is 50%, it means that half of the overall GPU time was spent stalled on Pixel Shader

instructions.
• If PS EU Stall % is 0% it means that no Pixel Shader was associated with selected rendering calls or

Pixel Shader threads were not causing EUs stalls.

To improve performance:

• If PS EU Stall %accounts for most the EU active time, then to improve performance you may need to
simplify the pixel shader.

 1 Intel® VTune™ Profiler User Guide

874

• If PS EU Stall % is larger than you expect and you are encountering slow rendering times, you need to
concentrate on pixel shader code to find reasons for these stalls.

See Also
GPU Rendering Analysis (Preview)

Ratio to Max Bandwidth, %

Metric Description
Ratio of the bandwidth on this link to its theoretical peak.

See Also
Reference for Performance Metrics

Ratio to Max Bandwidth, %

Metric Description
Ratio of the write bandwidth on this link to its write theoretical peak.

See Also
Reference for Performance Metrics

Ratio to Max Bandwidth, %

Metric Description
Ratio of the read bandwidth on this link to its read theoretical peak.

See Also
Reference for Performance Metrics

Render/GPGPU Command Streamer Loaded

Metric Description
The normalized sum of all cycles where commands exist on the GPU Render/GPGPU ring.

See Also
Reference for Performance Metrics

Samples Blended

Metric Description
The Samples Blended metric represents the total number of blended samples or pixels written to all render
targets.

See Also
GPU Rendering Analysis (Preview)

Intel® VTune™ Profiler User Guide 1

875

Samples Killed in PS, pixels

Metric Description
The Samples Killed in PS, pixels metric represents the total number of samples or pixels dropped in pixel
shaders.

See Also
GPU Rendering Analysis (Preview)

Samples Written

Metric Description
The Samples Written metric represents the number of pixels/samples written to render targets.

The graphics driver 9.17.10 introduces a new notion of deferred clears. For the sake of optimization, the
driver decides whether to defer the actual rendering of clear calls in case subsequent clear and draw calls
make it unnecessary. As a result, when clear calls are deferred, the Intel® VTune™ Profiler shows their GPU
Duration and Samples Written as zero. If later it turns out that a clear call needs to be drawn, the work
associated with that clear call gets included in the duration of the erg that was being drawn when this clear
call was deferred, not necessarily a clear call. This means that in the VTune Profiler metrics associated with a
clear call accurately reflect the real work associated with that erg.

See Also
GPU Rendering Analysis (Preview)

Sampler Busy

Metric Description
The normalized sum of all cycles on all cores when the Sampler was busy while EUs were stalled or idle.

Possible Issues
Sampler was overutilized when EUs were stalled or idle. Consider reducing the image-related operations.

See Also
Reference for Performance Metrics

Sampler Is Bottleneck

Metric Description
Sampler stalls EUs due to the full input fifo queue, and starves the output fifo, so EUs need to wait to submit
requests to sampler.

Possible Issues
Significant amount of sampler accesses might cause stalls. Consider decreasing the use of the sampler or
access it with a better locality.

See Also
Reference for Performance Metrics

 1 Intel® VTune™ Profiler User Guide

876

Shared Local Memory Read Bandwidth, GB/sec

Metric Description
Untyped memory reads from Shared Local Memory.

See Also
Reference for Performance Metrics

Shared Local Memory Write Bandwidth, GB/sec

Metric Description
Untyped memory writes to Shared Local Memory.

See Also
Reference for Performance Metrics

SIMD Width

Metric Description
The number of working items processed by a GPU thread.

See Also
Reference for Performance Metrics

Stack-to-stack Incoming Bandwidth

Metric Description
Incoming bandwidth for the stack-to-stack link. This metric counts all incoming writes and outgoing reads
return.

See Also
Reference for Performance Metrics

Stack-to-stack Outgoing Bandwidth

Metric Description
Outgoing bandwidth for the stack-to-stack link. This metric counts all outgoing writes and incoming reads
return.

See Also
Reference for Performance Metrics

Intel® VTune™ Profiler User Guide 1

877

System Memory Read Bandwidth

Metric Description
System memory read bandwidth originated from GPU. This metric counts the number of system memory
reads (upstream).

See Also
Reference for Performance Metrics

System Memory Write Bandwidth

Metric Description
System memory write bandwidth originated from the GPU. This metric counts the number of system memory
writes (upstream).

See Also
Reference for Performance Metrics

Size

Metric Description
Amount of memory processed on a GPU.

See Also
Reference for Performance Metrics

Total, GB/sec

Metric Description
Average bandwidth of data transfer between a CPU and a GPU. In some cases (for example,
clEnqueueMapBuffer), there may be transfers generating high bandwidth values because memory is not
copied but shared via L3 cache.

See Also
Reference for Performance Metrics

Total Time

Metric Description
Total amount of time spent within a task.

See Also
Reference for Performance Metrics

 1 Intel® VTune™ Profiler User Guide

878

Typed Memory Read Bandwidth, GB/sec

Metric Description
Bandwidth of memory read from typed buffers. Note that reads from images (for example created with
clCreateImage) are counted by sampler accesses and Texture Read metrics.

See Also
Reference for Performance Metrics

Typed Memory Write Bandwidth, GB/sec

Metric Description
Bandwidth of memory written to typed buffers (for example created with clCreateImage).

See Also
Reference for Performance Metrics

Typed Reads Coalescence

Metric Description
Transaction Coalescence is a ratio of the used bytes to all bytes requested by the transaction. The lower the
coalescence, the bigger part of the bandwidth is wasted. It originates from the GPU Data Port function that
dynamically merges scattered memory operations into fewer operations over non-duplicated 64-byte
cacheline requests. For example, if a 16-wide SIMD operation consecutively reads integer array elements
with a stride of 2, the coalescence of such a transaction is 50%, because half of the bytes in the requested
cacheline is not used.

See Also
Reference for Performance Metrics

Typed Writes Coalescence

Metric Description
Transaction Coalescence is a ratio of the used bytes to all bytes requested by the transaction. The lower the
coalescence, the bigger part of the bandwidth is wasted. It originates from the GPU Data Port function that
dynamically merges scattered memory operations into fewer operations over non-duplicated 64-byte
cacheline requests. For example, if a 16-wide SIMD operation consecutively reads integer array elements
with a stride of 2, the coalescence of such a transaction is 50%, because half of the bytes in the requested
cacheline is not used.

See Also
Reference for Performance Metrics

Untyped Memory Read Bandwidth, GB/sec

Metric Description
Bandwidth of memory read from untyped buffers (for example created with clCreateBuffer).

Intel® VTune™ Profiler User Guide 1

879

See Also
Reference for Performance Metrics

Untyped Memory Write Bandwidth, GB/sec

Metric Description
Bandwidth of memory written to untyped buffers (for example created with clCreateBuffer).

See Also
Reference for Performance Metrics

Untyped Reads Coalescence

Metric Description
Transaction Coalescence is a ratio of the used bytes to all bytes requested by the transaction. The lower the
coalescence, the bigger part of the bandwidth is wasted. It originates from the GPU Data Port function that
dynamically merges scattered memory operations into fewer operations over non-duplicated 64-byte
cacheline requests. For example, if a 16-wide SIMD operation consecutively reads integer array elements
with a stride of 2, the coalescence of such a transaction is 50%, because half of the bytes in the requested
cacheline is not used.

See Also
Reference for Performance Metrics

Untyped Writes Coalescence

Metric Description
Transaction Coalescence is a ratio of the used bytes to all bytes requested by the transaction. The lower the
coalescence, the bigger part of the bandwidth is wasted. It originates from the GPU Data Port function that
dynamically merges scattered memory operations into fewer operations over non-duplicated 64-byte
cacheline requests. For example, if a 16-wide SIMD operation consecutively reads integer array elements
with a stride of 2, the coalescence of such a transaction is 50%, because half of the bytes in the requested
cacheline is not used.

See Also
Reference for Performance Metrics

VS EU Active

Metric Description
The VS EU Active metric represents the percentage of overall GPU time that the execution units (EUs) were
actively executing Vertex Shader instructions. This metric is important if vertex processing seems to be a
bottleneck for selected rendering calls.

Possible Issues
• If VS EU Active is 50%, half of the overall GPU time was spent actively executing Vertex Shader

instructions.

 1 Intel® VTune™ Profiler User Guide

880

• If VS EU Active is 0%, no Vertex Shader was associated with the selected draw calls, or the amount of
time actively executing Vertex Shader instructions was negligible.

To improve performance:

• If VS EU Active accounts for most of the EU active time, then to improve performance you should
simplify the vertex shader or simplify and optimize the geometry of your primitives.

• If VS EU Active is significant, you should examine your vertex shader code to find the reasons that might
be causing stalls.

See Also
GPU Rendering Analysis (Preview)

VS EU Stall

Metric Description
The VS EU Stall metric represents the percentage of overall GPU time that the execution units (EUs) were
stalled in Vertex Shader instructions. This metric is important if vertex processing seems to be the bottleneck
for selected rendering calls.

NOTE
This metric does not include the total amount of time stalled in the vertex shader, but only the fraction
of the time when vertex shader stalls were causing the entire EU to stall. The entire EU stalls when all
of its threads are stalled.

Possible Issues
• If VS EU Stall is 50%, it means that half of the overall GPU time was spent stalled on Vertex Shader

instructions.
• If VS EU Stall is 0%, it means that no Vertex Shader was associated with selected rendering calls or

Vertex Shader threads were not causing EUs stalls.

To improve performance:

• If VS EU Stallaccounts for most of the EU active time, then to improve performance you might need to
simplify the vertex shader or simplify and optimize geometry.

• If VS EU Stall is significant, you need to concentrate on vertex shader code to find the reasons that are
causing stalls.

See Also
GPU Rendering Analysis (Preview)

OpenCL™ Kernel Analysis Metrics Reference

Computing Task Total Time

Metric Description
Total amount of time spent within a computing task (OpenCL™ kernel).

See Also
Interpreting GPU OpenCL Application Analysis Data

Intel® VTune™ Profiler User Guide 1

881

Instance Count

Metric Description
Total number of times a computing task (OpenCL™ kernel) is run.

See Also
Interpreting GPU OpenCL Application Analysis Data

SIMD Width

Metric Description
The number of working items processed by a GPU thread.

See Also
Interpreting GPU OpenCL Application Analysis Data

SIMD Utilization

Metric Description
The ratio of active SIMD lanes to the width of the SIMD instructions.

See Also
Reference for Performance Metrics

Work Size

Metric Description
Global Work Size is a total workspace size of a computing task (OpenCL™ kernel). Local Work Size is a local
working group size of a computing task.

See Also
Interpreting GPU OpenCL Application Analysis Data

Energy Analysis Metrics Reference

Available Core Time

Metric Description
Total execution time over all cores.

See Also
Reference for Performance Metrics

 1 Intel® VTune™ Profiler User Guide

882

C-State

C-State residencies are collected from hardware and/or the operating system (OS).

For systems that collect OS C-State residencies, CPU C-states are core power states requested by the
Operating System Directed Power Management (OSPM) infrastructure that define the degree to which the
processor is "idle".

For systems that collect hardware C-State residencies, CPU C-States are obtained by reading the processor’s
MSRs which count the actual time spent in each C-State.

C-States range from C0 to Cn. C0 indicates an active state. All other C-states (C1-Cn) represent idle sleep
states where the processor clock is inactive (cannot execute instructions) and different parts of the processor
are powered down. As the C-States get deeper, the exit latency duration becomes longer (the time to
transition to C0) and the power savings becomes greater.

NOTE
This metric is collected as part of energy analysis. Collecting energy analysis data with Intel® SoC
Watch is available for target Android*, Windows*, or Linux* devices. Import and viewing of the Intel
SoC Watch results is supported with any version of the VTune Profiler.

See Also
Energy Analysis
Interpreting Energy Analysis Data

D0ix States

D0ix-states represent power states ranging from D0i0 to D0i3, where D0i0 is fully powered on and D0i3 is
primarily powered off.

The SoC is organized into a north and south complex where the compute intensive components (for example,
video decode, image processing, and others) are located in the north complex. The south complex contains
I/O, audio, system management, and other components. SoC components should be in the D0i3 state when
not in use.

NOTE
This metric is collected as part of energy analysis. Collecting energy analysis data with Intel® SoC
Watch is available for target Android*, Windows*, or Linux* devices. Import and viewing of the Intel
SoC Watch results is supported with any version of the VTune Profiler.

See Also
Interpreting Energy Analysis Data

DRAM Self Refresh
DRAM Self Refresh residency represents the percentage of time the system’s DRAM was doing self-refresh
during the collection period. The system’s DRAM will enter a low power self-refresh mode when it is not being
actively utilized.

NOTE
This metric is collected as part of energy analysis. Collecting energy analysis data with Intel® SoC
Watch is available for target Android*, Windows*, or Linux* devices. Import and viewing of the Intel
SoC Watch results is supported with any version of the VTune Profiler.

Intel® VTune™ Profiler User Guide 1

883

https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html

See Also
Energy Analysis with Intel VTune Profiler
Interpreting Energy Analysis Data
Window: Bandwidth

Energy Consumed (mJ)
This column shows the energy consumed per component (package, CPU, GPU) during the collection period
(in millijoules).

NOTE
This metric is collected as part of energy analysis. Collecting energy analysis data with Intel® SoC
Watch is available for target Android*, Windows*, or Linux* devices. Import and viewing of the Intel
SoC Watch results is supported with any version of the VTune Profiler.

See Also
Energy Analysis
Interpreting Energy Analysis Data

Idle Wake-ups
Number of times a thread caused the system to wake up from idleness to begin executing the thread.

This metric is available in the Hardware Events viewpoint if you enabled the Collect stacks option during the
hardware event-based sampling analysis configuration.

See Also
Hardware Event-based Sampling Collection with Stacks

P-State

CPU P-states represent voltage-frequency control states defined as performance states in the industry
standard Advanced Configuration and Power Interface (ACPI) specification (see http://www.acpi.info for more
details).

In voltage-frequency control, the voltage and clocks that drive circuits are increased or decreased in
response to a workload. The operating system requests specific P-states based on the current workload. The
processor may accept or reject the request and set the P-state based on its own state.

P-states columns represent the processor’s supported frequencies and the time spent in each frequency
during the collection period.

NOTE
This metric is collected as part of energy analysis. Collecting energy analysis data with Intel® SoC
Watch is available for target Android*, Windows*, or Linux* devices. Import and viewing of the Intel
SoC Watch results is supported with any version of the VTune Profiler.

See Also
Interpreting Energy Analysis Data
Energy Analysis Metrics

 1 Intel® VTune™ Profiler User Guide

884

https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html

S0ix States
S0ix-states represent the residency in the Intel® SoC idle standby power states. The S0ix states shut off part
of the SoC when they are not in use. The S0ix states are triggered when specific conditions within the SoC
have been achieved, for example: certain components are in low power states. The SoC consumes the least
amount of power in the deepest (for example, S0i3) state.

On Linux*, Android*, and Chrome* OS, ACPI-SState represent the system’s residency in the ACPI Suspend-
To-RAM (S3). In the Suspend-To-RAM state, the Linux kernel powers down many of the systems’ components
while maintaining the system’s state in its main memory. The system consumes the least amount of power
possible while in the Suspend-To-RAM state. Note that any wakelock will prevent the system from entering
the Suspend-To-RAM state.

NOTE
This metric is collected as part of energy analysis. Collecting energy analysis data with Intel® SoC
Watch is available for target Android*, Windows*, or Linux* devices. Import and viewing of the Intel
SoC Watch results is supported with any version of the VTune Profiler.

See Also
Energy Analysis
Interpreting Energy Analysis Data
Window: Wakelocks

Temperature

Temperature columns show the number of samples collected in each temperature reading (Co), for each
device.

NOTE
This metric is collected as part of energy analysis. Collecting energy analysis data with Intel® SoC
Watch is available for target Android*, Windows*, or Linux* devices. Import and viewing of the Intel
SoC Watch results is supported with any version of the VTune Profiler.

See Also
Energy Analysis To analyze the power consumption of your Android*, Windows*, or Linux*
platform, run the Intel® SoC Watch collector and view the results using Intel VTune Profiler.

Timer Resolution
The default timer resolution on Windows* is 15.6 ms – a timer interrupt 64 times a second. While in
connected standby, the resolution will be changed by the operating system to 30 seconds. When programs
increase the timer frequency (decrease the timer resolution), they increase power consumption of the
platform.

The Timer Resolution shows the time spent in each resolution interval during the collection period.

NOTE
This metric is collected as part of energy analysis. Collecting energy analysis data with Intel® SoC
Watch is available for target Android*, Windows*, or Linux* devices. Import and viewing of the Intel
SoC Watch results is supported with any version of the VTune Profiler.

See Also
Energy Analysis
Interpreting Energy Analysis Data

Intel® VTune™ Profiler User Guide 1

885

https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html
https://www.intel.com/content/www/us/en/docs/socwatch/user-guide/current/overview.html

Window: Timer Resolution

Total Time in C0 State

Metric Description
Total time spent in the active C0 state over all cores.

See Also
Reference for Performance Metrics

Total Time in Non-C0 States

Metric Description
Total time in sleep states C1-Cx over all cores.

See Also
Reference for Performance Metrics

Total Time in S0 State

Metric Description
Total time spent in the active S0i0 state.

See Also
Reference for Performance Metrics

Total Wake-up Count
Total number of CPU wake-ups over all cores.

This metric is available in the Platform Power Analysis viewpoint.

See Also
Interpreting Energy Analysis Data

Wake-ups

Metric Description
Percentage of core wake-ups over all cores.

See Also
Reference for Performance Metrics

Wake-ups/sec per Core

Metric Description
Rate of wake-ups.

See Also
Reference for Performance Metrics

 1 Intel® VTune™ Profiler User Guide

886

Intel Processor Events Reference
Intel® VTune™ Profiler provides a set of hardware event-based analysis types that help you estimate how
effectively your application uses hardware resources. These analysis types monitor hardware events
supported by your system's Performance Monitoring Unit (PMU). The PMU is hardware built inside a processor
to measure its performance parameters such as instruction cycles, cache hits, cache misses, branch misses
and many others.

NOTE
For more information on Intel® 64 and IA-32 architectures, explore Intel Software Developer Manuals
available at https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html.

For details on hardware events supported by your system's PMU, use any of the following options:

• When adding new events to your custom configuration, select an event in the table and explore its short
description, or click the Explain button to open the Intel Processor Events Reference for more details:

• For a full list of processor events and descriptions, explore the web-based Intel Processor Events
Reference.

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel® VTune™ Profiler User Guide 1

887

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://download.01.org/perfmon/
https://download.01.org/perfmon/

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

 1 Intel® VTune™ Profiler User Guide

888

	Contents
	Intel® VTune™ Profiler User Guide
	Introduction
	Tuning Methodology
	Tutorials and Samples
	Notational Conventions
	Get Help
	Product Website and Support
	Related Information

	Install Intel® VTune™ Profiler
	Sampling Drivers
	Set Up System for GPU Analysis
	Rebuild and Install the Kernel for GPU Analysis
	Rebuild and Install Module i915 for GPU Analysis on CentOS*
	Rebuild and Install Module i915 for GPU Analysis on Ubuntu*

	Verify Intel® VTune™ Profiler Installation
	Install VTune Profiler Server
	Set Up Transport Security
	Configure User Authentication/Authorization

	Security Best Practices

	Open Intel® VTune™ Profiler
	Get Started with Intel® VTune™ Profiler
	Intel® VTune™ Profiler Graphical User Interface
	Web Server Interface
	Microsoft Visual Studio* Integration
	Eclipse* and Intel System Studio IDE Integration
	Containerization Support
	Run VTune Profiler in a Container
	Profile Container Targets from the Host

	macOS* Support

	Set Up Project
	WHERE: Analysis System
	Analysis System Options

	WHAT: Analysis Target
	Analysis Target Options

	HOW: Analysis Types
	Search Directories
	Search Order

	Set Up Analysis Target
	Prepare Application for Analysis
	Windows* Targets
	Install the Sampling Drivers for Windows* Targets
	Debug Information for Windows* Application Binaries
	Compiler Switches for Performance Analysis on Windows* Targets
	Debug Information for Windows* System Libraries
	Add Administrative Privileges

	Linux* Targets
	Build and Install the Sampling Drivers for Linux* Targets
	Debug Information for Linux* Application Binaries
	Compiler Switches for Performance Analysis on Linux* Targets
	Enable Linux* Kernel Analysis
	Resolution of Symbol Names for Linux-Loadable Kernel Modules
	Analyze Statically Linked Binaries on Linux* Targets
	Set Up Remote Linux* Target
	Set Up Linux* System for Remote Analysis
	Configure SSH Access for Remote Collection
	Search Directories for Remote Linux* Targets
	Temporary Directory for Performance Results on Linux* Targets

	Embedded Linux* Targets
	Configure Yocto Project* and VTune Profiler with the Integration Layer
	Configure Yocto Project*/Wind River* Linux* and Intel® VTune™ Profiler with the Intel System Studio Integration Layer
	Configure Yocto Project* and Intel® VTune™ Profiler with the Linux* Target Package

	FreeBSD* Targets
	Set Up FreeBSD* System

	QNX* Targets
	Managed Code Targets
	.NET* Targets
	Windows Store Application Targets
	Go* Application Targets

	Android* Targets
	Build and Install Sampling Drivers for Android* Targets
	Set Up Android* System
	Enable Java* Analysis on Android* System
	Prepare an Android* Application for Analysis
	Analyze Unplugged Devices
	Search Directories for Android* Targets

	Intel® Xeon Phi™ Processor Targets
	Targets in Virtualized Environments
	Profile Targets on a VMware* Guest System
	Profile Targets on a Parallels* Guest System
	Profile Targets on a KVM* Guest System
	Profile KVM Kernel Modules from the Host
	Profile KVM Kernel and User Space on the KVM System
	Profile KVM Kernel and User Space from the Host

	Profile Targets on a Xen* Virtualization Platform
	Profile Targets in the Hyper-V* Environment

	Targets in a Cloud Environment
	Arbitrary Targets
	Embedded System Targets

	Analyze Performance
	User-Mode Sampling and Tracing Collection
	Hardware Event-based Sampling Collection
	Allow Multiple Runs or Multiplex Events
	Hardware Event-based Sampling Collection with Stacks

	Performance Snapshot
	Algorithm Group
	Hotspots Analysis for CPU Usage Issues
	Hotspots View

	Anomaly Detection Analysis (preview)
	Anomaly Detection View

	Memory Consumption Analysis
	Memory Consumption and Allocations View

	Microarchitecture Analysis Group
	Microarchitecture Exploration Analysis for Hardware Issues
	Microarchitecture Exploration View
	Microarchitecture Pipe

	Memory Access Analysis for Cache Misses and High Bandwidth Issues
	Memory Usage View

	Parallelism Analysis Group
	Threading Analysis
	Threading Efficiency View

	HPC Performance Characterization Analysis
	HPC Performance Characterization View

	Input and Output Analysis
	Analyze Platform Performance
	Analyze DPDK Applications
	Analyze SPDK Applications
	Analyze Linux Kernel I/O

	Accelerators Analysis Group
	GPU Offload Analysis
	GPU Compute/Media Hotspots Analysis (Preview)
	GPU Compute/Media Hotspots View

	CPU/FPGA Interaction Analysis
	CPU/FPGA Interaction View

	NPU Exploration Analysis (Preview)
	NPU Exploration View

	Platform Analysis Group
	System Overview Analysis
	Analyze Interrupts
	Analyze Latency Issues

	Platform Analysis
	Hybrid CPU Analysis
	Source Code Analysis
	Custom Analysis
	Custom Analysis Options
	Highly Accurate CPU Time Data Collection
	Hardware Event List
	Hardware Event Skid
	Instructions Retired Event
	Precise Events

	Linux* and Android* Kernel Analysis
	Sampling Interval
	Sample After Value

	Energy Analysis
	Run Energy Analysis
	View Energy Analysis Data with Intel® VTune™ Profiler
	Interpret Energy Analysis Data with Intel® VTune™ Profiler

	Code Profiling Scenarios
	Java* Code Analysis
	Python* Code Analysis
	Intel® Threading Building Blocks Code Analysis
	MPI Code Analysis
	OpenSHMEM* Code Analysis with Fabric Profiler
	GPU Application Analysis on Intel® HD Graphics and Intel® Iris® Graphics
	GPU OpenCL™ Application Analysis
	Intel® Media SDK Program Analysis

	Frame Data Analysis
	Task Analysis

	Control Data Collection
	Finalization
	Pause Data Collection
	Limit Data Collection
	Generate Command Line Configuration from GUI
	Minimize Collection Overhead
	Import External Data
	Use a Custom Collector
	Create a CSV File with External Data
	Import Linux Perf* Trace with VTune Profiler Metrics
	Examples of CSV Format and Imported Data

	Manage Data Views
	Switch Viewpoints
	Control Window Synchronization
	View Stacks
	Call Stack Mode
	Metrics Distribution Over Call Stacks

	Manage Grid Views
	Manage Timeline View
	Change Threshold Values
	Choose Data Format
	Group and Filter Data
	View Data on Inline Functions
	Analyze Loops
	Stitch Stacks for Intel® oneAPI Threading Building Blocks or OpenMP* Analysis
	Search for Data

	Manage Result Files
	VTune Profiler Filenames and Locations
	Import Results and Traces into VTune Profiler GUI
	Compare Results
	Compare Source Code
	View Comparison Data
	Comparison Summary
	Bottom-up Comparison
	Top-down Tree Comparison

	Intel® VTune™ Profiler Command Line Interface
	vtune Command Syntax
	vtune Actions
	Run Command Line Analysis
	performance-snapshot Command Line Analysis
	hotspots Command Line Analysis
	anomaly-detection Command Line Analysis
	threading Command Line Analysis
	memory-consumption Command Line Analysis
	hpc-performance Command Line Analysis
	uarch-exploration Command Line Analysis
	memory-access Command Line Analysis
	tsx-exploration Command Line Analysis
	tsx-hotspots Command Line Analysis
	sgx-hotspots Command Line Analysis
	gpu-hotspots Command Line Analysis
	gpu-offload Command Line Analysis
	npu
	graphics-rendering Command Line Analysis
	fpga-interaction Command Line Analysis
	io Command Line Analysis
	system-overview Command Line Analysis
	runsa/runss Custom Command Line Analysis
	Configure Analysis Options from Command Line
	Collect System-Wide Data from Command Line
	Collect Data on Remote Linux* Systems from Command Line
	Configure GPU Analysis from Command Line
	Specify Search Directories from Command Line
	Specify Result Directory from Command Line
	Pause Collection from Command Line
	Manage Analysis Duration from Command Line
	Limit Data Collection from Command Line

	Work with Results from Command Line
	View Command Line Results in the GUI
	Import Results from Command Line
	Re-finalize Results from Command Line

	Generate Command Line Reports
	Summary Report
	Hotspots Report
	Hardware Events Report
	Callstacks Report
	Timeline Report
	Top-down Report
	gprof-cc Report
	Difference Report
	View Source Objects from Command Line
	Save and Format Command Line Reports
	Filter and Group Command Line Reports

	Command Line Usage Scenarios
	Use VTune Profiler Server in Containers
	Android* Target Analysis from the Command Line
	OpenMP* Analysis from the Command Line
	Java* Code Analysis from the Command Line

	Command Line Interface Reference
	Option Descriptions and General Rules
	allow-multiple-runs
	analyze-kvm-guest
	analyze-system
	app-working-dir
	archive
	call-stack-mode
	collect
	collect-with
	column
	command
	cpu-mask
	csv-delimiter
	cumulative-threshold-percent
	custom-collector
	data-limit
	discard-raw-data
	duration
	filter
	finalization-mode
	finalize
	format
	group-by
	help
	import
	inline-mode
	knob
	kvm-guest-kallsyms
	kvm-guest-modules
	limit
	loop-mode
	mrte-mode
	no-follow-child
	no-summary
	no-unplugged-mode
	quiet
	report
	report-knob
	report-output
	report-width
	result-dir
	resume-after
	return-app-exitcode
	ring-buffer
	search-dir
	show-as
	sort-asc
	sort-desc
	source-object
	source-search-dir
	stack-size
	start-paused
	strategy
	target-install-dir
	target-system
	target-tmp-dir
	target-duration-type
	target-pid
	target-process
	time-filter
	trace-mpi
	user-data-dir
	verbose
	version

	Report Problems from Command Line

	API Support
	Instrumentation and Tracing Technology APIs
	Basic Usage and Configuration
	Configure Your Build System
	Attach ITT APIs to a Launched Application
	Instrument Your Application
	Minimize ITT API Overhead
	View Instrumentation and Tracing Technology (ITT) API Task Data in Intel® VTune™ Profiler

	Instrumentation and Tracing Technology API Reference
	Domain API
	String Handle API
	Collection Control API
	Thread Naming API
	Task API
	Frame API
	Histogram API
	User-Defined Synchronization API
	Event API
	Counter API
	Context Metadata API
	Load Module API
	Memory Allocation APIs

	JIT Profiling API
	Using JIT Profiling API
	JIT Profiling API Reference
	iJIT_NotifyEvent
	iJIT_IsProfilingActive
	iJIT_ GetNewMethodID

	System APIs Supported by Intel® VTune™ Profiler

	Troubleshooting
	Best Practices: Resolve Intel® VTune™ Profiler BSODs, Crashes, and Hangs in Windows* OS
	Error Message: Application Sets Its Own Handler for Signal
	Error Message: Cannot Enable Event-Based Sampling Collection
	Error Message: Cannot Collect GPU Hardware Metrics
	Error Message: Cannot Load Data File
	Error Message: Cannot Locate Debugging Information
	Error Message: Cannot Open Data
	Error Message: Client Is Not Authorized to Connect to Server
	Error Message: Root Privileges Required for Processor Graphics Events
	Error Message: No Pre-built Driver Exists for This System
	Error Message: Not All OpenCL™ API Profiling Callbacks Are Received
	Error Message: Problem Accessing the Sampling Driver
	Error Message: Required Key Not Available
	Error Message: Scope of ptrace System Call Is Limited
	Error Message: Stack Size Is Too Small
	Error Message: Symbol File Is Not Found
	Problem: Analysis of the .NET* Application Fails
	Problem: Cannot Access VTune Profiler Documentation
	Problem: CPU time for Hotspots or Threading Analysis is Too Low
	Problem: 'Events= Sample After Value (SAV) * Samples' Is Not True If Multiple Runs Are Disabled
	Problem: Guessed Stack Frames
	Problem: GUI Hangs or Crashes
	Problem: Inaccurate Sum in the Grid
	Problem: Information Collected via ITT API Is Not Available When Attaching to a Process
	Problem: No GPU Utilization Data Is Collected
	Problem: Same Functions Are Compared As Different Instances
	Problem: Skipped Stack Frames
	Problem: Stack in the Top-Down Tree Window Is Incorrect
	Problem: Stacks in Call Stack and Bottom-Up Panes Are Different
	Problem: System Functions Appear in the User Functions Only Mode
	Problem: VTune Profiler is Slow to Respond When Collecting or Displaying Data
	Problem: VTune Profiler is Slow on X-Servers with SSH Connection
	Problem: Unexpected Paused Time
	Problem: {Unknown Timer} in the Platform Power Analysis Viewpoint
	Problem: Unknown Critical Error Due to Disabled Loopback Interface
	Problem: Unknown Frames
	Problem: Unreadable Text on macOS*
	Problem: Unsupported Microsoft* Windows* OS
	Warnings about Accurate CPU Time Collection

	Reference
	User Interface
	Context Menu: Grid
	Context Menus: Call Stack Pane
	Context Menus: Project Navigator
	Context Menus: Source/Assembly Window
	Dialog Box: Binary/Symbol Search
	Dialog Box: Source Search
	Hot Keys
	Menu: Customize Grouping
	Menu: Intel VTune Profiler
	Pane: Call Stack
	Pane: Options - General
	Pane: Options - Result Location
	Pane: Options - Source/Assembly
	Project Navigator
	Pane: Timeline
	Toolbar: Configure Analysis
	Toolbar: Filter
	Toolbar: Source/Assembly
	Toolbar: Intel VTune Profiler
	Window: Bandwidth - Platform Power Analysis
	Window: Bottom-up
	Window: Caller/Callee
	Window: Cannot Find <file type> File
	Window: Collection Log
	Window: Compare Results
	Window: Configure Analysis
	Window: Core Wake-ups - Platform Power Analysis
	Window: Correlate Metrics - Platform Power Analysis
	Window: CPU C/P States - Platform Power Analysis
	Window: Debug
	Window: Event Count - Hardware Events
	Window: Flame Graph
	Window: Graphics - GPU Compute/Media Hotspots
	Window: Graphics C/P States - Platform Power Analysis
	Window: NC Device States - Platform Power Analysis
	Window: Platform
	Window: Platform Power Analysis
	Window: Sample Count - Hardware Events
	Window: SC Device States - Platform Power Analysis
	Window: Summary
	Window: Summary - Input and Output Summary
	Window: Summary - Microarchitecture Exploration
	Window: Summary - GPU Analysis
	Window: Summary - Hardware Events
	Window: Summary - Hotspots by CPU Utilization
	Window: Summary - HPC Performance Characterization
	Window: Summary - Memory Consumption
	Window: Summary - Memory Usage
	Window: Summary - Platform Power Analysis

	Window: System Sleep States - Platform Power Analysis
	Window: Temperature/Thermal Sample - Platform Power Analysis
	Window: Timer Resolution - Platform Power Analysis
	Window: Top-down Tree
	Window: Uncore Event Count - Hardware Events
	Window: Wakelocks - Platform Power Analysis

	CPU Metrics Reference
	GPU Metrics Reference
	ALU0 Active
	ALU0 Instructions
	ALU1 Active
	ALU1 Instructions
	ALU2 Active
	ALU2 Instructions
	ALU0 and ALU1 Active
	ALU0 and ALU2 Active
	Average Time
	Computing Threads Started
	Computing Threads Started, Threads/sec
	CPU Time
	EU 2 FPU Pipelines Active
	EU Array Active
	EU Array Idle
	EU Array Stalled/Idle
	EU Array Stalled
	EU IPC Rate
	EU Send pipeline active
	EU Threads Occupancy
	Host to GPU Memory Read Bandwidth
	Host-to-GPU Memory Write Bandwidth
	Global
	GPU EU Array Usage
	GPU L3 Bound
	GPU L3 Miss Ratio
	GPU L3 Misses
	GPU L3 Misses, Misses/sec
	GPU Memory Read Bandwidth, GB/sec
	GPU Memory Texture Read Bandwidth, GB/sec
	GPU Memory Write Bandwidth, GB/sec
	GPU Texel Quads Count, Count/sec
	GPU Utilization
	Instance Count
	L3 Read Bandwidth
	L3 Write Bandwidth
	L3 Sampler Bandwidth, GB/sec
	L3 Shader Bandwidth, GB/sec
	LLC Miss Rate due GPU Lookups
	LLC Miss Ratio due GPU Lookups
	Local
	Maximum GPU Utilization
	Occupancy
	PS EU Active %
	PS EU Stall %
	Ratio to Max Bandwidth, %
	Ratio to Max Bandwidth, %
	Ratio to Max Bandwidth, %
	Render/GPGPU Command Streamer Loaded
	Samples Blended
	Samples Killed in PS, pixels
	Samples Written
	Sampler Busy
	Sampler Is Bottleneck
	Shared Local Memory Read Bandwidth, GB/sec
	Shared Local Memory Write Bandwidth, GB/sec
	SIMD Width
	Stack-to-stack Incoming Bandwidth
	Stack-to-stack Outgoing Bandwidth
	System Memory Read Bandwidth
	System Memory Write Bandwidth
	Size
	Total, GB/sec
	Total Time
	Typed Memory Read Bandwidth, GB/sec
	Typed Memory Write Bandwidth, GB/sec
	Typed Reads Coalescence
	Typed Writes Coalescence
	Untyped Memory Read Bandwidth, GB/sec
	Untyped Memory Write Bandwidth, GB/sec
	Untyped Reads Coalescence
	Untyped Writes Coalescence
	VS EU Active
	VS EU Stall

	OpenCL™ Kernel Analysis Metrics Reference
	Computing Task Total Time
	Instance Count
	SIMD Width
	SIMD Utilization
	Work Size

	Energy Analysis Metrics Reference
	Available Core Time
	C-State
	D0ix States
	DRAM Self Refresh
	Energy Consumed (mJ)
	Idle Wake-ups
	P-State
	S0ix States
	Temperature
	Timer Resolution
	Total Time in C0 State
	Total Time in Non-C0 States
	Total Time in S0 State
	Total Wake-up Count
	Wake-ups
	Wake-ups/sec per Core

	Intel Processor Events Reference

	Notices and Disclaimers

